EP1466343B1 - Tube electronique a collecteur simplifie - Google Patents

Tube electronique a collecteur simplifie Download PDF

Info

Publication number
EP1466343B1
EP1466343B1 EP02805362A EP02805362A EP1466343B1 EP 1466343 B1 EP1466343 B1 EP 1466343B1 EP 02805362 A EP02805362 A EP 02805362A EP 02805362 A EP02805362 A EP 02805362A EP 1466343 B1 EP1466343 B1 EP 1466343B1
Authority
EP
European Patent Office
Prior art keywords
tube
collector
electron beam
electron
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02805362A
Other languages
German (de)
English (en)
Other versions
EP1466343A2 (fr
Inventor
Pierre Thales Intellectual Property Nugues
Jean-Paul Thales Intellectual Property Nesa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1466343A2 publication Critical patent/EP1466343A2/fr
Application granted granted Critical
Publication of EP1466343B1 publication Critical patent/EP1466343B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/027Collectors
    • H01J23/0275Multistage collectors

Definitions

  • the invention relates to amplifiers electronic tubes operating at microwave. It applies more particularly to traveling wave tubes (TWT) also called TWT (English Traveling Wave Tube), and it is therefore about such a tube that it will be described.
  • TWT traveling wave tubes
  • Such tubes serve, for example, for the transmission of telecommunication signals between the earth and the satellites. They also serve as power transmitters in radars.
  • a TOP is a vacuum tube using the principle of the interaction between an electron beam and a microwave electromagnetic wave, to transmit a portion of the energy contained in the beam of the microwave beam to the microwave wave. electrons, so as to obtain at the outlet of the tube a microwave wave of energy greater than that of the wave injected at the inlet of the tube.
  • the figure 1 recalls the general principle of a TOP.
  • the represented TOP is a helical TOP, but other types of TOPs such as coupled cavity TOPs, meandered folded TOPs, etc., are equally concerned with the invention.
  • the TOPs comprise an elongate tubular sleeve 10 in which the vacuum is made, with at one end an electron gun 11 emitting an electron beam 12 and, at a second end, a collector 14; the collector collects the electrons that have given up some of their initial energy to the electromagnetic wave that we want to amplify.
  • the electron beam 12 is substantially cylindrical over almost the entire length of the tube between the barrel 11 and the collector 14 along an axis 15. This cylindrical beam shape is obtained firstly thanks to the shape of a cathode 16 electron gun 11 (convergent cathode-shaped bowl), and secondly by means of magnetic focusing means provided over the entire length of the sleeve 10 between the output of the electron gun 11 and the inlet of the collector 14.
  • these focusing means comprise, for example, annular permanent magnets 18 magnetized axially and alternating magnetization from one magnet to the next; these magnets surround the sheath 10 and are separated from each other by pole pieces 20 with high magnetic permeability.
  • the electron beam 12 passes inside a helical conductive structure 22 along which the microwave electromagnetic wave to be amplified circulates; the amplification of microwave energy occurs by interaction between this wave and. the electron beam 12 passing in the center thereof.
  • the helix serves to slow down the microwave wave so that its speed along the axis of the electron beam 12 is substantially equal to that of the electron beam 12.
  • a power amplifying signal Pe is injected at one end of the helical conductive structure 22 through a plug and a window 24 inside the sleeve 10.
  • An amplified power signal Ps is extracted at another end of the helical conductive structure 22 through a plug and a window 26.
  • V o represents a voltage between the cathode 16 and the collector 14 and I o represents the current flowing in the cathode 16.
  • the efficiency ⁇ is generally of the order of 20 to 30%.
  • the interaction efficiency ⁇ i characterizes the part of the energy of the electron beam 12 converted into microwave energy in the amplified signal.
  • the remaining energy, (1 - ⁇ i) V o x I o in the electron beam 12 after passing inside the helical conductive structure 22 is then dissipated in the collector 14 where the electrons of the beam 12 bombard the walls of the collector 14 and transform their kinetic energy into heat.
  • This heat is then evacuated outside the electron tube by conduction, convection or radiation.
  • the electron tube generally comprises at the level of the collector 14, a radiator not shown on FIG. figure 1 . This radiator is for example cooled by circulation of a liquid or gaseous fluid.
  • part of the current I o coming from the cathode 16, circulates in the helical conductive structure 22 as shown in FIG. figure 2 .
  • the collector 14 is connected to the positive pole 28 of a DC voltage source 30.
  • the helical conductive structure is also connected to the positive pole 28.
  • the negative pole 32 of the DC voltage source 30 is connected to the cathode 16.
  • the electron beam 12 develops between the cathode 16 and the collector 14.
  • a current of 1A is obtained from the cathode 16 in the electron beam 12 and a power Ps of 2 kW at the output of the helical conductive structure 22.
  • the return current between the collector 14 and the pole 28 is 0.99 A and the current between the conductive structure helix 22 and the pole 28 is 0.01.
  • a first DC voltage source 34 for example 10 kV
  • a second DC voltage source 36 whose voltage is lower than that of the first voltage source, for example 6 kV is connected between the collector 14 and the cathode 16.
  • the collector 14 comprises several electrodes carried at different potentials. These different electrodes are intended to slow the electrons before they hit the walls of the electrodes. Thus the heat dissipated in the collector 14 is less and the efficiency ⁇ increases.
  • FIG. 4 An example of such a collector is shown at figure 4 .
  • the DC voltage source 34 of 10 kV is connected between the conductive helical structure 22 and the cathode 16.
  • a current of 0.1 A flows in the voltage source 34.
  • a DC voltage source 38 for example 6 kV, is connected between a first electrode 40 and the cathode 16. A current of 0.4 A flows in the voltage source 38.
  • a DC voltage source 42 for example 4 kV is connected between a second electrode 44 and the cathode 16. A current of 0.48 A flows in the voltage source 42.
  • a last voltage source 46 for example 1 kV is connected between a third electrode 48 and the cathode 16. A current of 0.01 A flows in the voltage source 46.
  • This collector structure 14 comprising several electrodes is called depressed collector. It is understood that the number of electrodes as well as the numerical values of currents, voltages and powers are only given by way of example and that the invention is not limited to these examples.
  • the kinetic energy of the electrons that bombard it is still significant and creates heat that it is necessary to evacuate.
  • the position at the end of the electron tube of the electrode 48 increases the difficulties in evacuating the heat generated by the electronic bombardment. Indeed, this position at the end of the tube is generally used to place means making it possible to create the vacuum inside the electron tube, which is necessary for setting up the electron beam 12.
  • To evacuate the heat generated at the level of the electrode 48 it is necessary to ensure thermal transfer to cooling means located in the immediate vicinity of the electrodes 40 and 44 on the side walls of the electron tube.
  • the document US 4,398,122 describes an electron tube in which a pump tube opens into the tube in the axis of the electron beam.
  • a magnet is placed near the exhaust pipe and allows the beam to be deflected to bring it to the last electrode e4 so as not to enter the exhaust pipe.
  • the document GB 919,767 describes an electron tube in which the end of a jet forms a tip to deflect the beam striking it to a chamber 14 to avoid refocusing in the beam axis.
  • the object of the invention is to overcome the problem described above and to simplify the embodiments described in the cited documents by directly using the means for evacuating the electron tube to push a portion of the electron beam 12 towards the other electrodes. 40 and 44 and not in the main direction of the beam materialized by the axis 15 on the figure 1 .
  • the subject of the invention is an electron tube according to claim 1.
  • the pumping tube opens, inside the tube, along the axis of the electron beam. This simplifies the completion of the end of the tube.
  • the figure 5 partially represents an embodiment of an electron tube embodying the invention.
  • This tube comprises the tubular sheath 10 inside which the vacuum is provided by a pump tube 50, one end of which, open, penetrates inside the sheath 10.
  • the other end of the pump tube is not represented on the figure 5 and is connected to a vacuum pump during manufacturing operations of the electron tube.
  • the pump tube 50 is closed, for example by pinching it until cold hermetic sealing of the walls of the pump tube is obtained.
  • the electron tube comprises an electron gun 11 (not shown in the figure) emitting the electron beam 12 inside the tube and a collector 14 directly collecting a first portion of the electron beam 12.
  • least one electrode It comprises three electrodes 54, 56 and 58 in the example shown.
  • the three electrodes 54, 56 and 58 are of revolution about the axis 15 along which mainly moves the electron beam 12.
  • Each electrode 54, 56 and 58 has a cylindrical portion, respectively 60, 62 and 64, fixed inside the cylindrical sleeve 10.
  • the sleeve 10 is also made around the axis 15.
  • the sleeve 10 is for example made of ceramic and has metallized portions 66, 68 and 70 respectively receiving the electrodes 54, 56 and 58 .
  • the electrodes are for example made of copper and their cylindrical portions 60, 62 and 64 are brazed respectively on the metallized portions 66, 68 and 70 of the sleeve 10. Between these metallized parts, the sleeve 10 comprises grooves 72 and 74 ensuring the isolation between the three electrodes 54, 56 and 58.
  • the electrodes 54, 56 and 58 are each each connected to a voltage source via connection means 76, 78 and 80, respectively.
  • the three electrodes are drilled along the axis 15 of orifices, respectively 88, 90 and 92 passing the electron beam 12 at least in part.
  • One end 81 of the sleeve 10 is closed by a cover 82 mechanically connected to the sleeve 10 with sufficient elasticity to withstand any thermal stresses.
  • This elastic connection between the sheath 10 and the cover 82 is for example provided by means of a collar 84.
  • the cover 82 is of revolution about the axis 15. Its center is pierced so that the pump 50 penetrates inside the electron tube.
  • the pumping tube is electrically connected to a voltage source (not shown in the figure) via connection means 86. The voltage thus delivered to the pumping tube 52 is close to that of the cathode 16 belonging to the barrel. electrons 11.
  • the pump tube 50 When a portion of the electron beam 12 is not collected by one of the three electrodes 54, 56 or 58, the pump tube 50 directly pushes, without an intermediate, this portion of the electron beam 12 towards the collector 14 and more particularly to the electrode 58.
  • the pumping tube 50 has the shape of a pipe whose end 52, located inside the electron tube, is open. Indeed, the pump tube 50 pushes the portion of the electron beam 12 arriving in its vicinity. It can remain open in the direction of the axis 15 because no (or very little) electron enters the pumping tube 50. There is therefore no risk of increasing the temperature of the pumping tube 50 due to an electronic bombardment.
  • the end 52 of the pumping tube 50 has an asymmetrical shape with respect to the axis 15.
  • This shape is for example obtained by beveling the end 52.
  • the bevel thus formed is a section of the end 52 by a plane not perpendicular to the axis 15.
  • This asymmetrical shape allows the electrons arriving on the pump nozzle 50 along the axis 15, to be pushed along an axis distinct from the axis 15 and thus reach one of the electrodes, in particular the electrode 58.
  • the bevel cut of the end 52 is very simple to perform, for example by cutting off the pump tube 50.

Landscapes

  • Microwave Tubes (AREA)

Abstract

L'invention concerne les tubes électroniques amplificateurs fonctionnant en hyperfréquence, comportant : - un queusot de pompage (50) permettant de réaliser le vide à l'intérieur du tube, - un canon à électron (11) émettant un faisceau d'électrons (12) à l'intérieur du tube, et - un collecteur (14) recueillant directement une première partie du faisceau d'électrons (12) ou Le queusot de pompage (50) repousse directement une seconde partie du faisceau d'électrons (12) en direction du collecteur (14).

Description

  • L'invention concerne les tubes électroniques amplificateurs fonctionnant en hyperfréquence. Elle s'applique plus particulièrement aux tubes à ondes progressives (TOP) appelés aussi TWT (de l'anglais Travelling Wave Tube), et c'est donc à propos d'un tel tube qu'elle sera décrite. De tels tubes servent par exemple à la transmission de signaux de télécommunication entre la terre et les satellites. Ils servent aussi comme émetteurs de puissance dans les radars.
  • On rappelle sommairement qu'un TOP est un tube à vide utilisant le principe de l'interaction entre un faisceau d'électrons et une onde électromagnétique hyperfréquence, pour transmettre à l'onde hyperfréquence une partie de l'énergie contenue dans le faisceau d'électrons, de manière à obtenir en sortie du tube une onde hyperfréquence d'énergie plus grande que celle de l'onde injectée à l'entrée du tube.
  • La figure 1 rappelle le principe général d'un TOP. Le TOP représenté est un TOP à hélice, mais d'autres types de TOP tels que les TOP à cavités couplées, les TOP à guides repliés en méandres, etc., sont tout aussi bien concernés par l'invention.
  • Les TOP comportent un fourreau tubulaire allongé 10 dans lequel le vide est fait, avec à une première extrémité un canon à électrons 11 émettant un faisceau d'électrons 12 et, à une deuxième extrémité, un collecteur 14 ; le collecteur recueille les électrons qui ont cédé une partie de leur énergie de départ à l'onde électromagnétique qu'on veut amplifier. Le faisceau d'électrons 12 est sensiblement cylindrique sur presque toute la longueur du tube entre le canon 11 et le collecteur 14 en suivant un axe 15. Cette forme cylindrique de faisceau est obtenue d'une part grâce à la forme d'une cathode 16 du canon à électron 11 (cathode convergente en forme de cuvette), et d'autre part grâce à des moyens de focalisation magnétique prévus sur toute la longueur du fourreau 10 entre la sortie du canon à électrons 11 et l'entrée du collecteur 14. Dans le canon à électron 11, c'est la cathode 16 qui émet le faisceau d'électrons 12. Ces moyens de focalisation comportent par exemple des aimants permanents annulaires 18 aimantés axialement et d'aimantation alternée d'un aimant au suivant ; ces aimants entourent le fourreau 10 et sont séparés les uns des autres par des pièces polaires 20 à forte perméabilité magnétique.
  • Dans le cas d'un TOP à hélice, le faisceau d'électrons 12 passe à l'intérieur d'une structure conductrice en hélice 22 le long de laquelle circule l'onde électromagnétique hyperfréquence à amplifier; l'amplification d'énergie hyperfréquence se produit par interaction entre cette onde et. le faisceau d'électrons 12 passant au centre de celle-ci. L'hélice sert à ralentir l'onde hyperfréquence, de telle sorte que sa vitesse, suivant l'axe 15 du faisceau d'électrons 12, soit sensiblement égale à celle du faisceau d'électrons 12.
  • Un signal à amplifier de puissance Pe est injecté à une extrémité de la structure conductrice en hélice 22 au travers d'une fiche et d'une fenêtre 24 à l'intérieur du fourreau 10. Un signal amplifié de puissance Ps est extrait à une autre extrémité de la structure conductrice en hélice 22 au travers d'une fiche et d'une fenêtre 26. Le gain G d'amplification du tube électronique est défini par le rapport G = Ps/Pe ou exprimé en décibel : 10 log10 (Ps/Pe). Le rendement η de l'amplification est quant à lui défini par : η = Ps / V o xl o .
    Figure imgb0001
    Vo représente une tension entre la cathode 16 et le collecteur 14 et Io représente le courant circulant dans la cathode 16. Le rendement η est généralement de l'ordre de 20 à 30 %. Il est souvent appelé rendement d'interaction ηi et caractérise la partie de l'énergie du faisceau d'électron 12 convertie en énergie hyperfréquence dans le signal amplifié. L'énergie restante, (1 - ηi) VoxIo , dans le faisceau d'électrons 12 après son passage à l'intérieur de la structure conductrice en hélice 22 est ensuite dissipée dans le collecteur 14 où les électrons du faisceau 12 bombardent les parois du collecteur 14 et transforment leur énergie cinétique en chaleur. Cette chaleur est alors évacuée à l'extérieur du tube électronique par conduction, convection ou rayonnement. A l'extérieur du fourreau tubulaire allongé 10, le tube électronique comporte généralement au niveau du collecteur 14, un radiateur non représenté sur la figure 1. Ce radiateur est par exemple refroidi par circulation d'un fluide liquide ou gazeux.
  • Dans la pratique une partie du courant Io, issu de la cathode 16, circule dans la structure conductrice en hélice 22 comme le montre la figure 2.
  • Sur cette figure, le collecteur 14 est raccordé au pôle positif 28 d'une source de tension continue 30. La structure conductrice en hélice est également raccordée au pôle positif 28. Le pôle négatif 32 de la source de tension continue 30 est raccordé à la cathode 16. Le faisceau d'électrons 12 se développe entre la cathode 16 et le collecteur 14. Dans une réalisation expérimentale, en utilisant une source de tension continue 30 de 10 kV, on obtient un courant de 1A issu de la cathode 16 dans le faisceau d'électrons 12 et une puissance Ps de 2 kW en sortie de la structure conductrice en hélice 22. Le courant de retour entre le collecteur 14 et le pôle 28 est de 0,99 A et le courant entre la structure conductrice en hélice 22 et le pôle 28 est de 0,01. Le rendement s'exprime alors : η = 2 kW 10 kV x 0 , 99 + 0 , 01 = 20 %
    Figure imgb0002
  • On peut améliorer le rendement d'un tube électronique en utilisant deux sources de tension. Cette alternative est représentée sur la figure 3. Une première source de tension continue 34 par exemple de 10 kV est raccordée entre la cathode 16 et la structure conductrice en hélice 22 et une deuxième source de tension continue 36 dont la tension est inférieure à celle de la première source de tension, par exemple 6 kV est raccordée entre le collecteur 14 et la cathode 16. En supposant les mêmes valeurs de courant et de puissance que dans l'exemple représenté précédemment sur la figure 2, le rendement s'exprime alors : η = 2 k W 10 kV x 0 , 01 + 6 kV x 0 , 99 = 33 %
    Figure imgb0003
  • Avantageusement, le collecteur 14 comporte plusieurs électrodes portées à différents potentiels. Ces différentes électrodes ont pour but de ralentir les électrons avant qu'ils ne frappent les parois des électrodes. Ainsi la chaleur dissipée dans le collecteur 14 est moindre et le rendement η augmente.
  • Un exemple d'un tel collecteur est représenté à la figure 4. Dans cet exemple, la source de tension continue 34 de 10 kV est raccordée entre la structure conductrice en hélice 22 et la cathode 16. Un courant de 0,1 A circule dans la source de tension 34.
  • Une source de tension continue 38, par exemple de 6 kV, est raccordée entre une première électrode 40 et la cathode 16. Un courant de 0,4 A circule dans la source de tension 38. Une source de tension continue 42, par exemple de 4 kV est raccordée entre une seconde électrode 44 et la cathode 16. Un courant de 0,48 A circule dans la source de tension 42. Une dernière source de tension 46, par exemple de 1 kV est raccordée entre une troisième électrode 48 et la cathode 16. Un courant de 0,01 A circule dans la source de tension 46. Les trois électrodes 40, 44 et 48, appartenant au collecteur 14, sont disposées de telle sorte que l'électrode 40, soumise à la tension la plus élevée par rapport à la cathode 16, soit la plus proche de la cathode 16 et l'électrode 48, soumise à la tension la plus faible par rapport à la cathode 16 soit la plus éloignée de la cathode 16. Toujours en supposant que la puissance Ps soit de 2 kW, le rendement s'exprime de la façon suivante : η = 2 kW 10 kV x 0 , 01 + 6 kV x 0 , 40 + 4 kV x 0 , 48 + 1 kV x 0 , 01 = 45 %
    Figure imgb0004
  • Cette structure de collecteur 14 comportant plusieurs électrodes est appelée collecteur déprimé. Il est bien entendu que le nombre d'électrodes ainsi que les valeurs numériques des courants, tensions et puissances ne sont données qu'à titre d'exemple et que l'invention n'est pas limitée à ces exemples.
  • Bien que la dernière électrode ait une faible différence de potentiel par rapport à la cathode 16, l'énergie cinétique des électrons qui la bombarde est encore importante et crée de la chaleur qu'il est nécessaire d'évacuer. La position en extrémité du tube électronique de l'électrode 48 augmente les difficultés pour évacuer la chaleur que génère le bombardement électronique. En effet cette position en extrémité de tube est généralement utilisée pour placer des moyens permettant de réaliser le vide à l'intérieur du tube électronique, vide nécessaire à l'établissement du faisceau d'électrons 12. Pour évacuer la chaleur générée au niveau de l'électrode 48 il est nécessaire d'assurer un transfert thermique vers des moyens de refroidissement situés au voisinage immédiat des électrodes 40 et 44 sur les parois latérales du tube électronique. Ce transfert thermique est toujours difficile à réaliser notamment à cause de dilatation thermique différentielle entre des éléments conducteurs de l'électricité tel que les électrodes 40, 44 et 48 et des éléments isolants séparant ces électrodes. Il serait possible de réduire la chaleur générée au niveau de l'électrode 48 en réduisant la différence de potentiel de la source de tension continue 46. Mais cette solution risquerait de réfléchir une partie du faisceau d'électrons 12 bombardant l'électrode 48 en direction de la cathode 16. Cette réflexion risque de détruire la structure conductrice en hélice 22.
  • Le document US 4,398,122 décrit un tube électronique dans lequel un queusot de pompage débouche dans le tube dans l'axe du faisceau d'électrons. Un aimant est placé à proximité du queusot et permet de dévier le faisceau pour l'amener vers la dernière électrode e'4 afin de ne pas pénétrer dans le queusot.
  • Le document GB 919,767 décrit un tube électronique dans lequel l'extrémité d'un queusot forme une pointe permettant de dévier le faisceau la heurtant vers une chambre 14 pour éviter toute refocalisation dans l'axe du faisceau.
  • L'invention a pour but de pallier le problème décrit plus haut et de simplifier les réalisations décrites dans les documents cités en utilisant directement les moyens pour faire le vide dans le tube électronique pour repousser une partie du faisceau d'électrons 12 vers les autres électrodes 40 et 44 et non pas suivant la direction principale du faisceau matérialisé par l'axe 15 sur la figure 1.
  • A cet effet, l'invention a pour objet un tube électronique selon la revendication 1.
  • Selon l'invention, le queusot de pompage s'ouvre, à l'intérieur du tube, suivant l'axe du faisceau d'électrons. Cela permet de simplifier la réalisation de l'extrémité du tube.
  • L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation donné à titre d'exemple, mode de réalisation illustré par le dessin joint dans lequel :
    • la figure 1 représente schématiquement le fonctionnement général d'un tube électronique ;
    • la figure 2 représente un tube électronique utilisant une seule source de tension continue ;
    • la figure 3 représente un tube électronique utilisant deux sources de tension continue ;
    • la figure 4 représente un tube électronique comportant 4 sources de tension continue et un collecteur déprimé ;
    • la figure 5 représente une extrémité du tube électronique avec un collecteur déprimé et une partie de moyens permettant de réaliser le vide à l'intérieur du tube.
  • Pour simplifier la suite de la description, les mêmes éléments porteront les mêmes repères dans les différentes figures.
  • Les figures 1 à 4 ont déjà été décrites précédemment pour introduire l'invention.
  • La figure 5 représente partiellement un exemple de réalisation d'un tube électronique mettant en oeuvre l'invention. Ce tube comporte le fourreau tubulaire 10 à l'intérieur duquel le vide est assuré par un queusot de pompage 50 dont une extrémité 52, ouverte, pénètre à l'intérieur du fourreau 10. L'autre extrémité du queusot de pompage n'est pas représentée sur la figure 5 et est raccordée à une pompe à vide lors des opérations de fabrication du tube électronique. Lorsqu'un vide suffisant est obtenu à l'intérieur du tube le queusot de pompage 50 est obturé par exemple en le pinçant jusqu'à obtenir un soudage hermétique à froid des parois du queusot de pompage.
  • Le tube électronique comporte un canon à électron 11 (non représenté sur la figure) émettant le faisceau d'électrons 12 à l'intérieur du tube et un collecteur 14 recueillant directement une première partie du faisceau d'électrons 12. Le collecteur 14 comporte au moins une électrode. Il comporte trois électrodes 54, 56 et 58 dans l'exemple représenté. Les trois électrodes 54, 56 et 58 sont de révolution autour de l'axe 15 le long duquel se déplace principalement le faisceau d'électrons 12. Chaque électrode 54 , 56 et 58 comporte une partie cylindrique, respectivement 60, 62 et 64, fixée à l'intérieur du fourreau cylindrique 10. Le fourreau 10 est également réalisé autour de l'axe 15. Le fourreau 10 est par exemple réalisé en céramique et comporte des parties métallisées 66, 68 et 70 recevant respectivement les électrodes 54, 56 et 58.
  • Les électrodes sont par exemple réalisées à base de cuivre et leurs parties cylindriques 60, 62 et 64 sont brasées respectivement sur les parties métallisées 66, 68 et 70 du fourreau 10. Entre ces parties métallisées, le fourreau 10 comporte des gorges 72 et 74 assurant l'isolement entre les trois électrodes 54, 56 et 58. Les électrodes 54, 56 et 58 sont toutes trois raccordées chacune à une source de tension par l'intermédiaire de moyens de connexion respectivement 76, 78 et 80.
  • Les trois électrodes sont percées suivant l'axe 15 d'orifices, respectivement 88, 90 et 92 laissant passer le faisceau d'électrons 12 au moins en partie.
  • Une extrémité 81 du fourreau 10 est obturée par un opercule 82 relié mécaniquement au fourreau 10 avec une élasticité suffisante pour encaisser d'éventuelles contraintes thermiques. Cette liaison élastique entre le fourreau 10 et l'opercule 82 est par exemple assuré par l'intermédiaire d'un collet 84. L'opercule 82 est de révolution autour de l'axe 15. Son centre est percé de façon à ce que le queusot de pompage 50 pénètre à l'intérieur du tube électronique. Le queusot de pompage est raccordé électriquement à une source de tension (non représentée sur la figure) par l'intermédiaire de moyens de connexion 86. La tension ainsi délivrée au queusot de pompage 52 est voisine de celle de la cathode 16 appartenant au canon à électrons 11.
  • Lorsqu'une partie du faisceau d'électrons 12 n'est pas collecté par l'une des trois électrodes 54, 56 ou 58, le queusot de pompage 50 repousse directement, sans intermédiaire, cette partie du faisceau d'électrons 12 en direction du collecteur 14 et plus particulièrement vers l'électrode 58.
  • Avantageusement, le queusot de pompage 50 a la forme d'une tubulure dont l'extrémité 52, située à l'intérieur du tube électronique, est ouverte. En effet, le queusot de pompage 50 repousse la partie du faisceau d'électrons 12 arrivant à son voisinage. Il peut rester ouvert dans la direction de l'axe 15 car aucun (ou très peu) électron ne pénètre dans le queusot de pompage 50. Il n'y a donc pas de risque d'élévation de température du queusot de pompage 50 dû à un bombardement électronique.
  • Avantageusement, l'extrémité 52 du queusot de pompage 50 a une forme dissymétrique par rapport à l'axe 15. Cette forme est par exemple obtenue en biseautant l'extrémité 52. Le biseau ainsi formé est une coupe de l'extrémité 52 par un plan non perpendiculaire à l'axe 15. Cette forme dissymétrique permet aux électrons arrivant sur le queusot de pompage 50 en suivant l'axe 15, d'être repoussé suivant un axe distinct de l'axe 15 et ainsi atteindre l'une des électrodes notamment l'électrode 58. La coupe en biseau de l'extrémité 52 est très simple à réaliser par exemple par tronçonnage du queusot de pompage 50.

Claims (3)

  1. Tube électronique comportant :
    - un queusot de pompage (50) permettant de réaliser le vide à l'intérieur du tube,
    - un canon à électron (11) émettant un faisceau d'électrons (12) à l'intérieur du tube,
    - un collecteur (14) recueillant directement une première partie du faisceau d'électrons (12),
    caractérisé en ce que le queusot de pompage (50) repousse directement une seconde partie du faisceau d'électrons (12) en direction du collecteur (14), queusot de pompage (50) étant formé d'une tubulure dont une extrémité (52) située à l'intérieur du tube électronique est ouverte dans une direction (15) principale du faisceau d'électrons (12), le canon à électrons (11) comportant une cathode (16) émettant les électrons (12) et le queusot de pompage (50) étant raccordé à une source de potentiel qui délivre au queusot de pompage (50) une tension voisine de celle de la cathode (16).
  2. Tube électronique selon la revendication 1, caractérisé en ce que ladite extrémité (52) du queusot de pompage (50) à une forme dissymétrique par rapport à la direction (15) principale du faisceau d'électrons (12).
  3. Tube électronique selon la revendication 2, caractérisé en ce que ladite extrémité (52) du queusot (50) est biseautée.
EP02805362A 2001-12-14 2002-12-10 Tube electronique a collecteur simplifie Expired - Lifetime EP1466343B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0116242 2001-12-14
FR0116242A FR2833748B1 (fr) 2001-12-14 2001-12-14 Tube electronique a collecteur simplifie
PCT/FR2002/004265 WO2003054899A2 (fr) 2001-12-14 2002-12-10 Tube electronique a collecteur fourni d’un queusot de pompage axial

Publications (2)

Publication Number Publication Date
EP1466343A2 EP1466343A2 (fr) 2004-10-13
EP1466343B1 true EP1466343B1 (fr) 2012-01-18

Family

ID=8870532

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02805362A Expired - Lifetime EP1466343B1 (fr) 2001-12-14 2002-12-10 Tube electronique a collecteur simplifie

Country Status (4)

Country Link
US (1) US6984940B2 (fr)
EP (1) EP1466343B1 (fr)
FR (1) FR2833748B1 (fr)
WO (1) WO2003054899A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107610992B (zh) * 2017-08-15 2023-10-13 成都国光电气股份有限公司 双向射频信号放大行波管
CN107316792B (zh) * 2017-08-15 2023-07-07 成都国光电气股份有限公司 电子收发器
RU2731297C1 (ru) * 2020-01-28 2020-09-02 Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" (АО "НПП "Исток" им. Шокина") Сверхвысокочастотное циклотронное защитное устройство
FR3119267B1 (fr) * 2021-01-28 2023-04-28 Thales Sa Tube à Ondes Progressives

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB919767A (en) * 1960-03-17 1963-02-27 Standard Telephones Cables Ltd Improvements in or relating to electron beam tubes
US4096409A (en) * 1976-10-04 1978-06-20 Litton Systems, Inc. Multistage depressed collector
FR2480497A1 (fr) * 1980-04-15 1981-10-16 Thomson Csf Collecteur deprime a plusieurs etages pour tube hyperfrequence et tube hyperfrequence comportant un tel collecteur
US6380803B2 (en) * 1993-09-03 2002-04-30 Litton Systems, Inc. Linear amplifier having discrete resonant circuit elements and providing near-constant efficiency across a wide range of output power
JP2790118B2 (ja) * 1996-04-25 1998-08-27 日本電気株式会社 マイクロ波管
GB0002523D0 (en) * 2000-02-04 2000-03-29 Marconi Applied Technologies Collector
US6617791B2 (en) * 2001-05-31 2003-09-09 L-3 Communications Corporation Inductive output tube with multi-staged depressed collector having improved efficiency

Also Published As

Publication number Publication date
FR2833748B1 (fr) 2004-04-02
WO2003054899A2 (fr) 2003-07-03
WO2003054899A3 (fr) 2004-04-22
FR2833748A1 (fr) 2003-06-20
US6984940B2 (en) 2006-01-10
US20050067965A1 (en) 2005-03-31
EP1466343A2 (fr) 2004-10-13

Similar Documents

Publication Publication Date Title
EP0013242B1 (fr) Générateur d'ondes radioélectriques pour hyperfréquence
EP1095390B1 (fr) Tube electronique multifaisceau avec champ magnetique de correction de trajectoire des faisceaux
EP0248689A1 (fr) Klystron à faisceaux multiples
EP1466343B1 (fr) Tube electronique a collecteur simplifie
EP0239466A1 (fr) Circuit de sortie pour klystron, et klystron comportant un tel circuit de sortie
EP0384813A1 (fr) Canon à électrons à faisceau électronique modulé par un dispositif optique
EP0037309B1 (fr) Tube à ondes progressives à cavités couplées et focalisation par aimants permanents alternés, et ensemble amplificateur comprenant un tel tube
EP0038249A1 (fr) Collecteur déprimé à plusieurs étages pour tube hyperfréquence
EP0401065B1 (fr) Mode de construction d'une ligne à retard à hélice
EP2747118B1 (fr) Cathode pour dispositif de génération d'ondes électromagnétiques, comprenant des régions d'émission mobiles les unes par rapport aux autres
FR2691012A1 (fr) Canon de pierce à électrode d'échelonnement.
EP0082769A1 (fr) Multiplicateur de fréquence
EP1680799B1 (fr) Tube hyperfrequence a faible rayonnement parasite
EP1251544B1 (fr) Tube électronique amplificateur hyperfréquence avec fiche d'entrée miniature et procédé de fabrication
EP2747117B1 (fr) Dispositif de génération d'ondes hyperfréquences à double cathodes
FR2833749A1 (fr) Refroidissement d'un tube electronique
FR2737042A1 (fr) Collecteur d'electrons multietage supportant des tensions elevees et tube electronique muni d'un tel collecteur
WO2009083540A1 (fr) Protection d'une electrode de tube electronique
FR2882191A1 (fr) Montage de reglage d'accord de frequence pour tube a sortie inductive
EP0482986A1 (fr) Collecteur pour tube hyperfréquence et tube hyperfréquence comportant un tel collecteur
FR3114476A1 (fr) Dispositif d’excitation pour transformer un gaz en plasma dans un tube capillaire diélectrique et accélérateur laser-plasma.
BE474640A (fr)
FR2476908A1 (fr) Tube a ondes progressives pour tres hautes frequences et dispositif amplificateur utilisant un tel tube
FR2810788A1 (fr) Tube hyperfrequence de puissance a large bande
WO2004114350A2 (fr) Tube a ondes progressives a rendement ameliore

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040616

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

17Q First examination report despatched

Effective date: 20100721

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121019

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211126

Year of fee payment: 20

Ref country code: GB

Payment date: 20211118

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20221209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20221209

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517