EP1461410A2 - Mittel enthaltender formkörper mit erhöhter lagerstabilität - Google Patents

Mittel enthaltender formkörper mit erhöhter lagerstabilität

Info

Publication number
EP1461410A2
EP1461410A2 EP02796694A EP02796694A EP1461410A2 EP 1461410 A2 EP1461410 A2 EP 1461410A2 EP 02796694 A EP02796694 A EP 02796694A EP 02796694 A EP02796694 A EP 02796694A EP 1461410 A2 EP1461410 A2 EP 1461410A2
Authority
EP
European Patent Office
Prior art keywords
weight
water
acid
agents
shaped article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02796694A
Other languages
English (en)
French (fr)
Inventor
Michael Dreja
Wolfgang Von Rybinski
Andreas Buhl
Dieter Nickel
Matthias Sunder
Georg Meine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1461410A2 publication Critical patent/EP1461410A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments

Definitions

  • the present invention relates to moldings containing compositions with increased storage stability, their use, in particular as washing, cleaning and / or care products, and to a process for producing the moldings containing compositions with increased storage stability.
  • washing, cleaning and / or care agents consist of only one liquid phase, the main part of which is mostly water, in which the active, fat-dissolving and cleaning-active surfactants and auxiliaries, such as enzymes, are present in dissolved or finely dispersed form.
  • active ingredients which are incompatible with the formulation such as colorants, fragrances, care oils, vitamins, enzymes, antibacterial active ingredients, acids, bases, are present in them and / or oxidizing agents that are used in such formulations often lose their activity, or at least be greatly reduced, during storage and / or before their desired time of use due to chemical reactions and / or physical influences.
  • encapsulation systems based on natural or synthetic polymers already exist. These can enclose an active ingredient or its solution and then be physically or chemically crosslinked in the shell or can be precipitated by a coacervation process with another polymer. There are also encapsulations by liposomes, for example 'nanotopes' from Ciba-Geigy or sponge-like particles such as 'microsponges' from Advanced Polymer Systems. For example, microencapsulated molded articles are used to increase the stability of pharmaceutical active ingredients, to influence taste, to target organ-specific active ingredient release and to avoid incompatibilities with other auxiliaries and active ingredients. Microcapsules are also used in adhesive technology.
  • fragrance capsules with gelatin as wall material from which perfume oils are released by mechanical destruction.
  • spherical carrier particles for example made of alginate, gelatin or polyvinyl alcohol (PVAI), in which an active substance, living cells or enzymes can be embedded.
  • PVAI polyvinyl alcohol
  • these capsules can be produced, for example, by a dropletization process.
  • microcapsules are particles with diameters of ⁇ 1 mm.
  • substances can also be adsorbed or chemically modified on suitable carrier materials.
  • migration and diffusion effects contribute to the release of substances, such as streaking in solutions, and / or to loss of activity of active ingredient components.
  • agents For aesthetic reasons, it is also desirable for many agents to add components of the agent separately to the agent in a delimited form, for example in the form of capsules. be balls, drops, as a second phase or as a further phase and / or the like.
  • spatial delimitations aim to improve activity stability during storage and / or upon dilution.
  • dyes which are often constituents of protective layers, such as coverings, coatings and the like, streaks can be formed in such agents of the prior art, even in highly concentrated solutions, when stored for a prolonged period of time, ie weeks or months - “so-called Bleed "- to observe the molded body.
  • EP 0 782 853 A2 and the corresponding DE 195 19 804 A1 describe bioactive capsules with a variable shell, in particular for use in living tissue or in biotechnological applications, with a core containing living cells and / or enzymes and a shell consisting of several , the core is completely enclosed individual layers, which consist of a porous network of intertwined macromolecules, at least one of the layers consisting of a material that changes or dissolves the structure as a function of an ion concentration and / or physical quantities and / or by reagents ,
  • WO 99/02252 describes a process for the production of high-strength capsules which have a core made of a polyanionic polysaccharide, which is coated with a polycationic polysaccharide membrane.
  • the capsules described there are used in particular in the field of pharmacy, but also in the field of catalysis, biology, pesticides and herbicides, agriculture, cosmetics and the food industry.
  • US-A-4,352,883 describes a method for encapsulating living tissue, single cells, hormones, enzymes or antibodies in a semi-permeable membrane which is permeable to small molecules but is impermeable to large molecules which are potentially hazardous to health.
  • the semipermeable membrane is applied to discrete, temporary capsules or gel droplets that retain their shape, the gel then being liquefied again.
  • US-A-4 690 682 describes a dosing system for the controlled release of substances with a substantially constant delivery quantity. These are capsules with a semipermeable membrane, which contain a material to be released in encapsulated form. The release genetics should be controllable via the pore size of the membranes.
  • WO 91/15196 describes an osmotic dosing system for active pharmaceutical ingredients, which consists of an outer semipermeable membrane, an osmotically active middle layer and an inner capsule, which comprises a liquid formulation with the active pharmaceutical ingredient.
  • chitosan microspheres which are obtained by mixing chitosans and / or chitosan derivatives with oil bodies and then introducing the mixture into alkaline surfactant solutions, so that microcapsules filled with oil bodies are formed.
  • lipophilic phases can be encapsulated and can then be incorporated as active substance depots in formulations containing surfactants.
  • WO 00/46337 describes a liquid cleaning composition which comprises more than 5% by weight of a surfactant and more than 10% by weight of an encapsulated active substance and a crosslinked anionic rubber material.
  • the active ingredient is in particular a fragrance.
  • EP 0 280 155 B1 describes the microencapsulation of biologically active material by producing a semipermeable membrane which consists of a biocompatible, non-toxic polyacid and a polybase, the polybase being formed from a special polymer with special, defined, repeating monomer units.
  • Chitosan microcapsules and networks are formed in a suspension medium which contains chitosan, acetic acid, an emulsifier and a crosslinking agent, namely glutaraldehyde.
  • a suspension medium which contains chitosan, acetic acid, an emulsifier and a crosslinking agent, namely glutaraldehyde.
  • agents such as detergent, cleaning agent and / or care agent formulations
  • agents stable in storage.
  • agents such as detergent, cleaning agent and / or care agent formulations, which have their effect at a particular point in time at the place of use, for example towards the end of the wash cycle in a washing machine.
  • molded articles should be usable in particular in detergents and cleaning agents, preferably liquid detergents and cleaning agents, fabric softeners and laundry aftertreatment agents, but also in other products, such as cosmetic products and personal care products.
  • shaped articles in water-containing compositions at the place of use in spite of the improved storage stability, should enable a quick, easily inducible release of the ingredients during use and should be capable of being dissolved and / or removed without residue after use.
  • the object of the present invention is achieved by providing a shaped body containing an agent with increased storage stability, the shaped body and / or its outer shaped body shell comprising: at least one thermoplastic, water-soluble polymer; at least one ionic salt not complexing the polymer; at least one compound containing at least two anionic groups, the compound having at least two anionic groups reversibly complexing the water-soluble polymer; and optionally at least one carrier and / or at least one extrusion aid.
  • polyvinyl alcohol (PVAI) capsules or spheres can be and are dispersed by mixing PVAI, non-crosslinking salts and partially crosslinking dyes, which are stable in detergents and cleaning agents, preferably liquid detergents and cleaning agents dissolve when used while dispensing active ingredient.
  • PVAI polyvinyl alcohol
  • Such capsules or spheres open automatically when diluted, i.e. without shear, i.e. the switching mechanism is activated directly during application (dilution).
  • the dyes do not diffuse from the capsules or balls and do not reach the agent or the application site prematurely.
  • Another object of the present invention relates to the production of PVAI coatings by mixing PVAI, non-crosslinking salts and crosslinking dyes, which enclose granular powder mixtures and disperse them stably in (liquid) detergents and cleaning agents and dissolve when used with release of active ingredient.
  • Shaped bodies in the sense of this invention preferably have a solid outer, layer-like covering and a shaped body core, wherein the shaped body core can be solid, liquid or gel-like.
  • the molded body core can be partially or preferably completely encased in at least one layer-like covering.
  • the shaped body, the shaped body layer (s) or wrappings and / or the shaped body core can have active substances, such as washing, care and / or cleaning substances.
  • the shaped body can be designed onion-like, ie it comprises at least two layer-shaped coverings, of which at least one, preferably at least two layer-shaped coverings, form a complete covering surrounding the shaped body. Active substances, such as wash, care and / or cleaning substances.
  • the shaped body can also be formed in one, two or more pieces.
  • the molded article or articles are preferably in the form of a solid phase (s) in a multiphase system with at least one further solid, liquid and / or gel phase, preferably with a high electrolyte content.
  • the agent containing the shaped body preferably at least one phase of the agent, particularly preferably the phase in which the shaped body is contained, can have a water content> 0 to 88 88% by weight, preferably ⁇ 50% by weight, more preferably 20 20% by weight. % and more preferably ⁇ 12% by weight.
  • a preferred embodiment of the shaped body according to the invention relates to an essentially homogeneous, solid or gel-shaped shaped body which is formed, for example, from a mixture of all constituents of the shaped body, this shaped body is preferably molded in one step.
  • Such a shaped body can be extruded, cast, pressed, foamed, dripped and / or blown.
  • Shaped bodies in the sense of this invention can also be particles, agglomerates, powders, drops and / or the like.
  • a shaped body according to the invention can be formed from a plurality of microparticle shaped bodies.
  • the active substance or substances whose storage stability is to be improved and / or whose premature release is to be prevented are surrounded by at least one thermoplastic, water-soluble polymer; at least one ionic salt not complexing the polymer; at least one compound containing at least two anionic groups, the compound having at least two anionic groups reversibly complexing the water-soluble polymer; and optionally of at least one carrier substance and / or at least one extrusion aid.
  • the active substance (s) whose storage stability is to be improved and / or whose premature release is to be prevented is the compound which contains at least two anionic groups and which is the water-soluble one Polymer reversibly complexed.
  • active substances (s) whose storage stability is to be improved and / or whose premature release is to be prevented and which usually do not have at least two anionic groups can be correspondingly derivatized by chemical processes which are well known to those skilled in the art.
  • a matrix is formed from: at least one thermoplastic, water-soluble polymer; at least one ionic salt not complexing the polymer; at least one compound containing at least two anionic groups, the compound having at least two anionic groups reversibly complexing the water-soluble polymer; and optionally at least one carrier substance and / or at least one extrusion aid.
  • the matrix formed in this way protects the compound containing at least two anionic groups, for example an active substance such as a dye, and / or active substances encased in the matrix, for example against migration, diffusion and / or solution effects which lead to active substance release, so that improved storage stability is achieved and premature release of active substance is prevented on average.
  • an active substance such as a dye
  • the complex formation constant of the reversible complex formed can have a value in the range from 10 to 10 60 , preferably 100 to 10 30 and preferably 10 3 to 10 15 .
  • the storage stability is improved and / or its premature release is delayed or prevented on average by the active substance by the aforementioned Forms matrix as an integral part.
  • agents in particular liquid detergents or liquid cleaners, can be made available in which molded articles are present as a further separate, spatially delimited phase.
  • the molded body preferably has a solid shape, in particular a spherical or capsule-like shape that is visually visible and distinguishable in the first phase.
  • the mechanism for releasing the active substances from the shaped body can be activated by several possible parameters: time-controlled dissolution of the shaped body and / or the shaped body shell (s) when the shaped body-containing agent is diluted pH-controlled dissolving of the shaped body and / or the shaped body - Envelope (s) in the case of dilution of the agent containing temperature-controlled dissolution of the shaped body and / or the article shell (s) in the event of dilution of the agent containing the electrolyte.
  • the dissolution of the article and / or the article shell (s) when the agent is diluted Means containing moldings.
  • a time-controlled dissolution of the shaped body and / or the shaped body shell (s) by means of dilution, preferably by means of dilution with an excess of water, of the agent containing the shaped body is particularly preferred.
  • the storage stability of shaped bodies containing dye can be improved and / or the premature release of the dye can be significantly reduced or prevented on average if the dye has at least two anionic groups which reversibly complex the water-soluble polymer, and additionally at least one ionic salt not complexing the polymer is present.
  • a preferred embodiment of the above invention relates in part or in full to molded articles, such as capsules, spheres, foils or small particles, which are produced from the material mixture forming the matrix and comprise at least one thermoplastic, water-soluble polymer which, at a high electrolyte content, as described in a liquid detergent formulation ( Concentrate) is present, is insoluble, but at low ionic strength, ie after dilution with water (at the time of application), is water soluble.
  • Polymers such as polyvinyl alcohol (PVAI) or polyvinyl alcohol copolymers are particularly preferred.
  • such shaped bodies or the material mixture forming the matrix can also be crosslinked in order to further increase the stability, in order, for example, to prevent bleeding of a containing dye.
  • this can be achieved by diffusing in or adding borates or other polyvalent salts, as are often contained in liquid detergents.
  • the molded body, molded body layer and / or molded body coating is preferably free of borates and / or other non-reversibly complexing salts.
  • the amount of reversibly crosslinking dye is generally chosen so that the thermoplastic, water-soluble polymer is only partially crosslinked and becomes completely soluble in the application when diluted, for example with an excess of water.
  • the multiply anionically charged compound ie at least two anionic groups
  • the multiply anionically charged compound for example a bi-ionic dye itself
  • Another preferred embodiment of the above invention relates to the use of the matrix material as a shaped body coating (coating) of granules, powders, spheres, capsules or particles, e.g. of extruded detergents.
  • a coating means that the coated material becomes insoluble with a high electrolyte content, as is present in the liquid detergent formulation, but becomes water-soluble with a low ionic strength.
  • a bi-ionic dye can be used in order to achieve a color differentiation of the molded body from the surrounding, outer liquid phase.
  • the shaped bodies can contain substances which achieve an additional effect during the washing application.
  • the capsules can contain fragrances such as perfume oils, possibly applied to a carrier material such as Zeoiith. This leads to an increased fragrance of the laundry after washing.
  • Alternative ingredients concern fabric softener surfactants (esterquat), soil repellent polymers, sub- punches for anti-crease effects, antibacterial substances, substances for color protection, discoloration inhibitors, vitamins, care substances, layered silicates, wash and rinse active, wash and rinse support substances and / or odor complexing substances.
  • ingredients or active substances are selected from the group comprising anionic surfactants, cationic surfactants, amphoteric surfactants , Builder substances, bleaching agents, bleach activators, bleach stabilizers, bleaching catalysts, enzymes, polymers, cobuilders, alkalizing agents, acidifying agents, anti-deposition agents, silver protective agents, colorants, optical brighteners, UV protective substances, fabric softeners, auxiliary agents, fragrances, dirt-repellent substances, anti - Wrinkle fabrics, antibacterial fabrics, color protection agents, discoloration inhibitors, vitamins, layered silicates, odor-complexing substances and / or rinse aid.
  • the shaped body, the matrix-forming material of the shaped body, the shaped body layer and / or the shaped body covering can have thermoplastic properties, so that processing by means of extrusion processes is possible. It has proven to be particularly advantageous if the matrix, the molded body, the molded body layer and / or molded body covering has at least one carrier substance and / or at least one extrusion aid, more preferably at least one inert carrier substance and / or at least one extrusion aid.
  • Talc and / or starch are particularly suitable extrusion aids.
  • a particularly suitable carrier is zeolite.
  • the compound having at least two anionic groups is preferably selected from the group comprising Congo red, Trypan Blue (Direct Blue 14), Chicago Blue (Direct Blue 1); Macro anions, preferably montmorillonite (layered silicates), metaphosphates; and / or polyanions, preferably polystyrene sulfonate, carboxymethyl cellulose and / or polyacrylates.
  • the anionic groups can be selected from the group comprising O 2 " , RBO 2 2 -, RCOO “ , RCONR-, OH “ , NO 3 “ , NO 2 ' , NO, CO, S 2' , RS “ , PO 3 2 “ , PO3OR 3 -, H 2 O, CO 3 2 -, HCO 3 -, ROH, NRR'R", RCN, CI “ , Bf, OCN “ , SCN “ , CN ' , N3 “ , F, I “ , RO ⁇ CIO 4 ' , SO 4 2 “ , HSO 4 “ , SO 3 2 “ and / or RSO 3 “ , and particularly preferably O 2 " , RBO 2” , RCOO “ , OH “ , NO 3 “ , NO ⁇ f, NO, CO, CN “ , S 2 -, RS “ , PO 4 3 “ , H 2 O, CO 3 2 -, HCO 3” ,
  • Alkyl linear and / or branched C1-C6-alkyl
  • Alkenyl C3-C6 alkenyl
  • Cycloalkyl C6-C8 cycloalkyl
  • Alkoxy C1-C4 alkoxy
  • Alkylene is selected from the group comprising: methylene; 1,2-ethylene; 1,3-propylene; Butan-2-ol-1,4-diyl; 1,4-butylene; CycIohexan-1,1-diyl; Cyclohexane-1,2-diyl; Cyclohexane, 1,4-diyl; Cyclopentane-1,1-diyl; and / or cyclopentane-1,2-diyl;
  • Aryl is selected from the group comprising: phenyl; biphenyl; naphthalenyl; Anthracenyl; and / or phenanthrenyl;
  • Arylene is selected from the group consisting of: 1,2-phenylene; 1,3-phenylene; 1,4-phenylene; 1, 2-NaphtaIenyIen; 1,4-naphthalenes; 2,3-naphthalenylene and / or 1-hydroxy-2,6-phenylene;
  • Heteroaryl is selected from the group comprising: pyridinyl; pyrimidinyl; quinolinyl; pyrazolyl; triazolyl; isoquinolinyl; imidazolyl; and / or oxazolidinyl, wherein the heteroaryl is linked to the compound via a ring atom of the selected heteroaryl.
  • the weight content of the compound containing anionic groups can range from between 0.001-10% by weight, preferably 0.01-5% by weight and preferably 0.05-2% by weight.
  • the non-complexing salt is preferably selected from the group comprising alkali and / or alkaline earth metal salts, preferably alkali metal and / or alkaline earth metal halides. nides, more preferably alkali and / or alkaline earth metal sulfates, nitrates, phosphates, carboxylates, citrates, hydroxides, borates, acetates, phosphates, silicates, oxalates, formates, percarbonates , and / or perborates.
  • the weight content of the non-complexing salt based on the total weight content of the shaped body, can be between 1-50% by weight, preferably 1-30% by weight and preferably 2-20% by weight.
  • the water-soluble polymer is preferably selected from the group comprising polyvinyl alcohol (PVA), acetalized polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene oxide, gelatin, cellulose, starch and derivatives of the abovementioned substances, and / or mixtures of the abovementioned polymers, polyvinyl alcohol being particularly preferred.
  • PVA polyvinyl alcohol
  • acetalized polyvinyl alcohol polyvinyl pyrrolidone
  • polyethylene oxide gelatin
  • cellulose starch and derivatives of the abovementioned substances
  • starch starch and derivatives of the abovementioned substances
  • polyvinyl alcohol being particularly preferred.
  • the weight content of the water-soluble polymer can range from between 10-95% by weight, preferably 20-75% by weight and preferably 30-60% by weight.
  • Polymers selected from the group comprising acrylic acid-containing polymers, polyacrylamides, oxazoline polymers, polystyrene sulfonates, polyurethanes, polyesters, polyethers and / or mixtures of the above polymers can additionally be added to the water-soluble polymer.
  • the water-soluble polymer can in particular comprise a polyvinyl alcohol, the degree of hydrolysis of which is 70 to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol% and in particular 82 to 88 mol%.
  • the water-soluble polymer can preferably comprise a polyvinyl alcohol whose molecular weight is in the range from 10,000 to 100,000 gmol "1 , preferably from 11,000 to 90,000 gmol " 1 , particularly preferably from 12,000 to 80,000 gmol -1 and in particular from 13,000 to 70,000 gmol -1 .
  • the shaped body and / or the outer shell of the shaped body can be water-soluble polymer in amounts of 50 50% by weight, preferably ⁇ 70% by weight, particularly preferably ⁇ 80 wt .-% and in particular ⁇ 90 wt .-%, each based on the total weight of the molded body and / or the outer shell.
  • the water-soluble polymer can contain plasticizers in amounts of at least> 1% by weight, preferably ⁇ 10% by weight, particularly preferably ⁇ 20% by weight and in particular ⁇ 30% by weight, based in each case on the total weight of the water-soluble polymer of the shaped body.
  • the detergent containing shaped articles can in particular be a detergent, cleaning agent, care agent, hair treatment agent, hair colorant, medicament, crop protection agent, food, cosmetic, agrochemical, fertilizer, building material, adhesive, bleaching agent, disinfectant and / or fragrance agent.
  • the molded articles containing the agents can have a different content and / or a different composition of substances which are active in washing, care and / or cleaning.
  • the reversibly complexed, water-soluble polymer-containing outer molded body shell can have a wall thickness of between 0.01 and 5 mm, preferably between 0.06 and 2 mm, preferably between 0.07 and 1.5 mm, further preferably between 0.08 - 1.2 mm, more preferably between 0.09-1 mm and most preferably between 0.1-0.6 mm.
  • the agent contained in the molding in particular washing and / or cleaning agent, can be released predominantly or completely into the aqueous application liquor (excess water) within ⁇ 5 min, preferably within ⁇ 3 min, preferably within 1 1 min.
  • the terms “predominantly” and “essentially” refer to a quantitative indication of> 50%.
  • the molded article or articles can be present in a liquid medium of the agent, which is diluted with water before use, the liquid medium preferably is a solution with a water content of between 0 - 88 wt .-%, based on the total weight of the liquid medium, or a gel.
  • the liquid medium can have a viscosity of between 10-100000 mPas (at 100 s "1 ), preferably between between 100 - 50000 mPas (at 100 s " 1 ) and particularly preferably between between 200 - 20000 mPas (at 100 s " 1 ) 1 ) have.
  • the agents according to the invention which can be present in particular as powdery solids, in post-compacted particle form, as homogeneous solutions or suspensions, can in principle contain all known active substances which are common in such agents, hereinafter also referred to as ingredients.
  • the agents according to the invention can contain anionic surfactants, cationic surfactants, amphoteric surfactants, builder substances, bleaching agents, bleach activators, bleach stabilizers, bleaching catalysts, enzymes, polymers, cobuilders, alkalizing agents, acidifying agents, anti-redeposition agents, silver protective agents, colorants, optical brighteners, UV protective agents, fragrance substances, softening substances, fragrance substances, dirt-repellent substances, anti-crease substances, antibacterial substances, color protection substances, discoloration inhibitors, vitamins, layered silicates, odor-complexing substances, rinse aids, foam inhibitors, foaming agents, preservatives and / or auxiliaries.
  • the agents according to the invention preferably have, in particular, builder substances, surface-active surfactants, organic and / or inorganic peroxygen compounds, water-miscible organic solvents, enzymes, sequestering agents, electrolytes, pH regulators and other auxiliaries, such as optical brighteners, graying inhibitors, color transfer inhibitors, foam regulators, additional peroxygen activators, Dyes and fragrances.
  • a disinfectant according to the invention can contain conventional antimicrobial active ingredients in addition to the previously mentioned ingredients in order to enhance the disinfectant action against special germs.
  • antimicrobial additives are preferably contained in the disinfectants according to the invention not more than 10% by weight, particularly preferably from 0.1% by weight to 5% by weight.
  • Surfactant (s) which can be used in the agents (s) according to the invention include anionic, nonionic, cationic and / or amphoteric surfactants. From an application point of view, preference is given to mixtures of anionic and nonionic surfactants in textile detergents, the proportion of anionic surfactants being greater than the proportion of nonionic surfactants.
  • the total surfactant content of the agent for example in the case of detergent, care or cleaning agent compositions, is preferably below 30% by weight, based on the total agent.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol in which the alcohol radical has a methyl or linear branching in the 2-position may be or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow fat or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 12- alcohols with 3 EO, 4 EO or 7 EO, C 9 n-alcohols with 7 EO, C 3 5 5 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 ⁇ alcohols with 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C 12-14 alcohol with 3 EO and C 12 . 18 alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of this are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • Nonionic surfactants which contain EO and PO groups together in the molecule can also be used according to the invention.
  • block copolymers with EO-PO block units or PO-EO block units can be used, but also EO-PO-EO copolymers or PO-EO-PO copolymers.
  • mixed alkoxylated nonionic surfactants can also be used, in which EO and PO units are not distributed in blocks but statistically. Such products can be obtained by the simultaneous action of ethylene and propylene oxide on fatty alcohols.
  • alkyl glycosides of the general formula RO (G) x can also be used as further nonionic surfactants, in which R is a primary straight-chain or methyl-branched, in particular in the 2-position methyl-branched aliphatic radical having 8 to 22, is preferably 12 to 18 carbon atoms and G is the symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; x is preferably 1.2 to 1.4.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl ester.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanol amides can also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half of them.
  • Suitable surfactants are polyhydroxy fatty acid amides of the formula I,
  • RCO stands for an aliphatic acyl radical with 6 to 22 carbon atoms
  • R 1 for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms
  • [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula II
  • R-CO-N- [Z] II in which R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms and R 2 represents a linear, branched or cyclic alkyl radical or is an aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms, with C -4 alkyl or phenyl radicals being preferred and [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propylated derivatives of this residue.
  • [Z] is preferably obtained by reductive amination of a sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • non-ionic surfactants preferably portioned washing, care or cleaning agent compositions according to the invention suitable for textile washing is 5 to 20% by weight, preferably 7 to 15% by weight and in particular 9 to 14% by weight, in each case based on the total funds.
  • Machine dishwashing detergents according to the invention particularly preferably contain a nonionic surfactant which has a melting point above room temperature. Accordingly, preferred agents are characterized in that they contain nonionic surfactant (s) with a melting point above 20 ° C., preferably above 25 ° C., particularly preferably between 25 and 60 ° C. and in particular between 26.6 and 43, 3 ° C.
  • Suitable nonionic surfactants which have melting or softening points in the temperature range mentioned are, for example, low-foaming nonionic surfactants which can be solid or highly viscous at room temperature. If highly viscous nonionic surfactants are used at room temperature, it is preferred that they have a viscosity above 20 Pas, preferably above 35 Pas and in particular above 40 Pas. Nonionic surfactants that have a waxy consistency at room temperature are also preferred.
  • Preferred nonionic surfactants to be used at room temperature originate from the groups of alkoxylated nonionic surfactants, in particular ethoxylated primary alcohols, and mixtures of these surfactants with structurally more complex surfactants such as polyoxypropylene / polyoxyethylene / polyoxypropylene (PO / EO / PO) surfactants.
  • alkoxylated nonionic surfactants in particular ethoxylated primary alcohols
  • structurally more complex surfactants such as polyoxypropylene / polyoxyethylene / polyoxypropylene (PO / EO / PO) surfactants.
  • the nonionic surfactant with a melting point above room temperature is an ethoxylated nonionic surfactant which results from the reaction of a monohydroxyalkanol or alkylphenol having 6 to 20 carbon atoms with preferably at least 12 mol, particularly preferably at least 15 mol, in particular at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol has resulted.
  • a particularly preferred solid at room temperature, non-ionic surfactant is selected from a straight chain fatty alcohol having 16 to 20 Kohienstoffatomen (C 16-2 alcohol), a C 18 alcohol and preferably at least 12 mol, preferably at least 15 mol and in particular at least 20 moles of ethylene oxide won.
  • C 16-2 alcohol Kohienstoffatomen
  • C 18 alcohol preferably at least 12 mol, preferably at least 15 mol and in particular at least 20 moles of ethylene oxide won.
  • the so-called “narrow ranks ethoxylates" are particularly preferred.
  • particularly preferred agents according to the invention contain ethoxylated nonionic surfactant (s) that consist of C 6 . 2 o-monohydroxyalkanols or C 6 . 20 -alkylphenols or C 16-2 o-fatty alcohols and more than 12 moles, preferably more than 15 moles and in particular more than 20 moles of ethylene oxide per mole of alcohol has been obtained.
  • ethoxylated nonionic surfactant s
  • the nonionic surfactant preferably additionally has propylene oxide units in the molecule.
  • Such PO units preferably make up up to 25% by weight, particularly preferably up to 20% by weight and in particular up to 15% by weight of the total molar mass of the nonionic surfactant.
  • Particularly preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols, which additionally have polyoxyethylene-polyoxypropylene block copolymer units.
  • the alcohol or alkylphenol part of such nonionic surfactant molecules preferably makes up more than 30% by weight, particularly preferably more than 50% by weight and in particular more than 70% by weight of the total molar mass of such nonionic surfactants.
  • Preferred rinse aids are characterized in that they contain ethoxylated and propoxylated nonionic surfactants in which the propylene oxide units in the molecule contain up to 25% by weight, preferably up to 20% by weight and in particular up to 15% by weight, of the total molecular weight of the nonionic Make up surfactants.
  • nonionic surfactants with melting points above room temperature contain 40 to 70% of a polyoxypropylene / polyoxyethylene / polyoxypropylene block polymer blend which comprises 75% by weight of an inverse block copolymer of polyoxyethylene and polyoxypropylene with 17 mol of ethylene oxide and 44 mol of propylene oxide and 25 % By weight of a block copolymer of polyoxyethylene and polyoxypropylene, initiated with trimethylolpropane and containing 24 moles of ethylene oxide and 99 moles of propylene oxide per mole of trimethylolpropane.
  • Nonionic surfactants that may be used with particular preference are available, for example under the name Poly Tergent ® SLF-18 from Olin Chemicals.
  • a further preferred portioned washing, care or cleaning agent according to the invention contains nonionic surfactants of the formula
  • R 1 represents a linear or branched aliphatic hydrocarbon radical with 4 to 18 carbon atoms or mixtures thereof
  • R 2 denotes a linear or branched hydrocarbon radical with 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1.5 and y stands for a value of at least 15.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula
  • R 1 and R 2 represent linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 3 represents H or a methyl, ethyl, n-propyl, isopropyl, n- Butyl, 2-butyl or 2-methyl-2-butyl radical
  • x stands for values between 1 and 30, k and j stand for values between 1 and 12, preferably between 1 and 5. If the value x ⁇ 2, each R 3 in the above formula can be different.
  • R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, radicals having 8 to 18 carbon atoms being particularly preferred.
  • H, -CH 3 or -CH 2 CH 3 are particularly preferred for the radical R 3 .
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula can be different if x ⁇ 2.
  • the value 3 for x has been chosen here by way of example and may well be greater, the range of variation increasing with increasing x values and including, for example, a large number (EO) groups combined with a small number (PO) groups, or vice versa ,
  • R 1 , R 2 and R 3 are as defined above and x stands for numbers from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18. Particularly preferred are surfactants in which the radicals R 1 and R 2 have 9 to 14 carbon atoms, R 3 represents H and x assumes values from 6 to 15.
  • R 1 and R 2 represent linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 3 represents H or a methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl or 2-methyl-2-butyl radical
  • x stands for values between 1 and 30
  • k and j stand for values between 1 and 12, preferably between 1 and 5, with surfactants of the type
  • R 1 O [CH 2 CH (R 3 ) O] x CH 2 CH (OH) CH 2 OR 2 in which x stands for numbers from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18, are particularly preferred.
  • Anionic, cationic and / or amphoteric surfactants can also be used in conjunction with the surfactants mentioned, but because of their foaming behavior in machine dishwashing detergents they are of only minor importance and mostly only in amounts below 10% by weight, mostly even below 5 % By weight, for example from 0.01 to 2.5% by weight, in each case based on the agent.
  • the agents according to the invention can thus also contain anionic, cationic and / or amphoteric surfactants as the surfactant component.
  • the agents according to the invention can contain, for example, cationic compounds of the formulas III, IV or V as cationic active substances:
  • Anionic surfactants used are, for example, those of the sulfonate and sulfate type.
  • Preferred surfactants of the sulfonate type are C 9-13 alkylbenzene sulfonates, olefin sulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates, as obtained, for example, from C 12-18 monoolefins with terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acid hydrolysis of the sulfonation products.
  • alkanesulfonates which are for example obtained from 2- C ⁇ ⁇ 8 alkanes by sulfochlorination or sulfoxidation and subsequent hydrolysis or neutralization.
  • esters of o-sulfo fatty acids for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids, are also suitable.
  • sulfonated fatty acid glycerol esters are sulfonated fatty acid glycerol esters.
  • Fatty acid glycerol esters are to be understood as the mono-, di- and triesters and their mixtures as obtained in the production by esterification of a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol become.
  • Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • the alk (en) yl sulfates are the alkali and in particular the sodium salts of the sulfuric acid half esters of C 1 -C 18 fatty alcohols, for example from coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half-esters of secondary alcohols of this chain length are preferred. Also preferred are alk (en) yl sulfates of the chain length mentioned which contain a synthetic, straight-chain alkyl radical which is produced on a petrochemical basis and which have a degradation behavior analogous to that of the adequate compounds based on oleochemical raw materials.
  • the C 12 -C 16 alkyl sulfates and C 12 -C 15 alkyl sulfates and C 4 -C 15 alkyl sulfates are preferred from a washing-technical point of view.
  • 2,3-AlkylsuIfate which are prepared for example according to US Patent No. 3,234,258 or 5,075,041 and can be obtained as commercial products from Shell Oil Company under the name DAN ®, are suitable anionic surfactants.
  • the sulfuric acid monoesters of the straight-chain or branched C 7-21 alcohols ethoxylated with 1 to 6 mol of ethylene oxide such as 2-methyl-branched C 9-11 alcohols with an average of 3.5 mol of ethylene oxide (EO) or C 12-18 - Fatty alcohols with 1 to 4 EO are suitable. Because of their high foaming behavior, they are used in cleaning agents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8-18 fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue which is derived from ethoxylated fatty alcohols, which in themselves are nonionic surfactants (description see below).
  • alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Soaps are particularly suitable as further anionic surfactants.
  • Saturated and unsaturated fatty acid soaps are suitable, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, (hydrogenated) erucic acid and behenic acid, and in particular from natural fatty acids, e.g. Coconut, palm kernel, olive oil or tallow fatty acids, derived soap mixtures.
  • the anionic surfactants can be in the form of their sodium, potassium or ammonium salts and also as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • the anionic surfactant content of preferred textile detergents according to the invention is 5 to 25% by weight, preferably 7 to 22% by weight and in particular 10 to 20% by weight, in each case based on the total composition.
  • preferred agents additionally contain one or more substances from the group of builders, bleaching agents, bleach activators, enzymes, electrolytes, non-aqueous solvents, pH regulators, fragrances, perfume carriers, fluorescent agents, dyes, hydrotopes, foam inhibitors, silicone oils, antiredeposition agents. tel, optical brighteners, graying inhibitors, anti-shrink agents, anti-crease agents, color transfer inhibitors, antimicrobial agents, germicides, fungicides, antioxidants, corrosion inhibitors, antistatic agents, ironing aids, phobing and impregnating agents, swelling and anti-abrasion agents and UV.
  • the builders that can be contained in the agents according to the invention include, in particular, phosphates, silicates, aluminum silicates (in particular zeolites), carbonates, salts of organic di- and polycarboxylic acids and mixtures of these substances.
  • the alkali metal phosphates with particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), have the greatest importance in the detergent and cleaning agent industry.
  • Alkali metal phosphates is the general term for the alkali metal (especially sodium and potassium) salts of the various phosphoric acids, in which one can distinguish between metaphosphoric acids (HPO 3 ) n and orthophosphoric acid H 3 PO 4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: They act as alkali carriers, prevent limescale deposits on machine parts and lime incrustations in tissues and also contribute to cleaning performance.
  • Sodium dihydrogen phosphate, NaH 2 PO 4 exists as a dihydrate (density 1, 91, preferably -3 , melting point 60 °) and as a monohydrate (density 2.04, preferably -3 ). Both salts are white, water-soluble powders, which lose water of crystallization when heated and into the weakly acidic diphosphate (disodium hydrogen diphosphate, Na 2 H 2 P 2 O) at 200 ° C, and at higher temperature in sodium trimetaphosphate (Na 3 P 3 O 9 ) and Maddrell's salt (see below).
  • NaH 2 PO 4 is acidic; it occurs when phosphoric acid is adjusted to a pH of 4.5 with sodium hydroxide solution and the mash is sprayed.
  • Potassium dihydrogen phosphate (primary or monobasic potassium phosphate, potassium biphosphate, KDP), KH 2 PO 4 , is a white salt with a density of 2.33, preferably -3 , has a melting point of 253 ° [decomposition to form potassium polyphosphate (KPO 3 ))] and is easily soluble in water.
  • Disodium hydrogen phosphate (secondary sodium phosphate), Na 2 HPO 4 , is a colorless, very easily water-soluble crystalline salt. It exists anhydrous and with 2 mol. (Density 2.066 gladly -3 , water loss at 95 °), 7 mol. (Density 1.68 gladly -3 , melting point 48 ° with loss of 5 H 2 O) and 12 mol. Water ( Density 1.52 like -3 , melting point 35 ° with loss of 5 H 2 O), becomes anhydrous at 100 ° and goes into the diphos- phat Na 4 P 2 O 7 over. Disodium hydrogen phosphate is prepared by neutralizing phosphoric acid with soda solution using phenolphthalein as an indicator. Potassium hydrogen phosphate (secondary or dibasic potassium phosphate), K 2 HPO 4 , is an amorphous, white salt that is easily soluble in water.
  • Trisodium phosphate, tertiary sodium phosphate, Na 3 PO 4 are colorless crystals which, as dodecahydrate, have a density of 1.62, preferably -3 and a melting point of 73-76 ° C (decomposition), as decahydrate (corresponding to 19-20% P 2 O 5 ) a melting point of 100 ° C and in anhydrous form (corresponding to 39-40% P 2 O 5 ) a density of 2.536 gladly -3 .
  • Trisodium phosphate is readily soluble in water with an alkaline reaction and is produced by evaporating a solution of exactly 1 mol of disodium phosphate and 1 mol of NaOH.
  • Tripotassium phosphate (tertiary or triphase quartz phosphate), K 3 PO, is a white, deliquescent, granular powder with a density of 2.56, preferably -3 , has a melting point of 1340 ° and is easily soluble in water with an alkaline reaction. It arises, for example, when heating Thomas slag with coal and potassium sulfate. Despite the higher price, the more soluble, therefore highly effective, potassium phosphates are often preferred over corresponding sodium compounds in the cleaning agent industry.
  • Tetrasodium diphosphate (sodium pyrophosphate), Na 4 P 2 O 7 , exists in anhydrous form (density 2.534, preferably -3 , melting point 988 °, also given 880 °) and as decahydrate (density 1.815-1, 836, preferably -3 , melting point 94 ° below) loss of water).
  • Substances are colorless crystals that are soluble in water with an alkaline reaction.
  • Na 4 P 2 O 7 is formed by heating disodium phosphate to> 200 ° or by reacting phosphoric acid with soda in a stoichiometric ratio and dehydrating the solution by spraying.
  • the decahydrate complexes heavy metal salts and hardness formers and therefore reduces the hardness of the water.
  • Potassium diphosphate (potassium pyrophosphate), K 4 P 2 O 7 , exists in the form of the trihydrate and is a colorless, hygroscopic powder with a density of 2.33, preferably -3 , which is soluble in water, the pH value being 1% Solution at 25 ° is 10.4. Condensation of the NaH 2 PO or the KH 2 PO 4 produces higher moles.
  • Sodium and potassium phosphates in which one can differentiate cyclic representatives, the sodium or potassium metaphosphates and chain-like types, the sodium or potassium polyphosphates.
  • pentasodium triphosphate 20 g at 60 ° and around 32 g at 100 °; After heating the solution at 100 ° for two hours, hydrolysis produces about 8% orthophosphate and 15% diphosphate.
  • phosphoric acid is reacted with sodium carbonate solution or sodium hydroxide solution in a stoichiometric ratio and the solution is dewatered by spraying. Similar to Graham's salt and sodium diphosphate, pentasodium triphosphate dissolves many insoluble metal compounds (including lime soaps, etc.).
  • Pentapotassium triphosphate K5P 3 O 10 (potassium tripolyphosphate)
  • K5P 3 O 10 potassium tripolyphosphate
  • the potassium polyphosphates are widely used in the detergent and cleaning agent industry.
  • sodium potassium tripolyphosphates which can also be used in the context of the present invention. These occur, for example, when hydrolyzing sodium trimetaphosphate with KOH:
  • these can be used just like sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two; Mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate can also be used according to the invention.
  • Suitable crystalline, layered sodium silicates have the general formula NaMSi x O 2x + ⁇ H 2 O, where M is sodium or hydrogen, x is a number from 1, 9 to 4 and y is a number from 0 to 20 and preferred values for x 2, 3 or 4.
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3. In particular, both ⁇ - and ⁇ - sodium disilicates Na 2 Si 2 O 5 -yH 2 O are preferred.
  • the dissolving delay compared to conventional amorphous sodium silicates can be done in different ways, for example by surface treatment, compounding, compacting / sealing. seal or caused by overdrying.
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles deliver washed-out or even sharp diffraction maxima in electron diffraction experiments.
  • This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates also have a delay in dissolution compared to conventional water glasses. Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • zeolite X and zeolite A (about 80% by weight zeolite X ), which is sold by CONDEA Augusta SpA under the brand name VEGOBOND AX ® and which has the formula nNa 2 O • (1-n) K 2 O ⁇ AI 2 O 3 • (2 - 2.5) SiO 2 • ( 3.5 - 5.5) H 2 O
  • the zeolite can be used as a spray-dried powder or as an undried stabilized suspension that is still moist from its manufacture.
  • the zeolite can contain minor additions of nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated C 12 -C 18 fatty alcohols with 2 to 5 ethylene oxide groups , C 12 -C 14 fatty alcohols with 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • Alkali carriers can be present as further constituents.
  • Alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, alkali metal sesquicarbonates, alkali silicates, alkali metal silicates, and mixtures of the abovementioned substances are considered to be alkali carriers, the alkali metal carbonates, in particular sodium carbonate, sodium hydrogen carbonate or sodium sesquicarbonate, preferably being used for the purposes of this invention.
  • a builder system containing a mixture of tripolyphosphate and sodium carbonate is particularly preferred.
  • a builder system containing a mixture of tripolyphosphate and sodium carbonate and sodium disilicate is also particularly preferred.
  • washing, care or cleaning agents according to the invention which additionally contain one or more substances from the group of the acidifying agents, chelate complexing agents or the deposit-inhibiting polymers.
  • Both inorganic acids and organic acids are suitable as acidifiers, provided they are compatible with the other ingredients.
  • the solid mono-, oligo- and polycarboxylic acids in particular can be used. From this group, preference is again given to citric acid, tartaric acid, succinic acid, malonic acid, adipic acid, maleic acid, fumaric acid, oxalic acid and polyacrylic acid.
  • the anhydrides of these acids can also be used as acidifying agents, maleic anhydride and succinic anhydride in particular being commercially available.
  • Organic sulfonic acids such as amidosulfonic acid can also be used.
  • a commercially available as an acidifier in the context of the present invention also preferably be used is Sokalan ® DCS (trademark of BASF), a mixture of succinic acid (max. 31 wt .-%), glutaric acid (max. 50 wt .-%) and Adipic acid (max. 33% by weight).
  • Chelating agents are substances which form cyclic compounds with metal ions, with a single ligand occupying more than one coordination point on a central atom, ie being at least “bidentate”. In this case, stretching is normally carried out Compounds formed into rings by complex formation via an ion The number of ligands bound depends on the coordination number of the central ion.
  • Common chelate complex images which are preferred in the context of the present invention are, for example, polyoxycarboxylic acids, polyamines, ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA).
  • Complex-forming polymers that is to say polymers which carry functional groups either in the main chain itself or laterally to it, which can act as ligands and which generally react with suitable metal atoms to form chelate complexes, can be used according to the invention.
  • the polymer-bound ligands of the resulting metal complexes can originate from only one macromolecule or can belong to different polymer chains. The latter leads to the crosslinking of the material, provided that the complex-forming polymers were not previously crosslinked via covalent bonds.
  • Complexing groups (ligands) of conventional complex-forming polymers are iminodiacetic acid, hydroxyquinoline, thiourea, guanidine, dithiocarbamate, hydroxamic acid, amidoxime, aminophosphoric acid, (cyclic) polyamino, mercapto, 1,3 -Dicarbonyl and crown ether residues with z. T. very specific Activities against ions of different metals.
  • the base polymers of many commercially important complex-forming polymers are polystyrene, polyacrylates, polyacrylonitriles, polyvinyl alcohols, polyvinyl pyridines and polyethyleneimines. Natural polymers such as cellulose, starch or chitin are also complex-forming polymers. In addition, these can be provided with further ligand functionalities by polymer-analogous conversions.
  • agents in particular washing, care and / or cleaning agents, which comprise one or more chelating agents from the groups of
  • polycarboxylic acids in which the sum of the carboxyl and optionally hydroxyl groups is at least 5, (ii) nitrogen-containing mono- or polycarboxylic acids, (iii) geminal diphosphonic acids, (iv) aminophosphonic acids, (v) phosphonopolycarboxylic acids, (vi) cyclodextrins
  • Dishwashing detergent included in amounts above 0.1% by weight, preferably above 0.5% by weight, particularly preferably above 1% by weight and in particular above 2.5% by weight, in each case based on the weight of the Dishwashing detergent included.
  • All complexing agents of the prior art can be used in the context of the present invention. These can belong to different chemical groups.
  • polycarboxylic acids in which the sum of the carboxyl and optionally hydroxyl groups is at least 5, such as gluconic acid
  • nitrogen-containing mono- or polycarboxylic acids such as ethylenediaminetetraacetic acid (EDTA), N-hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, Hydroxyethyliminodiacetic acid, nitridodiacetic acid-3-propionic acid, isoserine diacetic acid, N, N-di- ( ⁇ -hydroxyethyl) -glycine, N- (1, 2-dicarboxy-2-hydroxyethyl) -glycine, N- (1, 2 -Dicarboxy-2-hydroxyethyl) -aspartic acid or nitrilotriacetic acid (NTA), c) geminal diphosphonic acids such as 1-hydroxyethane-1,
  • polycarboxylic acids a) are understood to mean carboxylic acids - also monocarboxylic acids - in which the sum of carboxyl and the hydroxyl groups contained in the molecule is at least 5.
  • Complexing agents from the group of nitrogen-containing polycarboxylic acids, in particular EDTA, are preferred. At the alkaline pH values of the treatment solutions required according to the invention, these complexing agents are at least partially present as anions. It is immaterial whether they are introduced in the form of acids or in the form of salts. In the case of use as salts, alkali metal, ammonium or alkylammonium salts, in particular sodium salts, are preferred.
  • Deposit-inhibiting polymers can also be contained in the agents according to the invention. These substances, which can have different chemical structures, originate, for example, from the groups of low molecular weight polyacrylates with molecular weights between 1000 and 20,000 daltons, polymers with molecular weights below 15,000 daltons being preferred.
  • Deposit-inhibiting polymers can also have cobuilder properties.
  • Organic cobuilders which can be used in the dishwasher detergents according to the invention are, in particular, polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, other organic cobuilders (see below) and phosphonates. These classes of substances are described below.
  • Usable organic builders are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids being understood to mean those carboxylic acids which carry more than one acid function.
  • these are citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), as long as such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to adjust a lower and milder pH of the agent, such as detergents or cleaning agents.
  • Citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures thereof can be mentioned in particular.
  • Polymeric polycarboxylates are also suitable as builders or scale inhibitors, for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 500 to 70,000 g / mol.
  • the molecular weights given for polymeric polycarboxylates are weight-average molecular weights M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used.
  • GPC gel permeation chromatography
  • the measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship to the polymers investigated. This information differs significantly from the molecular weight information for which polystyrene sulfonic acids are used as standard. the.
  • the molecular weights measured against polystyrene sulfonic acids are generally significantly higher than the molecular weights given in this document.
  • Suitable polymers are in particular polyacrylates, which preferably have a molecular weight of 500 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates with molecular weights from 1000 to 10000 g / mol, and particularly preferably from 1000 to 4000 g / mol, can in turn be preferred from this group.
  • Both polyacrylates and copolymers of unsaturated carboxylic acids, monomers containing sulfonic acid groups and optionally other ionic or nonionic monomers are particularly preferably used in the agents according to the invention.
  • the copolymers containing sulfonic acid groups are described in detail below.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids, is generally 2,000 to 70,000 g / mol, preferably 20,000 to 50,000 g / mol and in particular 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of (co) polymeric polycarboxylates in the agents is preferably 0.5 to 20% by weight, in particular 3 to 10% by weight.
  • biodegradable polymers composed of more than two different monomer units, for example those which contain salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives as monomers or those which contain salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives as monomers ,
  • Further preferred copolymers are those which preferably have acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • polymeric aminodicarboxylic acids their salts or their precursor substances.
  • Poly- aspartic acids or their salts and derivatives which, in addition to cobuilder properties, also have a bleach-stabilizing effect.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • Suitable organic builder substances are dextrins, for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary processes, for example acid-catalyzed or enzyme-catalyzed. They are preferably hydrolysis products with average molar masses in the range from 400 to 500,000 g / mol.
  • DE dextrose equivalent
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • a product oxidized at C 6 of the saccharide ring can be particularly advantageous.
  • Ethylene diamine N, N'-disuccinate (EDDS) is preferably used in the form of its sodium or magnesium salts.
  • Glycerol disuccinates and glycerol trisuccinates are also preferred in this connection. Suitable amounts for use in formulations containing zeolite and / or silicate are 3 to 15% by weight.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be in the form of lactones and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • phosphonates are, in particular, hydroxyalkane or aminoalkane phosphonates.
  • hydroxyalkane phosphonates 1-hydroxyethane-1,1-diphosphonate (HEDP) is of particular importance as a cobuilder.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • Preferred aminoalkane phosphonates are ethylenediaminetetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs. They are preferably in the form of the neutral sodium salts, e.g.
  • HEDP is preferably used as the builder from the class of the phosphonates.
  • the aminoalkanephosphonates also have a pronounced ability to bind heavy metals. Accordingly, it may be preferred, particularly if the agents also contain bleach, to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • the agents according to the invention can contain other usual ingredients of washing, care or cleaning agents, bleaching agents, bleach activators, enzymes, silver protection agents, colorants and fragrances being particularly important. These substances are described below.
  • bleaching agents which serve as bleaching agents and supply H 2 O 2 in water
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Further bleaching agents which can be used are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecadic acid.
  • bleach activators can be incorporated into the detergent tablets.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, aliphatic peroxocarboxylic acids with preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbene result in zoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • Multi-acylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril, are preferred (TAGU), N-acylimides, especially N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, especially phthalic anhydride, especially acylated triacid alcohols, acylated polyhydric alcohols Ethylene glycol diacetate and 2,5-diacetoxy-2,5-dihydrofuran.
  • bleach catalysts can also be used.
  • bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo salt complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with nitrogen-containing tripod ligands as well as Co, Fe, Cu and Ru amine complexes can also be used as bleaching catalysts.
  • Particularly suitable enzymes are those from the classes of hydrolases such as proteases, esterases, lipases or lipolytically active enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All these hydrolases help to remove stains such as protein, fat or starchy stains and graying in the laundry. Cellulases and other glycosyl hydrolases can also help to retain color and increase the softness of the textile by removing pilling and microfibrils. Oxireductases can also be used to bleach or inhibit the transfer of color.
  • hydrolases such as proteases, esterases, lipases or lipolytically active enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All these hydrolases help to remove stains such as protein, fat or starchy stains and graying in the laundry. Cellulases and other glycosyl hydrolases can also help to retain color and increase the softness of
  • Enzymatic active ingredients obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus and Humicola insolens are particularly suitable.
  • Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used.
  • Enzyme mixtures for example, from protease and amylase or protease and lipase or lipolytically active enzymes or protease and cellulase or from cellulase and lipase or lipolytically active enzymes or from protease, amylase and lipase or lipolytically active enzymes or protease, lipase or lipolytically active enzymes and cellulase, but in particular protease and / or lipase-containing mixtures or mixtures with lipolytically active enzymes of particular interest.
  • lipolytic enzymes are the well-known cutinases. Peroxidases or oxidases have also proven to be suitable in some cases.
  • Suitable amylases include in particular ⁇ -amylases, iso-amylases, pullulanases and pectinases.
  • Cellobiohydrolases, endoglucanases and ⁇ -glucosidases, which are also called cellobiases, or mixtures thereof, are preferably used as cellulases. Since different cellulase types differ in their CMCase and avicelase activities, the desired activities can be set by targeted mixtures of the cellulases.
  • the enzymes can be adsorbed on carriers or embedded in coating substances to protect them against premature decomposition.
  • the proportion of the enzymes, enzyme mixtures or enzyme granules can be, for example, approximately 0.1 to 5% by weight, preferably 0.12 to approximately 2% by weight.
  • enzymes are primarily added to a cleaning agent preparation, in particular to a dish care product which is intended for the main wash cycle.
  • the disadvantage here was that the optimum effect of the enzymes used restricted the choice of temperature and problems also occurred with the stability of the enzymes in a strongly alkaline environment.
  • With the detergent or cleaning agent portions according to the invention it is possible to introduce enzymes into a separate compartment and then also to use them in the pre-rinse cycle and thus to use the pre-rinse cycle in addition to the main rinse cycle for enzyme action on soiling of the wash ware.
  • enzymes to the detergent-active preparation or part portion of a detergent and / or care agent portion provided for the pre-rinse cycle, and then to prepare such a preparation — more preferably — with a material of a flexible, preferably elastic, hollow body that is water-soluble even at low temperature to include, for example, to protect the enzyme-containing preparation from a loss of activity due to environmental conditions.
  • the enzymes are furthermore preferably optimized for use under the conditions of the pre-care program, for example in cold water.
  • the detergent portions according to the invention can be advantageous if the enzyme preparations are in liquid form, as are partly offered commercially, because then a quick effect can be expected, which is already in the (relatively short and carried out in cold water). Even if - as usual - the enzymes are used in solid form and they are provided with a hollow body covering made of a water-soluble material that is already soluble in cold water, the enzymes can develop their effect before the main wash or main wash cycle.
  • the advantage of using a casing made of water-soluble material, in particular of a material soluble in cold water is that the enzyme (s) quickly comes into effect in cold water after the casing has been dissolved. This can extend their effectiveness, which benefits the washing or rinsing result.
  • the cleaning agents according to the invention for machine dishwashing can contain corrosion inhibitors to protect the wash ware or the machine, silver protection agents in particular being particularly important in the area of machine dishwashing.
  • the known substances of the prior art can be used.
  • silver protection agents selected from the group of the triazoles, the benzotriazoles, the bisbenzotriazoles, the aminotriazoles, the alkylaminotriazoles and the transition metal salts or complexes can be used in particular.
  • Benzotriazole and / or alkylaminotriazole are particularly preferably to be used.
  • active chlorine-containing agents are often found in cleaner formulations, which can significantly reduce the corroding of the silver surface.
  • oxygen and nitrogen-containing organic redox-active compounds such as di- and trihydric phenols, e.g. Hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, phloroglu- cin, pyrogallol or derivatives of these classes of compounds.
  • Salt-like and complex-like inorganic compounds such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce, are also frequently used.
  • transition metal salts which are selected from the group of the manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (ammine) complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) -Complexes, the chlorides of cobalt or manganese and manganese sulfate.
  • Zinc compounds can also be used to prevent corrosion on the wash ware.
  • a wide number of different salts can be used as electrolytes from the group of inorganic salts.
  • Preferred cations are the alkali and alkaline earth metals, preferred anions are the halides and sulfates.
  • NaCI or MgCI 2 in the agents according to the invention is vorzugt.
  • the proportion of electrolytes in the agents according to the invention is usually 0.5 to 5% by weight.
  • Non-aqueous solvents that can be used in the agents according to the invention come, for example, from the group of mono- or polyhydric alcohols, alkanolamines or glycol ethers, provided that they are miscible with water in the concentration range indicated.
  • the solvents are preferably selected from ethanol, n- or i-propanol, butanols, glycol, propane or butanediol, glycerol, diglycol, propyl or butyl diglycol, hexylene glycol, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol propyl ether, ethylene glycol mono-n-butyl ether , Diethylene glycol methyl ether, diethylene glycol ethyl ether, propylene glycol methyl, ethyl or propyl ether, dipropylene glycol monomethyl or ethyl ether, diisopropylene glycol monomethyl or ethyl ether, methoxy, ethoxy or butoxytriglycol, 1-butoxyethoxy -2-propanol, 3-methyl-3-methoxybutanol, propylene glycol t-butyl ether and mixtures of these
  • pH adjusting agents In order to bring the pH of the agents according to the invention into the desired range, the use of pH adjusting agents can be indicated. All known acids or alkalis can be used here, provided that their use is not prohibited for application-related or ecological reasons or for reasons of consumer protection. The amount of these adjusting agents usually does not exceed 5% by weight of the total formulation.
  • the agents according to the invention can be colored with suitable dyes.
  • Preferred dyes the selection of which is not difficult for the person skilled in the art, have a high storage stability and insensitivity to the other ingredients of the compositions and to light, and no pronounced substantivity towards textile fibers in order not to dye them.
  • Foam inhibitors that can be used in the agents according to the invention are, for example, soaps, paraffins or silicone oils, which can optionally be applied to carrier materials.
  • Suitable antiredeposition agents which are also referred to as soil repellents, are, for example, nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxy Groups of 15 to 30 wt .-% and of hydroxypropyl groups of 1 to 15 wt .-%, each based on the nonionic cellulose ether and the polymers of phthalic acid and / or terephthalic acid known from the prior art or of their derivatives, in particular polymers from ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives thereof.
  • the sulfonated derivatives of phthalic acid and terephthalic acid polymers are particularly preferred.
  • Optical brighteners can be added to the agents according to the invention in order to eliminate graying and yellowing of the treated textiles. These substances attach to the fibers and bring about a brightening and simulated bleaching effect by converting invisible ultraviolet radiation into visible longer-wave light, whereby the ultraviolet light absorbed from the sunlight is emitted as a slightly bluish fluorescence and results in pure white with the yellow tone of the grayed or yellowed laundry.
  • Suitable compounds come, for example, from the substance classes of 4,4'-diamino-2,2'-stilbene disulfonic acids ( Flavonic acids), 4,4'-distyryl-biphenylene, methylumbelliferones, coumarins, dihydroquinolinones, 1, 3-diarylpyrazolines, naphthalic imides, benzoxazole, benzisoxazole and benzimidazole systems and the pyrene derivatives usually substituted by heterocycles Quantities between 0, 05 and 0.3 wt .-%, based on the finished agent, used.
  • Flavonic acids 4,4'-diamino-2,2'-stilbene disulfonic acids
  • 4'-distyryl-biphenylene methylumbelliferones
  • coumarins dihydroquinolinones
  • 1, 3-diarylpyrazolines 1, 3-diarylpyrazolines
  • naphthalic imides benzoxazole
  • Graying inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being re-absorbed.
  • water-soluble colloids of mostly organic nature are suitable, for example glue, gelatin, salts of ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • Water-soluble polyamides containing acidic groups are also suitable for this purpose.
  • Soluble starch preparations and starch products other than those mentioned above can also be used, for example degraded starch, aldehyde starches, etc.
  • Polyvinylpyrrolidone can also be used.
  • cellulose ethers such as carboxymethyl cellulose (sodium salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof in amounts of 0.1 to 5% by weight, based on the composition, used If the agents according to the invention are packaged as agents for automatic dishwashing, further ingredients can be used. Today, machine-washed dishes are often subject to higher requirements than hand-washed dishes.
  • dishes that have been completely cleaned of food residues are not considered to be perfect if, after machine dishwashing, they still have whitish stains based on water hardness or other mineral salts, which, due to the lack of wetting agents, originate from dried water drops.
  • rinse aid is used successfully today. The addition of rinse aid at the end of the wash program ensures that the water runs off the dishes as completely as possible, so that the different surfaces are residue-free and flawlessly shiny at the end of the wash program.
  • the automatic cleaning of dishes in domestic dishwashers usually comprises a pre-wash, a main wash and a rinse cycle, which are interrupted by intermediate wash cycles.
  • the pre-wash cycle for heavily soiled dishes can be activated, but is only selected by the consumer in exceptional cases, so that in most machines a main wash cycle, an intermediate rinse cycle with pure water and a rinse cycle are carried out.
  • the temperature of the main wash cycle varies between 40 and 65 ° C depending on the machine type and program level selection.
  • rinse aids are added from a dosing tank in the machine, which usually contain non-ionic surfactants as the main component. Such rinse aids are in liquid form and are widely described in the prior art. Your main task is to prevent limescale and deposits on the dishes.
  • the agents according to the invention can be formulated as “normal” detergents, which are used together with commercially available supplements (rinse aid, regeneration salt). However, with the products according to the invention, the additional dosage of rinse aid can be dispensed with. These so-called “2in1” products lead to simplification of handling and relieve the consumer of the burden of additional dosing of two different products (detergent and rinse aid).
  • unsaturated carboxylic acids of the formula VI can also be added as a monomer to the agent according to the invention,
  • R 1 to R 3 independently of one another are -H -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with -NH 2 , -OH or -COOH substituted alkyl or alkenyl radicals as defined above or represents -COOH or -COOR 4 , where R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
  • H 2 C C (CH 3 ) -X-SO 3 H (VIIIb),
  • ionic or nonionic monomers that can be used are, in particular, ethylenically unsaturated compounds.
  • the content of monomers of group iii) in the polymers used according to the invention is preferably less than 20% by weight, based on the polymer.
  • Polymers to be used with particular preference consist only of monomers of groups i) and ii).
  • R 1 to R 3 independently of one another are -H -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, alkyl or alkenyl radicals substituted by -NH, -OH or -COOH as defined above or represents -COOH or -COOR 4 , where R 4 is a saturated or unsaturated, straight-chain or is a branched hydrocarbon radical having 1 to 12 carbon atoms,
  • Particularly preferred copolymers consist of
  • H 2 C CH-X-SO 3 H (Vlla),
  • H 2 C C (CH 3 ) -X-SO 3 H (VIIIb),
  • copolymers which are contained in the compositions according to the invention can contain the monomers from groups i) and ii) and optionally iii) in varying amounts, all representatives from group i) with all representatives from group ii) and all representatives from group iii ) can be combined.
  • Particularly preferred polymers have certain structural units, which are described below.
  • agents according to the invention are preferred which are characterized in that they contain one or more copolymers which have structural units of the formula VIII
  • These polymers are produced by copolymerization of acrylic acid with an acrylic acid derivative containing sulfonic acid groups. If the acrylic acid derivative containing sulfonic acid groups is copolymerized with methacrylic acid, another polymer is obtained, the use of which in the agents according to the invention is also preferred and is characterized in that the agents contain one or more copolymers which have structural units of the formula IX
  • acrylic acid and / or methacrylic acid can also be copolymerized with methacrylic acid derivatives containing sulfonic acid groups, as a result of which the structural units in the molecule are changed.
  • Agents according to the invention which contain one or more copolymers are structural units of the formula X
  • maleic acid can also be used as a particularly preferred monomer from group i).
  • preferred agents according to the invention are obtained which are characterized in that they contain one or more copolymers, the structural units of the formula XI
  • automatic dishwashing agents which contain, as ingredient b), one or more copolymers which have structural units of the formulas VII and / or VIII and / or IX and / or X and / or XI and / or XII
  • the sulfonic acid groups in the polymers may be wholly or partly in neutralized form, i.e. that the acidic hydrogen atom of the sulfonic acid group in some or all sulfonic acid groups can be replaced by metal ions, preferably alkali metal ions and in particular by sodium ions.
  • metal ions preferably alkali metal ions and in particular by sodium ions.
  • Corresponding agents which are characterized in that the sulfonic acid groups in the copolymer are partially or fully neutralized are preferred according to the invention.
  • the monomer distribution of the copolymers used in the agents according to the invention is preferably 5 to 95% by weight i) or ii), particularly preferably 50 to 90% by weight, in the case of copolymers which contain only monomers from groups i) and ii) .-% monomer from group i) and 10 to 50 wt .-% monomer from group ii), each based on the polymer.
  • copolymers which contain only monomers from groups i) and ii) .-% monomer from group i) and 10 to 50 wt .-% monomer from group ii), each based on the polymer.
  • terpolymers those which contain 20 to 85% by weight of monomer from group i), 10 to 60% by weight of monomer from group ii) and 5 to 30% by weight of monomer from group iii) are particularly preferred .
  • the molar mass of the polymers used in the agents according to the invention can be varied in order to adapt the properties of the polymers to the desired intended use.
  • Preferred automatic dishwashing detergents are characterized in that the copolymers have molar masses from 2000 to 200,000 gmol "1 , preferably from 4000 to 25,000 gmol 1 and in particular from 5000 to 15,000 gmol -1 .
  • the content of one or more copolymers in the agents according to the invention can vary depending on the intended use and the desired product performance, preferred dishwasher detergents according to the invention being characterized in that they contain the copolymer (s) in amounts of 0.25 to 50% by weight. %, preferably from 0.5 to 35% by weight, particularly preferably from 0.75 to 20% by weight and in particular from 1 to 15% by weight.
  • both polyacrylates and the above-described copolymers of unsaturated carboxylic acids, monomers containing sulfonic acid groups and optionally other ionic or nonionic monomers are particularly preferably used in the agents according to the invention.
  • the polyacrylates were described in detail above. Combinations of the above-described copolymers containing sulfonic acid groups with low molecular weight polyacrylates, for example in the range between 1000 and 4000 daltons, are particularly preferred.
  • Such polyacrylates are commercially available under the trade names Sokalan ® PA15 or Sokalan ® PA25 (BASF).
  • the agents according to the invention can also be packaged as fabric softeners or washing additives. Depending on the intended use, additional ingredients can be used.
  • Fabric softener compositions for rinse bath finishing are widely described in the prior art. These compositions usually contain a cationic quaternary ammonium compound as the active substance, which is dispersed in water. Depending on the content of active substance in the finished plasticizer composition, one speaks of dilute, ready-to-use products (active substance contents below 7% by weight) or so-called concentrates (active substance contents above 7% by weight). Because of the lower volume and the reduced consumption Packing and transport costs, the textile softener concentrates have advantages from an ecological point of view and have become more and more established in the market.
  • portioned fabric softeners according to the invention preferably contain cationic surfactants which have already been described in detail above (formulas XII, XIII and XIV).
  • "Soft care portions” according to the invention particularly preferably contain so-called ester quats. While there are a large number of possible compounds from this class of substances, ester quats are used according to the invention with particular preference which are obtained by reacting trialkanolamines with a mixture of fatty acids and dicarboxylic acids, optionally followed by alkoxylation of the reaction product and quaternization can be produced in a manner known per se, as described in DE 195 39 846.
  • esterquats produced in this way are outstandingly suitable for the production of portions according to the invention which can be used as fabric softeners. Since, depending on the choice of the trialkanolamine, the fatty acids and the dicarboxylic acids and the quaternizing agent, a large number of suitable products can be prepared and used in the agents according to the invention, a description of the ester quats to be used according to the invention via their route of manufacture is more precise than the specification of a general formula.
  • portioned fabric softeners are preferred in which a reaction product of trialkanolamines with a mixture of fatty acids and dicarboxylic acids in a molar ratio of 1:10 to 10: 1, preferably 1: 5 to 5: 1, which optionally alkoxylates and then in was quaternized in a known manner, is present in amounts of 2 to 60, preferably 3 to 35 and in particular 5 to 30% by weight.
  • triethanolamine is particularly preferred, so that further preferred portioned fabric softener of the present invention is a reaction product of triethanolamine with a mixture of fatty acids and dicarboxylic acids in a molar ratio of 1:10 to 10: 1, preferably 1: 5 to 5: 1, which was optionally alkoxylated and then quaternized in a manner known per se, in amounts of 2 to 60, preferably contain 3 to 35 and in particular 5 to 30 wt .-%.
  • All acids obtained from vegetable or animal oils and fats can be used as fatty acids in the reaction mixture for producing the esterquats.
  • a fatty acid that is not solid at room temperature, i.e. pasty to liquid, fatty acid can be used.
  • the fatty acids can be saturated or mono- to polyunsaturated regardless of their physical state.
  • pure fatty acids can be used, but also the technical fatty acid mixtures obtained from the cleavage of fats and oils, these mixtures being clearly preferred from an economic point of view.
  • individual species or mixtures of the following acids can be used in the reaction mixtures for producing the ester quats for the clear aqueous fabric softener according to the invention: caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, octadecan-12-ol acid, arachic acid , Behenic acid, lignoceric acid, cerotinic acid, melissic acid, 10-undecenoic acid, petroselinic acid, petroselaidic acid, oleic acid, elaidic acid, ricinoleic acid, linolaidic acid, oc- and ß-eläosterainic acid, gadoleic acid, erucic acid, brassidic acid.
  • the fatty acids with an odd number of carbon atoms can also be used, for example undecanoic acid, tridecanoic acid, pentadecanoic acid, heptadecanoic acid, nonadecanoic acid, henicosanoic acid, tricosanoic acid, pentacosanoic acid, heptacosanoic acid.
  • fatty acids of the formula XIII in the reaction mixture for the preparation of the esterquats is preferred, so that preferred portioned fabric softener is a reaction product of trialkanolamines with a mixture of fatty acids of the formula XIII,
  • R1-CO- represents an aliphatic, linear or branched acyl radical having 6 to 22 carbon atoms and 0 and / or 1, 2 or 3 double bonds and dicarboxylic acids in a molar ratio of 1:10 to 10: 1, preferably 1: 5 to 5 : 1, if necessary alkoxylated and then quaternized in a manner known per se, in amounts of 2 to 60, preferably 3 to 35 and in particular 5 to 30% by weight in the compositions.
  • Suitable dicarboxylic acids which are suitable for producing the esterquats to be used in the agents according to the invention are, in particular, saturated or mono- or polyunsaturated ⁇ , ⁇ -dicarboxylic acids.
  • Dicarboxylic acids which follow the general formula XXIII are preferably used in the reaction mixture, so that portioned agents according to the invention are preferred which are a reaction product of trialkanolamines with a mixture of fatty acids and dicarboxylic acids of the formula XIV,
  • X represents an optionally hydroxyl-substituted alkylene group with 1 to 10 carbon atoms, in a molar ratio of 1:10 to 10: 1, preferably 1: 5 to 5: 1, which was optionally alkoxylated and then quaternized in a manner known per se, in quantities from 2 to 60, preferably 3 to 35 and in particular 5 to 30% by weight in the compositions.
  • agents are particularly preferred which are a reaction product of triethanolamine with a mixture of fatty acids and adipic acid in a molar ratio of 1: 5 to 5: 1, preferably 1: 3 to 3: 1, which is then carried out in a manner known per se was quaternized in amounts of 2 to 60, preferably 3 to 35 and in particular 5 to 30 wt .-% in the compositions
  • the agents according to the invention can also be provided with additional benefits.
  • color-transfer-inhibiting compositions agents with an “anti-gray formula”, agents with ironing relief, agents with special fragrance release, agents with improved soil release or prevention of Resoiling, antibacterial agents, UV protection agents, color refreshing agents, etc. can be formulated.
  • the agents according to the invention can contain synthetic anti-crease agents. These include, for example, synthetic products based on fatty acids, fatty acid esters. Fatty acid amides, alkyloiesters, alkylolamides or fatty alcohols, which are mostly reacted with ethylene oxide, or products based on lecithin or modified phosphoric acid esters.
  • the agents according to the invention can contain antimicrobial agents.
  • antimicrobial agents Depending on the antimicrobial spectrum and mechanism of action, a distinction is made between bacteriostatics and bactericides, fungistatics and fungicides, etc.
  • Important substances from these groups are, for example, benzalkonium chlorides, alkylarlylsulfonates, halogenophenols and phenol mercuric acetate, although these compounds can be dispensed with entirely in the inventive agents.
  • the agents can contain antioxidants.
  • This class of compounds includes, for example, substituted phenols, hydroquinones, pyrocatechols and aromatic amines as well as organic sulfides, polysulfides, dithiocarbamates, phosphites and phosphonates.
  • Antistatic agents increase the surface conductivity and thus enable the flow of charges that have formed to improve.
  • External antistatic agents are generally substances with at least one hydrophilic molecular ligand and give a more or less hygroscopic film on the surfaces. These mostly surface-active antistatic agents can be divided into nitrogen-containing (amines, amides, quaternary ammonium compounds), phosphorus-containing (phosphoric acid esters) and sulfur-containing (alkyl sulfonates, alkyl sulfates) antistatic agents.
  • Lauryl (or stearyl) dimethylbenzylammonium chlorides are suitable as antistatic agents. for textiles or as an additive to detergents, with an additional finishing effect.
  • silicone derivatives can be used in the agents according to the invention. These additionally improve the rinsing behavior of the agents according to the invention due to their foam-inhibiting properties.
  • Preferred silicone derivatives are, for example, polydialkyl or alkylarylsiloxanes in which the alkyl groups have one to five carbon atoms and are completely or partially fluorinated.
  • Preferred silicones are polydimethylsiloxanes, which can optionally be derivatized and are then amino-functional or quaternized or have Si-OH, Si-H and / or Si-Cl bonds.
  • the viscosities of the preferred silicones are in the range between 100 and 100,000 centistokes at 25 ° C., the silicones being used in amounts between 0.2 and 5% by weight, based on the total agent.
  • the agents according to the invention can also contain UV absorbers, which absorb onto the treated textiles and improve the light resistance of the fibers.
  • Compounds which have these desired properties are, for example, the compounds and derivatives of benzophenone which are active by radiationless deactivation and have substituents in the 2- and / or 4-position.
  • Substituted benzotriazoles, phenyl-substituted acrylates (cinnamic acid derivatives), optionally with cyano groups in the 2-position, salicylates, organic Ni complexes and natural substances such as umbelliferone and the body's own urocanoic acid are also suitable.
  • surfactants which in particular can influence the solubility of the water-soluble wall of the flexible, preferably elastic, hollow body or the compartmenting device, but can also control their wettability and the foam formation when dissolved, and also foam inhibitors, but also Bitter substances that can prevent children from accidentally swallowing such hollow bodies or parts of such hollow bodies.
  • Fragrances are added to the detergent, cleaning agent and / or care agent portions according to the invention in order to improve the overall aesthetic impression of the products and, in addition to the technical performance (fabric softener result), to the consumer to provide a sensorially typical and distinctive product.
  • Individual fragrance compounds can be used as perfume oils or fragrances, for example the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, pt-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenylglycinate, allylcyclohexyl benzylatepylpropionate, stally.
  • the ethers include, for example, benzyl ethyl ether.
  • the aldehydes include e.g. B. linear alkanals with 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lileal and bourgeonal.
  • the ketones include the ionones, ⁇ -isomethyl ionone and methyl cedryl ketone.
  • Alcohols include anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol.
  • the hydrocarbons mainly include terpenes such as limonene and pinene. Mixtures of different odoriferous substances are preferably used which are coordinated with one another in such a way that together they produce an appealing fragrance.
  • perfume oils can also contain natural fragrance mixtures, such as are obtainable from plant sources. Examples are pine, citrus, jasmine, patchouli, rose or ylang-ylang oil.
  • the fragrance content is usually in the range of up to 2% by weight of the total detergent, cleaning agent or care agent portion.
  • the fragrances can be incorporated directly into the wash-active, cleaning-active or care-active preparation (s); However, it can also be advantageous to apply the fragrances to carriers which increase the adhesion of the perfume to the laundry and ensure a long-lasting fragrance of textiles due to a slower fragrance release.
  • Cyclodextrins for example, have proven themselves as such carrier materials.
  • the cyclodextrin-perfume complexes can also be coated with other auxiliaries.
  • the agents according to the invention can be used as washing, cleaning, care, hair treatment, building materials, cosmetics, adhesives, antibacterial agents and / or disinfectants.
  • the agents according to the invention can contain anionic surfactants, cationic surfactants, amphoteric surfactants, builder substances, bleaching agents, bleach activators, bleach stabilizers, bleaching catalysts, enzymes, polymers, cobuilders, alkalizing agents, acidifying agents, anti-redeposition agents, silver preservatives, colorants, optical brighteners, UV stabilizers , Fabric softener, fragrances, dirt-repellent substances, anti-crease substances, antibacterial substances, color protection substances, discoloration inhibitors, vitamins, layered silicates, odor-complexing substances, rinse aids, foam inhibitors, foaming agents, preservatives and / or auxiliaries.
  • moldings containing moldings according to the invention can be used as detergents, cleaning agents, care products, hair treatment agents, hair colorants, pharmaceuticals, crop protection agents, foods, cosmetics, fertilizers, building materials, adhesives, bleaches, disinfectants and / or fragrances
  • Shaped bodies can generally be produced by mixing at least one thermoplastic, water-soluble polymer, at least one ionic salt which does not complex the polymer and at least one compound containing at least two anionic groups and in a further step shaping the shaped body from the mixture, preferably Balls, capsules, foils, particles, agglomerates and / or powders are formed, in particular by means of extrusion and / or under the action of heat.
  • the production of spherical / drop-shaped shaped bodies comprises the steps:
  • thermoplastic, water-soluble polymer, at least one ionic salt not complexing the polymer and at least one compound containing at least two anionic groups diluting the mixture with water
  • Films can be produced by mixing at least one thermoplastic, water-soluble polymer, at least one ionic salt which does not complex the polymer and at least one compound containing at least two anionic groups and producing a film by casting.
  • the film can be Manufacture moldings with any external contours, such as stars and the like.
  • the moldings can not only be used in liquid formulations or compositions, but the moldings, for example extruded particles, can also be added to powders and thus lead to a controlled or delayed release of ingredients in such compositions.
  • Table I below generally gives the concentrations of the materials forming the matrix for the production of a shaped body according to the invention, and the drying temperature and the processing temperature in the extruder.
  • the agents can generally be produced by adding shaped articles according to the invention to the agent.
  • the moldings containing agents are essentially dimensionally stable in a 20% saturated, aqueous NaCl solution at 40 ° C. after ⁇ 10 days, preferably> 20 days, more preferably ⁇ 30 days.
  • the molded article (s) containing the agent are in particular in a universal detergent gel pH 8 and a viscosity of 400 mPas, containing 44% by weight of water, 25% by weight of nonionic surfactant, 7% by weight of anionic surfactant, 8% by weight of soap, 3 % By weight of NaOH, 1% by weight of citric acid, 1% by weight of boric acid, 9% by weight of glycerin and a total of 2% by weight of enzymes, perfume, defoamer and dye, the weight data being based on the total weight of the universal detergent without Molded body is essentially dimensionally stable at 40 ° C. after ⁇ 10 days, preferably ⁇ 20 days, more preferably ⁇ 30 days.
  • essentially dimensionally stable means that, with a test duration of 30 days and 40 ° C., a solid, spherical shaped body with a diameter of 2 mm (initial state) has a diameter of between 2 mm and 2.3 mm (final state) ,
  • the optionally slightly swollen spherical shaped body can be somewhat deformable.
  • the moldings containing the compositions of the present invention are particularly preferably concentrates which are diluted with water before use.
  • Shaped bodies containing aqueous agents are preferably present in a ⁇ 10% saturated, more preferably ⁇ 15% by weight, and most preferably ⁇ 20% solution saturated with salt, the salt preferably being an alkali and / or alkaline earth metal Salt is.
  • the mixture obtained according to Example 1 was dried to a thermoplastic material and this was then processed into a strand using an extruder. The strand was cut into pellets, these were rounded.
  • the red balls of 0.2-4 mm diameter obtained were added to the liquid detergent in a concentration of 0.3-10% by weight, based on the total weight of the liquid detergent without red balls. They are stable in storage there for months and are clearly visible. When diluted to the application concentration, they dissolve within 30 minutes at 20 ° C or 15 minutes at 40 ° C and release the included fragrance.
  • the mixture obtained according to Example 1 was diluted with 100 ml of water and then added dropwise to a collecting bath which consists of an aqueous solution of 0.5% NaOH and 20% Na 2 S0 4 .
  • the red spheres obtained were dried and then added to the liquid detergent in a concentration of 0.3-10% by weight, based on the total weight of the liquid detergent without red spheres. They are stable there for months. When diluted to the application concentration, they dissolve within 30 minutes at 20 ° C or 15 minutes at 40 ° C and release the included fragrance.
  • a film 2 mm thick was produced from the mixture obtained according to Example 1 by casting and asterisks were punched out therefrom.
  • the red asterisks obtained are given in a concentration of 0.3-10% by weight, based on the total weight of the liquid detergent without red asterisks. They are stable there for months. When diluted to the application concentration, they dissolve within 30 minutes at 20 ° C or 15 minutes at 40 ° C and release the included fragrance. Examples 5 and 6
  • the mixture obtained according to Example 7 was sprayed onto a granulate of soda, surfactants and granulation aids (MP-crude extrudate) located in a rotating steel barrel until a homogeneous, red-colored film had formed on the granulate. After drying the film, red-colored pellets of 0.2-4 mm in diameter were obtained, which were added in a concentration of 0.3-10% by weight, based on the total weight of the liquid detergent without red-colored pellets. The pellets are stable there for months and are clearly visible. When diluted to the application concentration, they dissolve within 10 minutes at 20 ° C or 5 minutes at 40 ° C and release the enclosed material.
  • the mixture obtained according to Example 9 was dried to a thermoplastic material and this was then processed into a strand using an extruder.
  • the Strand is cut into pellets, these are rounded.
  • the blue balls of 0.2-1 mm diameter obtained are placed in a concentration of 0.3 -5% by weight, based on the total weight of the hand dishwashing detergent without red balls, in a hand dishwashing detergent.
  • the red spheres are stable in storage for months and are clearly visible. When diluted to the application concentration, they dissolve within 8 minutes at 20 ° C or 3 minutes at 40 ° C and release the enclosed active substance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Paints Or Removers (AREA)

Abstract

Die vorliegende Erfindung betrifft Mittel enthaltende Formkörper mit erhöhter Lagerstabilität, dadurch gekennzeichnet, dass der Formkörper und/oder dessen äussere Formkörperhülle umfasst: - wenigstens ein thermoplastisches, wasserlösliches Polymer; - wenigstens ein ionisches das Polymer nicht komplexierendes Salz; - wenigstens eine mindestens zwei anionische Gruppen enthaltende Verbindung, wobei die wenigstens zwei anionische Gruppen aufweisende Verbindung das wasserlösliche Polymer reversibel komplexiert; und -gegebenenfalls wenigstens eine Trägersubstanz und/oder wenigstens ein Extrudierhilfsmittel.

Description

Mittel enthaltender Formkörper mit erhöhter Lagerstabilität
Die vorliegende Erfindung betrifft Mittel enthaltende Formkörper mit erhöhter Lagerstabilität, deren Verwendung, insbesondere als Wasch-, Reinigungs- und/oder Pflegemittel, sowie ein Verfahren zur Herstellung der Mittel enthaltenden Formkörper mit erhöhter Lagerstabilität.
Herkömmliche Wasch-, Reinigungs- und/oder Pflegemittel bestehen aus nur einer flüssigen Phase, deren Hauptanteil meist Wasser ist, worin die aktiven, fettlösenden und reinigungsaktiven Tenside und Hilfsstoffe, wie Enzyme in gelöster oder fein dispergierter Form vorliegen. Solche Waschmittel -, Reinigungsmittel - und/oder Pflegemittel - Formulierungen, insbesondere flüssige Mittel, haben den Nachteil, dass darin enthaltende mit der Formulierung unverträgliche, wirksame Bestandteile, wie Färb-, Duftstoffe, Pflegeöle, Vitamine, Enzyme, antibakterielle Wirkstoffe, Säuren, Basen und/oder Oxidationsmittel, die in solchen Formulierungen eingesetzt werden, häufig schon bei der Lagerung und/oder vor deren gewünschten Anwendungszeitpunktes ihre Aktivität, durch chemische Reaktionen und/oder physikalische Einflüsse, verlieren oder zumindest stark reduziert werden.
Insbesondere bei Tensid enthaltenden Wasch- und Reinigungsmitteln werden üblicherweise zusätzliche wasch- und reinigungsaktive Wirk- und Hilfsstoffe, in die Formulierung eingearbeitet. In Folge der chemischen Eigenschaften der Wirkstoffe ergeben sich in der Regel Formulierungsnachteile. Negative Wechselwirkungen, die auftreten können, sind insbesondere eine Destabilisierung von Emulsionen (z.B. BAC in Weichspülern), Zersetzung der Wirkstoffe bei längerer Lagerung (z.B. aminofunktionelle Silikonöle in sauren Reinigern), allgemeine Unverträglichkeit einzelner Inhaltsstoffe (z.B. Komplexbildung von QAVs mit Aniontensiden).
Es existieren bereits zahlreiche kommerzielle Verkapselungssysteme, die auf natürlichen oder künstlichen Polymeren basieren. Diese können einen Wirkstoff oder dessen Lösung umschließen und dann in der Hülle physikalisch oder chemisch vernetzt werden oder durch einen Koazervationsprozess mit einem anderen Polymer ausgefällt werden. Weiterhin existieren Verkapselungen durch Liposome, z.B. ,Nanotopes' von der Firma Ciba- Geigy oder schwammartige Partikel wie .Mikrosponges' von der Firma Advanced Polymer Systems. Beispielsweise werden mikroverkapselte Formkörper zur Stabilitätserhöhung von pharmazeutischen Wirkstoffen, zur Geschmacksbeeinflussung, zur gezielten organspezifischen Wirkstoffabgabe sowie zur Vermeidung von Unverträglichkeiten mit anderen Hilfs- und Wirkstoffen eingesetzt. Darüber hinaus finden Mikrokapseln in der Klebstofftechnologie Anwendung. Bekannt sind außerdem auch Duftstoffkapseln mit Gelatine als Wandmaterial, aus denen durch mechanische Zerstörung Parfümöle freigesetzt werden. Außer "echten" Mikrokapseln, die eine Hülle/Kern-Struktur besitzen, gibt es kugelförmige Trägerpartikel z.B. aus Alginat, Gelatine oder Polyvinylalkohol (PVAI), in die ein Wirkstoff, lebende Zellen oder Enzyme eingebettet werden können. Diese Kapseln können z.B. durch ein Vertropfungsverfahren hergestellt werden. Allgemein handelt es sich bei Mikrokapseln um Teilchen mit Durchmessern von < 1 mm. Neben dem Einschluss in Kapseln verschiedener Größe können Substanzen auch auf geeigneten Trägermaterialien adsorbiert oder chemisch modifiziert werden.
Im Stand der Technik wurden, wie oben beschrieben, zahlreiche Anstrengungen unternommen, solche Wirkbestandteile durch Verkapselung, Beschichtung oder dergleichen zu schützen.
Nachteilig ist, dass derartig geschützte Bestandteile in den Mitteln, schon während der Lagerung, insbesondere in flüssigen Waschmitteln, Reinigungsmitteln und/oder Pflegemitteln, an Aktivität verlieren, da die Materialien der Verkapselungen, Beschichtungen oder dergleichen in erhöhtem Umfang in Lösung gehen und dadurch ihre Schutzwirkung verlieren.
Außerdem tragen verstärkt Migrations- und Diffusionseffekte zur Stofffreisetzung, wie Schlierenbildung in Lösungen, und/oder zu Aktivitätsverlusten von Wirkstoffbestandteilen bei.
Ferner haben die im Stand der Technik bekannten Verkapselungen, Beschichtungen, Träger oder dergleichen den Nachteil, dass die auf diese Weise geschützten, adsorbierten oder chemisch modifizierten Bestandteile bereits während der Lagerung freigesetzt werden, und dass eine Freisetzung von Wirksubstanzen am Ort der spezifischen Anwendung nicht gesteuert werden kann.
Für viele Mittel ist es auch aus ästhetischen Gründen gewünscht, Bestandteile des Mittels separat in abgegrenzter Form dem Mittel zuzugeben, beispielsweise in Form von Kap- sein, Kugeln, Tropfen, als zweite Phase bzw. als weitere Phase und/oder dergleichen. Neben ästhetischen Effekten, werden durch solche räumlichen Abgrenzungen, wie oben aufgeführt, verbesserte Aktivitätsstabilitäten während der Lagerung und/oder bei Verdünnung angestrebt. Insbesondere bei Farbstoffen, die häufig Bestandteile von Schutzschichten, wie Umhüllungen, Beschichtungen und dergleichen sind, lässt sich bei solchen Mitteln des Standes der Technik, selbst in hochkonzentrierten Lösungen, bei Lagerung über einen verlängerten Zeitraum, d.h. Wochen oder Monate, eine Schlierenbildung - „sogenanntes Ausbluten" - um den Formkörper beobachten.
Neben den Farbstoffen, deren Schlierenbildung für den Anwender bereits mit bloßem Auge erkennbar ist, bereitet der ungewollte, vorzeitige Austritt von Duftstoffen große Probleme.
Die EP 0 782 853 A2 bzw. die entsprechende DE 195 19 804 A1 beschreiben bioaktive Kapseln mit veränderlicher Hülle, insbesondere zum Einsatz in lebendem Gewebe oder bei biotechnologischen Anwendungen, mit einem lebenden Zellen und/oder Enzyme enthaltenden Kern und einer Hülle, die aus mehreren, den Kern jeweils vollständig umschließenden Einzelschichten aufgebaut ist, die aus einem porösen Netzwerk miteinander verflochtener Makromoleküle bestehen, wobei mindestens eine der Schichten aus einem Material besteht, das als Funktion einer lonenkonzentration und/oder physikalischer Größen und/oder durch Reagenzien die Struktur verändert oder auflöst.
Die WO 99/02252 beschreibt ein Verfahren zur Herstellung hochfester Kapseln, die einen Kern aus einem polyanionischen Polysaccharid aufweisen, der mit einer polykationischen Polysaccharidmembran ummantelt ist. Die dort beschriebenen Kapseln finden insbesondere auf dem Gebiet der Pharmazie, aber auch auf dem Gebiet der Katalyse, der Biologie, der Pestizide und Herbizide, der Landwirtschaft, der Kosmetik und der Lebensmittelindustrie Anwendung.
Die US-A-4 352 883 beschreibt ein Verfahren zur Verkapselung von lebendem Gewebe, einzelnen Zellen, Hormonen, Enzymen oder Antikörpern in einer semipermeablen Membran, die gegenüber kleinen Molekülen durchlässig ist, aber gegenüber potentiell die Gesundheit gefährdenden großen Molekülen undurchlässig ist. Die semipermeable Membran wird dabei auf diskrete, ihre Form beibehaltenen temporäre Kapseln bzw. Geltröpfchen aufgebracht, wobei das Gel anschließend wieder verflüssigt wird. Die US-A-4 690 682 beschreibt ein Dosiersystem zur kontrollierten Freisetzung von Substanzen mit im wesentlich konstanter Abgabemenge. Es handelt sich hierbei um Kapseln mit semipermeabler Membran, die ein freizusetzendes Material in verkapselter Form enthalten. Über die Porengröße der Membranen soll die Freisetzungsgenetik gesteuert werden können.
Die WO 91/15196 beschreibt ein osmotisches Dosiersystem für pharmazeutische Wirkstoffe, welches aus einer äußeren semipermeablen Membran, einer osmotisch aktiven Mittelschicht und einer inneren Kapsel besteht, die eine flüssige Formulierung mit dem pharmazeutisch aktiven Wirkstoff umfaßt.
Die DE 197 12 978 A1 beschreibt Chitosanmikrosphären, die man dadurch erhält, dass man Chitosane und/oder Chitosanderivate mit Ölkörpem vermischt und die Mischung anschließend in alkalisch eingestellte Tensidlösungen einbringt, so dass mit Ölkörpem gefüllte Mikrokapseln entstehen. Auf diese Weise lassen sich lipophile Phasen verkapseln und können dann als Wirkstoffdepots in tensidhaltige Formulierungen eingearbeitet werden.
Die WO 00/46337 beschreibt eine flüssige Reinigungszusammensetzung, die mehr als 5 Gew.-% eines Tensids und mehr als 10 Gew.-% eines verkapselten Aktivstoffs sowie ein vernetztes anionisches Gummimaterial umfaßt. Der Aktivstoff ist insbesondere ein Duftstoff.
Die EP 0 280 155 B1 beschreibt die Mikroverkapselung von biologisch aktivem Material durch Erzeugung einer semipermeablen Membran, die aus einer biokompatiblen, nichttoxischen Polysäure und einer Polybase besteht, wobei die Polybase aus einem speziellen Polymer mit speziellen, definierten, wiederkehrenden Monomereinheiten gebildet wird.
Denkbas et a/., "Chitosan Microspheres and Sponges: Preparation and Characterization" in Journal of Applied Polymer Science, Band 76, Seiten 1637-1643 (2000) beschreiben Studien über die Bildung von Chitosanmikrokapseln und -netzwerken für verschiedene biomedizinische Anwendungen. Dabei werden in einem Suspensionsmedium, das Chitosan, Essigsäure, einen Emulgator und einen Vernetzer, nämlich Glutaraldehyd, enthält, Chitosanmikrokapseln und -netzwerke gebildet. Bartkowiak et a/., "Alginate-Oligochitosan Microcapsules: A Mechanistic Study Relating Membrane and Capsule Properties to Reaction Conditions" in Chem. Mater. 1999, 11, Seiten 2486-2492 untersuchen den Mechanismus der Herstellung von Mikrokapseln durch Polyelektrolytkomplexierungsreaktionen zwischen entgegengesetzt geladenen Po- lysacchariden, von denen eines ein Oligomer ist. Die lonenstärke und der pH-Wert der bei der Kapselbildung verwendeten Lösung beeinflussen die Struktur der Membran. Die Untersuchungen werden an einem Alginat-Oligochitosan-System durchgeführt.
Bergbreiter, "Selbstorganisierte, semipermeable Kapseln mit Durchmessern im Sub- Mikrometerbereich" in Angew. Chem. 1999, 111, Nr. 19, Seiten 3044-3046 beschreibt die Selbstorganisation von Ionen zur Ausbildung semipermeabler Kapseln für das Design neuer Materialien, die für Fragen der Katalyse, des Sensordesigns, der Biochemie und der Materialwissenschaften von Relevanz sein sollen.
Yamamoto et al., "Polyion complex fiber and capsule formed by self-assembly of chitosan and gellan at solution interfaces" in Macromol. Chem. Phys. 201, Nr. 1 , Seiten 84-92 beschreiben die Bildung polyionischer Komplexe (PIC) durch Reaktion eines Polyelektrolyten mit einem entgegengesetzt geladenen Polyelektrolyten in wässriger Lösung. Für einen sicheren Einschluß des verkapselten Materials empfehlen die Autoren eine nachfolgende Beschichtung der Mikrokapsel mit einem anderen Polymer.
Dautzenberg et al., "Polyelectrolyt complex formation at the interface of Solutions" in Progr. Colloid. Polym. Sei. (1996) 101: Seiten 149-156, Steinkopff-Verlag, untersuchen die Kinetik der Reaktion zwischen entgegengesetzt geladenen Polyelektrolyten an der Grenzfläche ihrer wässrigen Lösungen, wobei sich auf diese Weise Mikrokapselmembra- nen ausbilden, die aus den Reaktionskomponenten Natriumcellulosesulfat und Poly(dial- lyldimetylammoniumchlorid) gebildet werden. Die Autoren untersuchen die Kinetik der Membranbildung.
Kokufuta, "Polyelektrolyt-coated microcapsules and their potential applications to biotech- nology" in Bioseperation 7: Seiten 241-252 (1999) beschreiben polyelektrolytbeschichtete Mikrokapseln, die durch Adsorption von Polyionen auf Mikrokapseloberfiächen in wässrigen Lösung unter geeigneten pH-Werten und ionischen Bedingungen hergestellt werden können. Die Autoren untersuchen die pH-Wert-abhängige Steuerung der Permeabilität der Kapselwandungen in Abhängigkeit von Veränderungen der adsorbierten Polyionen- schicht.
Es besteht somit ein großer Bedarf daran, zusätzliche, mit der Formulierung unverträgliche, diffundierende, migrierende und/oder schlierenbildende Bestandteile in Mitteln, wie Waschmittel-, Reinigungsmittel- und/oder Pflegemittel-Formulierungen, lagerstabil zu machen. Außerdem besteht ein Bedarf daran, Mitteln, wie Waschmittel-, Reinigungsmittel- und/oder Pflegemittel-Formulierungen, zur Verfügung zu stellen, die ihre Wirkung zu einem bestimmten Zeitpunkt am Einsatzort, beispielsweise gegen Ende des Waschganges in einer Waschmaschine, entfalten.
Daher wird nach Verfahren oder Systemen zur Wirkstofffreisetzung bei der Anwendung von Waschmitteln und Reinigern gesucht, die einen Schaltmechanismus für die jeweiligen Schutzumhüllungen oder Verkapselungen bereitstellen, mit dessen Hilfe eine gezielte Freisetzung der inhaltsstoffe stattfinden kann.
Aufgabe der vorliegenden Erfindung ist es somit, die vorbeschriebenen Nachteile des Standes der Technik zu überwinden und Formkörper bereitzustellen, welche eine deutlich erhöhte Lagerstabilität, insbesondere in wässrigen flüssigen oder gelförmigen Phasen aufweisen und eine umfangreiche Anwendungsbreite ermöglichen. Solche Formkörper sollten insbesondere in Wasch- und Reinigungsmitteln, vorzugsweise Flüssigwasch- und -reinigungsmitteln, Weichspülem und Wäschenachbehandlungsmitteln, aber auch in anderen Produkten, wie Kosmetikprodukten und Produkten der Körperpflege, einsetzbar sein. Insbesondere sollen solche Formkörper in wasserhaltigen Mitteln am Verwendungsort, trotz der verbesserten Lagerstabilität, eine schnelle, leicht induzierbare Freisetzung der Inhaltsstoffe bei der Anwendung ermöglichen und nach der Anwendung rückstandslos auflösbar und/oder entfernbar sein.
Die Aufgabe der vorliegenden Erfindung wird gelöst, indem ein Mittel enthaltender Formkörper mit erhöhter Lagerstabilität zur Verfügung gestellt wird, wobei der Formkörper und/oder dessen äußere Formkörperhülie umfaßt: wenigstens ein thermoplastisches, wasserlösliches Polymer; wenigstens ein ionisches das Polymer nicht komplexierendes Salz; wenigstens eine mindestens zwei anionische Gruppen enthaltende Verbindung, wobei die wenigstens zwei anionische Gruppen aufweisende Verbindung das wasserlösliche Polymer reversibel komplexiert; und gegebenenfalls wenigstens eine Trägersubstanz und/oder wenigstens ein Extru- dierhilfsmittel.
Es wurde überraschend gefunden, das sich insbesondere Polyvinylalkohol (PVAI)-Kap- seln oder -Kugeln durch Mischen von PVAI, nichtvernetzenden Salzen und partiell vernetzenden Farbstoffen, die stabil in Wasch- und Reinigungsmitteln, vorzugsweise flüssigen Wasch- und Reinigungsmitteln, dispergierbar sind und sich bei Anwendung unter Wirkstoffabgabe auflösen. Derartige Kapseln oder Kugeln öffnen sich selbsttätig bei Verdünnung, d.h. ohne Schereinwirkung, d.h. der Schaltmechanismus wird direkt bei Anwendung (Verdünnung) aktiviert. Die Farbstoffe diffundieren nicht aus den Kapseln oder Kugeln und gelangen nicht vorzeitig in das Mittel oder an den Anwendungsort.
Eine weitere Aufgabe der vorliegenden Erfindung betrifft die Herstellung von PVAI-Um- hüllungen durch Mischen von PVAI, nichtvernetzenden Salzen und vernetzenden Farbstoffen, die granuläre Pulvergemische umschließen und stabil in (flüssigen) Wasch- und Reinigungsmitteln dispergieren und sich bei Anwendung unter Wirkstoffabgabe auflösen.
Formkörper im Sinne dieser Erfindung weisen vorzugsweise eine festförmige äußere schichtförmige Umhüllung auf und einen Formkörperkern, wobei der Formkörperkern fest, flüssig oder gelförmig sein kann. Der Formkörperkern kann teilweise oder bevorzugt vollständig von wenigstens einer schichtförmigen Umhüllung ummantelt sein.
Der Formkörper, die Formkörperschicht(en) bzw. Umhüllungen und/oder der Formkörperkern können aktive Substanzen, wie wasch-, pflege- und/oder reinigungsaktive Substanzen, aufweisen.
Der Formkörper kann zwiebelartig ausgebildet sein, d.h. er umfaßt mindestens zwei schichtförmige Umhüllungen, von denen wenigstens eine, vorzugsweise mindestens zwei schichtförmige Umhüllungen, eine vollständige den Formkörper ummantelnde Umhüllung ausbilden. Zwischen den schichtförmigen Umhüllungen können aktive Substanzen, wie wasch-, pflege- und/oder reinigungsaktive Substanzen, angeordnet sein. Der Formkörper kann aber auch ein-, zwei- oder mehrstückig ausgebildet sein.
Der oder die Formkörper liegen bevorzugt als feste Phase(n) in einem Mehrphasensystem mit mindestens einer weiteren festen, flüssigen und/oder gelförmigen Phase, vorzugsweise mit hohem Elektrolytgehalt, vor.
Das Formkörper enthaltende Mittel, bevorzugt wenigstens eine Phase des Mittels, besonders bevorzugt die Phase in der Formkörper enthalten ist, kann einen Wassergehalt > 0 bis ≤ 88 Gew.-%, vorzugsweise ≤ 50 Gew.-%, weiter bevorzugt ≤ 20 Gew.-% und noch bevorzugter ≤ 12 Gew.-%, aufweisen.
Eine bevorzugte Ausführungsform des erfindungsgemäßen Formkörpers betrifft einen im wesentlichen homogenen, festen oder gelförmigen Formkörper, der beispielsweise aus einer Mischung aller Bestandteile des Formkörpers geformt wird, vorzugsweise wird dieser Formkörper in einem Schritt geformt. Ein solcher Formkörper kann extrudiert, gegossen, gepresst, geschäumt, getropft und/oder geblasen werden.
Formkörper im Sinne dieser Erfindung können aber auch Partikel, Agglomerate, Pulver, Tropfen und/oder dergleichen sein. Beispielsweise kann ein erfindungsgemäßer Formkörper aus mehreren Mikropartikelformkörpern gebildet sein.
Wichtig ist, das der oder die aktiven Substanzen, deren Lagerstabilität verbessert werden soll und/oder dessen vorzeitige Freisetzung verhindert werden soll, umgeben sind von wenigstens einem thermoplastischen, wasserlöslichen Polymer; wenigstens einem ionischen das Polymer nicht komplexierenden Salzes; wenigstens einer mindestens zwei anionische Gruppen enthaltenden Verbindung, wobei die wenigstens zwei anionische Gruppen aufweisende Verbindung das wasserlösliche Polymer reversibel komplexiert; und optional von wenigstens einer Trägersubstanz und/oder wenigstens einem Extrudierhilfs- mittel.
Am meisten bevorzugt ist, wenn die aktive Substanz(en), deren Lagerstabilität verbessert werden soll und/oder dessen vorzeitige Freisetzung verhindert werden soll, die mindestens zwei anionische Gruppen enthaltenden Verbindung ist, die das wasserlösliche Polymer reversibel komplexiert. Alternativ können aktive Substanzen(en), deren Lagerstabilität verbessert werden soll und/oder dessen vorzeitige Freisetzung verhindert werden soll, die üblicherweise keine wenigstens zwei anionische Gruppen aufweisen, durch dem Fachmann allgemein bekannte chemische Verfahren entsprechend derivatisiert werden.
Ohne auf eine bestimmte Theorie festgelegt zu sein, wird angenommen, dass eine Matrix gebildet wird, aus: wenigstens einem thermoplastischen, wasserlösliches Polymer; wenigstens einem ionischen das Polymer nicht komplexierenden Salzes; wenigstens einer mindestens zwei anionische Gruppen enthaltenden Verbindung, wobei die wenigstens zwei anionische Gruppen aufweisende Verbindung das wasserlösliche Polymer reversibel komplexiert; und gegebenenfalls wenigstens einer Trägersubstanz und/oder wenigstens einem Extrudierhilfsmittel.
Die so gebildete Matrix schützt die mindestens zwei anionische Gruppen enthaltende Verbindung, beispielsweise eine Aktivsubstanz, wie einen Farbstoff, und/oder von der Matrix umhüllte Aktivsubstanzen, beispielsweise vor Migrations-, Diffusions- und/oder Lösungseffekten die zu einer aktiv Substanzfreisetzung führen, so dass eine verbesserte Lagerstabilität erreicht und eine vorzeitige Aktivsubstanzfreisetzung im Mittel verhindert wird.
Die Komplexbildungskonstante des gebildeten reversiblen Komplexes kann einen Wert im Bereich von 10 - 1060, vorzugsweise 100 - 1030 und bevorzugt 103 - 1015, haben.
In dem Fall, bei dem die wenigstens zwei anionische Gruppen aufweisende Verbindung, die das wasserlösliche Polymer reversibel komplexiert, eine aktiv Substanz ist, wird die Lagerstabilität dadurch verbessert und/oder dessen vorzeitige Freisetzung im Mittel dadurch verzögert oder verhindert, indem die aktiv Substanz die vorgenannte Matrix als integraler Bestandteil mit ausbildet.
Erfindungsgemäß lassen sich Mittel, insbesondere Flüssigwaschmittel oder flüssige Reiniger, zur Verfügung stellen, in denen Formkörper als weitere separate, räumlich abgegrenzte Phase vorliegen. Der Formkörper besitzt bevorzugt eine feste Form, insbeson- dere eine kugel- oder kapselartige Form, die optisch sichtbar und unterscheidbar in der ersten Phase enthalten ist.
Der Mechanismus zur Freisetzung der Aktivsubstanzen aus dem Formkörper kann durch mehrere mögliche Parameter aktiviert werden: zeitlich gesteuertes Auflösen des Formkörpers und/oder der Formkörper- hülle(n) bei Verdünnung des Formkörper enthaltenden Mittels pH-Wert gesteuertes Auflösen des Formkörpers und/oder der Formkörper- hülle(n) bei Verdünnung des Formkörper enthaltenden Mittels Temperaturgesteuertes Auflösen des Formkörpers und/oder der Formkör- perhülle(n) bei Verdünnung des Formkörper enthaltenden Mittels Elektrolytstarkegesteuert.es Auflösen des Formkörpers und/oder der Form- körperhülle(n) bei Verdünnung des Formkörper enthaltenden Mittels.
Besonders bevorzugt ist ein zeitlich gesteuertes Auflösen des Formkörpers und/oder der Formkörperhülle(n) mittels Verdünnung, vorzugsweise mittels Verdünnung mit einem Überschuss Wasser, des Formkörper enthaltenden Mittels.
Insbesondere wurde gefunden, dass sich die Lagerstabilität von Farbstoff enthaltenden Formkörpern verbessern und/oder die vorzeitige Freisetzung des Farbstoffs im Mittel wesentlich vermindern bzw. verhindern lässt, wenn der Farbstoff mindestens zwei anionische Gruppen aufweist, die das wasserlösliche Polymer reversibel komplexieren, und zusätzlich wenigstens ein ionisches das Polymer nicht komplexierendes Salz zugegen ist.
Eine bevorzugte Ausführungsform der obigen Erfindung betrifft teilweise oder vollständig aus dem die Matrix bildenden Materialgemisch hergestellte Formkörper, wie Kapseln, Kugeln, Folien oder kleinteilige Partikel, die wenigstens ein thermoplastisches, wasserlösliches Polymer umfassen, das bei einem hohem Elektrolytgehalt, wie er in einer Flüssigwaschmittelformulierung (Konzentrat) vorliegt, unlöslich ist, jedoch bei niedriger lonen- stärke, d.h. nach Verdünnung mit Wasser (zum Zeitpunkt der Anwendung), wasserlöslich ist. Besonders bevorzugt sind Polymere, wie Polyvinylalkohol (PVAI) oder Polyvinylalko- hol-Copolymere.
Idealerweise können solche Formkörper bzw. das Matrix bildende Materialgemisch zusätzlich vernetzt sein, um die Stabilität weiter zu erhöhen, um so beispielsweise das Aus- bluten eines enthaltenden Farbstoffes zu verhindern. Prinzipiell kann dies durch Eindiffundieren oder den Zusatz von Boraten oder anderen mehrwertigen Salzen, wie sie in Flüssigwaschmitteln häufig enthalten sind, erreicht werden.
Erfindungsgemäß bevorzugt ist der Formkörper, Formkörperschicht, und/oder Formkörperumhüllung frei von Boraten und/oder anderen nicht reversibel komplexierenden Salzen.
Es hat sich überraschend gezeigt, dass man bei Verwendung einer mehrfach anionisch geladenen Verbindung als Matrix-Bestandteil, z.B. bi-ionischer Farbstoff, die reversibel vernetzende Eigenschaften besitzt eine ausreichend hohe Lagerstabilität erhält, so dass kein Borat notwendig ist.
Die Menge an reversibel vernetzendem Farbstoff wird in der Regel so gewählt, dass das thermoplastische, wasserlösliche Polymer nur partiell vernetzt wird und beim Verdünnen, beispielsweise mit einem Überschuss Wasser, in der Anwendung vollständig löslich wird.
Vorteilhaft ist vor allem, dass aufgrund der partiellen, reversiblen, physikalischen Vernetzung die mehrfach anionisch geladene Verbindung (d.h. wenigstens zwei anionische Gruppen), beispielsweise ein bi-ionischer Farbstoff selbst nicht aus dem Formkörper, beispielsweise Kugeln, ausdiffundiert, wodurch eine Bildung von „Kometen" oder Schlieren unterdrückt wird.
Eine weitere bevorzugte Ausführungsform der obigen Erfindung betrifft die Verwendung des Matrix-Materials als Formkörper-Umhüllung (Coating) von Granulaten, Pulvern, Kugeln, Kapseln, oder Partikeln, z.B. von extrudierten Waschmitteln. Ein solches Coating führt dazu, dass das gecoatete Material bei hohem Elektrolytgehalt, wie er in der Flüssigwaschmittelformulierung vorliegt, unlöslich, jedoch bei niedriger lonenstärke wasserlöslich wird. Auch hier kann ein bi-ionischer Farbstoff eingesetzt werden, um eine farbliche Abgrenzung des Formkörpers von der umgebenden, äußeren flüssigen Phase zu erzielen.
Die Formkörper, wie Kapseln oder Formkörper-Umhüllungen, können Stoffe enthalten, die einen Zusatzeffekt während der Waschanwendung erzielen. Zum Beispiel können die Kapseln Duftstoffe wie Parfümöle, ggf. aufgebracht auf ein Trägermaterial wie Zeoiith, enthalten. Dies führt zu einem verstärkten Duft der Wäsche nach dem Waschen. Alternative Inhaltsstoffe betreffen Weichspül-Tenside (Esterquat), Soil-repellent-Polymere, Sub- stanzen für Anti-Knitter-Effekte, antibakterielle Substanzen, Stoffe zum Farbschutz, Verfärbungsinhibitoren, Vitamine, Pflegestoffe, Schichtsilikate, wasch- und spülaktive, wasch- und spülunterstützende Substanzen und/oder geruchskomplexierende Substanzen.
Bevorzugte Inhaltstoffe bzw. Aktivsubstanzen (Die Begriffe Inhaltstoffe, aktive Substanz und Aktivsubstanz werden in der Beschreibung der Erfindung synonym verwendet), wie wasch-, pflege- und/oder reinigungsaktive Substanzen, sind ausgewählt aus der Gruppe umfassend anionische Tenside, kationische Tenside, amphotere Tenside, Buildersub- stanzen, Bleichmittel, Bleichaktivatoren, Bleichstabilisatoren, Bleichkatalysatoren, Enzyme, Polymere, Cobuilder, Alkalisierungsmittel, Acidifizierungsmittel, Antiredepositions- mittel, Silberschutzmittel, Färbemittel, optische Aufheller, UV-Schutzsubstanzen, Weich- spüler, Hilfsmittel, Duftstoffe, schmutzabweisende Stoffe, Anti-Knitter-Stoffe, antibakte- rielie Stoffe, Farbschutzstoffe, Verfärbungsinhibitoren, Vitamine, Schichtsilikate, geruchskomplexierende Substanzen und/oder Klarspüler.
Der Formkörper, das Matrix bildende Material des Formkörpers, die Formkörperschicht und/oder die Formkörperumhüllung kann thermoplastische Eigenschaften besitzen, so dass eine Verarbeitung mittels Extrusionsverfahren möglich ist. Es hat sich als besonders vorteilhaft herausgestellt, wenn die Matrix, der Formkörper, die Formkörperschicht und/oder Formkörperumhüllung wenigstens eine Trägersubstanz und/oder wenigstens ein Extrudierhilfsmittel, noch bevorzugter wenigstens eine inerte Trägersubstanz und/oder wenigstens ein Extrudierhilfsmittel, aufweist.
Besonders geeignete Extrudierhilfsmittel sind Talkum und/oder Stärke.
Eine besonders geeignete Trägersubstanz ist Zeolith.
Vorzugsweise ist die mindestens zwei anionische Gruppen aufweisende Verbindung ausgewählt ist aus der Gruppe umfassend Kongorot, Trypan Blau (Direct Blue 14), Chicagoblau (Direct Blue 1); Makroanionen, vorzugsweise Montmorillonit (Schichtsilikate), Meta- phosphate; und/oder Polyanionen, vorzugsweise Polystyrolsulfonat, Carboxymethylcellu- lose und/oder Poiyacrylate.
Die anionischen Gruppen können ausgewählt sein aus der Gruppe umfassend O2", RBO2 2-, RCOO", RCONR-, OH", NO3 ", NO2 ', NO, CO, S2', RS", PO3 2", PO3OR3-, H2O, CO3 2-, HCO3-, ROH, NRR'R", RCN, CI", Bf, OCN", SCN", CN', N3", F, I", RO\ CIO4 ', SO4 2", HSO4 ", SO3 2" und/oder RSO3 ", und besonders bevorzugt O2", RBO 2", RCOO", OH", NO3 ", NOf, NO, CO, CN", S2-, RS", PO4 3", H2O, CO3 2-, HCO3", ROH, NRR'R", RON, CI", Bf, OCN", SCN", N3", F, I", RO", CIO4 ", SO4 2", HSO4 ", SO3 2", RSO3 _ und/oder CF3SO3", und noch bevorzugter SO3N er, OH", SO4 2", PO3 2-, PO4 3', COO", NO3 ", CO3 2-, CHaCOO", C2O4 2-, Ci- trate und/oder Acetate, wobei R,R',R" gleich oder unterschiedlich voneinander sind, ausgewählt aus der Gruppe umfassend Alkyl, Alkenyl, Alkoxy, Alkylen, Cycloalkyl, Aryl, Ary- len oder Heteroaryl.
Alkyl = lineares und/oder verzweigtes C1-C6-Alkyl;
Alkenyl = C3-C6-Alkenyl;
Cycloalkyl: C6-C8-Cycloalkyl;
Alkoxy = C1-C4-Alkoxy;
Alkylen = ausgewählt ist aus der Gruppe umfassend: Methylen; 1 ,2-Ethylen; 1,3-Propylen; Butan-2-ol-1 ,4-diyl; 1 ,4-Butylen; CycIohexan-1,1-diyl; Cyclohexan-1 ,2-diyl; Cyclohexan- 1 ,4-diyl; Cyclopentane-1,1-diyl; und/oder Cyclopentan-1 ,2-diyl;
Aryl = ausgewählt ist aus der Gruppe umfassend: Phenyl; Biphenyl; Naphthalenyl; An- thracenyl; und/oder Phenanthrenyl;
Arylen = ausgewählt ist aus der Gruppe umfassend: 1,2-PhenyIen; 1,3-Phenylen; 1,4-Phe- nylen; 1 ,2-NaphtaIenyIen; 1 ,4-NaphtalenyIen; 2,3-Naphtalenylen und/oder 1-Hydroxy-2,6- phenylen;
Heteroaryl = ausgewählt ist aus der Gruppe umfassend: Pyridinyl; Pyrimidinyl; Quinolinyl; Pyrazolyl; Triazolyl; Isoquinolinyl; Imidazolyl; und/oder Oxazolidinyl, worin das Heteroaryl mit der Verbindung über ein Ringatom des gewählten Heteroaryl verknüpft ist.
Der Gewichtsgehalt der anionischen Gruppen enthaltenden Verbindung, bezogen auf den Gesamtgewichtsgehalt des Formkörpers, kann von zwischen 0,001 - 10 Gew.-%, vorzugsweise 0,01 - 5 Gew.-% und bevorzugt 0,05 - 2 Gew.-% ausmachen.
Das nicht komplexierende Salz ist vorzugsweise ausgewählt aus der Gruppe umfassend Alkali- und/oder Erdalkali-Salze, vorzugsweise Alkali- und/oder Erdalkali-metallhaloge- nide, weiter bevorzugt Alkali- und/oder Erdalkali-sulfate, -nitrate, -phosphate, -carboxylate, -citrate, -hydroxide, -borate, -actetate, -phosphate, -Silikate, -oxalate, -formiate, -percar- bonate, und/oder -perborate.
Der Gewichtsgehalt des nicht komplexierenden Salzes, bezogen auf den Gesamtgewichtsgehalt des Formkörpers, kann von zwischen 1 - 50 Gew.-%, vorzugsweise 1 - 30 Gew.-% und bevorzugt 2 - 20 Gew.-% ausmachen.
Der wasserlösliche Polymer ist vorzugsweise ausgewählt aus der Gruppe umfassend Po- lyvinylalkohol (PVA), acetalisierter Polyvinylalkohol, Polyvinylpyrrolidon, Polyethylenoxid, Gelatine, Cellulose, Stärke und Derivate der vorgenannten Stoffe, und/oder Mischungen der vorgenannten Polymere, wobei Polyvinylalkohol besonders bevorzugt ist.
Der Gewichtsgehalt des wasserlöslichen Polymers, bezogen auf den Gesamtgewichtsgehalt des Formkörpers kann von zwischen 10 - 95 Gew.-%, vorzugsweise 20 - 75 Gew.-% und bevorzugt 30 - 60 Gew.-% ausmachen.
Dem wasserlöslichen Polymer können zusätzlich Polymere, ausgewählt aus der Gruppe umfassend Acrylsäure-haltige Polymere, Polyacrylamide, Oxazolin-Polymere, Polystyrol- sulfonate, Polyurethane, Polyester, Polyether und/oder Mischungen der vorstehenden Polymere, zugesetzt werden.
Der wasserlösliche Polymer kann insbesondere einen Polyvinylalkohol umfassen, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% ausmacht.
Der wasserlösliche Polymer kann bevorzugt einen Polyvinylalkohol umfassen, dessen Molekulargewicht im Bereich von 10.000 bis 100.000 gmol"1, vorzugsweise von 11.000 bis 90.000 gmol"1, besonders bevorzugt von 12.000 bis 80.000 gmol-1 und insbesondere von 13.000 bis 70.000 gmol-1 liegt.
Der Formkörper und/oder die äußere Hülle des Formkörpers kann wasserlösliches Polymer in Mengen von ≥ 50 Gew.-%, vorzugsweise von ≥ 70 Gew.-%, besonders bevorzugt von ≥ 80 Gew.-% und insbesondere von ≥ 90 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Formkörpers und/oder der äußeren Hülle, enthalten.
Außerdem kann der wasserlösliche Polymer Weichmacher in Mengen von mindestens > 1 Gew.-%, vorzugsweise von ≥ 10 Gew.-%, besonders bevorzugt von ≥ 20 Gew.-% und insbesondere von ≥ 30 Gew.-%, jeweils bezogen auf das Gesamtgewicht des wasserlöslichen Polymers des Formkörpers, enthalten.
Das Formkörper enthaltende Mittel kann insbesondere ein Waschmittel, Reinigungsmittel, Pflegemittel, Haarbehandlungsmittel, Haarfärbemittel, Arzneimittel, Pflanzenschutzmittel, Lebensmittel, Kosmetika, Agrochemikalien, Düngemittel, Baustoffe, Klebstoffe, Bleichmittel, Desinfektionsmittel und/oder Beduftungsmittel sein.
Die Mittel enthaltenden Formkörper können einen unterschiedlichen Gehalt und/oder eine unterschiedlichen Zusammensetzung an wasch-, pflege- und/oder reinigungsaktiven Substanzen, aufweisen.
Die reversibel komplexiertes, wasserlösliches Polymer aufweisende äußere Formkörperhülle kann eine Wandstärke von zwischen 0,01 - 5 mm, vorzugsweise von zwischen 0,06 - 2 mm, bevorzugt von zwischen 0,07 - 1,5 mm, weiter bevorzugt von zwischen 0,08 - 1,2 mm, noch bevorzugter von zwischen 0,09 - 1 mm und am meisten bevorzugt, von zwischen 0,1 - 0,6 mm, aufweisen.
Das in dem Formkörper enthaltende Mittel, insbesondere Wasch- und/oder Reinigungsmittel, kann in die wässrige Anwendungsflotte (Uberschuss Wasser) innerhalb von ≤ 5 min, vorzugsweise innerhalb von < 3 min, bevorzugt innerhalb von ≤ 1 min, überwiegend oder vollständig freigesetzt werden.
Die Begriffe "überwiegend" und "im wesentlichen" beziehen sich im Sinne dieser Erfindung auf eine quantitative Angabe von > 50 %.
Der oder die Formkörper können in einem flüssigen Medium des Mittels, das vor Gebrauch mit Wasser verdünnt wird, vorliegen, wobei das flüssige Medium vorzugsweise eine Lösung mit einem Wasseranteil von zwischen 0 - 88 Gew.-%, bezogen auf das Gesamtgewicht des flüssigen Mediums, oder ein Gel ist.
Das flüssige Medium kann eine Viskosität von zwischen 10 - 100000 mPas (bei 100 s"1), vorzugsweise von zwischen zwischen 100 - 50000 mPas (bei 100 s"1) und besonders bevorzugt von zwischen zwischen 200 - 20000 mPas (bei 100 s"1) aufweisen.
Die erfindungsgemäßen Mittel, die insbesondere als pulverförmige Feststoffe, in nachverdichteter Teilchenform, als homogene Lösungen oder Suspensionen vorliegen können, können im Prinzip alle bekannten und in derartigen Mitteln üblichen Aktivsubstanzen, nachfolgend auch als Inhaltsstoffe bezeichnet, enthalten. Die erfindungsgemäßen Mittel können anionische Tenside, kationische Tenside, amphotere Tenside, Buildersubstanzen, Bleichmittel, Bleichaktivatoren, Bleichstabilisatoren, Bleichkatalysatoren, Enzyme, Polymere, Cobuilder, Alkalisierungsmittel, Acidifizierungsmittel, Antiredepositionsmittel, Silberschutzmittel, Färbemittel, optische Aufheller, UV-Schutzsubstanzen, Weichspüler, Duftstoffe, schmutzabweisende Stoffe, Anti-Knitter-Stoffe, antibakterielle Stoffe, Farbschutzstoffe, Verfärbungsinhibitoren, Vitamine, Schichtsilikate, geruchskomplexierende Substanzen, Klarspüler, Schauminhibitoren, Schäumungsmittel, Konservierungsmittel und/oder Hilfsmittel aufweisen.
Bevorzugt weisen die erfindungsgemäßen Mittel insbesondere Buildersubstanzen, oberflächenaktive Tenside, organische und/oder anorganische Persauerstoffverbindungen, wassermischbare organische Lösungsmittel, Enzyme, Sequestrierungmittel, Elektrolyte, pH-Regulatoren und weitere Hilfsstoffe, wie optische Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren, Schaumregulatoren, zusätzliche Persauerstoff-Aktivatoren, Färb- und Duftstoffe auf.
Ein erfindungsgemäßes Desinfektionsmittel kann zur Verstärkung der Desinfektionswirkung gegenüber speziellen Keimen zusätzlich zu den bisher genannten Inhaltsstoffen übliche antimikrobielle Wirkstoffe enthalten. Derartige antimikrobielle Zusatzstoffe sind in den erfindungsgemäßen Desinfektionsmitteln vorzugsweise nicht über 10 Gew.-%, besonders bevorzugt von 0,1 Gew.-% bis 5 Gew.-%, enthalten. In den erfindungsgemäßen Mittel(en) verwendbare Tensid(e), umfassen anionische, nichtionische, kationische und/oder amphotere Tenside. Bevorzugt sind aus anwendungstechnischer Sicht bei Textilwaschmitteln Mischungen aus anionischen und nichtionischen Ten- siden, wobei der Anteil der anionischen Tenside größer sein sollte als der Anteil an nichtionischen Tensiden. Der Gesamttensidgehalt des Mittels, beispielsweise bei Wasch-, Pflege- oder Reinigungsmittelzusammensetzung, liegt vorzugsweise unterhalb von 30 Gew.-%, bezogen auf das gesamte Mittel.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxy- lierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxo- alkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talg- fett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-ι -Alkohole mit 3 EO, 4 EO oder 7 EO, C9-n-Alkohol mit 7 EO, Cι3-ι5-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-ιβ-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12.18-Alkohol mit 7 EO. Die angegebenen Ethoxylie- rungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO. Auch nichtionische Tenside, die EO- und PO-Gruppen zusammen im Molekül enthalten, sind erfindungsgemäß einsetzbar. Hierbei können Blockcopolymere mit EO-PO-Blockeinheiten bzw. PO-EO-Blockeinheiten eingesetzt werden, aber auch EO-PO-EO-Copolymere bzw. PO-EO-PO-Copolymere. Selbstverständlich sind auch gemischt alkoxylierte Niotenside einsetzbar, in denen EO- und PO-Einheiten nicht blockweise sondern statistisch verteilt sind. Solche Produkte sind durch gleichzeitige Einwirkung von Ethylen- und Propylenoxid auf Fettalkohole erhältlich.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykose- einheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungs- grad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propo- xylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-di- methylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanol- amide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel I,
I
R-CO-N-[Z] I
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel II,
R1-O-R2
I
R-CO-N-[Z] II in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Aryl- rest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei Cι-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxy- alkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Der Gehalt bevorzugter für die Textilwäsche geeigneter erfindungsgemäßer portionierter Wasch-, Pflege- oder Reinigungsmittelzusammensetzungen an nichtionischen Tensiden beträgt 5 bis 20 Gew.-%, vorzugsweise 7 bis 15 Gew.-% und insbesondere 9 bis 14 Gew.- %, jeweils bezogen auf das gesamte Mittel.
In maschinellen Geschirrspülmitteln werden vorzugsweise schwachschäumende nichtionische Tenside eingesetzt. Mit besonderem Vorzug enthalten erfindungsgemäße maschinellen Geschirrspülmittel ein nichtionisches Tensid, das einen Schmelzpunkt oberhalb Raumtemperatur aufweist. Demzufolge sind bevorzugte Mittel dadurch gekennzeichnet, dass sie nichtionische(s) Tensid(e) mit einem Schmelzpunkt oberhalb von 20°C, vorzugsweise oberhalb von 25°C, besonders bevorzugt zwischen 25 und 60°C und insbesondere zwischen 26,6 und 43,3°C, enthalten.
Geeignete Niotenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden bei Raumtemperatur hochviskose Niotenside eingesetzt, so ist bevorzugt, dass diese eine Viskosität oberhalb von 20 Pas, vorzugsweise oberhalb von 35 Pas und insbesondere oberhalb 40 Pas aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt. Bevorzugt als bei Raumtemperatur feste einzusetzende Niotenside stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen (PO/EO/PO)-Tenside. Solche
(PO/EO/PO)-Niotenside zeichnen sich darüber hinaus durch gute Schaumkontrolle aus.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tensid mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C- Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervorgegangen ist.
Ein besonders bevorzugtes bei Raumtemperatur festes, einzusetzendes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohienstoffatomen (C16-2o-Alkohol), vorzugsweise einem C18-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten „narrow ränge ethoxylates" (siehe oben) besonders bevorzugt.
Demnach enthalten besonders bevorzugte erfindungsgemäße Mittel ethoxylierte(s) Niotensid^), das/die aus C6.2o-Monohydroxyalkanolen oder C6.20-Alkylphenolen oder C16-2o- Fettalkoholen und mehr als 12 Mol, vorzugsweise mehr als 15 Mol und insbesondere mehr als 20 Mol Ethylenoxid pro Mol Alkohol gewonnen wurde(n).
Das Niotensid besitzt vorzugsweise zusätzlich Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Mo- nohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensid- moleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus. Bevorzugte Klarspülmittel sind dadurch gekennzeichnet, dass sie ethoxylierte und propoxylierte Niotenside enthalten, bei denen die Propylenoxideinheiten im Molekül bis zu 25 Gew.-%, bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids ausmachen, enthalten. Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxy- propylen-Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copoiymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block-Copolymers von Polyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan.
Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind beispielsweise unter dem Namen Poly Tergent® SLF-18 von der Firma Olin Chemicals erhältlich.
Ein weiter bevorzugtes erfindungsgemäßes portioniertes Wasch-, Pflege- oder Reinigungsmittel enthält nichtionische Tenside der Formel
R1O[CH2CH(CH3)O]x[CH2CH2O]y[CH2CH(OH)R2],
in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 und y für einen Wert von mindestens 15 steht.
Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Poly(oxy- alkylierten) Niotenside der Formel
R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]iOR2
in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butyl- rest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≥ 2 ist, kann jedes R3 in der obenstehenden Formel unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder -CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
Wie vorstehend beschrieben, kann jedes R3 in der obenstehenden Formel unterschiedlich sein, falls x ≥ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylenoxid- (R3 = H) oder Propylenoxid- (R3 = CH3) Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)- Gruppen, kombiniert mit einer geringen Anzahl (PO)-Gruppen einschließt, oder umgekehrt.
Insbesondere bevorzugte endgruppenverschlossenen Poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so dass sich die vorstehende Formel zu
R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2
vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesonders von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt.
Faßt man die letztgenannten Aussagen zusammen, sind erfindungsgemäße portionierte Wasch-, Pflege- oder Reinigungsmittel bevorzugt, die endgruppenverschlossenen Poly- (oxyalkylierten) Niotenside der Formel
R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2
enthalten, in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Me- thyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen, wobei Tenside des Typs
R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2 in denen x für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18 steht, besonders bevorzugt sind.
In Verbindung mit den genannten Tensiden können auch anionische, kationische und/- oder amphotere Tenside eingesetzt werden, wobei diese wegen ihres Schaumverhaltens in maschinellen Geschirrspülmitteln nur untergeordnete Bedeutung besitzen und zumeist nur in Mengen unterhalb von 10 Gew.-%, meistens sogar unterhalb von 5 Gew.-%, beispielsweise von 0,01 bis 2,5 Gew.-%, jeweils bezogen auf das Mittel, eingesetzt werden. Die erfindungsgemäßen Mittel können somit als Tensidkomponente auch anionische, kationische und/oder amphotere Tenside enthalten.
Als kationische Aktivsubstanzen können die erfindungsgemäßen Mittel beispielsweise kationische Verbindungen der Formeln III, IV oder V enthalten:
R1
R1-N(+)-(CH2)n-T-R2 (III)
(CH2)n-T-R2
R1 R1-N(+)-(CH2)n-CH-CH2 (IV)
R1 T T
I I
R2 R2
R1 R3-N(+)-(CH2)n-T-R2 (V)
R4
worin jede Gruppe R1 unabhängig voneinander ausgewählt ist aus C1-6-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen; jede Gruppe R2 unabhängig voneinander ausgewählt ist aus C8-28-Alkyl- oder -Alkenylgruppen; R3 = R1 oder (CH2)n-T-R2; R4 = R1 oder R2 oder (CH2)n- T-R2; T = -CH2-, -O-CO- oder -CO-O- und n eine ganze Zahl von 0 bis 5 ist.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzol- sulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus Cι2-ι8-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von ö-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäuregly- cerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C1 -C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf pe- trochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15- Alkylsulfate sowie Cι4-C15-Alkylsulfate bevorzugt. Auch 2,3-AlkylsuIfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11 -Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt. Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobemsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte und ungesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, (hydrierten) Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern-, Olivenöl- oder Taigfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kaliumoder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Der Gehalt bevorzugter erfindungsgemäßer Textilwaschmittel an anionischen Tensiden beträgt 5 bis 25 Gew.-%, vorzugsweise 7 bis 22 Gew.-% und insbesondere 10 bis 20 Gew.-%, jeweils bezogen auf das gesamte Mittel.
Im Rahmen der vorliegenden Erfindung enthalten bevorzugte Mittel zusätzlich einen oder mehrere Stoffe aus der Gruppe der Gerüststoffe, Bleichmittel, Bleichaktivatoren, Enzyme, Elektrolyte, nichtwäßrigen Lösungsmittel, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Hydrotope, Schauminhibitoren, Silikonöle, Antiredepositionsmit- tel, optischen Aufheller, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungsinhibitoren, antimikrobiellen Wirkstoffe, Germizide, Fungizide, Antioxi- dantien, Korrosionsinhibitoren, Antistatika, Bügelhilfsmittel, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel sowie UV-Absorber. Als Gerüststoffe, die in den erfindungsgemäßen Mitteln enthalten sein können, sind insbesondere Phosphate, Silikate, Aluminiumsilikate (insbesondere Zeolithe), Carbonate, Salze organischer Di- und Polycarbonsäuren sowie Mischungen dieser Stoffe zu nennen.
Der Einsatz der allgemein bekannten Phosphate als Buildersubstanzen ist erfindungsgemäß möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtri- phosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel- Industrie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1 ,91 gern-3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gern-3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O ), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kalium- dihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gern-3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)χ] und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gern-3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gern-3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gern-3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphos- phat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Di- kaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1 ,62 gern-3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gern-3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaiiumphosphat), K3PO , ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gern-3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gern-3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1 ,836 gern-3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stö- chiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gern-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt. Durch Kondensation des NaH2PO bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrell- sches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet. Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stö- chiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natri- umkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaPO3)3 + 2 KOH -» Na3K2P3θ10 + H2O
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+ι H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ- Natriumdisilikate Na2Si2O5-yH2O bevorzugt,.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 :2 bis 1 :3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1 :2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Ver- dichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, dass die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Builder- eigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, dass die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, weisen ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern auf. Insbesondere bevorzugt sind verdichtete/kom- paktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel nNa2O (1-n)K2O AI2O3 (2 - 2,5)SiO2 (3,5 - 5,5) H2O
beschrieben werden kann. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, dass der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12-C14-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Weitere wichtige Gerüststoffe sind insbesondere die Carbonate, Citrate und Silikate. Bevorzugt werden Trinatriumcitrat und/oder Pentanatriumtripolyphosphat und/oder Natrium- carbonat und/oder Natriumbicarbonat und/oder Gluconate und/oder silikatische Builder aus der Klasse der Disilikate und/oder Metasilikate eingesetzt.
Als weitere Bestandteile können Alkaliträger zugegen sein. Als Alkaliträger gelten Alkali- metallhydroxide, Alkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkalimetallses- quicarbonate, Alkalisilikate, Alkalimetasilikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevorzugt die Alkalicarbonate, insbesondere Natrium- carbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden.
Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat.
Ebenfalls besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat.
Daneben können weitere Inhaltsstoffe zugegen sein, wobei erfindungsgemäße Wasch-, Pflege- oder Reinigungsmittel bevorzugt sind, die zusätzlich einen oder mehrere Stoffe aus der Gruppe der Acidifizierungsmittel, Chelatkomplexbildner oder der belagsinhibierenden Polymere enthalten.
Als Acidifizierungsmittel bieten sich sowohl anorganische Säuren als auch organische Säuren an, sofern diese mit den übrigen Inhaltsstoffen verträglich sind. Aus Gründen des Verbraucherschutzes und der Handhabungssicherheit sind insbesondere die festen Mono-, Oligo- und Polycarbonsäuren einsetzbar. Aus dieser Gruppe wiederum bevorzugt sind Citronensäure, Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Auch die Anhydride dieser Säuren können als Acidifizierungsmittel eingesetzt werden, wobei insbesondere Maleinsäureanhydrid und Bernsteinsäureanhydrid kommerziell verfügbar sind. Organische Sulfonsäuren wie Amido- sulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutar- säure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.-%).
Eine weitere mögliche Gruppe von Inhaltsstoffen stellen die Chelatkomplexbildner dar. Chelatkomplexbildner sind Stoffe, die mit Metallionen cyclische Verbindungen bilden, wobei ein einzelner Ligand mehr als eine Koordinationsstelle an einem Zentralatom besetzt, d.h. mind. „zweizähnig" ist. In diesem Falle werden also normalerweise gestreckte Verbindungen durch Komplexbildung über ein Ion zu Ringen geschlossen. Die Zahl der gebundenen Liganden hängt von der Koordinationszahl des zentralen Ions ab. Gebräuchliche und im Rahmen der vorliegenden Erfindung bevorzugte Chelatkomplex- bilder sind beispielsweise Polyoxycarbonsäuren, Polyamine, Ethylendiamintetraessig- säure (EDTA) und Nitrilotriessigsäure (NTA). Auch komplexbildende Polymere, also Polymere, die entweder in der Hauptkette selbst oder seitenständig zu dieser funktioneile Gruppen tragen, die als Liganden wirken können und mit geeigneten Metall-Atomen in der Regel unter Bildung von Chelat-Komplexen reagieren, sind erfindungsgemäß einsetzbar. Die Polymer-gebundenen Liganden der entstehenden Metall-Komplexe können dabei aus nur einem Makromolekül stammen oder aber zu verschiedenen Polymerketten gehören. Letzteres führt zur Vernetzung des Materials, sofern die komplexbildenden Polymere nicht bereits zuvor über kovalente Bindungen vernetzt waren.
Komplexierende Gruppen (Liganden) üblicher komplexbildender Polymere sind Iminodi- essigsäure-, Hydroxychinolin-, Thioharnstoff-, Guanidin-, Dithiocarbamat-, Hydroxam- säure-, Amidoxim-, Aminophosphorsäure-, (cycl.) Polyamino-, Mercapto-, 1 ,3-Dicarbonyl- und Kronenether-Reste mit z. T. sehr spezif. Aktivitäten gegenüber Ionen unterschiedlicher Metalle. Basispolymere vieler auch kommerziell bedeutender komplexbildender Polymere sind Polystyrol, Polyacrylate, Polyacrylnitrile, Polyvinylalkohole, Polyvinylpyridine und Polyethylenimine. Auch natürliche Polymere wie Cellulose, Stärke od. Chitin sind komplexbildende Polymere. Darüber hinaus können diese durch polymeranaloge Umwandlungen mit weiteren Ligand-Funktionalitäten versehen werden.
Besonders bevorzugt sind im Rahmen der vorliegenden Erfindung Mittel, insbesondere Wasch-, Pflege- und/oder Reinigungsmittel, die ein oder mehrere Chelatkomplexbildner aus den Gruppen der
(i) Polycarbonsäuren, bei denen die Summe der Carboxyl- und gegebenenfalls Hydroxylgruppen mindestens 5 beträgt, (ii) stickstoffhaltigen Mono- oder Polycarbonsäuren, (iii) geminalen Diphosphonsäuren, (iv) Aminophosphonsäuren, (v) Phosphonopolycarbonsäuren, (vi) Cyclodextrine
in Mengen oberhalb von 0,1 Gew.-%, vorzugsweise oberhalb von 0,5 Gew.-%, besonders bevorzugt oberhalb von 1 Gew.-% und insbesondere oberhalb von 2,5 Gew.-%, jeweils bezogen auf das Gewicht des Geschirrspülmittels, enthalten. Im Rahmen der vorliegenden Erfindung können alle Komplexbildner des Standes der Technik eingesetzt werden. Diese können unterschiedlichen chemischen Gruppen angehören. Vorzugsweise werden einzeln oder im Gemisch miteinander eingesetzt: a) Polycarbonsäuren, bei denen die Summe der Carboxyl- und gegebenenfalls Hydroxylgruppen mindestens 5 beträgt wie Gluconsäure, b) stickstoffhaltige Mono- oder Polycarbonsäuren wie Ethylendiamintetraessigsäure (EDTA), N-Hydroxyethylethylendiamintriessigsäure, Diethylentriaminpentaessig- säure, Hydroxyethyliminodiessigsäure, Nitridodiessigsäure-3-propionsäure, Isoserin- diessigsäure, N,N-Di-(ß-hydroxyethyl)-glycin, N-(1 ,2-Dicarboxy-2-hydroxyethyl)-gly- cin, N-(1 ,2-Dicarboxy-2-hydroxyethyl)-asparaginsäure oder Nitrilotriessigsäure (NTA), c) geminale Diphosphonsäuren wie 1-Hydroxyethan-1,1-diphosphonsäure (HEDP), deren höhere Homologe mit bis zu 8 Kohlenstoffatomen sowie Hydroxy- oder Amino- gruppen-haltige Derivate hiervon und 1-Aminoethan-1,1-diphosphonsäure, deren höhere Homologe mit bis zu 8 Kohlenstoffatomen sowie Hydroxy- oder Aminogrup- pen-haltige Derivate hiervon, d) Aminophosphonsäuren wie Ethylendiamintetra(methylenphosphonsäure), Diethylen- triaminpenta(methylenphosphonsäure) oder Nitrilotri(methylenphosphonsäure), e) Phosphonopolycarbonsäuren wie 2-Phosphonobutan-1 ,2,4-tricarbonsäure sowie f) Cyclodextrine.
Als Polycarbonsäuren a) werden im Rahmen dieser Patentanmeldung Carbonsäuren- auch Monocarbonsäuren- verstanden, bei denen die Summe aus Carboxyl- und den im Molekül enthaltenen Hydroxylgruppen mindestens 5 beträgt. Komplexbildner aus der Gruppe der stickstoffhaltigen Polycarbonsäuren, insbesondere EDTA, sind bevorzugt. Bei den erfindungsgemäß erforderlichen alkalischen pH-Werten der Behandlungslösungen liegen diese Komplexbilner zumindest teilweise als Anionen vor. Es ist unwesentlich, ob sie in Form der Säuren oder in Form von Salzen eingebracht werden. Im Falle des Einsatzes als Salze sind Alkali-, Ammonium- oder Alkylammoniumsalze, insbesondere Natriumsalze, bevorzugt.
Belagsinhibierende Polymere können ebenfalls in den erfindungsgemäßen Mitteln enthalten sein. Diese Stoffe, die chemisch verschieden aufgebaut sein könne, stammen beispielsweise aus den Gruppen der niedermolekularen Polyacrylate mit Molmassen zwischen 1000 und 20.000 Dalton, wobei Polymere mit Molmassen unter 15.000 Dalton bevorzugt sind.
Belagsinhibierende Polymere können auch Cobuildereigenschaften aufweisen. Als organische Cobuilder können in den erfindungsgemäßen maschinellen Geschirrspülmitteln insbesondere Polycarboxylate/Polycarbonsäuren, polymere Polycarboxylate, Asparagin- säure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phospho- nate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben. Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einsteilung eines niedrigeren und milderen pH-Wertes des Mittels, wie von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder bzw. Belagsinhibitor sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV- Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacryl- säure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt wer- den. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 500 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 1000 bis 10000 g/mol, und besonders bevorzugt von 1000 bis 4000 g/mol, aufweisen, bevorzugt sein.
Besonders bevorzugt werden in den erfindungsgemäßen Mitteln sowohl Polyacrylate als auch Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren sowie gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren eingesetzt. Die Sulfonsäuregruppen-haltigen Copolymere werden weiter unten ausführlich beschrieben.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
Die (co-) polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten. Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Poly- asparaginsäuren bzw. deren Salze und Derivate, die neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Di- aldehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialde- hyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Po- lysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglu- cosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendi- amindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuc- cinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glyce- rintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbon- säuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphos- phonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z.B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Zusätzlich zu den Stoffen aus den genannten Stoffklassen können die erfindungsgemäßen Mittel weitere übliche Inhaltsstoffe von Wasch-, Pflege- oder Reinigungsmitteln enthalten, wobei insbesondere Bleichmittel, Bleichaktivatoren, Enzyme, Silberschutzmittel, Färb- und Duftstoffe von Bedeutung sind. Diese Stoffe werden nachstehend beschrieben.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyro- phosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdode- candisäure.
Um beim Waschen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Wasch- und Reinigungsmittelformkörper eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Per- hydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C- Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perben- zoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N- Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoyl- gruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetra- acetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl-2,4-di- oxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylgly- koluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phe- nolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso- NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5- dihydrofuran.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren verwendet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit stickstoffhaltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Als Enzyme kommen insbesondere solche aus der Klassen der Hydrolasen wie der Pro- teasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Cellulasen bzw. andere Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen wie protein-, fett- oder stärkehaltigen Verfleckungen und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können darüber hinaus durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxireduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus und Humicola insolens gewonnene enzy- matische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere α-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und ß-Gluco- sidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich verschiedene Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.
Die Enzyme können an Trägerstoffe adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,12 bis etwa 2 Gew.-% betragen.
Enzyme werden nach dem Stand der Technik in erster Linie einer Reinigungsmittel-Zubereitung zugesetzt, insbesondere einem Geschirr-Pflegemittel zugesetzt, das für den Hauptspülgang bestimmt ist. Nachteil war dabei, dass das Wirkungsoptimum verwendeter Enzyme die Temperaturwahl beschränkte und auch Probleme bei der Stabilität der Enzyme im stark alkalischen Milieu auftraten. Mit den erfindungsgemäßen Wasch- oder Reinigungsmittel-Portionen ist es möglich, Enzyme in ein separates Kompartiment einzuführen und diese dann auch im Vorspülgang zu verwenden und damit den Vorspülgang zusätzlich zum Hauptspülgang für eine Enzymeinwirkung auf Verschmutzungen des Spülguts zu nutzen.
Erfindungsgemäß besonders bevorzugt ist es, der für den Vorspülgang vorgesehenen waschaktiven Zubereitung oder Teilportion einer Reinigungsmittel- und/oder Pflegemittel- Portion Enzyme zuzusetzen und eine derartige Zubereitung dann - weiter bevorzugt - mit einem bereits bei niedriger Temperatur wasserlöslichen Material eines flexiblen, vorzugsweise elastischen, Hohlkörpers zu umfassen, um beispielsweise die enzymhaltige Zubereitung vor einem Wirkungsverlust durch Umgebungsbedingungen zu schützen. Die Enzyme sind weiter bevorzugt für den Einsatz unter den Bedingungen des Vorpflegegangs, also beispielsweise in kaltem Wasser, optimiert.
Vorteilhaft können die erfindungsgemäßen Reinigungsmittel-Portionen dann sein, wenn die Enzymzubereitungen flüssig vorliegen, wie sie teilweise im Handel angeboten werden, weil dann eine schnelle Wirkung erwartet werden kann, die bereits im (relativ kurzen und in kaltem Wasser durchgeführten) Vorspülgang eintritt. Auch wenn - wie üblich - die Enzyme in fester Form eingesetzt werden und diese mit einer Hohlkörper-Umfassung aus einem wasserlöslichen Material versehen sind, das bereits in kaltem Wasser löslich ist, können die Enzyme bereits vor dem Hauptwaschgang bzw. Hauptreinigungsgang ihre Wirkung entfalten. Vorteil der Verwendung einer Umfassung aus wasserlöslichem Material, insbesondere aus kaltwasserlöslichem Material ist, dass das Enzym/die Enzyme in kaltem Wasser nach Auflösen der Umfassung schnell zur Wirkung kommt/kommen. Damit kann deren Wirkungszeit ausgedehnt werden, was dem Wasch- bzw. Spülergebnis zugute kommt.
Die erfindungsgemäßen Reinigungsmittel für das maschinelle Geschirrspülen können zum Schütze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei besonders Silberschutzmittel im Bereich des maschinellen Geschirrspülens eine besondere edeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z.B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglu- cin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Car- bonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
Als Elektrolyte aus der Gruppe der anorganischen Salze kann eine breite Anzahl der verschiedensten Salze eingesetzt werden. Bevorzugte Kationen sind die Alkali- und Erdalkalimetalle, bevorzugte Anionen sind die Halogenide und Sulfate. Aus herstellungstechnischer Sicht ist der Einsatz von NaCI oder MgCI2 in den erfϊndungsgemäßen Mitteln be- vorzugt. Der Anteil an Elektrolyten in den erfindungsgemäßen Mitteln beträgt üblicherweise 0,5 bis 5 Gew.-%.
Nichtwäßrige Lösungsmittel, die in den erfindungsgemäßen Mitteln eingesetzt werden können, stammen beispielsweise aus der Gruppe ein- oder mehrwertigen Alkohole, Alka- nolamine oder Glycolether, sofern sie im angegebenen Konzentrationsbereich mit Wasser mischbar sind. Vorzugsweise werden die Lösungsmittel ausgewählt aus Ethanol, n- oder i-Propanol, Butanolen, Glykol, Propan- oder Butandiol, Glycerin, Diglykol, Propyl- oder Bu- tyldiglykol, Hexylenglycol, Ethylenglykolmethylether, Ethylenglykolethylether, Ethylengly- kolpropylether, Ethylenglykolmono-n-butylether, Diethylenglykol-methylether, Diethylen- glykolethylether, Propylenglykolmethyl-, -ethyl- oder -propyl-ether, Dipropylenglykolmono- methyl-, oder -ethylether, Di-isopropylenglykolmonomethyl-, oder -ethylether, Methoxy-, Ethoxy- oder Butoxytriglykol, 1-Butoxyethoxy-2-propanol, 3-Methyl-3-methoxybutanol, Propylen-glykol-t-butylether sowie Mischungen dieser Lösungsmittel. Nichtwäßrige Lösungsmittel können in den erfindungsgemäßen Flüssigwaschmitteln in Mengen zwischen 0,5 und 10 Gew.-%, bevorzugt aber unter 5 Gew.-% und insbesondere unterhalb von 3 Gew.-% eingesetzt werden.
Um den pH-Wert der erfindungsgemäßen Mittel in den gewünschten Bereich zu bringen, kann der Einsatz von pH-Stellmitteln angezeigt sein. Einsetzbar sind hier sämtliche bekannten Säuren bzw. Laugen, sofern sich ihr Einsatz nicht aus anwendungstechnischen oder ökologischen Gründen bzw. aus Gründen des Verbraucherschutzes verbietet. Üblicherweise überschreitet die Menge dieser Stellmittel 5 Gew.-% der Gesamtformulierung nicht.
Um den ästhetischen Eindruck der erfindungsgemäßen Mittel zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasem, um diese nicht anzufärben.
Als Schauminhibitoren, die in den erfindungsgemäßen Mitteln eingesetzt werden können, kommen beispielsweise Seifen, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können. Geeignete Antiredepositionsmittel, die auch als soil repellents bezeichnet werden, sind beispielsweise nichtionische Cellulose- ether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxy- gruppen von 15 bis 30 Gew.-% und an Hydroxypropylgruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglycol- terephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Insbesondere bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und Terephthalsäure-Polymere.
Optische Aufheller (sogenannte „Weißtöner") können den erfindungsgemäßen Mitteln zugesetzt werden, um Vergrauungen und Vergilbungen der behandelten Textilien zu beseitigen. Diese Stoffe ziehen auf die Faser auf und bewirken eine Aufhellung und vorgetäuschte Bleichwirkung, indem sie unsichtbare Ultraviolettstrahlung in sichtbares längerwelliges Licht umwandeln, wobei das aus dem Sonnenlicht absorbierte ultraviolette Licht als schwach bläuliche Fluoreszenz abgestrahlt wird und mit dem Gelbton der vergrauten bzw. vergilbten Wäsche reines Weiß ergibt. Geeignete Verbindungen stammen beispielsweise aus den Substanzklassen der 4,4'-Diamino-2,2'-stilbendisulfonsäuren (Flavon- säuren), 4,4'-Distyryl-biphenylen, Methylumbelliferone, Cumarine, Dihydrochinolinone, 1 ,3-Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol- Systeme sowie der durch Heterocyclen substituierten Pyrenderivate. Die optischen Aufheller werden üblicherweise in Mengen zwischen 0,05 und 0,3 Gew.-%, bezogen auf das fertige Mittel, eingesetzt.
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Leim, Gelatine, Salze von Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether wie Carboxymethylcellulose (Na-Salz), Methyl- cellulose, Hydroxyalkylcellulose und Mischether wie Methylhydroxyethylcellulose, Methyl- hydroxypropylcellulose, Methylcarboxy-methylcellulose und deren Gemische in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt Werden die erfindungsgemäßen Mittel als Mittel für das maschinelle Geschirrspülen konfektioniert, so können weitere Inhaltsstoffe eingesetzt werden. An maschinell gespültes Geschirr werden heute häufig höhere Anforderungen gestellt als an manuell gespültes Geschirr. So wird auch ein von Speiseresten völlig gereinigtes Geschirr dann als nicht einwandfrei bewertet, wenn es nach dem maschinellen Geschirrspülen noch weißliche, auf Wasserhärte oder anderen mineralischen Salzen beruhende Flecken aufweist, die mangels Netzmittel aus eingetrockneten Wassertropfen stammen. Um glasklares und fleckenloses Geschirr zu erhalten, setzt man daher heute mit Erfolg Klarspüler ein. Der Zusatz von Klarspüler am Ende des Spülprogramms sorgt dafür, dass das Wasser möglichst vollständig vom Spülgut abläuft, so dass die unterschiedlichen Oberflächen am Ende des Spülprogramms rückstandsfrei und makellos glänzend sind. Das maschinelle Reinigen von Geschirr in Haushaltsgeschirrspülmaschinen umfaßt üblicherweise einen Vorspülgang, einen Hauptspülgang und einen Klarspülgang, die von Zwischenspülgängen unterbrochen werden. Bei den meisten Maschinen ist der Vorspülgang für stark verschmutztes Geschirr zuschaltbar, wird aber nur in Ausnahmefällen vom Verbraucher gewählt, so dass in den meisten Maschinen ein Hauptspülgang, ein Zwischenspülgang mit reinem Wasser und ein Klarspülgang durchgeführt werden. Die Temperatur des Hauptspülgangs variiert dabei je nach Maschinentyp und Programmstufenwahl zwischen 40 und 65°C. Im Klarspülgang werden aus einem Dosiertank in der Maschine Klarspülmittel zugegeben, die üblicherweise als Hauptsbestandteil nichtionische Tenside enthalten. Solche Klarspüler liegen in flüssiger Form vor und sind im Stand der Technik breit beschrieben. Ihre Aufgabe besteht vornehmlich darin, Kalkflecken und Beläge auf dem Geschirr zu verhindern.
Die erfindungsgemäßen Mittel können als „normale" Reiniger formuliert werden, welche zusammen mit handelsüblichen Ergänzungsmitteln (Klarspüler, Regeneriersalz) eingesetzt werden. Mit besonderem Vorteil kann aber mit den erfindungsgemäßen Produkten auf die zusätzliche Dosierung von Klarspülmitteln verzichtet werden. Diese sogenannten „2in1 "-Produkte führen zu einer Vereinfachung der Handhabung und nehmen dem Verbraucher die Last der zusätzlichen Dosierung zweier unterschiedlicher Produkte (Reiniger und Klarspüler) ab.
Selbst beim Einsatz von „2in1 "-Produkten sind zum Betrieb einer Haushaltsgeschirrspülmaschine in Zeitabständen zwei Dosiervorgänge erforderlich, da nach einer bestimmten Anzahl von Spülvorgängen das Regeneriersalz im Wasserenthärtungssystem der Maschine nachgefüllt werden muß. Diese Wasserenthärtungssysteme bestehen aus lonen- austauscherpolymeren, welche das der Maschine zulaufende Hartwasser enthärten und im Anschluß an das Spülprogramm durch eine Spülung mit Salzwasser regeneriert werden.
Es lassen sich aber auch erfindungsgemäße Produkte, welche als sogenannte „3in1 "-Produkte die herkömmlichen Reiniger, Klarspüler und eine Salzersatzfunktion in sich vereinen, bereitstellen.
Im Rahmen der vorliegenden Erfindung können dem erfindungsgemäßen Mittel auch ungesättigte Carbonsäuren der Formel VI als Monomer zugesetzt werden,
R1(R2)C=C(R3)COOH (VI),
in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
Unter den ungesättigten Carbonsäuren, die sich durch die Formel VI beschreiben lassen, sind insbesondere Acrylsäure (R1 = R2 = R3 = H), Methacrylsäure (R1 = R2 = H; R3 = CH3) und/oder Maleinsäure (R1 = COOH; R2 = R3 = H) bevorzugt.
Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel VII bevorzugt,
R5(R6)C=C(R7)-X-SO3H (VII),
in der R5 bis R7 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus ~(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-.
Unter diesen Monomeren bevorzugt sind solche der Formeln Vlla, Vllb und/oder Vllc, H2C=CH-X-SO3H (Vlla),
H2C=C(CH3)-X-SO3H (Vllb),
HO3S-X-(R6)C=C(R7)-X-SO3H (Vllc),
in denen R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH- C(CH3) - und -C(O)-NH-CH(CH2CH3)-.
Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1- propansulfonsäure (X = -C(O)NH-CH(CH2CH3) in Formel Vlla), 2-Acrylamido-2-propansul- fonsäure (X = -C(O)NH-C(CH3)2 in Formel Vlla), 2-Acrylamido-2-methyl-1-propansul- fonsäure (X = -C(O)NH-CH(CH3)CH2- in Formel Vlla), 2-Methacrylamido-2-methyl-1-pro- pansulfonsäure (X = -C(O)NH-CH(CH3)CH2- in Formel Vllb), 3-Methacrylamido-2-hy- droxy-propansulfonsäure (X = -C(O)NH-CH2CH(OH)CH2- in Formel Vllb), Allylsulfonsäure (X = CH2 in Formel Vlla), Methallylsulfonsäure (X = CH2 in Formel Vllb), Allyloxybenzol- sulfonsäure (X = -CH2-O-C6H - in Formel XVIIa), Methallyloxybenzolsulfonsäure (X = - CH2-O-C6H4- in Formel Vllb), 2-Hydroxy-3-(2-propenyloxy)propansulfonsäure, 2-Methyl-2- propenl-sulfonsäure (X = CH2 in Formel Vllb), Styrolsulfonsäure (X = C6H4 in Formel Vlla), Vinylsulfonsäure (X nicht vorhanden in Formel Vlla), 3-Sulfopropylacrylat (X = - C(O)NH-CH2CH2CH2- in Formel Vlla), 3-Sulfopropylmethacrylat (X = -C(O)NH- CH2CH2CH2- in Formel Vllb), Sulfomethacrylamid (X = -C(O)NH- in Formel Vllb), Sulfo- methylmethacrylamid (X = -C(O)NH-CH2- in Formel Vllb) sowie wasserlösliche Salze der genannten Säuren.
Als weitere ionische oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der erfindungsgemäß eingesetzten Polymere an Monomeren der Grupp iii) weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Gruppen i) und ii).
Zusammenfassend sind Copolymere aus i) ungesättigten Carbonsäuren der Formel VI.
R1(R2)C=C(R3)COOH (VI),
in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH , -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist,
ii) Sulfonsäuregruppen-haltigen Monomeren der Formel VII
R5(R6)C=C(R7)-X-SO3H (VII),
in der R5 bis R7 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH- CH(CH2CH3)-
iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
besonders bevorzugt.
Besonders bevorzugte Copolymere bestehen aus
i) einer oder mehrerer ungesättigter Carbonsäuren aus der Gruppe Acrylsäure, Methacrylsäure und/oder Maleinsäure ii) einem oder mehreren Sulfonsäuregruppen-haltigen Monomeren der Formeln Vlla, Vllb und/oder Vllc:
H2C=CH-X-SO3H (Vlla),
H2C=C(CH3)-X-SO3H (Vllb),
HO3S-X-(R6)C=C(R7)-X-SO3H (Vllc),
in der R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)- iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.
Die erfindungsgemäß in den Mitteln anthaltenen Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der Gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.
So sind beispielsweise erfindungsgemäße Mittel bevorzugt, die dadurch gekennzeichnet sind, dass sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel VIII
-[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- (VIII),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsub- stituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppen-haltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäure- gruppen-haltige Acrylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, dessen Einsatz in den erfindungsgemäßen Mitteln ebenfalls bevorzugt und dadurch gekennzeichnet ist, dass die Mittel ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel IX
-[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]p- (IX),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstitu- ierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind. Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppen-haltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. So sind erfindungsgemäße Mittel, die ein oder mehrere Copolymere enthalten, welche Struktureinheiten der Formel X
-[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p- (X),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubsti- tuierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind, ebenfalls eine bevorzugte Ausführungsform der vorliegenden Erfindung, genau wie auch Mittel bevorzugt sind, die dadurch gekennzeichnet sind, dass sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XI
-tCH2-C(CH3)COOH]m-[CH2-C(CH3)C(O)N-SO3H]p- (XI),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstitu- ierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu erfindungsgemäß bevorzugten Mitteln, die dadurch gekennzeichnet sind, dass sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XI
-[HOOCCH-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- (XI),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsub- stituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind und zu Mitteln, welche dadurch gekennzeichnet sind, dass sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XII -[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(O)O-Y-SO3H]p- (XII),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstitu- ierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Zusammenfassend sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, die als Inhaltsstoff b) ein oder mehrere Copolymere enthält, die Struktureinheiten der Formeln VII und/oder VIII und/oder IX und/oder X und/oder XI und/oder XII
-[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- (VII),
-[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]p- (VIII),
-[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p- (IX),
-[CH2-C(CH3)COOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p- (X),
-[HOOCCH-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- (XI),
-[HOOCCH-CHCOOH]m-rCH2-C(CH3)C(O)O-Y-SO3H]p- (XII),
enthalten, in denen m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubsti- tuierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
In den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. dass das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Entsprechende Mittel, die dadurch gekennzeichnet sind, dass die Sulfonsäuregruppen im Copolymer teil- oder vollneutralisiert vorliegen, sind erfindungsgemäß bevorzugt.
Die Monomerenverteilung der in den erfindungsgemäßen Mitteln eingesetzten Copolyme- ren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe i) und 10 bis 50 Gew.-% Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer. Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.
Die Molmasse der in den erfindungsgemäßen Mitteln eingesetzten Polymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte maschinelle Geschirrspülmittel sind dadurch gekennzeichnet, dass die Copolymere Molmassen von 2000 bis 200.000 gmol"1, vorzugsweise von 4000 bis 25.000 gmor1 und insbesondere von 5000 bis 15.000 gmol-1 aufweisen.
Der Gehalt an einem oder mehreren Copolymeren in den erfindungsgemäßen Mitteln kann je nach Anwendungszweck und gewünschter Produktleistung variieren, wobei bevorzugte erfindungsgemäße maschinelle Geschirrspülmittel dadurch gekennzeichnet sind, dass sie das bzw. die Copolymer(e) in Mengen von 0,25 bis 50 Gew.-%, vorzugsweise von 0,5 bis 35 Gew.-%, besonders bevorzugt von 0,75 bis 20 Gew.-% und insbesondere von 1 bis 15 Gew.-% enthalten.
Wie bereits weiter oben erwähnt, werden in den erfindungsgemäßen Mitteln besonders bevorzugt sowohl Polyacrylate als auch die vorstehend beschriebenen Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren sowie gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren eingesetzt. Die Polyacrylate wurden dabei weiter oben ausführlich beschrieben. Besonders bevorzugt sind Kombinationen aus den vorstehend beschriebenen Sulfonsäuregruppen-haltigen Copolymeren mit Polyacrylaten niedriger Molmasse, beispielsweise im Bereich zwischen 1000 und 4000 Dalton. Solche Polyacrylate sind kommerziell unter dem Handelsnamen Sokalan® PA15 bzw. Sokalan® PA25 (BASF) erhältlich.
Die erfindungsgemäßen Mittel können auch als Weichspüler oder Waschzusatzmittel konfektioniert werden. Je nach gewünschtem Verwendungszweck können weitere Inhaltsstoffe eingesetzt werden. Weichspülerzusammensetzungen für die Spülbadavivage sind im Stand der Technik breit beschrieben. Üblicherweise enthalten diese Zusammensetzungen als Aktivsubstanz eine kationische quartäre Ammoniumverbindung, die in Wasser dispergiert wird. Je nach Gehalt der fertigen Weichmacherzusammensetzung an Aktivsubstanz spricht man von verdünnten, anwendungsfertigen Produkten (Aktivsubstanzgehalte unter 7 Gew.-%) oder sogenannten Konzentraten (Aktivsubstanzgehalt über 7 Gew.-%). Wegen des geringeren Volumens und den damit gleichzeitig verringerten Ver- packungs- und Transportkosten besitzen die Textilweichmacherkonzentrate Vorteile aus ökologischer Sicht und haben sich im Markt mehr und mehr durchgesetzt. Aufgrund der Einarbeitung von kationischen Verbindungen, die nur eine geringe Wasserlöslichkeit aufweisen, liegen übliche Weichspülerzusammensetzungen in Form von Dispersionen vor, besitzen ein milchig-trübes Aussehen und sind nicht durchscheinend. Aus Gründen der Produktästhetik kann es aber auch gewünscht sein, dem Verbraucher durchscheinende, klare Weichspüler zur Verfügung zu stellen, die sich optisch von den bekannten Produkten abheben.
Als textilweichmachende Aktivsubstanz enthalten erfindungsgemäße portionierte Weichspüler vorzugsweise kationische Tenside, die bereits weiter oben ausführlich beschrieben wurden (Formeln XII, XIII und XIV). Besonders bevorzugt enthalten erfindungsgemäße „WeichPflege- Portionen" sogenannte Esterquats. Während es eine Vielzahl möglicher Verbindungen aus dieser Substanzklasse gibt, werden erfindungsgemäß mit besonderem Vorzug Esterquats eingesetzt, die sich durch Umsetzung von Trialkanolaminen mit einer Mischung aus Fettsäuren und Dicarbonsäuren, gegebenenfalls nachfolgende Alkoxylie- rung des Reaktionsproduktes und Quatemierung in an sich bekannter Weise herstellen lassen, wie es in der DE 195 39 846 beschrieben ist.
Die auf diese Weise hergestellten Esterquats eignen sich in hervorragender Weise zur Herstellung erfindungsgemäßer Portionen, die als Weichspüler eingesetzt werden können. Da je nach Wahl des Trialkanolamins, der Fettsäuren und der Dicarbonsäuren sowie des Quaternierungsmittels eine Vielzahl geeigneter Produkte hergestellt und in den erfindungsgemäßen Mitteln eingesetzt werden kann, ist eine Beschreibung der erfindungsgemäß vorzugsweise einzusetzenden Esterquats über ihren Hersteliungsweg präziser als die Angabe einer allgemeinen Formel.
Die genannten Komponenten, die miteinander zu den vorzugsweise einzusetzenden Esterquats reagieren, können in variierenden Mengenverhältnissen zueinander eingesetzt werden. Im Rahmen der vorliegenden Erfindung sind portionierte Weichspüler bevorzugt, in denen ein Umsetzungsprodukt von Trialkanolaminen mit einer Mischung aus Fettsäuren und Dicarbonsäuren im molaren Verhältnis 1:10 bis 10:1, vorzugsweise 1:5 bis 5:1, das gegebenenfalls alkoxyliert und anschließend in an sich bekannter Weise quaterniert wurde, in Mengen von 2 bis 60, vorzugsweise 3 bis 35 und insbesondere 5 bis 30 Gew.-% enthalten ist. Besonders bevorzugt ist dabei die Verwendung von Triethanolamin, so dass weitere bevorzugte portionierte Weichspüler der vorliegenden Erfindung ein Umsetzungs- produkt von Triethanolamin mit einer Mischung aus Fettsäuren und Dicarbonsäuren im molaren Verhältnis 1:10 bis 10:1, vorzugsweise 1:5 bis 5:1, das gegebenenfalls alkoxyliert und anschließend in an sich bekannter Weise quaterniert wurde, in Mengen von 2 bis 60, vorzugsweise 3 bis 35 und insbesondere 5 bis 30 Gew.-% enthalten.
Als Fettsäuren können im Reaktionsgemisch zur Herstellung der Esterquats sämtliche aus pflanzlichen oder tierischen Ölen und Fetten gewonnenen Säuren verwendet werden. Dabei kann im Rekationsgemisch als Fettsäure durchaus auch eine bei Raumtemperatur nicht-feste, d.h. pastöse bis flüssige, Fettsäure eingesetzt werden.
Die Fettsäuren können unabhängig von ihrem Aggregatzustand gesättigt oder ein- bis mehrfach ungesättigt sein. Selbstverständlich können nicht nur „reine" Fettsäuren eingesetzt werden, sondern auch die bei der Spaltung aus Fetten und Ölen gewonnenen technischen Fettsäuregemische, wobei diese Gemische aus ökonomischer Sicht wiederum deutlich bevorzugt sind.
So lassen sich in den Reaktionsmischungen zur Herstellung der Esterquats für die erfindungsgemäßen klaren wäßrigen Weichspüler beispielsweise einzelne Spezies oder Gemische folgender Säuren einsetzen: Caprylsäure, Pelargonsäure, Caprinsäure, Laurin- säure, Myristinsäure, Palmitinsäure, Stearinsäure, Octadecan-12-ol-säure, Arachinsäure, Behensäure, Lignocerinsäure, Cerotinsäure, Melissinsäure, 10-Undecensäure, Petroselin- säure, Petroselaidinsäure, Ölsäure, Elaidinsäure, Ricinolsäure, Linolaidinsäure, oc- und ß- Eläosterainsäure, Gadoleinsäure, Erucasäure, Brassidinsäure. Selbstverständlich sind auch die Fettsäuren mit ungerader Anzahl von C-Atomen einsetzbar, beispielsweise Un- decansäure, Tridecansäure, Pentadecansäure, Heptadecansäure, Nonadecansäure, He- neicosansäure, Tricosansäure, Pentacosansäure, Heptacosansäure.
Im Rahmen der vorliegenden Erfindung ist die Verwendung von Fettsäuren der Formel XIII im Reaktionsgemisch zur Herstellung der Esterquats bevorzugt, so dass bevorzugte portionierte Weichspüler ein Umsetzungsprodukt von Trialkanolaminen mit einer Mischung aus Fettsäuren der Formel XIII,
R1-CO-OH (XIII)
in der R1-CO- für einen aliphatischen, linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 und/oder 1, 2 oder 3 Doppelbindungen steht und Dicarbonsäuren im molaren Verhältnis 1:10 bis 10:1, vorzugsweise 1:5 bis 5:1, das gegebenenfalls alkoxyliert und anschließend in an sich bekannter Weise quatemiert wurde, in Mengen von 2 bis 60, vorzugsweise 3 bis 35 und insbesondere 5 bis 30 Gew.-% in den Mitteln enthalten.
Als Dicarbonsäuren, die sich zur Herstellung der in den erfindungsgemäßen Mitteln einzusetzenden Esterquats eignen, kommen vor allem gesättigte oder ein- bzw. mehrfach ungesättigte α,ß-Dicarbonsäuren in Betracht. Beispielhaft seien hier die gesättigten Spezies Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebacinsäure, Undecan- und Dodecansäure, Brassylsäure, Tetra- und Pentadecansäure, Thapisäure sowie Hepta-, Octa- und Nonadecansäure, Eicosan- und Heneicosansäure sowie Phellogensäure genannt. Vorzugsweise im Reaktionsgemisch eingesetzt werden dabei Dicarbonsäuren, die der allgemeinen Formel XXIII folgen, so dass portionierte erfindungsgemäße Mittel bevorzugt sind, die ein Umsetzungsprodukt von Trialkanolaminen mit einer Mischung aus Fettsäuren und Dicarbonsäuren der Formel XIV,
HO-OC-[X]-CO-OH (XIV)
in der X für eine gegebenenfalls hydroxysubstituierte Alkylengruppe mit 1 bis 10 Kohlenstoffatomen steht, im molaren Verhältnis 1:10 bis 10:1, vorzugsweise 1:5 bis 5:1, das gegebenenfalls alkoxyliert und anschließend in an sich bekannter Weise quatemiert wurde, in Mengen von 2 bis 60, vorzugsweise 3 bis 35 und insbesondere 5 bis 30 Gew.-% in den Mitteln enthalten.
Unter der Vielzahl der herstellbaren und erfindungsgemäß einsetzbaren Esterquats haben sich wiederum solche besonders bewährt, in denen das Alkanolamin Treithanolamin und die Dicarbonsäure Adipinsäure ist. Somit sind im Rahmen der vorliegenden Erfindung Mittel besonders bevorzugt, die ein Umsetzungsprodukt von Triethanolamin mit einer Mischung aus Fettsäuren und Adipinsäure im molaren Verhältnis 1:5 bis 5:1, vorzugsweise 1:3 bis 3:1, das anschließend in an sich bekannter Weise quatemiert wurde, in Mengen von 2 bis 60, vorzugsweise 3 bis 35 und insbesondere 5 bis 30 Gew.-% in den Mitteln enthalten
Die erfindungsgemäßen Mittel können - undabhängig davon, ob sie als Textilwaschmittel, Waschhilfsmittel oder Weichspüler formuliert werden - auch mit weiteren Zusatznutzen ausgestattet werden. Hier sind beispielsweise farbübertragungsinhibierende Zusammensetzungen, Mittel mit „Anti-Grau-Formel", Mittel mit Bügelerleichterung, Mittel mit besonderer Duftfreisetzung, Mittel mit verbesserter Schmutzablösung bzw. Verhinderung von Wiederanschmutzung, antibakterielle Mittel, UV-Schutzmittel, farbauffrischende Mittel usw. formulierbar. Einige Beispiele werden nachstehend erläutert:
Da textile Flächengebilde, insbesondere aus Reyon, Zellwolle, Baumwolle und deren Mischungen, zum Knittern eigen können, weil die Einzelfasern gegen Durchbiegen, Knicken. Pressen und Quetschen quer zur Faserrichtung empfindlich sind, können die erfindungsgemäßen Mittel synthetische Knitterschutzmittel enthalten. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern. Fett- säureamiden, -alkyloiestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester.
Zur Bekämpfung von Mikroorganismen können die erfindungsgemäßen Mittel antimikrobielle Wirkstoffe enthalten. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkonium- chloride, Alkylarlylsulfonate, Halogenphenole und Phenolmercuriacetat, wobei bei den erfindungemäßen Mitteln auch gänzlich auf diese Verbindungen verzichtet werden kann.
Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse verursachte Veränderungen an den Mitteln und/oder den behandelten Textilien zu verhindern, können die Mittel Antioxidantien enthalten. Zu dieser Verbindungsklasse gehören beispielsweise substituierte Phenole, Hydrochinone, Brenzcatechnine und aromatische Amine sowie organische Sulfide, Polysulfide, Dithiocarbamate, Phosphite und Phosphonate.
Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antistatika resultieren, die den erfindungsgemäßen Mitteln zusätzlich beigefügt werden. Antistatika vergrößern die Oberflächenleitfähigkeit und ermöglichen damit ein verbessertes Abfließen gebildeter Ladungen. Äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülliganden und geben auf den Oberflächen einen mehr oder minder hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoniumverbindungen), phosphorhaltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Alkylsulfate) Antistatika unterteilen. Lauryl- (bzw. Stearyl-) dimethylbenzylammoniumchloride eignen sich als Antistatika- für Textilien bzw. als Zusatz zu Waschmitteln, wobei zusätzlich ein Avivageeffekt erzielt wird.
Zur Verbesserung des Wasserabsorptionsvermögens, der Wiederbenetzbarkeit der behandelten Textilien und zur Erleichterung des Bügeins der behandelten Textilien können in den erfindungsgemäßen Mitteln beispielsweise Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten der erfindungsgemäßen Mittel durch ihre schauminhibierenden Eigenschaften. Bevorzugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkylgruppen ein bis fünf C-Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsi- loxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quatemiert sind bzw. Si-OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Die Viskositäten der bevorzugten Silikone liegen bei 25°C im Bereich zwischen 100 und 100.000 Centistokes, wobei die Silikone in Mengen zwischen 0,2 und 5 Gew.-%, bezogen auf das gesamte Mittel eingesetzt werden können.
Schließlich können die erfindungsgemäßen Mittel auch UV-Absorber enthalten, die auf die behandelten Textilien aufziehen und die Lichtbeständigkeit der Fasern verbessern. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzo- phenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3-Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet.
Weitere denkbare und in speziellen Ausführungsformen bevorzugte Additive sind Tenside, die insbesondere die Löslichkeit der wasserlöslichen Wandung des flexiblen, vorzugsweise elastischen, Hohlkörpers oder der Kompartimentierungs-Einrichtung beeinflussen können, aber auch deren Benetzbarkeit und die Schaumbildung beim Auflösen steuern können, sowie Schauminhibitoren, aber auch Bitterstoffe, die ein versehentliches Verschlucken solcher Hohlkörper oder Teile solcher Hohlkörper durch Kinder verhindern können.
Duftstoffe werden den erfindungsgemäßen Waschmittel-, Reinigungsmittel- und/oder Pflegemittel-Portionen zugesetzt, um den ästhetischen Gesamteindruck der Produkte zu verbessern und dem Verbraucher neben der technischen Leistung (Weichspülergebnis) ein sensorisch typisches und unverwechselbares Produkt zur Verfügung zu stellen. Als Parfümöle oder Duftstoffe können einzelne Riechstoff-Verbindungen verwendet werden, beispielsweise die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoff-Verbindungen vom Typ der Ester sind beispielsweise Benzylacetat, Phenoxyethylisobutyrat, p-t-Butylcyclohexylacetat, Linalylace- tat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethyl- methylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether. Zu den Aldehyden zählen z. B. lineare Alkanale mit 8 bis 18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cycla- menaldehyd, Hydroxycitronellal, Lileal und Bourgeonal.
Zu den Ketonen zählen die lonone, α-lsomethylionon, und Methylcedrylketon. Zu den Alkoholen zählen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol. Zu den Kohlenwasserstoffen zählen hauptsächlich Terpene wie Limonen und Pinen. Bevorzugt werden Mischungen verschie-dener Riechstoffe verwendet, die so aufeinander abgestimmt sind, dass sie gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoff-Gemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind. Beispiele sind Pine-, Citrus-, Jasmin-, Patchouli-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskatöl, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Oli- banumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenscha- lenöl und Sandelholzöl.
Üblicherweise liegt der Gehalt an Duftstoffen im Bereich bis zu 2 Gew.-% der gesamten Waschmittel-, Reinigungsmittel- oder Pflegemittel-Portion.
Die Duftstoffe können direkt in die waschaktive(n), reinigungsaktive(n) oder pflegeak- tive(n) Zubereitung (en) eingearbeitet werden; es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für lang-anhaltenden Duft von Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt. Dabei können die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden. Die erfindungsgemäßen Mittel können als Wasch-, Reinigungs-, Pflege-, Haarbehand- lungs-, Baustoff, Kosmetika, Klebstoff, Antibakterielles Mittel und/oder Desinfektionsmittel verwendet werden.
Die erfindungsgemäßen Mittel können je nach Anwendungszweck anionische Tenside, kationische Tenside, amphotere Tenside, Buildersubstanzen, Bleichmittel, Bleichaktivatoren, Bleichstabilisatoren, Bleichkatalysatoren, Enzyme, Polymere, Cobuilder, Alkalisie- rungsmittel, Acidifizierungsmittel, Antiredepositionsmittel, Silberschutzmittel, Färbemittel, optische Aufheller, UV-Schutzsubstanzen, Weichspüler, Duftstoffe, schmutzabweisende Stoffe, Anti-Knitter-Stoffe, antibakterielle Stoffe, Farbschutzstoffe, Verfärbungsinhibitoren, Vitamine, Schichtsilikate, geruchskomplexierende Substanzen, Klarspüler, Schauminhibitoren, Schäumungsmittel, Konservierungsmittel und/oder Hilfsmittel aufweisen. Erfindungsgemäße Formkörper enthaltende Mittel können, je nach Zusammensetzung, als Waschmittel, Reinigungsmittel, Pflegemittel, Haarbehandlungsmittel, Haarfärbemittel, Arzneimittel, Pflanzenschutzmittel, Lebensmittel, Kosmetika, Düngemittel, Baustoff, Klebstoff .Bleichmittel, Desinfektionsmittel und/oder Beduftungsmittel verwendet werden
Formkörper lassen sich generell so herstellen, indem man wenigstens ein thermoplastisches, wasserlösliches Polymer, wenigstens ein ionisches das Polymer nicht komplexie- rendes Salz und wenigstens eine mindestens zwei anionische Gruppen enthaltende Verbindung mischt und in einem weiteren Schritt aus der Mischung den Formkörper formt, wobei vorzugsweise Kugeln, Kapseln, Folien, Partikel, Agglomerate und/oder Pulver ausgebildet werden, insbesondere mittels Extrusion und/oder unter der Einwirkung von Wärme.
Die Herstellung kugelförmiger/tropfenförmiger Formkörper umfaßt die Schritte:
Mischen wenigstens eines thermoplastischen, wasserlöslichen Polymers, wenigstens eines ionischen das Polymer nicht komplexierenden Salzes und wenigstens einer mindestens zwei anionische Gruppen enthaltenden Verbindung Verdünnen der Mischung mit Wasser,
Vertropfen der Mischung in ein wässriges alkalisches Sammelbad, entfernen und trocknen der mittels Vertropfung erhaltenden Formkörper. Folien lassen sich herstellen, indem man wenigstens ein thermoplastisches, wasserlösliches Polymer, wenigstens ein ionisches das Polymer nicht komplexierendes Salz und wenigstens eine mindestens zwei anionische Gruppen enthaltende Verbindung mischt und durch Vergießen eine Folie erzeugt, optional lassen sich aus der Folie, beispielsweise mittels stanzen, Formkörper mit beliebigen äußeren Konturen, wie Sterne und dergleichen, herstellen.
Die Formkörper können nicht nur in flüssigen Formulierungen bzw. Mitteln eingesetzt werden, sondern die Formkörper, beispielsweise extrudierte Partikel, können durchaus auch Pulvern beigemischt werden und somit bei solchen Mitteln zu einer kontrollierten bzw. zeitlich verzögerten Freisetzung von Inhaltsstoffen führen.
Die nachfolgende Tabelle I gibt allgemein die Konzentrationen der die Matrix bildenden Materialien für die Herstellung eines erfindungsgemäßen Formkörpers sowie die Trockentemperatur und die Verarbeitungstemperatur im Extruder an.
Tabelle I
Die Mittel lassen sich allgemein herstellen, indem man erfindungsgemäße Formkörper dem Mittel zusetzt.
Die Mittel enthaltenden Formkörper sind in einer 20%igen gesättigten, wässrigen NaCI- Lösung bei 40°C nach ≥ 10 Tagen, vorzugsweise > 20 Tagen, noch bevorzugter ≥ 30 Tagen, im wesentlichen formstabil.
Es hat sich gezeigt, dass die Formkörper in den vorstehenden Mitteln in einer 20%igen gesättigten, wässrigen NaCI-Lösung bei Raumtemperatur von 23°C ≥ 1 Monat, Vorzugs- weise ≥ 2 Monate, insbesondere ≥ 3 Monate und besonders bevorzugt ≥ 6 Monat im wesentlichen formstabil sind.
Der oder die Mittel enthaltenden Formkörper sind insbesondere in einem Universalwaschmittelgel pH 8 und einer Viskosität von 400 mPas, enthaltend 44 Gew.-% Wasser, 25 Gew.-% Niotensid, 7 Gew.-% Anionentensid, 8 Gew.-% Seife, 3 Gew.-% NaOH, 1 Gew.- % Citronensäure, 1 Gew.-% Borsäure, 9 Gew.-% Glycerin und insgesamt 2 Gew.-% Enzyme, Parfüm, Entschäumer und Farbstoff, wobei die Gewichtsangaben auf das Gesamtgewicht des Universalwaschmitteigel ohne Formkörper bezogen ist, bei 40°C nach ≥ 10 Tagen, vorzugsweise ≥ 20 Tagen, noch bevorzugter ≥ 30 Tagen, im wesentlichen formstabil.
Im wesentlichen formstabil bedeutet im Sinne dieser Erfindung, dass bei einer Testdauer von 30 Tagen und 40°C ein fester, kugelförmiger Formkörper mit einem Durchmesser von 2 mm (Anfangszustand), einen Durchmesser von zwischen 2 mm und 2,3 mm aufweist (Endzustand). Der gegebenenfalls leicht gequollene kugelförmige Formkörper kann etwas verformbar sein.
Die Mittel enthaltenden Formkörper der vorliegenden Erfindung sind besonders bevorzugt Konzentrate die vor Gebrauch mit Wasser verdünnt werden.
Wässrige Mittel enthaltende Formkörper liegen vorzugsweise in einer ≥ 10%-igen gesättigten, weiter bevorzugt ≥ 15 Gew.-%, und am meisten bevorzugt ≥ 20%-igen mit Salz gesättigten Lösung vor, wobei das Salz vorzugsweise ein Alkali- und/oder Erdalkali-Salz ist.
Der Gegenstand der vorliegenden Erfindung wird an Hand der nachfolgenden Beispiele 1 bis 10 näher erläutert.
Beispiele
Beispiel 1
Es wurde eine wässrige Lösung von 40% Polyvinylalkohol (Erkol 05/140 mit einem Ver- seifungsgrad von ca. 87%) und 7% NaCI sowie 0,01% bi-ionischen Farbstoff Kongorot hergestellt. Zu 100 g der Lösung wurden 10 g Talkum und 12 g einer Mischung aus 8 g Zeolith, der mit 4 g Parfümöl imprägniert wurde, gegeben. Die Masse wurde mit einem Mixer homogenisiert.
Beispiel 2
Die nach Beispiel 1 erhaltene Mischung wurde zu einem thermoplastischen Material getrocknet und dieses dann mit Hilfe eines Extruders zu einem Strang verarbeitet. Der Strang wurde in Pellets geschnitten, diese wurden verrundet. Die erhaltenen roten Kugeln von 0,2 - 4 mm Durchmesser wurden in einer Konzentration von 0,3 - 10 Gew.-% in das Flüssigwaschmittel, bezogen auf das Gesamtgewicht des Flüssigwaschmittels ohne rote Kugeln, gegeben. Sie sind dort über Monate lagerstabil und optisch gut sichtbar. Bei Verdünnung auf Anwendungskonzentration lösen sie sich innerhalb von 30 Minuten bei 20°C oder 15 min bei 40°C auf und setzen den eingeschlossenen Duftstofffrei.
Beispiel 3
Die nach Beispiel 1 erhaltene Mischung wurde mit 100 ml Wasser verdünnt und dann in ein Sammelbad vertropft, das aus einer wässrigen Lösung von 0,5% NaOH und 20% Na2S04 besteht. Die erhaltenen roten Kugeln wurden getrocknet und dann in einer Konzentration von 0,3 - 10 Gew.-%, bezogen auf das Gesamtgewicht des Flüssigwaschmittels ohne rote Kugeln, in das Flüssigwaschmittel gegeben. Sie sind dort über Monate lagerstabil Bei Verdünnung auf Anwendungskonzentration lösen sie sich innerhalb von 30 Minuten bei 20°C oder 15 min bei 40°C auf und setzen den eingeschlossenen Duftstoff frei.
Beispiel 4
Aus der nach Beispiel 1 erhaltenen Mischung wurde durch Vergießen eine Folie von 2 mm Dicke hergestellt und daraus Sternchen ausgestanzt. Die erhaltenen roten Sternchen werden in einer Konzentration von 0,3 - 10 Gew.-%, bezogen auf das Gesamtgewicht des Flüssigwaschmittel ohne rote Sternchen, gegeben. Sie sind dort über Monate lagerstabil. Bei Verdünnung auf Anwendungskonzentration lösen sie sich innerhalb von 30 Minuten bei 20°C oder 15 min bei 40°C auf und setzen den eingeschlossenen Duftstoff frei. Beispiele 5 und 6
Wie Beispiel 1 , mit der Ausnahme das statt des Farbstoffes Kongorot der bi-ionische
Farbstoff Trypanblau (Direct Blue 14) - Beispiel 5 - oder der bi-ionische Farbstoff Chicagoblau (Direct Blue 1) - Beispiel 6 - verwendet. Auch diese Mischungen liefern nach Extrusion und Verrundung blaugefärbte, kugelförmige Formkörper von 0,2 - 1 mm Durchmesser, die in Flüssigwaschmitteln in einer Konzentration von 0,3 - 10 Gew.-%, bezogen auf das Gesamtgewicht des Flüssigwaschmittels ohne blaue Kugeln, stabil sind, deren Farbe nicht ausblutet und die sich in der Waschanwendung rückstandsfrei lösen. Solche Formkörper sind dort über Monate lagerstabil und optisch gut sichtbar. Bei Verdünnung auf Anwendungskonzentration lösen sich die kugelförmige Formkörper innerhalb von 10 Minuten bei 20°C oder 5 min bei 40°C auf und setzen das eingeschlossene Material frei.
Beispiel 7
Es wurde eine wässrige Lösung von 40% Polyvinylalkohol (Erkol 05/140 mit einem Ver- seifungsgrad von ca. 87%) und 7% NaCI sowie 0,01 % Farbstoff Kongorot hergestellt.
Beispiel 8
Die nach Beispiel 7 erhaltene Mischung wurde mittels einer Sprühpistole auf ein sich in einer rotierenden Stahltonne befindliches Granulat aus Soda, Tensiden und Granulierhilfsstoffen (MP-Rohextrudat) aufgesprüht, bis sich ein homogener, rot gefärbter Film auf dem Granulat gebildet hatte. Nach dem Trocknen des Films wurden rotgefärbte Pellets von 0,2 - 4 mm Durchmesser erhalten, die in einer Konzentration von 0,3 - 10 Gew.-%, bezogen auf das Gesamtgewicht des Flüssigwaschmitteis ohne rotgefärbte Pellets, gegeben wurden. Die Pellets sind dort über Monate lagerstabil und optisch gut sichtbar. Bei Verdünnung auf Anwendungskonzentration lösen sie sich innerhalb von 10 Minuten bei 20°C oder 5 min bei 40°C auf und setzen das eingeschlossene Material frei.
Beispiel 9
Es wurde eine wässrige Lösung von 40% Polyvinylalkohol (Erkol 05/140 mit einem Ver- seifungsgrad von ca. 87%) und 12% Harnstoff sowie 0,01% Farbstoff Direct Blue 1 hergestellt. Zu 100 g der Lösung werden 10 g Talkum und 8 g Polypropylenglycol PPG-9 gegeben. Die Masse wird mit einem Mixer homogenisiert.
Beispiel 10
Die nach Beispiel 9 erhaltene Mischung wurde zu einem thermoplastischen Material getrocknet und dieses dann mit Hilfe eines Extruders zu einem Strang verarbeitet. Der Strang wird in Pellets geschnitten, diese werden verrundet. Die erhaltenen blauen Kugeln von 0,2 - 1 mm Durchmesser werden in einer Konzentration von 0,3 -5 Gew.-%, bezogen auf das Gesamtgewicht des Handgeschirrspülmittels ohne rote Kugeln, in ein Handgeschirrspülmittel gegeben. Die roten Kugein sind dort über Monate lagerstabil und optisch gut sichtbar. Bei Verdünnung auf Anwendungskonzentration lösen sie sich innerhalb von 8 Minuten bei 20°C oder 3 min bei 40°C auf und setzen den eingeschlossenen Aktivstoff frei.

Claims

Patentansprüche
1. Mittel enthaltender Formkörper mit erhöhter Lagerstabilität, dadurch gekennzeichnet, dass der Formkörper und/oder dessen äußere Formkörperhülle umfasst: wenigstens ein thermoplastisches, wasserlösliches Polymer; wenigstens ein ionisches das Polymer nicht komplexierendes Salz; wenigstens eine mindestens zwei anionische Gruppen enthaltende Verbindung, wobei die wenigstens zwei anionische Gruppen aufweisende Verbindung das wasserlösliche Polymer reversibel komplexiert; und gegebenenfalls wenigstens eine Trägersubstanz und/oder wenigstens ein Extrudierhilfsmittel.
2. Mittel enthaltender Formkörper nach Anspruch 1, dadurch gekennzeichnet, dass der oder die Formkörper als feste Phase(n) in einem Mehrphasensystem mit mindestens einer festen, flüssigen und/oder gelförmigen Phase, vorzugsweise mit hohem Elektrolytgehalt, vorliegen.
3. Mittel enthaltender Formkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Formkörper enthaltende Mittel, bevorzugt wenigstens eine Phase des Mittels, besonders bevorzugt die Phase in der Formkörper enthalten ist, einen Wassergehalt > 0 bis ≤ 88 Gew.-%, vorzugsweise ≤ 50 Gew.-%, weiter bevorzugt ≤ 20 Gew.-% und noch bevorzugter ≤ 12 Gew.-%, aufweist.
4. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Formkörper in einer 20%igen gesättigten, wässrigen NaCI- Lösung bei 40°C nach ≥ 10 Tagen, vorzugsweise ≥ 20 Tagen, noch bevorzugter ≥ 30 Tagen, im wesentlichen formstabil ist.
5. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Formkörper in einem Universalwaschmittelgel pH 8 und einer Viskosität von 400 mPas, enthaltend 44 Gew.-% Wasser, 25 Gew.-% Niotensid, 7 Gew.- % Anionentensid, 8 Gew.-% Seife, 3 Gew.-% NaOH, 1 Gew.-% Citronensäure, 1 Gew.-% Borsäure, 9 Gew.-% Glycerin und insgesamt 2 Gew.-% Enzyme, Parfüm, Entschäumer und Farbstoff, wobei die Gewichtsangaben auf das Gesamtgewicht des Universalwasch- mittelgels ohne Formkörper bezogen ist, bei 40 °C nach ≥ 10 Tagen, vorzugsweise ≥ 20 Tagen, noch bevorzugter ≥ 30 Tagen, im wesentlichen formstabil ist.
6. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die mindestens zwei anionische Gruppen aufweisende Verbindung ausgewählt ist aus der Gruppe umfassend Farbstoffe, insbesondere bi-ionische Farbstoffe.
7. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die mindestens zwei anionische Gruppen aufweisende Verbindung ausgewählt ist aus der Gruppe umfassend Kongorot, Trypan Blau, Chicagoblau; Makro- anionen, Schichtsilikate vorzugsweise Montmorillonit, Metaphosphate; und/oder Polyan- ionen, vorzugsweise Polystyrolsulfonat, Carboxymethylcellulose und/oder Polyacrylate.
8. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die mindestens zwei anionischen Gruppen ausgewählt sind aus der Gruppe umfassend O2", RBO2 2", RCOO", RCONR", OH", NO3-, NO2 ", NO, CO, S2", RS", PO3 2', PO3OR3-, H2O, CO3 2-, HCO3-, ROH, NRR'R", RCN, CP, Bf, OCN", SCN", CN", N3", F, I", RO', CIO4 ", SO4 2-, HSO4 ", SO3 2' und/oder RSO3 ", und besonders bevorzugt O2", RBO2 2", RCOO", OH", NO3 ', NO2 ", NO, CO, CN", S2", RS", PO4 3", H2O, CO32-, HCO3", ROH, NRR'R", RCN, Cr, Br", OCN", SCN', N3", F, I", RO', CI04 ", SO4 2", HSO4 ", SO3 2", RSO3- und/oder CF3SO3 _, und noch bevorzugter SO3 _, Cl~, OH-, SO4 2_, PO3 2_, PO4 3_, COO-, NO3 _, CO3 2_, CH3COO", C2O4 2_, Citrate und/oder Acetate, wobei R,R',R" gleich oder unterschiedlich voneinander sind, ausgewählt aus der Gruppe umfassend Alkyl, Alkenyl, Alkoxy, Alkylen, Cycloalkyl, Aryl, Arylen oder Heteroaryl.
9. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das nicht komplexierende Salz ausgewählt ist aus der Gruppe umfassend Alkali- und/oder Erdalkali-Salze, vorzugsweise Alkali- und/oder Erdalkaii-metall- halogenide, weiter bevorzugt Alkali- und/oder Erdalkali-sulfate, -nitrate, -phosphate, -car- boxylate, -citrate, -hydroxide, -borate, -actetate, -phosphate, -Silikate, -oxalate, -formiate, - percarbonate, und/oder -perborate.
10. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Gewichtsgehalt des wasserlöslichen Polymers, bezogen auf den Gesamtgewichtsgehalt des Formkörpers, von zwischen 10 - 95 Gew.-%, vorzugsweise 20 - 75 Gew.-% und bevorzugt 30 - 60 Gew.-% ausmacht.
11. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Gewichtsgehalt des nicht komplexierenden Salzes, bezogen auf den Gesamtgewichtsgehalt des Formkörpers, von zwischen 1 - 50 Gew.-%, vorzugsweise 1 - 30 Gew.-% und bevorzugt 2 - 20 Gew.-% ausmacht.
12. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Gewichtsgehalt der mindestens zwei anionische Gruppen enthaltenden Verbindung, bezogen auf den Gesamtgewichtsgehalt des Formkörpers, von zwischen 0,001 - 10 Gew.-%, vorzugsweise 0,01 - 5 Gew.-% und bevorzugt 0,05 - 2 Gew.-% ausmacht.
13. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Komplexbildungskonstante einen Wert im Bereich von 10 - 1060, vorzugsweise 100 - 1030 und bevorzugt 103 - 1015 ausmacht.
14. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der wasserlösliche Polymer ausgewählt ist aus der Gruppe umfassend Polyvinylalkohol (PVA), acetalisierter Polyvinylalkohol, Polyvinylpyrrolidon, Poly- ethylenoxid, Gelatine, Cellulose, Stärke und Derivate der vorgenannten Stoffe, und/oder Mischungen der vorgenannten Polymere, wobei Polyvinylalkohol besonders bevorzugt ist.
15. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass dem wasserlöslichen Polymer zusätzlich Polymere, ausgewählt aus der Gruppe umfassend Acrylsäure-haltige Polymere, Polyacrylamide, Oxazolin-Polymere, Polystyrolsulfonate, Polyurethane, Polyester, Polyether und/oder Mischungen der vorstehenden Polymere, zugesetzt sind.
16. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der wasserlösliche Polymer einen Polyvinylalkohol umfaßt, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% ausmacht.
17. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der wasserlösliche Polymer einen Polyvinylalkohol umfaßt, dessen Molekulargewicht im Bereich von 10.000 bis 100.000 gmol"1, vorzugsweise von 11.000 bis 90.000 gmol"1, besonders bevorzugt von 12.000 bis 80.000 gmol"1 und insbesondere von 13.000 bis 70.000 gmol"1 liegt.
18. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Formkörper und/oder die äußere Hülle des Formkörpers wasserlösliches Polymer in Mengen von ≥ 50 Gew.-%, vorzugsweise von ≥ 70 Gew.-%, besonders bevorzugt von > 80 Gew.-% und insbesondere von ≥ 90 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Formkörpers und/oder der äußeren Hülle, enthält.
19. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der wasserlösliche Polymer Weichmacher in Mengen von mindestens ≥ 1 Gew.-%, vorzugsweise von ≥ 10 Gew.-%, besonders bevorzugt von ≥ 20 Gew.-% und insbesondere von ≥ 30 Gew.-%, jeweils bezogen auf das Gesamtgewichtgewicht des wasserlöslichen Polymers des Formkörpers, enthält.
20. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Formkörper eine Kugel-, Kapsel-, Folien-, Partikel-, Agglome- rat- und/oder Pulver-Form aufweist.
21. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Mittel ein Waschmittel, Reinigungsmittel, Pflegemittel, Haarbehandlungsmittel, Haarfärbemittel, Arzneimittel, Pflanzenschutzmittel, Lebensmittel, Kosmetika, Agrochemikalien, Düngemittel, Baustoffe, Klebstoffe, Bleichmittel, Desinfektionsmittel und/oder Beduftungsmittel ist.
22. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die wasch-, pflege- und/oder reinigungsaktiven Substanzen ausgewählt sind aus der Gruppe umfassend anionische Tenside, kationische Tenside, ampho- tere Tenside, Buildersubstanzen, Bleichmittel, Bleichaktivatoren, Bleichstabilisatoren, Bleichkatalysatoren, Enzyme, Polymere, Cobuilder, Alkalisierungsmittel, Acidifizierungsmittel, Antiredepositionsmittel, Silberschutzmittel, Färbemittel, optische Aufheller, UV- Schutzsubstanzen, Weichspüler, Hilfsmittel, Duftstoffe, schmutzabweisende Stoffe, AntiKnitter-Stoffe, antibakterielle Stoffe, Farbschutzstoffe, Verfärbungsinhibitoren, Vitamine, Schichtsilikate, geruchskomplexierende Substanzen und/oder Klarspüler.
23. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die jeweiligen Mittel enthaltenden Formkörper einen unterschiedlichen Gehalt und/oder eine unterschiedlichen Zusammensetzung an wasch-, pflege- und/oder reinigungsaktiven Substanzen, aufweist.
24. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die reversibel komplexiertes, wasserlösliches Polymer aufweisende äußere Formkörperhülle eine Wandstärke von zwischen 0,01 - 5 mm, vorzugsweise von zwischen 0,06 - 2 mm, bevorzugt von zwischen 0,07 - 1,5 mm, weiter bevorzugt von zwischen 0,08 - 1,2 mm, noch bevorzugter von zwischen 0,09 - 1 mm und am meisten bevorzugt, von zwischen 0,1 - 0,6 mm, aufweist.
25. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das in dem Formkörper enthaltende Mittel, insbesondere Wasch- und/oder Reinigungsmittel, in die wässrige Anwendungsflotte innerhalb von ≤ 5 min, vorzugsweise innerhalb von ≤ 3 min, bevorzugt innerhalb von ≤ 1 min, überwiegend oder vollständig freigesetzt wird.
26. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der oder die Formkörper in einem flüssigen Medium, das vor Gebrauch mit Wasser verdünnt wird, vorliegen, wobei das flüssige Medium vorzugsweise eine Lösung mit einem Wasseranteil von zwischen 0 - 88 Gew.-%, bezogen auf das Gesamtgewicht des flüssigen Mediums, oder ein Gel ist.
27. Mittel enthaltender Formkörper nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das flüssige Medium eine Viskosität von zwischen 10 - 100000 mPas (bei 100 s"1), vorzugsweise von zwischen zwischen 100 - 50000 mPas (bei 100 s"1) und besonders bevorzugt von zwischen zwischen 200 - 20000 mPas (bei 100 s"1) aufweist.
28. Verwendung des Mittel enthaltenden Formkörpers nach einem der vorherigen Ansprüche als Waschmittel, Reinigungsmittel, Pflegemittel, Haarbehandlungsmittel, Haarfärbemittel, Arzneimittel, Pflanzenschutzmittel, Lebensmittel, Kosmetika, Düngemittel, Baustoff, Klebstoff .Bleichmittel, Desinfektionsmittel und/oder Beduftungsmittel.
29. Verwendung des wenigstens ein wasserlösliches Polymer, wenigstens ein ionisches das Polymer nicht komplexierendes Salz, und wenigstens eine mindestens zwei anionische Gruppen enthaltende Verbindung aufweisende Material nach einem der vorhergehenden Ansprüche, wobei die wenigstens zwei anionische Gruppen aufweisende Verbindung das wasserlösliche Polymer reversibel komplexiert, als äußere Umhüllung einer Mittel enthaltenden Kugel, Kapsel, Partikel, Agglomerat und/oder Pulver, besonders bevorzugt als äußere Umhüllung von extrudierten Mitteln, insbesondere Waschmitteln.
30. Verfahren zur Herstellung von Formkörper(n) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass man wenigstens ein thermoplastisches, wasserlösliches Polymer, wenigstens ein ionisches das Polymer nicht komplexierendes Salz und wenigstens eine mindestens zwei anionische Gruppen enthaltende Verbindung mischt und in einem weiteren Schritt aus der Mischung den Formkörper formt, wobei vorzugsweise Kugeln, Kapseln, Folien, Partikel, Agglomerate und/oder Pulver ausgebildet werden, insbesondere mittels Extrusion und/oder unter der Einwirkung von Wärme.
31. Verfahren zur Herstellung von Formkörper(n) nach einem der vorherigen Ansprüche, umfassend die Schritte:
Mischen von wenigstens einem thermoplastischen, wasserlöslichen Polymer, wenigstens einem ionischen das Polymer nicht komplexierenden Salzes und wenigstens einer mindestens zwei anionische Gruppen enthaltenden Verbindung Verdünnen der Mischung mit Wasser,
Vertropfen der Mischung in ein wässriges alkalisches Sammelbad, Entfernen und Trocknen der mittels Vertropfung erhaltenen Formkörper.
32. Verfahren zur Herstellung von Formkörper(n) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass man wenigstens ein thermoplastisches, wasserlösliches Polymer, wenigstens ein ionisches das Polymer nicht komplexierendes Salz und wenigstens eine mindestens zwei anionische Gruppen enthaltende Verbindung mischt und durch Vergießen eine Folie erzeugt.
33. Verfahren zur Herstellung von Formkörper(n) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass man wenigstens ein thermoplastisches, wasserlösliches Polymer, wenigstens ein ionisches das Polymer nicht komplexierendes Salz und wenigstens eine mindestens zwei anionische Gruppen enthaltende Verbindung mischt und man anschließend die äußere Oberfläche von Aktiv-Substanz aufweisenden Kugeln, Kapseln, Folien, Partikel, Agglomeraten und/oder Pulver, mit der erhaltenen Mischung teilweise oder vollständig beschichtet.
34. Verfahren zur Herstellung eines Mittels, indem man den oder die Formkörper mit mindestens einer flüssigen Phase oder festen Phase kombiniert.
EP02796694A 2001-12-30 2002-12-20 Mittel enthaltender formkörper mit erhöhter lagerstabilität Withdrawn EP1461410A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10164137.0A DE10164137B4 (de) 2001-12-30 2001-12-30 Wasch-, Reinigungs- und/oder Pflegemittel-Formulierung enthaltender Formkörper mit erhöhter Lagerstabilität sowie Verfahren zu seiner Herstellung
DE10164137 2001-12-30
PCT/EP2002/014621 WO2003055965A2 (de) 2001-12-30 2002-12-20 Mittel enthaltender formkörper mit erhöhter lagerstabilität

Publications (1)

Publication Number Publication Date
EP1461410A2 true EP1461410A2 (de) 2004-09-29

Family

ID=7710982

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02796694A Withdrawn EP1461410A2 (de) 2001-12-30 2002-12-20 Mittel enthaltender formkörper mit erhöhter lagerstabilität

Country Status (4)

Country Link
EP (1) EP1461410A2 (de)
AU (1) AU2002361181A1 (de)
DE (1) DE10164137B4 (de)
WO (1) WO2003055965A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10261776A1 (de) * 2002-12-20 2004-07-01 Rmp Chemisch-Technische Spezialprodukte Gmbh & Co Kg Tabletten, insbesondere Reinigungstabletten
DE10360842A1 (de) * 2003-12-20 2004-12-16 Henkel Kgaa Waschmittelsystem mit verzögerter Färbemittelwirkung
EP1657298A1 (de) * 2004-11-12 2006-05-17 Cognis IP Management GmbH Feste Zubereitungen
EP3233762A1 (de) * 2014-12-18 2017-10-25 Basaran, Mustafa Organisches und anorganisches düngemittel für bewässerungslandwirtschaft und mit nitrifikationshemmendem mittel und bor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2562624B2 (ja) * 1986-11-07 1996-12-11 昭和電工株式会社 水溶性マイクロカプセルおよび液体洗剤組成物
JPH0726118B2 (ja) * 1987-10-28 1995-03-22 ライオン株式会社 漂白剤組成物
US5064650A (en) * 1988-04-19 1991-11-12 Southwest Research Institute Controlled-release salt sensitive capsule for oral use and adhesive system
DE19813010A1 (de) * 1998-03-25 1999-10-14 Aventis Res & Tech Gmbh & Co Mikrokapseln mit verzögertem Release
EP1055709A1 (de) * 1999-05-25 2000-11-29 Clariant International Ltd. Anthrachinon-Azofarbstoffe sowie Farbgebung unter Verwendung von solchen Verbindungenn
DE19961661A1 (de) * 1999-06-25 2000-12-28 Henkel Kgaa Wirkstoffportionspackung
DE19962350A1 (de) * 1999-12-23 2001-06-28 Henkel Kgaa Gefärbte Chitosan-Kapseln

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03055965A2 *

Also Published As

Publication number Publication date
DE10164137A1 (de) 2003-07-10
AU2002361181A1 (en) 2003-07-15
WO2003055965A3 (de) 2003-10-23
WO2003055965A2 (de) 2003-07-10
DE10164137B4 (de) 2016-04-28
AU2002361181A8 (en) 2003-07-15

Similar Documents

Publication Publication Date Title
EP1298195B1 (de) Semiautomatische Dosierung
EP1287109B1 (de) Wasch- oder reinigungsmittelformkörper
DE19944416A1 (de) Klarspülmittel
EP2021449B1 (de) Verkapselte bleichmittelteilchen
EP1363986B1 (de) &#34;3 in 1&#34; GESCHIRRSPÜLMITTEL UND VERFAHREN ZUR HERSTELLUNG DERSELBEN
DE102005015328A1 (de) Klares Wasch- und Reinigungsmittel mit Fließgrenze
DE10032612A1 (de) Klarspülmittel II
DE102008047233A1 (de) Feste, Textil-pflegende Zusammensetzung mit einem Polysaccharid
DE10225116A1 (de) Maschinelles Geschirrspülmittel mit verbessertem Glaskorrosionsschutz II
DE10003429A1 (de) Wasch- oder Reinigungsmittelportion mit kontrollierter Wirkstofffreisetzung
WO2004083352A1 (de) Keimreduzierendes wasch- oder reinigungsmittel und verfahren zu seiner herstellung
DE19958472A1 (de) Teilchenförmiges Kompositmaterial zur gesteuerten Freisetzung eines Wirkstoffs
DE10360842A1 (de) Waschmittelsystem mit verzögerter Färbemittelwirkung
DE10164137B4 (de) Wasch-, Reinigungs- und/oder Pflegemittel-Formulierung enthaltender Formkörper mit erhöhter Lagerstabilität sowie Verfahren zu seiner Herstellung
EP1340808B1 (de) Parfümierte Reinigungsmittelformkörper
WO2003054121A2 (de) Detergenz-haltige portion
DE10253213B3 (de) Wasserlösliche Portionsverpackung mit Füllung und Verfahren zu deren Herstellung
DE10310679B3 (de) Coating schmelzbarer Substanzen und Substanzgemische
DE10149719A1 (de) Kompartiment-Hohlkörper
DE10145618B4 (de) Portionierte Wasch-, Spül- oder Reinigungsmittel
DE10060534A1 (de) Klarspülmittel III
DE19958471A1 (de) Wasch- und Reingigungsmittel
DE10062857A1 (de) Waschmittel-, Spülmittel- oder Reinigungsmittel-Portionen mit transparenter Umhüllung
WO2008000561A1 (de) Wasch- oder behandlungsmittelportion mit aktivstoff-haltigem kern
WO2008000562A1 (de) Wasch- oder behandlungsmittelportion mit löslichkeits- und/oder dispergierfähigkeitsgradient

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040623

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: RO

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060301