EP1251544B1 - Tube électronique amplificateur hyperfréquence avec fiche d'entrée miniature et procédé de fabrication - Google Patents

Tube électronique amplificateur hyperfréquence avec fiche d'entrée miniature et procédé de fabrication Download PDF

Info

Publication number
EP1251544B1
EP1251544B1 EP20020290963 EP02290963A EP1251544B1 EP 1251544 B1 EP1251544 B1 EP 1251544B1 EP 20020290963 EP20020290963 EP 20020290963 EP 02290963 A EP02290963 A EP 02290963A EP 1251544 B1 EP1251544 B1 EP 1251544B1
Authority
EP
European Patent Office
Prior art keywords
tube
magnets
metallization
sleeve
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20020290963
Other languages
German (de)
English (en)
Other versions
EP1251544A1 (fr
Inventor
Alain Thales Intellectual Property Laurent
Gildas Thales Intellectual Property Gauthier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1251544A1 publication Critical patent/EP1251544A1/fr
Application granted granted Critical
Publication of EP1251544B1 publication Critical patent/EP1251544B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/36Coupling devices having distributed capacitance and inductance, structurally associated with the tube, for introducing or removing wave energy
    • H01J23/40Coupling devices having distributed capacitance and inductance, structurally associated with the tube, for introducing or removing wave energy to or from the interaction circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • H01F7/0278Magnetic circuits with PM for magnetic field generation for generating uniform fields, focusing, deflecting electrically charged particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/08Focusing arrangements, e.g. for concentrating stream of electrons, for preventing spreading of stream
    • H01J23/087Magnetic focusing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/165Manufacturing processes or apparatus therefore
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/36Coupling devices having distributed capacitance and inductance, structurally associated with the tube, for introducing or removing wave energy
    • H01J23/40Coupling devices having distributed capacitance and inductance, structurally associated with the tube, for introducing or removing wave energy to or from the interaction circuit
    • H01J23/42Coupling devices having distributed capacitance and inductance, structurally associated with the tube, for introducing or removing wave energy to or from the interaction circuit the interaction circuit being a helix or a helix-derived slow-wave structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/34Travelling-wave tubes; Tubes in which a travelling wave is simulated at spaced gaps
    • H01J25/36Tubes in which an electron stream interacts with a wave travelling along a delay line or equivalent sequence of impedance elements, and without magnet system producing an H-field crossing the E-field
    • H01J25/38Tubes in which an electron stream interacts with a wave travelling along a delay line or equivalent sequence of impedance elements, and without magnet system producing an H-field crossing the E-field the forward travelling wave being utilised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases

Definitions

  • the invention relates to amplifiers electronic tubes operating at microwave. It applies more particularly to traveling wave tubes (TWTs) also called TWT (Traveling Wave Tube), and it is therefore about such a tube that it will be described.
  • TWTs traveling wave tubes
  • the invention is particularly useful for making small radial size TOPs operating at high frequencies (typically 30 GHz). Such tubes are used for example for the transmission of telecommunication signals between the earth and satellites.
  • a TOP is a vacuum tube using the principle of the interaction between an electron beam and a microwave electromagnetic wave, to transmit a portion of the energy contained in the beam of the microwave beam to the microwave wave. electrons, so as to obtain at the outlet of the tube a microwave wave of energy greater than that of the wave injected at the inlet of the tube.
  • Figure 1 recalls the general principle of a TOP.
  • the represented TOP is a helical TOP, but other types of TOPs such as coupled cavity TOPs, meandered folded TOPs, etc., are equally concerned with the invention.
  • the TOPs comprise an elongate tubular sleeve 10 in which the vacuum is made, with at one end an electron gun 11 emitting an electron beam 12 and, at a second end, a collector 14; the collector collects the electrons that have given up some of their initial energy to the electromagnetic wave that we want to amplify.
  • the electron beam is substantially cylindrical over almost the entire length of the tube between the barrel 11 and the collector 14. This cylindrical beam shape is obtained on the one hand thanks to the shape of the cathode 16 of the barrel (cathode convergent in form of bowl), and secondly by means of magnetic focusing means provided over the entire length of the sheath between the output of the electron gun 11 and the inlet of the collector 14.
  • These focusing means are annular permanent magnets 18, magnetized axially and alternately magnetizing from one magnet to the next; these magnets surround the sleeve and are separated from each other by pole pieces 20 with high magnetic permeability.
  • the electron beam passes inside a conductive helical structure 22 along which the microwave electromagnetic wave to be amplified circulates; the amplification of microwave energy occurs by interaction between this wave and the electron beam passing in the center of it.
  • the propeller serves to slow down the microwave wave, in that if the velocity of the wave that propagates along the helix is substantially the speed of light, the velocity of the wave along the axis of the helix will be only a fraction of the speed of light; this fraction is determined by the angular pitch of the helix.
  • a meandering guide or coupled cavities can play the same role of retarder as the propeller.
  • a microwave signal input, 24, is connected to a first end of the helix, on the side of the electron gun 11, and a microwave signal output 26 is provided at a second end of the helix, on the collector 14 side. .
  • the input 24 of the TOP is most often constituted by a coaxial plug whose central core is electrically connected to the end of the propeller.
  • the plug is brazed or soldered to the tube, and a ceramic window, brazed or welded in the body of the plug, is provided to seal the vacuum between the inside of the tube (under vacuum) and the outside (at free air) while allowing the passage of the microwave from the outside to the propeller.
  • the output 26 of the TOP may be constituted by a coaxial plug provided with vacuum sealing means. But it can also be constituted by a section waveguide for example rectangular.
  • a vacuum-tight structure with a piece of ceramic allowing the microwave waves to pass, must in all cases be provided.
  • the microwave signal input and output parts are bulky and difficult to put in place. Magnets also pose problems of setting up. These difficulties result in particular from the fact that the vacuum tubes require soldering operations to ensure sealing at different points, and high temperature steaming operations with pumping, for evacuation. Steaming operations are performed at temperatures up to 500 ° C for example and for periods of up to several tens of hours.
  • the brazing operations include soldering between ceramic pieces and metal pieces, and these brazing are done by passing through an oven at even higher temperatures (780 ° C typically, or more). Magnets can not normally support these operations and the placement of magnets must take this into account.
  • the mounting of such a TOP is in principle in the order of the following steps: installation of the helical structure 22 in the sleeve of the tube, positioning of the pole pieces along the sheath, set up and welding on the tube of the input and output plugs, welding connections between the ends of the propeller and the input and output plugs; welding the electron gun on one side, the collector on the other side; then pumping / steaming the tube to ensure the degassing of internal parts, closing or sealing the tube when the vacuum is made; then placing permanent magnets in the periodic intervals between pole pieces: each magnet is cylindrical and consists of two half-rings placed around the sheath between two consecutive pole pieces; the half-rings are tightened against each other to reconstitute a complete cylinder, for example by means of an elastic strapping around each magnet.
  • the good functioning of the TOP is based on the quality of the axial alternating magnetic field inside the propeller, and that this quality depends on that of the permanent magnets, it is often necessary to proceed then to manual external adjustments in sticking here and there additional magnetic pieces that empirically correct the irregularities of distribution of the magnetic field.
  • the present invention aims at providing a manufacturing method and a tube structure which make the realization less expensive without deteriorating the quality of the tube produced, and even improving it from the point of view of the regularity of the distribution of the magnetic fields obtained on along the sheath.
  • the invention proposes a method for manufacturing a vacuum electron tube, in which the tube comprises on the one hand an electron gun capable of emitting an electron beam in the axis of a sheath.
  • the high temperature is several hundred degrees, up to about 500 ° C.
  • the electron gun is preferably placed in the sheath by welding or local brazing. There is no need to pass the tube through a high temperature brazing furnace after placement of the magnets and prior to the stoving operation (i.e., the high temperature pumping operation).
  • the magnets having this resistance to high temperatures may be based on samarium-cobalt including transition metals (copper, iron, zirconium in particular). They are typically in a material of the type Sm 2 X 17 in particular, where X is a combination of several transition metals, including cobalt, copper, iron and zirconium; they are sold in particular by the company Electron Energy Corporation in Landisville USA and can withstand temperatures up to 550 ° C at least.
  • the invention provides an original tube input / output structure; this structure allows the introduction of monobloc ring magnets after the realization brazing which is necessary to ensure both the vacuum tightness and the passage of microwave waves at the place of the input structure and the output structure.
  • the input / output structure according to the invention, it is possible to realize typically all soldering at 780 ° C or more before the placement of the magnets, and this although the magnets are made of a single annular piece .
  • input / output structure is meant here a structure for the passage of microwave signal between the inside and outside of the tube, either at the tube inlet or at the outlet. The invention applies either to the entry, the exit or both.
  • the invention proposes a vacuum microwave tube comprising an electron gun capable of emitting an electron beam in the axis of a metallic cylindrical sheath which extends between a microwave signal input to be amplified and a amplified signal output, this tube being characterized in that at least one of the input and the signal output comprises a dielectric plate forming a microwave energy transmission window, this plate being embedded and soldered in a closed opening in the wall of the sheath, the plate does not protrude beyond the outer perimeter of the cylindrical sheath and sealing in a vacuum-tight manner said opening.
  • magnets can be threaded on the sleeve passing over the inlet window (or exit) after soldering operations of this window. The magnets will undergo the bake temperature, but not the soldering temperature (s).
  • the dielectric plate is preferably constituted by a tri-plate structure with two dielectric layers and three levels of metallization separated by these two layers; the metallizations comprise a first level of metallization comprising (in the direction of the propagation of energy) an input conductor, a second intermediate level comprising a metallization connected to an electrical mass and a coupling slot formed in this metallization, and a third metallization level comprising an output conductor.
  • the input conductor and the output conductor each have a portion facing the coupling slot and the energy flow is through the coupling slot, between the input conductor and the output conductor.
  • the inlet metallization is outside the tube, and receives a microwave signal to be amplified.
  • the exit metallization is located inside the tube and is connected for example to the input of a propeller of the TOP or other wave propagation slowing structure.
  • the magnets can be slid onto the sleeve after having brazed thereto the dielectric plates constituting vacuum-tight transmission windows, after which, before or after the tube is heated, a solder is welded. access sheet to the window (for example a laser-welded coaxial plug).
  • the realization of the window and the connection between the inside of the tube and the outside is particularly easy. In addition, it allows a reduction of dimensions of the whole tube, minimizing the place occupied by the connections, so that this structure can be used advantageously only because of this reduction of dimensions and not only because of the more great ease of manufacture of the tube.
  • the access sheet to the window will in principle be a coaxial plug, the core of which will be connected to a metallized part of the plate on the side located outside the tube. But an external connection to a waveguide is also possible.
  • Figure 2 shows an example of a propeller TOP construction in the prior art.
  • the same references as in Figure 1 are used for the same elements. Only the upstream part of the tube is represented.
  • the electron gun is not represented.
  • the barrel is fixed, on the left of the figure, on a metal pole piece 30 which terminates the sheath 10.
  • the conductive helix 22, carried by an insulating structure 23, extends all along the sheath, and is centered by compared to the sheath.
  • the electron gun emits an electron beam centered in the axis of the helix.
  • the annular magnets 18, each consisting of two half-rings, are evenly distributed throughout the tube and separated by pole pieces 20 of high magnetic permeability material. These pole pieces 20, fixed prior to mounting the magnets, are all shown, but only a few magnets 18 have been shown to show how they fit, after steaming the tube, in the spaces between two consecutive pole pieces 20.
  • the two half-rings constituting a magnet 18 are held in place around the sheath by elastic clips or straps, not shown so as not to weigh down the figure.
  • the microwave is brought to the input of the tube by an input plug 24, here a coaxial plug.
  • This input plug is located at one end of the sleeve, on the side of the electron gun, facing the end of the propeller 22.
  • the coaxial input plug has a conductive core 25 inside an envelope 27.
  • the end of the core is generally welded to the upstream end of the helix to establish a conductive connection for the wave microwave between the core of the plug and the propeller.
  • a microwave window must be provided somewhere in the form.
  • the window is a cylindrical or rectangular ceramic dielectric piece 32 brazed in a vacuum-tight manner inside the plug.
  • the construction may be similar for the microwave output.
  • Figure 2 there is not shown the coaxial cable which brings the energy to the input plug. This cable is screwed onto the end of the plug in such a way that the cable core comes into contact with the core of the plug and the cable casing comes into contact with the casing 27 of the cable. plug completely surrounding the dielectric window 32.
  • the window 40 is constituted by a dielectric plate with several levels of metallization, of which we see an upper metal track 42 intended to be electrically connected to the end of the core 38 of the coaxial cable 36.
  • the window sealingly closes an opening breakthrough in the wall of the sleeve to the interior space of the tube.
  • the window is brazed against the edges of this opening.
  • Notches and / or flats 46 are machined on the outer wall of the sleeve to form planar surfaces on which fit corresponding flat surfaces of the body 34.
  • the receiving body 34 is for example welded by laser welding on the wall of the sheath 10, but this welding occurs only in a late stage of manufacture and more specifically, it intervenes only after steaming of the tube.
  • the dielectric plate 40 constituting the microwave window is actually preferably constituted by a superposition of two or more dielectric plates as will be explained later, with the interposition of metal layers between the dielectric plates.
  • FIG. 3 shows, at the end of the sheath, a smaller diameter sheath section on which an end pole piece, not shown, can be inserted serving as a support for the electron gun (also not shown) and serving as a magnetic shielding to prevent any influence of the magnets on the barrel.
  • the end pole piece will be welded for example to the laser on the end of the sheath (after threading the magnets 18 and the pole pieces 20).
  • the electron gun will be welded for example laser on this support pole piece before emptying and steaming the tube, the magnets being in place. High temperature solders not acceptable for magnets will be avoided as well to fix the support part as to fix the barrel, and this in order not to damage the magnets in place.
  • Figure 4 and Figure 5 respectively in section and in plan view, show in more detail the constitution of the microwave window 40 recessed within the outer perimeter of the sheath.
  • Figure 4 is a section along line A-A 'of Figure 5.
  • An opening 50 has been formed in the wall of the sheath 10 at the upstream end of the propeller 22; this opening communicates the inside 52 of the sheath (inner vacuum) with the outside.
  • This opening 50 is sealingly closed by the microwave window 40.
  • This comprises a metallized dielectric plate, with three metallization levels which are respectively an external metallization 42 for the arrival of the input signal, an internal metallization 58 for the signal transmission to the helix, and a central metallization 64 constituting a ground plane provided with a narrow slot-shaped local demetallization 62.
  • the slot is a microwave coupling slot between the outer metallization and the inner metallization.
  • the window consists of two dielectric plates 54 and 56 superimposed, both metallized, one of which can be metallized at least partially on both sides (the upper plate 56 preferably).
  • the external metallization, on the upper dielectric plate 56, constitutes the conductive track 42 already mentioned, intended for the arrival of the input signal. It preferably has an L shape, one branch (the one which is perpendicular to the longitudinal axis of the sleeve, will be connected to the core 38 of the coaxial cable 36 ( Figure 3), and the other branch (the one which extends parallel to the sheath) crosses the demetallized slot 62 of the central metallization 64.
  • the free branch length of the L remaining beyond the crossing with the slot is preferably equal to about a quarter of the wavelength of the central operating frequency of the tube, to maximize the coupling of energy through the slot 62.
  • the internal metallization 58 on the lower dielectric plate 54 and located on the inside of the tube, is connected to the conductive helix 22 by a conductor 60.
  • This metallization 58 consists of a small zone located below the intersection between the upper track 42 and the central slot 62.
  • the internal metallization 58 and the external metallization (42) therefore comprise parts located opposite one another on either side of the coupling slot 62.
  • the microwave energy can Pass from the outer conductor to the inner conductor through the slot.
  • the set of two plates rests on a peripheral rim 66 of the wall of the sheath, this flange surrounding the opening 50; the dielectric plate is soldered to this rim in a vacuum-tight manner.
  • one of the two plates protrudes with respect to the other, the wall of the peripheral rim having a corresponding recess, so that the central metallization 64 comes directly in contact with the wall of the sheath. This makes it possible to connect the central metallization to the ground potential represented by the sleeve, the shielding of the coaxial cable being also connected to ground via the receiving body 34.
  • Figure 6 shows the complete connection between the helix and the coaxial cable to form the input structure of the tube.
  • the flat faces of the receiving body 34 are applied against the sleeve 10, and more precisely against the notches and flats machined in the wall of the sleeve (46 in Figure 3).
  • the reception body 34 is welded, preferably by laser, on the sheath 10 (weld point 70 in FIG. 6).
  • the coaxial cable 36 is screwed into the receiving body 34.
  • the core 38 of the coaxial cable passes through the receiving body and faces the conductive pad 42; it is welded either directly to this beach or connected by a conductor 68 to this beach.
  • the receiving body 34 is in electrical contact with both the outer casing of the coaxial cable 36, with the sheath 10, and with the central metallization 64 of the microwave window.
  • This input microwave tube structure is compact and allows the realization of very small tubes, useful for example for TOP working at very high frequencies (30 GHz for example).
  • the outer diameter of the sheath 10 is about 5 millimeters, and the inner diameter about 2 millimeters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microwave Tubes (AREA)

Description

  • L'invention concerne les tubes électroniques amplificateurs fonctionnant en hyperfréquence. Elle s'applique plus particulièrement aux tubes à ondes progressives (TOP) appelés aussi TWT (de l'anglais Traveling Wave Tube), et c'est donc à propos d'un tel tube qu'elle sera décrite. L'invention est utile notamment pour réaliser des TOP de petites dimensions radiales fonctionnant à des fréquences élevées (typiquement 30 GHz). De tels tubes servent par exemple à la transmission de signaux de télécommunication entre la terre et des satellites.
  • On rappelle sommairement qu'un TOP est un tube à vide utilisant le principe de l'interaction entre un faisceau d'électrons et une onde électromagnétique hyperfréquence, pour transmettre à l'onde hyperfréquence une partie de l'énergie contenue dans le faisceau d'électrons, de manière à obtenir en sortie du tube une onde hyperfréquence d'énergie plus grande que celle de l'onde injectée à l'entrée du tube.
  • La figure 1 rappelle le principe général d'un TOP. Le TOP représenté est un TOP à hélice, mais d'autres types de TOP tels que les TOP à cavités couplées, les TOP à guides repliés en méandres, etc., sont tout aussi bien concernés par l'invention.
  • Les TOP comportent un fourreau tubulaire allongé 10 dans lequel le vide est fait, avec à une première extrémité un canon à électrons 11 émettant un faisceau d'électrons 12 et, à une deuxième extrémité, un collecteur 14 ; le collecteur recueille les électrons qui ont cédé une partie de leur énergie de départ à l'onde électromagnétique qu'on veut amplifier. Le faisceau d'électrons est sensiblement cylindrique sur presque toute la longueur du tube entre le canon 11 et le collecteur 14. Cette forme cylindrique de faisceau est obtenue d'une part grâce à la forme de la cathode 16 du canon (cathode convergente en forme de cuvette), et d'autre part grâce à des moyens de focalisation magnétique prévus sur toute la longueur du fourreau entre la sortie du canon à électrons 11 et l'entrée du collecteur 14. Ces moyens de focalisation sont des aimants permanents annulaires 18, aimantés axialement et d'aimantation alternée d'un aimant au suivant ; ces aimants entourent le fourreau et sont séparés les uns des autres par des pièces polaires 20 à forte perméabilité magnétique.
  • Dans le cas d'un TOP à hélice, le faisceau d'électrons passe à l'intérieur d'une structure conductrice en hélice 22 le long de laquelle circule l'onde électromagnétique hyperfréquence à amplifier ; l'amplification d'énergie hyperfréquence se produit par interaction entre cette onde et le faisceau d'électrons passant au centre de celle-ci. L'hélice sert à ralentir l'onde hyperfréquence, en ce sens que si la vitesse de l'onde qui se propage le long de l'hélice est sensiblement la vitesse de la lumière, la vitesse de l'onde le long de l'axe de l'hélice sera seulement une fraction de la vitesse de la lumière ; cette fraction est déterminée par le pas angulaire de l'hélice. Un guide en méandre ou des cavités couplées peuvent jouer le même rôle de ralentisseur que l'hélice.
  • Une entrée de signal hyperfréquence, 24, est connectée à une première extrémité de l'hélice, du côté du canon à électrons 11, et une sortie de signal hyperfréquence 26 est prévue à une deuxième extrémité de l'hélice, du côté du collecteur 14.
  • L'entrée 24 du TOP est le plus souvent constituée par une fiche coaxiale dont l'âme centrale est reliée électriquement à l'extrémité de l'hélice. La fiche est brasée ou soudée au tube, et une fenêtre de céramique, brasée ou soudée dans le corps de la fiche, est prévue pour assurer l'étanchéité au vide entre l'intérieur du tube (sous vide) et l'extérieur (à l'air libre) tout en permettant le passage de l'onde hyperfréquence de l'extérieur vers l'hélice.
  • De la même manière la sortie 26 du TOP peut être constituée par une fiche coaxiale pourvue de moyens d'étanchéité au vide. Mais elle peut être constituée également par un guide d'onde de section par exemple rectangulaire. Dans la fiche de sortie comme dans la fiche d'entrée, une structure étanche au vide, avec une pièce de céramique laissant passer les ondes hyperfréquences, doit dans tous les cas être prévue.
  • Les pièces d'entrée et de sortie de signal hyperfréquence sont encombrantes et difficiles à mettre en place. Les aimants posent également des problèmes de mise en place. Ces difficultés résultent notamment du fait que les tubes à vide nécessitent des opérations de brasage pour assurer l'étanchéité en différents points, et des opérations d'étuvage à haute température avec pompage, pour la mise sous vide. Les opérations d'étuvage se font à des températures pouvant atteindre par exemple 500°C et pendant des durées pouvant atteindre plusieurs dizaines d'heures. Les opérations de brasage comprennent notamment des brasages entre des pièces de céramique et des pièces de métal, et ces brasages se font par passage dans un four à des températures encore plus élevées (780°C typiquement, ou plus). Les aimants ne peuvent normalement pas supporter ces opérations et la mise en place des aimants doit donc en tenir compte.
  • En pratique le montage d'un tel TOP se fait en principe dans l'ordre des étapes suivantes : mise en place de la structure en hélice 22 dans le fourreau du tube, mise en place des pièces polaires le long du fourreau, mise en place et soudure sur le tube des fiches d'entrée et sortie, soudure des connexions entre les extrémités de l'hélice et les fiches d'entrée et sortie ; soudure du canon à électrons d'un côté, du collecteur de l'autre côté ; puis pompage/étuvage du tube pour assurer le dégazage des pièces internes, fermeture ou scellement du tube lorsque le vide est fait ; puis mise en place des aimants permanents dans les intervalles périodiques entre pièces polaires : chaque aimant est cylindrique et constitué de deux demi-anneaux placés autour du fourreau entre deux pièces polaires consécutives ; les demi-anneaux sont serrés l'un contre l'autre pour reconstituer un cylindre complet, par exemple grâce à un cerclage élastique autour de chaque aimant.
  • Etant donné que le bon fonctionnement du TOP repose sur la qualité du champ magnétique alternatif axial à l'intérieur de l'hélice, et que cette qualité dépend de celle des aimants permanents, on est souvent obligé de procéder ensuite à des réglages extérieurs manuels en collant ici ou là des pièces magnétiques supplémentaires qui corrigent d'une manière empirique les irrégularités de répartition du champ magnétique.
  • Globalement, il faut retenir de cette description que la fabrication de tels tubes est une opération difficile et coûteuse.
  • La présente invention vise à proposer un procédé de fabrication et une structure de tube qui rendent la réalisation moins coûteuse sans détériorer la qualité du tube réalisé, et même en l'améliorant du point de vue de la régularité de la distribution des champs magnétiques obtenus le long du fourreau.
  • Pour y parvenir l'invention propose un procédé de fabrication de tube électronique à vide, dans lequel le tube comporte d'une part un canon à électrons capable d'émettre un faisceau d'électrons dans l'axe d'un fourreau cylindrique et d'autre part une série d'aimants permanents de focalisation du faisceau, répartis autour du fourreau entre une entrée de signal à amplifier et une sortie de signal, ce procédé étant caractérisé en ce qu'on utilise des aimants annulaires réalisés chacun d'une seule pièce, on enfile ces aimants d'une seule pièce sur le fourreau en même temps que des pièces polaires entre aimants, et on procède à une opération de pompage/étuvage du tube à haute température en présence des aimants, en vue du dégazage des pièces internes du tube, les aimants étant réalisés en un matériau capable de retrouver l'essentiel de ses propriétés d'aimantation après un cycle thermique à la haute température atteinte lors de l'opération de pompage/étuvage.
  • La haute température est de plusieurs centaines de degrés, jusqu'à environ 500°C.
  • Le canon à électrons est de préférence mis en place dans le fourreau par une soudure ou un brasage local. On n'a pas besoin de passer le tube dans un four de brasage à haute température après mise en place des aimants et avant l'opération d'étuvage (c'est-à-dire l'opération de pompage à haute température).
  • Cette utilisation d'aimants étuvables à plusieurs centaines de degrés celsius permet d'éviter d'avoir à couper en deux les aimants annulaires pour les assembler ensuite autour du fourreau ; dans la technique antérieure, l'assemblage de deux demi-aimants annulaires détériorait la qualité du champ magnétique de focalisation présent à l'intérieur de l'hélice et obligeait à faire des corrections empiriques et parfois fastidieuses après fabrication, lors des essais du tube.
  • Les aimants ayant cette tenue aux hautes températures peuvent être à base de samarium-cobalt incluant des métaux de transition (cuivre, fer, zirconium notamment). Ils sont typiquement en un matériau du type Sm2X17 notamment, ou X est une combinaison de plusieurs métaux de transition, incluant le cobalt, le cuivre, le fer et le zirconium ; ils sont vendus notamment par la société Electron Energy Corporation à Landisville USA et peuvent supporter des températures jusqu'à 550°C au moins.
  • Pour utiliser au mieux ce procédé de fabrication, l'invention propose une structure d'entrée/sortie de tube originale ; cette structure permet l'introduction des aimants annulaires monobloc après la réalisation des brasages qui sont nécessaires pour assurer à la fois l'étanchéité au vide et le passage des ondes hyperfréquence à l'endroit de la structure d'entrée et de la structure de sortie. Avec la structure d'entrée/sortie selon l'invention, il est possible de réaliser typiquement tous les brasages à 780°C ou plus avant la mise en place des aimants, et ceci bien que les aimants soient faits d'une seule pièce annulaire. Par structure d'entrée/sortie, on entend ici une structure permettant le passage de signal hyperfréquence entre l'intérieur et l'extérieur du tube, soit à l'entrée du tube, soit à la sortie. L'invention s'applique soit à l'entrée, soit à la sortie, soit aux deux.
  • Ainsi, l'invention propose un tube hyperfréquence à vide, comportant un canon à électrons capable d'émettre un faisceau d'électrons dans l'axe d'un fourreau cylindrique métallique qui s'étend entre une entrée de signal hyperfréquence à amplifier et une sortie de signal amplifié, ce tube étant caractérisé en ce que l'une au moins de l'entrée et de la sortie de signal comprend une plaque diélectrique formant fenêtre de transmission d'énergie hyperfréquence, cette plaque étant encastrée et brasée dans une ouverture ménagée dans la paroi du fourreau, la plaque ne débordant pas au delà du périmètre extérieur du fourreau cylindrique et fermant de manière étanche au vide la dite ouverture. De cette manière, des aimants peuvent être enfilés sur le fourreau en passant par dessus la fenêtre d'entrée (ou de sortie) après les opérations de brasage de cette fenêtre. Les aimants subiront la température d'étuvage, mais pas la ou les températures de brasage.
  • La plaque diélectrique est de préférence constituée en une structure tri-plaque à deux couches diélectriques et trois niveaux de métallisation séparés par ces deux couches ; les métallisations comprennent un premier niveau de métallisation comprenant (dans le sens de la propagation de l'énergie) un conducteur d'entrée, un deuxième niveau intermédiaire comprenant une métallisation reliée à une masse électrique et une fente de couplage ménagée dans cette métallisation, et un troisième niveau de métallisation comprenant un conducteur de sortie. Le conducteur d'entrée et le conducteur de sortie comportent chacun une partie en regard de la fente de couplage et le passage d'énergie se fait par la fente de couplage, entre le conducteur d'entrée et le conducteur de sortie.
  • Si la structure selon l'invention se situe à l'entrée du tube, ce qui sera le cas le plus fréquent, la métallisation d'entrée est à l'extérieur du tube, et reçoit un signal hyperfréquence à amplifier. La métallisation de sortie est située à l'intérieur du tube et est reliée par exemple à l'entrée d'une hélice du TOP ou d'une autre structure de ralentissement de propagation d'onde.
  • Avec cette structure d'entrée ou de sortie, on peut glisser les aimants sur le fourreau après avoir brasé sur celui-ci les plaques diélectriques constituant des fenêtres de transmission étanches au vide, après quoi, avant ou après étuvage du tube, on soude une fiche d'accès à la fenêtre (par exemple une fiche coaxiale soudée au laser).
  • La réalisation de la fenêtre et de la connexion entre l'intérieur du tube et l'extérieur est particulièrement facile. De plus, elle permet une réduction de dimensions de l'ensemble du tube, en minimisant la place occupée par les connexions, de sorte que cette structure peut être utilisée avantageusement uniquement en raison de cette réduction de dimensions et pas seulement en raison de la plus grande facilité de fabrication du tube.
  • Dans le cas général, c'est surtout l'entrée de signal hyperfréquence qu'il pourra être utile de réaliser de cette manière. La fiche d'accès à la fenêtre sera en principe une fiche coaxiale, dont l'âme sera reliée à une partie métallisée de la plaque du côté situé à l'extérieur du tube. Mais une connexion extérieure à un guide d'onde est également possible.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels :
    • la figure 1, déjà décrite, représente la structure générale d'un TOP;
    • la figure 2 représente une réalisation pratique de l'entrée d'un TOP de l'art antérieur ;
    • la figure 3 représente en perspective la structure générale d'entrée du tube selon l'invention ;
    • la figure 4 représente une vue en coupe de la structure d'entrée ;
    • la figure 5 représente une vue de dessus ;
    • la figure 6 représente en coupe la structure d'entrée à laquelle est raccordée une fiche coaxiale.
  • La figure 2 représente un exemple de construction de TOP à hélice dans l'art antérieur. Les mêmes références qu'à la figure 1 sont utilisées pour les mêmes éléments. Seule la partie amont du tube est représentée. Le canon à électrons n'est pas représenté. Le canon est fixé, sur la gauche de la figure, sur une pièce polaire métallique 30 qui termine le fourreau 10. L'hélice conductrice 22, portée par une structure isolante 23, s'étend tout le long du fourreau, et est centrée par rapport au fourreau. Le canon à électrons émet un faisceau d'électrons centré dans l'axe de l'hélice.
  • Les aimants annulaires 18, chacun constitué par deux demi-anneau, sont répartis régulièrement tout au long du tube et séparés par des pièces polaires 20 en matériau à forte perméabilité magnétique. Ces pièces polaires 20, fixées préalablement au montage des aimants, sont toutes représentées, mais seuls quelques aimants 18 ont été représentés pour montrer comment ils s'insèrent, après étuvage du tube, dans les espaces séparant deux pièces polaires 20 consécutives. Les deux demi-anneaux constituant un aimant 18 sont maintenus en place autour du fourreau par des clips ou cerclages élastiques, non représentés pour ne pas alourdir la figure.
  • L'onde hyperfréquence est amenée à l'entrée du tube par une fiche d'entrée 24, ici une fiche coaxiale. Cette fiche d'entrée est située à une extrémité du fourreau, du côté du canon à électrons, en regard de l'extrémité de l'hélice 22.
  • La fiche d'entrée coaxiale comporte une âme conductrice 25 à l'intérieur d'une enveloppe 27. L'extrémité de l'âme est en général soudée à l'extrémité amont de l'hélice pour établir une liaison conductrice pour l'onde hyperfréquence entre l'âme de la fiche et l'hélice. Dans tous les cas, une fenêtre hyperfréquence doit être prévue quelque part dans la fiche. La fenêtre est une pièce diélectrique cylindrique ou rectangulaire 32 en céramique brasée d'une manière étanche au vide à l'intérieur de la fiche. La construction peut être similaire pour la sortie hyperfréquence. Sur la figure 2 on n'a pas représenté le câble coaxial qui amène l'énergie vers la fiche d'entrée. Ce câble vient se visser sur l'extrémité de la fiche d'une manière telle que l'âme du câble vienne en contact avec l'âme de la fiche et que l'enveloppe du câble vienne en contact avec l'enveloppe 27 de la fiche en entourant complètement la fenêtre diélectrique 32.
  • La figure 3 représente une vue générale du montage d'entrée du tube selon l'invention. La vue est représentée partiellement éclatée en trois éléments :
    • le fourreau 10 avec une fenêtre de transmission hyperfréquence 40, étanche au vide, intégrée à l'intérieur du périmètre du cylindre constituant le fourreau de sorte qu'aucun élément de la fenêtre ne dépasse de ce périmètre ; un aimant 18 ou une pièce polaire 20 peuvent ainsi être enfilés sur le fourreau en passant par-dessus la fenêtre ;
    • un corps 34 de réception de câble coaxial, destiné à être soudé à la paroi du fourreau au niveau de la fenêtre d'entrée ;
    • et une extrémité de câble coaxial 36, destinée à être vissée dans le corps de réception 34.
  • La fenêtre 40 est constituée par une plaque diélectrique à plusieurs niveaux de métallisation, dont on voit une piste métallique supérieure 42 destinée à être reliée électriquement à l'extrémité de l'âme 38 du câble coaxial 36. La fenêtre obture de manière étanche une ouverture percée dans la paroi du fourreau jusqu'à l'espace intérieur au tube. La fenêtre est brasée contre les bords de cette ouverture. Des encoches et/ou des méplats 46 sont usinés sur la paroi extérieure du fourreau pour former des surfaces planes sur lesquelles viennent s'adapter des surfaces planes correspondantes du corps 34.
  • Le corps de réception 34 est par exemple soudé par soudure au laser sur la paroi du fourreau 10, mais cette soudure n'intervient que dans une étape tardive de fabrication et plus précisément, elle n'intervient qu'après étuvage du tube.
  • La plaque diélectrique 40 constituant la fenêtre hyperfréquence est en réalité constituée de préférence par une superposition de deux ou plusieurs plaques diélectriques comme on l'expliquera plus loin, avec interposition de couches métalliques entre les plaques diélectriques.
  • Sur la figure 3, on a représenté en bout de fourreau une section de fourreau à diamètre plus faible sur laquelle on peut enfiler une pièce polaire d'extrémité, non représentée, servant de support au canon à électrons (également non représenté) et servant de blindage magnétique pour empêcher toute influence des aimants sur le canon. La pièce polaire d'extrémité sera soudée par exemple au laser sur l'extrémité du fourreau (après enfilage des aimants 18 et des pièces polaires 20). De même, le canon à électrons sera soudé par exemple au laser sur cette pièce polaire de support avant de vider et étuver le tube, les aimants étant en place. Les brasures à hautes températures non acceptables pour les aimants seront évitées aussi bien pour fixer la pièce de support que pour fixer le canon, et ceci afin de ne pas détériorer les aimants en place.
  • La figure 4 et la figure 5, respectivement en coupe et en vue de dessus, représentent plus en détail la constitution de la fenêtre hyperfréquence 40 encastrée à l'intérieur du périmètre extérieur du fourreau. La figure 4 est une coupe selon la ligne A-A' de la figure 5.
  • Une ouverture 50 a été formée dans la paroi du fourreau 10 au niveau de l'extrémité amont de l'hélice 22 ; cette ouverture fait communiquer l'intérieur 52 du fourreau (intérieur sous vide) avec l'extérieur. Cette ouverture 50 est obturée de manière étanche par la fenêtre hyperfréquence 40. Celle-ci comprend une plaque diélectrique métallisée, avec trois niveaux de métallisation qui sont respectivement une métallisation extérieure 42 pour l'arrivée du signal d'entrée, une métallisation intérieure 58 pour la transmission de signal vers l'hélice, et une métallisation centrale 64 constituant un plan de masse pourvu d'une démétallisation locale en forme de fente étroite 62. La fente est une fente de couplage hyperfréquence entre la métallisation extérieure et la métallisation intérieure. En pratique, la fenêtre est constituée de deux plaques diélectriques 54 et 56 superposées, toutes deux métallisées, l'une pouvant être métallisée au moins partiellement sur ses deux faces (la plaque supérieure 56 de préférence).
  • La métallisation extérieure, sur la plaque diélectrique supérieure 56, constitue la piste conductrice 42 déjà mentionnée, destinée à l'arrivée du signal d'entrée. Elle a de préférence une forme en L, dont une branche (celle qui est perpendiculaire à l'axe longitudinal du fourreau, sera reliée à l'âme 38 du câble coaxial 36 (figure 3), et dont l'autre branche (celle qui s'étend parallèlement au fourreau) croise la fente démétallisée 62 de la métallisation centrale 64. La longueur de branche libre du L subsistant au-delà du croisement avec la fente est de préférence égale à environ un quart de la longueur d'onde de la fréquence centrale de fonctionnement du tube, pour maximiser le couplage d'énergie à travers la fente 62.
  • La métallisation interne 58, sur la plaque diélectrique inférieure 54 et située du côté intérieur au tube, est reliée à l'hélice conductrice 22 par un conducteur 60. Cette métallisation 58 consiste en une petite zone située au-dessous du croisement entre la piste supérieure 42 et la fente centrale 62. La métallisation interne 58 et la métallisation extérieure (42) comprennent donc des parties situées en regard l'une de l'autre de part et d'autre de la fente de couplage 62. L'énergie hyperfréquence peut passer du conducteur extérieur au conducteur intérieur à travers la fente.
  • L'ensemble des deux plaques repose sur un rebord périphérique 66 de la paroi du fourreau, ce rebord entourant l'ouverture 50 ; la plaque diélectrique est brasée sur ce rebord d'une manière étanche au vide. De préférence l'une des deux plaques déborde par rapport à l'autre, la paroi du rebord périphérique présentant un décrochement correspondant, ceci de manière que la métallisation centrale 64 vienne directement en contact avec la paroi du fourreau. Ceci permet de relier la métallisation centrale au potentiel de masse représenté par le fourreau, le blindage du câble coaxial étant lui aussi relié à la masse par l'intermédiaire du corps de réception 34.
  • On voit clairement sur la figure 4 que la fenêtre ainsi constituée et brasée dans l'ouverture 50 ne déborde pas du périmètre circulaire du fourreau et que des aimants et pièces polaires pourront être enfilés sur le fourreau après brasure de la fenêtre.
  • La plaque diélectrique métallisée constituant la fenêtre d'entrée peut être constituée
    • soit par une superposition de deux plaques diélectriques métallisées ; la métallisation centrale peut être déposée sur la surface inférieure de la plaque supérieure ; elle peut également être formée par une plaquette de métal découpée indépendante des plaques diélectriques et situées entre ces plaques.
    • soit par une structure de céramique à couches métallisées sérigraphiées, superposées et cocuites.
  • La figure 6 montre la liaison complète entre l'hélice et le câble coaxial pour former la structure d'entrée du tube.
  • Les faces planes du corps de réception 34, sont appliquées contre le fourreau 10, et plus précisément contre les encoches et méplats usinés dans la paroi du fourreau (46 sur la figure 3). Le corps de réception 34 est soudé, de préférence au laser, sur le fourreau 10 (point de soudure 70 sur la figure 6). Le câble coaxial 36 est vissé dans le corps de réception 34. L'âme 38 du câble coaxial traverse le corps de réception et vient en regard de la plage conductrice 42 ; elle est soudée soit directement sur cette plage soit reliée par un conducteur 68 à cette plage. Le corps de réception 34 est en contact électrique à la fois avec l'enveloppe extérieure du câble coaxial 36, avec le fourreau 10, et avec la métallisation centrale 64 de la fenêtre hyperfréquence.
  • Cette structure d'entrée de tube hyperfréquence est peu encombrante et permet la réalisation de tubes de très petites dimensions, utiles par exemple pour des TOP travaillant à fréquences très élevées (30 GHz par exemple). A titre d'exemple, le diamètre extérieur du fourreau 10 est d'environ 5 millimètres, et le diamètre intérieur environ 2 millimètres.
  • Le procédé de fabrication du tube pourra être le suivant, les sous-ensembles tels que le fourreau avec son ouverture 50, l'hélice, le canon à électrons, le collecteur, les pièces polaires, etc., étant considérés comme fabriqués avant les opérations qui suivent :
    • brasure de la fenêtre dans l'ouverture 50 du fourreau (température d'au moins 780°C par exemple) ;
    • mise en place de l'hélice dans le fourreau, et soudure de l'extrémité de l'hélice à la plage conductrice intérieure 58 ;
    • enfilage des aimants monoblocs cylindriques sur le fourreau, alternés avec des pièces polaires également enfilées sur le fourreau ; cette opération peut intervenir avant mise en place de l'hélice ;
    • soudure au laser du collecteur et du canon à électrons (ou de l'un des deux seulement si l'autre avait déjà été soudé ou brasé avant l'enfilage des aimants) ;
    • étuvage du tube pendant plusieurs heures à une température de 500° C environ, puis fermeture de l'ouverture de pompage ;
    • soudure au laser du corps de réception 34 du câble coaxial ; toutefois, cette soudure peut être faite avant l'étuvage, et plus précisément entre l'enfilage des aimants et l'étuvage ;
    • soudure de l'âme du câble coaxial sur le conducteur d'entrée 42 de la fenêtre d'entrée.

Claims (8)

  1. Procédé de fabrication de tube électronique à vide, dans lequel le tube comporte d'une part un canon à électrons capable d'émettre un faisceau d'électrons dans l'axe d'un fourreau cylindrique (10) et d'autre part une série d'aimants permanents (18) pour la focalisation du faisceau, répartis autour du fourreau entre une entrée (24) de signal à amplifier et une sortie (26) de signal, ce procédé étant caractérisé en ce qu'on utilise des aimants annulaires réalisés chacun d'une seule pièce, on enfile ces aimants d'une seule pièce sur le fourreau en même temps que des pièces polaires (20) entre aimants, et on procède à une opération de pompage/étuvage du tube à haute température en présence des aimants, en vue du dégazage des pièces internes du tube, les aimants étant réalisés en un matériau capable de retrouver l'essentiel de ses propriétés d'aimantation après un cycle thermique à la haute température de pompage/étuvage.
  2. Procédé selon la revendication 1, caractérisé en ce que la haute température est de plusieurs centaines de degrés, jusqu'à environ 500°C.
  3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que le canon à électrons est mis en place par une soudure à une température qui n'excède pas la température d'étuvage.
  4. Tube hyperfréquence à vide, comportant un canon à électrons capable d'émettre un faisceau d'électrons dans l'axe d'un fourreau cylindrique métallique (10) qui s'étend entre une entrée (24) de signal hyperfréquence à amplifier et une sortie (26) de signal amplifié, ce tube étant caractérisé en ce que l'une au moins de l'entrée et de la sortie de signal comprend une plaque diélectrique (40) formant fenêtre de transmission d'énergie hyperfréquence, cette plaque étant encastrée et brasée dans une ouverture (50) ménagée dans la paroi du fourreau, la plaque ne débordant pas au-delà du périmètre extérieur du fourreau cylindrique et fermant de manière étanche au vide la dite ouverture.
  5. Tube selon la revendication 4, caractérisé en ce que des aimants cylindriques monobloc (18) entourent le fourreau.
  6. Tube selon l'une des revendications 4 et 5, caractérisé en ce que la plaque diélectrique est constituée en une structure tri-plaque à deux couches diélectriques (54, 56) et trois niveaux de métallisation (42, 58, 64) séparés par ces deux couches diélectriques.
  7. Tube selon la revendication 6, caractérisé en ce que les métallisations comprennent un premier niveau de métallisation comprenant un conducteur d'entrée, un deuxième niveau intermédiaire comprenant une métallisation reliée à une masse électrique et une fente de couplage (62) ménagée dans cette métallisation, et un troisième niveau de métallisation comprenant un conducteur de sortie, le conducteur d'entrée et le conducteur de sortie comportant chacun une partie en regard de la fente de couplage et le passage d'énergie se faisant par la fente de couplage, entre le conducteur d'entrée et le conducteur de sortie.
  8. Tube selon la revendication 7, caractérisé en ce que la fenêtre est une fenêtre d'entrée de signal du tube, le premier niveau de métallisation étant une métallisation extérieure au tube et le troisième niveau étant une métallisation intérieure au tube, reliée à une structure de ralentissement de propagation d'onde, telle qu'une hélice.
EP20020290963 2001-04-20 2002-04-16 Tube électronique amplificateur hyperfréquence avec fiche d'entrée miniature et procédé de fabrication Expired - Fee Related EP1251544B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0105393 2001-04-20
FR0105393A FR2823906B1 (fr) 2001-04-20 2001-04-20 Tube electronique amplificateur hyperfrequence avec fiche d'entree miniature et procede de fabrication

Publications (2)

Publication Number Publication Date
EP1251544A1 EP1251544A1 (fr) 2002-10-23
EP1251544B1 true EP1251544B1 (fr) 2007-05-30

Family

ID=8862544

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020290963 Expired - Fee Related EP1251544B1 (fr) 2001-04-20 2002-04-16 Tube électronique amplificateur hyperfréquence avec fiche d'entrée miniature et procédé de fabrication

Country Status (2)

Country Link
EP (1) EP1251544B1 (fr)
FR (1) FR2823906B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976564B (zh) * 2017-11-20 2020-05-12 西安空间无线电技术研究所 一种用于高压转接与测试的装置及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3195006A (en) * 1960-04-08 1965-07-13 Varian Associates Travelling wave tube output coupling
GB2045517A (en) * 1979-03-22 1980-10-29 English Electric Valve Co Ltd Travelling-wave-tube output couplings
FR2638891A1 (fr) * 1988-11-04 1990-05-11 Thomson Csf Fenetre etanche pour tube electronique hyperfrequence et tube a ondes progressives comportant cette fenetre
DE3906028C2 (de) * 1989-02-27 2000-09-28 Thomson Tubes Electroniques Gm Verfahren zum Herstellen einer Vakuumhülle und nach diesem Verfahren hergestellte Vakuumhülle
FR2655771A1 (fr) * 1989-12-08 1991-06-14 Thomson Tubes Electroniques Fenetre hyperfrequence large bande de dimensions miniaturisees pour tubes electroniques.

Also Published As

Publication number Publication date
FR2823906A1 (fr) 2002-10-25
EP1251544A1 (fr) 2002-10-23
FR2823906B1 (fr) 2003-07-04

Similar Documents

Publication Publication Date Title
EP1095390B1 (fr) Tube electronique multifaisceau avec champ magnetique de correction de trajectoire des faisceaux
EP3136499B1 (fr) Système diviseur/combineur pour onde hyperféquence
EP0995345B1 (fr) Dispositif d'excitation d'un gaz par plasma d'onde de surface
FR2691286A1 (fr) Tube d'amplification haute fréquence à pièces polaires d'un seul tenant pour des ondes millimétriques et son procédé de fabrication.
EP1251544B1 (fr) Tube électronique amplificateur hyperfréquence avec fiche d'entrée miniature et procédé de fabrication
EP0037309B1 (fr) Tube à ondes progressives à cavités couplées et focalisation par aimants permanents alternés, et ensemble amplificateur comprenant un tel tube
EP0364335A1 (fr) Tube à onde progressive muni d'un dispositif de couplage étanche entre sa ligne à retard et circuit hyperfréquence externe
WO2009077407A1 (fr) Structure hyperfrequences pour tube microondes avec dispositif de confinement du faisceau a aimants permanents et refroidissement ameliore
EP0117804B1 (fr) Procédé de fabrication d'une cavité hyperfréquence, et cavité obtenue par ce procédé
FR2691285A1 (fr) Système de focalisation à aimants permanents périodiques à géométrie X-Z.
EP1466343B1 (fr) Tube electronique a collecteur simplifie
EP0341107B1 (fr) Tube à onde progressive comportant un dispositif de couplage entre sa ligne à retard et des circuits hyperfréquences externes
FR2790595A1 (fr) Circuit de ligne a retard en helice
EP0278867B1 (fr) Circulateur hyperfréquence intégré
EP1680799B1 (fr) Tube hyperfrequence a faible rayonnement parasite
EP0454540A1 (fr) Convertisseur de mode de propagation guidée des ondes électromagnétiques, et tube électronique comportant un tel convertisseur
FR2737042A1 (fr) Collecteur d'electrons multietage supportant des tensions elevees et tube electronique muni d'un tel collecteur
FR2833749A1 (fr) Refroidissement d'un tube electronique
FR2882191A1 (fr) Montage de reglage d'accord de frequence pour tube a sortie inductive
FR2525812A1 (fr) Circuit a onde lente pour un tube a ondes progressives
FR2485801A1 (fr) Dispositif de couplage entre la ligne a retard d'un tube a onde progressive et le circuit externe de transmission de l'energie du tube, et tube a onde progressive comportant un tel dispositif
EP0462863A1 (fr) Tube à ondes progressives muni d'un dispositif de couplage entre sa ligne à retard et un circuit hyperfréquence externe
FR2670321A1 (fr) Tube hyperfrequence a cavite munie d'une structure dielectrique et procede de realisation d'une cavite du tube.
EP0407252A1 (fr) Tube à grille à sortie sur cavités couplées avec élément de couplage intégré au tube
FR2655771A1 (fr) Fenetre hyperfrequence large bande de dimensions miniaturisees pour tubes electroniques.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030321

AKX Designation fees paid

Designated state(s): FR GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LAURENT, ALAIN,THALES INTELLECTUAL PROPERTY

Inventor name: GAUTHIER, GILDAS,THALES INTELLECTUAL PROPERTY

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070808

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100325

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100521

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110416

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110416