EP1458981A1 - Verdichter für gasturbinen - Google Patents

Verdichter für gasturbinen

Info

Publication number
EP1458981A1
EP1458981A1 EP02803485A EP02803485A EP1458981A1 EP 1458981 A1 EP1458981 A1 EP 1458981A1 EP 02803485 A EP02803485 A EP 02803485A EP 02803485 A EP02803485 A EP 02803485A EP 1458981 A1 EP1458981 A1 EP 1458981A1
Authority
EP
European Patent Office
Prior art keywords
layers
compressor
layer
coating
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02803485A
Other languages
English (en)
French (fr)
Other versions
EP1458981B1 (de
Inventor
Francisco Blangetti
Harald Reiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1458981A1 publication Critical patent/EP1458981A1/de
Application granted granted Critical
Publication of EP1458981B1 publication Critical patent/EP1458981B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/007Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/224Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/506Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/512Hydrophobic, i.e. being or having non-wettable properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/604Amorphous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the invention relates to a compressor for gas turbines and in particular to a coating for protection against liquid drops and solid particles, which is applied to the surfaces of components in the inlet region of the compressor.
  • the components of compressors in turbines are exposed to various particles during compressor operation, which can permanently damage the surfaces of the components.
  • These particles include liquid drops, including water drops, as well as solid particles such as dust particles that get into the compressor with the air drawn in.
  • solid particles such as dust particles that get into the compressor with the air drawn in.
  • ice particles that can form due to desublimation due to the cooling of the air due to the acceleration of the air.
  • the components in the inlet area of the compressor particularly affect the blading of potential damage caused by these particles.
  • Drop erosion is caused, on the one hand, directly by the sprayed or sucked-in liquid drops on the surfaces of the components.
  • the sprayed drops are initially small, ie in the range of 10-20 micrometers in diameter. After a certain operating time, however, the spray nozzles are worn out in such a way that the drops they spray gradually reach a size of up to 100 micrometers in diameter.
  • a compressor for a gas turbine according to the invention has components, such as, for example, the blades, which are provided on their surfaces with a coating which contains at least two layers of an amorphous carbon or a plasma polymer.
  • the outermost layer of the coating has, in particular, hydrophobic properties.
  • All layers or layer systems with a low interfacial energy are suitable, provided that they are smaller than the surface tension of water.
  • these layers also have the surface hardness inherently high for amorphous carbon or a plasma polymer, for example from 500 to 3000 HV.
  • amorphous carbon or a plasma polymer is particularly suitable for materials with hydrophobic properties and also hardnesses of this size.
  • the hydrophobic property of the outermost layer prevents wetting of the surfaces. Impacting liquid drops interact very little with the surface because their interfacial energy is low. As a result, the liquid drops do not adhere to the surfaces, rather they roll over the surface while maintaining their small size and without merging with other drops or even a closed one
  • Hydrophobic layers such as those made of amorphous carbon also have dirt-repellent properties.
  • the fact that the liquid drops roll off immediately prevents a chemical interaction of the liquid or of components which are dissolved in the liquid with the surface. This then also avoids the deposition of other foreign material, which has a positive effect on the gas turbine performance and the service life of the coated components.
  • the components of the compressor have a protective coating which has a layer sequence with a layer pair or several layer pairs, the inner layer of a layer pair having a higher hardness compared to the outer layer of the layer pair and the outer one being relatively has low hardness.
  • the inner layer of the pair of layers has a hardness of 1500 to 3000 HV and the outer layer has a hardness of 500 HV to 1500 HV.
  • the individual layers of the layer sequence have thicknesses in the range from 0.1 to 2 micrometers each.
  • the thicknesses of the individual layers of the layer sequence are inversely related to their relative hardness.
  • the outer layer can have a thickness of 1.0 to 1.5 micrometers and the inner layer can have a thickness of 0.5 to 0.75 micrometers.
  • the surfaces of the components of the compressor have an adhesive layer on which one or more pairs of layers are applied.
  • an adhesive layer for example, a harder layer applied to titanium, which corresponds to the inner layer mentioned above, is suitable as the adhesive layer.
  • the hydrophobic coating contains amorphous carbon.
  • amorphous carbon in the following, this should be understood to mean hydrogen-containing carbon layers with a hydrogen content of 10 to 50 at% and with a ratio of sp 3 to sp 2 bonds between 0.1 to 0.9.
  • all amorphous or dense carbon layers produced by means of carbon or hydrocarbon precursors, as well as plasma polymer layers, polymer-like or dense carbon and hydrocarbon layers can be used, provided that they provide the hydrophobic and the mechanical or chemical properties of the amorphous carbon mentioned below Have production of individual layers or layer sequences.
  • Amorphous carbon also known as diamond-like carbon, is generally known for its exceptional hardness, chemical stability and also for its elasticity.
  • amorphous carbon has a low surface energy compared to the surface tension of water, so that a hydrophobic or water-repellent property is brought about.
  • the hardness of amorphous carbon can be changed by varying the parameters for the production of a coating.
  • a layer of relatively lower hardness is only to be understood as less hard compared to a hard layer.
  • a less hard layer in particular has a pronounced hydrophobic property.
  • the coating according to the invention can be implemented using various, generally known production processes, such as, for example, deposition by means of glow discharge in a plasma from hydrocarbon-containing precursors, ion beam coating and sputtering of carbon in hydrogen-containing working gas.
  • the substrate is exposed to a current of ions of several 100 eV.
  • the substrate is arranged in a reactor chamber in contact with a cathode, which is capacitively connected to a 13.56 MHz RF generator.
  • the grounded walls of the plasma chamber form a large counter electrode.
  • any hydrocarbon vapor or hydrocarbon gas can be used as the first working gas for the coating.
  • various gases are added to the first working gas.
  • nitrogen fluorine or silicon-containing gases, for example, high or low surface energies are achieved.
  • the addition of nitrogen also leads to an increase in the hardness of the resulting layer.
  • the resulting hardness of the layer can be controlled by changing the bias voltage across the electrodes between 100 and 1000 V, with a high bias voltage increasing a hard, amorphous carbon layer and a deep stress leads to an amorphous carbon layer with relatively lower hardness.
  • the compressor according to the invention all components that come into contact with the intake air or with injected liquids are provided with the layer sequence.
  • the components in the inlet area such as the blading and the bearing for the adjustable guide rail, are to be provided with it.
  • the invention is applicable to compressors for gas turbines of power plants of all kinds as well as turbine jet drives and other components in aircraft and ships, such as the leading edge of the wings of aircraft.
  • the components of the compressor according to the invention consist of materials such as titanium, stainless steels, chromium steels, aluminum and carbide formers.
  • the described sequence of layers with adhesive layer is perfectly suitable for application to these materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Ein Verdichter für eine Gasturbine weist auf den Oberflächen seiner Bauteile, insbesondere seiner Beschaufelung, eine Beschichtung auf zum Schutz der Oberflächen vor Erosion auf. Die Besichtung weist mindestens zwei Schichten oder mehrere Schichtpaare aus amorphem Kohlenstoff oder einem Plasmapolymer auf, wobei die Schichten eine inhärent hohe Härte aufweisen und die äussereste Schicht der Beschichtung hydrophobe Eigenschaften besitzt. Die Härte einer inneren Schicht eines Schichtpaares ist ferner höher als die Härte einer äusseren Schicht. Die Beschichtung eignet sich besonders zur Vermeidung von Tropfenschlagerosion durch Flüssigkeitstropfen, Erosion durch Feststoffpartikel wie Eis sowie von Verschmutzung durch Ablagerung von Staufpartikeln und in Flüssigkeiten gelösten Bestandteilen. Durch die Beschichtung wird die Lebensdauer der Bauteile velängert und die Turbinenleistung erhöht.

Description

Verdichter für Gasturbinen
Technisches Gebiet
Die Erfindung betrifft einen Verdichter für Gasturbinen und insbesondere eine Beschichtung zum Schutz gegen Flüssigkeitstropfen und Feststoffpartikel, die auf die Oberflächen von Bauteilen im Einlassbereich des Verdichters aufgetragen ist.
Stand der Technik
Die Bauteile von Verdichtern in Turbinen, wie zum Beispiel von Kraftanlagen, Flugzeug- und Schiffsgetrieben, sind während des Verdichterbetriebs verschiedenen Partikeln ausgesetzt, welche die Oberflächen der Bauteile nachhaltig beschädigen können. Zu diesen Partikeln gehören Flüssigkeitstropfen, unter anderem Wassertropfen sowie Feststoffpartikel wie zum Beispiel Staubpartikel, die mit der angesaugten Luft in den Verdichter gelangen. Ferner sind auch Eispartikel zu nennen, die sich durch Desublimierung aufgrund der Erkaltung der Luft durch die Beschleunigung der Luft bilden können. Von den Bauteilen im Einlassbereich der Verdichter ist insbesondere die Beschaufelung von potentiellen Schäden durch diese Partikel betroffen.
Es ist bekannt, dass während des Verdichterbetriebs gezielt bestimmte Flüssigkeiten mit dem Gas- oder Luftstrom eingespritzt werden. Es wird zum Beispiel zwecks Reinigungszwecken ein Gemisch aus Wasser und einem handelsüblichen Konzentrat mittels einer oder mehrerer Zerstäubungsdüsen in den Verdichter eingespritzt wie es beispielsweise in der EP 0 468 024 beschrieben ist.
Während des Winterbetriebs ist die Bildung von Eis am Eintritt der Verdichterbeschaufelung und das Ansaugen von Eispartikeln (auch unter dem Begriff "ice ingestion" bekannt) äusserst gefährlich für die Integrität des Verdichters. Aus diesem Grund werden zur Verhinderung von Eisbildung am Verdichtereintritt Glykolmischungen eingespritzt.
Weiter wird zum Zweck der Verdunstungskühlung des angesaugten Gases oder der angesaugten Luft Wasser durch Einspritzung oder Zerstäubung in den Verdichter eingeführt. Diese Verdunstungskühlung dient der Erhöhung des Wirkungsgrads des Verdichters und letztendlich der Erhöhung der Gasturbinenleistung. Ein solches Verfahren ist beispielsweise US 5,463,873 offenbart.
Bei den Verdichtern von Turbinenstrahlantrieben, wie zum Beispiel in Flugzeugen und gasturbinenbetriebenen Schiffen tritt das Problem von Beschädigungen an den Verdichterbauteilen auf, die durch die Ansaugung von Regen, Nebel, Eis oder Salzwasser verursacht werden.
Bei Einspritzungen von verschiedenen Flüssigkeiten oder bei der Ansaugung von Flüssigkeitstropfen oder Feststoffpartikeln entsteht das Problem von Tropfenschlagerosion bzw. Erosion durch Feststoffpartikel an den Oberflächen der Bauteile, insbesondere der Beschaufelung und der Bauteile im Einlassbereich des Verdichters. Die Tropfenschlagerosion wird einerseits direkt durch die eingesprühten oder angesaugten Flüssigkeitstropfen auf den Oberflächen der Bauteile verursacht. Zu Beginn der Betriebszeit der Sprühdüsen für die Einspritzung von Flüssigkeiten sind die eingesprühten Tropfen zunächst klein, d.h. im Bereich von 10-20 Mikrometern Durchmesser. Nach einer gewissen Betriebszeit werden die Sprühdüsen jedoch derart abgenützt, dass die von ihnen versprühten Tropfen allmählich eine Grosse von bis zu 100 Mikrometern Durchmesser erreichen. Da die Masse und damit die kinetische Energie der Tropfen mit der dritten Potenz des Tropfendurchmessers anwächst, können grössere Tropfen weitaus mehr Erosionsschäden verursachen als kleine Tropfen. Deshalb können die von den Sprühdüsen versprühten Tropfen beträchtliche Tropfenschlagerosion verursachen. Anderseits entsteht Tropfenschlagerosion auch nach der Bildung von geschlossenen Flüssigkeitsfilmen, falls die Bauteile von der eingespritzten Flüssigkeit benetzt worden sind. Durch Flüssigkeitsabriss von einer Oberfläche können sich sekundäre grosse Tropfen bilden, die auf stromabwärts angeordneten Bauteilen Tropfenschlagerosion verursachen können.
Schliesslich besteht auch allgemein das Problem der Verschmutzung durch Bestandteile, die dem eingespritzten Wasser zugesetzt worden sind und sich allmählich auf den Oberflächen ablagern. Ablagerungen dieser Bestandteile sowie von weiterem Fremdmaterial kann sich negativ auf die Lebensdauer der Bauteile sowie auch auf die Leistung der Gasturbine auswirken.
Darstellung der Erfindung
Es ist der vorliegenden Erfindung die Aufgabe gestellt, Bauteile eines Verdichters für eine Gasturbine, wie zum Beispiel in einer Kraftanlage oder einem Flugzeugoder Schiffstriebwerk zu schaffen, deren Oberflächen der Tropfenschlagerosion durch Flüssigkeitstropfen und der Erosion durch Feststoffpartikel wie Staubpartikel und Eis widerstehen. Weiter sollen die Oberflächen der Bauteile so beschaffen sein, dass sie den in Flüssigkeiten vorhandenen Zusätzen und Bestandteilen widerstehen und sich Verschmutzungen auf ihnen nicht ablagern können.
Diese Aufgabe ist durch einen Verdichter für eine Gasturbine gemäss Anspruch 1 gelöst. Weitere besondere und bevorzugte Lösungen sind in den Unteransprüchen angegeben.
Ein Verdichter für eine Gasturbine gemäss der Erfindung weist Bauteile auf, wie zum Beispiel die Beschaufelung, die an ihren Oberflächen mit einer Beschichtung versehen sind, die mindestens zwei Schichten aus einem amorphen Kohlenstoff oder einem Plasmapolymer enthält. Die äusserste Schicht der Beschichtung besitzt insbesondere hydrophobe Eigenschaften. Für die hydrophobe Schicht eignen sich alle Schichten oder Schichtsysteme, die eine geringe Grenzflächenenergie besitzen, sofern sie kleiner ist als die Oberflächenspannung von Wasser.
Weiter besitzen diese Schichten zudem die für amorphen Kohlenstoff oder ein Plasmapolymer inhärent hohe Oberflächenhärte, wie zum Beispiel von 500 bis zu 3000 HV. Für Materialien mit hydrophoben Eigenschaften sowie auch Härten dieser Grosse ist der erwähnte amorphe Kohlenstoff oder ein Plasmapolymer besonders geeignet.
Die hydrophobe Eigenschaft der äussersten Schicht verhindert die Benetzung der Oberflächen. Auftreffende Flüssigkeitstropfen gehen eine sehr geringe Wechselwirkung mit der Oberfläche ein, da deren Grenzflächenenergie gering ist. Dadurch haften die Flüssigkeitstropfen nicht an den Oberflächen, vielmehr rollen sie über die Oberfläche hinweg unter Beibehaltung ihrer kleinen Grosse und ohne sich mit anderen Tropfen zu vereinigen oder gar einen geschlossenen
Flüssigkeitsfilm zu bilden. Die Bildung von grossen Flüssigkeitstropfen durch Abriss eines geschlossenen Films an einer Kante eines Bauteils wird dadurch verhindert. Die klein bleibenden Tropfen vermögen sodann auch keine signifikante Tropfenschlagerosion zu verursachen.
Hydrophobe Schichten wie zum Beispiel solche aus amorphem Kohlenstoff besitzen ferner auch schmutzabweisende Eigenschaften. Dadurch, dass die Flüssigkeitstropfen sofort abrollen, wird eine chemische Wechselwirkung der Flüssigkeit oder von Bestandteilen, die in der Flüssigkeit gelöst sind, mit der Oberfläche verhindert. Dies vermeidet sodann auch eine Ablagerung von weiterem Fremdmaterial, was sich positiv auf die Gasturbinenleistung und die Lebensdauer der beschichteten Bauteile auswirkt.
In einer speziellen und bevorzugten Ausführungsform der Erfindung weisen die Bauteile des Verdichters eine Schutzbeschichtung auf, die eine Schichtenfolge mit einem Schichtpaar oder mehreren Schichtpaaren aufweist, wobei die innere Schicht eines Schichtpaares im Vergleich zur äusseren Schicht des Schichtpaares eine höhere Härte aufweist und die äussere eine relativ niedrige Härte aufweist. Insbesondere weist die innere Schicht des Schichtpaares eine Härte von 1500 bis 3000 HV und die äussere Schicht eine Härte von 500 HV bis zu 1500 HV auf. Die alternierende Auftragung von Schichten mit einer hohen und einer im Vergleich niedrigeren Härte bewirkt beim Aufprall eines Flüssigkeitstropfens oder eines Feststoffpartikels einen Interferenzeffekt, bei dem sich die Druck- oder Kompressionswellen verschiedener, im Idealfall gegenläufiger Phasen weitgehend auslöschen. Dies führt zur Vernichtung der Druck- oder Kompressionswellen und letztendlich zur Verhinderung von Tropfenschlagerosion durch Flüssigkeitstropfen oder Erosion durch feste Partikel wie Staub oder Eis.
In einer weiteren Ausführung der Erfindung weisen die einzelnen Schichten der Schichtenfolge Dicken im Bereich von jeweils 0.1 bis 2 Mikrometern auf.
In einer weiteren besonderen Ausführung der Erfindung verhalten sich die Dicken der einzelnen Schichten der Schichtenfolge im umgekehrten Verhältnis zu ihrer relativen Härte. Als Beispiel kann die äussere Schicht eine Dicke von 1.0 bis 1.5 Mikrometer und die innere Schicht eine Dicke von 0.5 bis 0.75 Mikrometern aufweisen.
In einer weiteren bevorzugten Ausführung der Erfindung weisen die Oberflächen der Bauteile des Verdichters eine Haftschicht auf, auf der ein Schichtpaar oder mehrere Schichtpaare aufgetragen sind. Als Haftschicht eignet sich zum Beispiel eine auf Titan aufgebrachte härtere Schicht, welche der oben genannten inneren Schicht entspricht.
Ausführung der Erfindung
Gemäss der Erfindung enthält die hydrophobe Beschichtung amorphen Kohlenstoff. Hierunter sollen im folgenden wasserstoffhaltige Kohlenstoffschichten mit 10 bis 50 at -% Wasserstoffgehalt und mit einem Verhältnis von sp3 zu sp2-Bindungen zwischen 0.1 bis 0.9 verstanden werden. Generell können alle mittels Carbon- oder Hydro-Carbon-Precursorn hergestellten amorphen oder dichten Kohlenstoffschichten sowie Plasmapolymerschichten, polymerähnliche oder dichte Kohlenstoff- und Kohlenwasserstoffschichten verwendet werden, sofern sie die hydrophoben und die im folgenden genannten mechanischen oder chemischen Eigenschaften des amorphen Kohlenstoffs zur Herstellung von Einzelschichten oder Schichtfolgen aufweisen. Amorpher Kohlenstoff, auch diamond like carbon genannt, ist allgemein bekannt für seine aussergewöhnliche Härte, chemische Stabilität sowie auch für seine Elastizität. Ferner besitzt amorpher Kohlenstoff unter bestimmten Bedingungen eine niedrige Oberflächenenergie im Vergleich zur Oberflächenspannung von Wasser, sodass eine hydrophobe oder wasserabweisende Eigenschaft herbeigeführt wird. Dabei ist die Härte von amorphem Kohlenstoff durch Variierung der Parameter für die Herstellung einer Beschichtung veränderbar. Eine Schicht von relativ niedrigerer Härte (innerhalb des Härtebereichs von amorphem Kohlenstoff) ist im Vergleich zu einer harten Schicht lediglich als weniger hart zu verstehen. Eine weniger harte Schicht weist insbesondere eine ausgeprägte hydrophobe Eigenschaft auf.
Die erfindungsgemässe Beschichtung kann nach verschiedenen, allgemein bekannten Herstellungsverfahren realisiert werden, wie zum Beispiel Abscheidung mittels Glimmentladung in einem Plasma aus kohlenwasserstoffhaltigen Precursorn, lonenstrahlbeschichtung und Sputtern von Kohlenstoff in wasserstoffhaltigem Arbeitsgas.
Bei diesen Verfahren wird das Substrat einem Strom von Ionen von mehreren 100 eV ausgesetzt. Bei der Glimmentladung wird das Substrat in einer Reaktorkammer in Kontakt mit einer Kathode, die kapazitiv mit einem 13.56 MHz RF Generator verbunden ist, angeordnet. Die geerdeten Wände der Plasmakammer bilden dabei eine grosse Gegenelektrode. In dieser Anordnung lässt sich jeder Kohlenwasserstoffdampf oder jedes Kohlenwasserstoffgas als erstes Arbeitsgas für die Beschichtung verwenden. Um besondere Schichteigenschaften zu erzielen, beispielsweise verschiedene
Oberflächenenergien, Härten, optische Eigenschaften usw. werden verschiedene Gase zum ersten Arbeitsgas dazugegeben. Unter Zugabe von Stickstoff, fluor- oder silizium-haltigen Gasen werden beispielsweise hohe oder niedrige Oberflächenenergien erreicht. Die Zugabe von Stickstoff führt zusätzlich zu einer Erhöhung der Härte der resultierenden Schicht. Ferner ist mittels der Veränderung der Bias-Spannung über den Elektroden zwischen 100 und 1000 V die resultierende Härte der Schicht steuerbar, wobei eine hohe Bias-Spannung zu einer harten, amorphen Kohlenstoffschicht und eine tiefe Spannung zu einer amorphen Kohlenstoffschicht mit relativ niedrigerer Härte führt.
Bei dem erfindungsgemäßen Verdichter sind sämtliche Bauteile, die mit der angesaugten Luft oder mit eingespritzten Flüssigkeiten in Kontakt kommen mit der Schichtenfolge versehen. Insbesondere sind die Bauteile im Einlassbereich wie zum Beispiel die Beschaufelung und das Lager für die verstellbare Vorleitreihe damit zu versehen.
Die Erfindung ist auf Verdichter für Gasturbinen von Kraftanlagen jeder Art sowie auch von Turbinenstrahlantrieben und anderen Bauteilen in Flugzeugen und Schiffen anwendbar, wie etwa die Vorderkante der Tragflächen von Flugzeugen.
Die Bauteile des erfindungsgemässen Verdichters bestehen aus Materialien wie zum Beispiel Titan, rostfreie Stähle, Chromstähle, Aluminium sowie Karbidbildner. Die beschriebene Schichtenfolge mit Haftschicht eignet sich durchaus für eine Auftragung auf diesen Materialien.

Claims

Patentansprüche
1. Verdichter für eine Gasturbine dadurch gekennzeichnet, dass die Bauteile des Verdichters auf ihren Oberflächen eine Beschichtung zum Schutz gegen Erosion durch Flüssigkeitstropfen und/oder Feststoffpartikel aufweisen, die mindestens zwei Schichten aufweist, die amorphen Kohlenstoff oder ein
Plasmapolymer enthalten, wobei die äusserste Schicht der Beschichtung hydrophobe Eigenschaften aufweist.
2. Verdichter nach Anspruch 1 dadurch gekennzeichnet, dass die Beschichtung eine Schichtpaar oder eine Folge von mehreren Schichtpaaren aufweist, wobei die Härte der inneren Schicht eines Schichtpaares höher ist als die Härte der äusseren Schicht jenes Schichtpaares.
3. Verdichter nach Anspruch 2 dadurch gekennzeichnet, dass die innere Schicht eines Schichtpaares eine Härte im Bereich von 1500 bis 3000 HV und die äussere Schicht eines Schichtpaares eine Härte im Bereich von 500 bis 1500 HV aufweist.
4. Verdichter nach einem der Ansprüche 2 oder 3 dadurch gekennzeichnet, dass die Dicken der Schichten der Schichtenpaare sich in umgekehrtem Verhältnis zu ihrer Härte verhalten.
5. Verdichter nach einem der vorangehenden Ansprüche 2 bis 4 dadurch gekennzeichnet, dass die Dicken der inneren und äusseren Schichten der Schichtpaare im Bereich von 0.1 bis 2 Mikrometern liegen.
6. Verdichter nach einem der vorangehenden Ansprüche dadurch gekennzeichnet, dass die Oberflächen der Verdichterbauteile zunächst eine Haftschicht aufweisen, auf denen die Beschichtung aufgetragen ist.
7. Verdichter nach einem der vorangehenden Ansprüche dadurch gekennzeichnet, dass Beschichtung auf den Oberflächen von Bauteilen im Einlassbereich des
Verdichters, der Beschaufelung des Verdichters und/oder der Lagerstellen der verstellbaren Vorleitreihe aufgetragen ist.
EP02803485A 2001-11-19 2002-11-12 Verdichter für gasturbinen Expired - Lifetime EP1458981B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH21252001 2001-11-19
CH212501 2001-11-19
PCT/IB2002/004745 WO2003044374A1 (de) 2001-11-19 2002-11-12 Verdichter für gasturbinen

Publications (2)

Publication Number Publication Date
EP1458981A1 true EP1458981A1 (de) 2004-09-22
EP1458981B1 EP1458981B1 (de) 2005-07-20

Family

ID=4567609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02803485A Expired - Lifetime EP1458981B1 (de) 2001-11-19 2002-11-12 Verdichter für gasturbinen

Country Status (6)

Country Link
US (1) US7083389B2 (de)
EP (1) EP1458981B1 (de)
JP (1) JP2005518490A (de)
AU (1) AU2002366009A1 (de)
DE (1) DE50203708D1 (de)
WO (1) WO2003044374A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50203708D1 (de) 2001-11-19 2005-08-25 Alstom Technology Ltd Baden Verdichter für gasturbinen
GB2382847A (en) 2001-12-06 2003-06-11 Alstom Gas turbine wet compression
GB2382848A (en) 2001-12-06 2003-06-11 Alstom Gas turbine wet compression
US7247348B2 (en) * 2004-02-25 2007-07-24 Honeywell International, Inc. Method for manufacturing a erosion preventative diamond-like coating for a turbine engine compressor blade
CN1296517C (zh) * 2004-10-14 2007-01-24 北京工业大学 后续表面氟化处理的非晶碳薄膜疏水材料的制备方法
JP4611914B2 (ja) * 2006-02-28 2011-01-12 トーカロ株式会社 圧縮機翼及びその製造方法、並びに、火力発電用ガスタービン
JP2007327349A (ja) * 2006-06-06 2007-12-20 Tocalo Co Ltd 送液ポンプ用部材及びその製造方法
EP1925782A1 (de) * 2006-11-23 2008-05-28 Siemens Aktiengesellschaft Unbenetzbare Flächenbeschichtung von Nassdampfturbinenbauteilen
DE102007042124A1 (de) * 2007-09-05 2009-03-12 Lufthansa Technik Ag Triebwerksbauteil für eine Gasturbine
ES2652031T3 (es) 2008-06-12 2018-01-31 General Electric Company Compresor centrífugo para entornos de gas húmedo y procedimiento de fabricación
DE202008009985U1 (de) * 2008-07-24 2009-12-17 Ebm-Papst Mulfingen Gmbh & Co. Kg Ventilator- oder Gebläserad mit einer Antihaftbeschichtung
JP5244495B2 (ja) * 2008-08-06 2013-07-24 三菱重工業株式会社 回転機械用の部品
DE102009003898A1 (de) 2009-01-03 2010-07-08 Harald Prof. Dr. Dr. habil. Reiss Turbinenschaufeln und andere massive Bauteile
FR3003539B1 (fr) 2013-03-22 2016-04-15 European Aeronautic Defence & Space Co Eads France Structure anti-erosion pour aeronefs
US20140321976A1 (en) * 2013-04-26 2014-10-30 Sol-Electrica, Llc Modular thermal molecular adhesion turbine
CN106536860B (zh) 2014-04-09 2019-01-11 诺沃皮尼奥内股份有限公司 保护涡轮机的构件免受液滴侵蚀的方法、构件及涡轮机
WO2017222516A1 (en) * 2016-06-22 2017-12-28 Siemens Aktiengesellschaft Method and system for reducing liquid droplet impact damage by superhydrophobic surfaces
WO2018106539A1 (en) 2016-12-05 2018-06-14 Cummins Filtration Ip, Inc. Separation assembly with a single-piece impulse turbine
WO2018129438A1 (en) * 2017-01-09 2018-07-12 Cummins Filtration Ip, Inc. Impulse turbine with non-wetting surface for improved hydraulic efficiency
WO2019103799A1 (en) * 2017-11-21 2019-05-31 Bl Technologies, Inc. Improving steam power plant efficiency with novel steam cycle treatments
US12030063B2 (en) 2018-02-02 2024-07-09 Cummins Filtration Ip, Inc. Separation assembly with a single-piece impulse turbine
WO2019204265A1 (en) 2018-04-17 2019-10-24 Cummins Filtration Ip, Inc. Separation assembly with a two-piece impulse turbine
US11015474B2 (en) * 2018-10-19 2021-05-25 Raytheon Technologies Corporation Geometrically segmented abradable ceramic thermal barrier coating with improved spallation resistance
JP7146582B2 (ja) * 2018-11-08 2022-10-04 キヤノン株式会社 液体吐出ヘッド

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899943A (en) * 1959-08-18 Preventing stalling of carbureted
SU572576A1 (ru) * 1965-07-07 1977-09-15 Yavelskij Mikhail B Влажнопарова турбина
US4695229A (en) * 1984-05-17 1987-09-22 Feuling James J Friction reduction for moving elements in contact with a fluid medium
SU1507991A1 (ru) 1988-01-13 1989-09-15 Комсомольский-на-Амуре политехнический институт Лопатка влажнопаровой ступени турбины
CH681381A5 (de) 1990-02-14 1993-03-15 Turbotect Ag
US5707717A (en) * 1991-10-29 1998-01-13 Tdk Corporation Articles having diamond-like protective film
EP0589641A3 (en) 1992-09-24 1995-09-27 Gen Electric Method of producing wear resistant articles
US5463873A (en) * 1993-12-06 1995-11-07 Cool Fog Systems, Inc. Method and apparatus for evaporative cooling of air leading to a gas turbine engine
US5714202A (en) * 1995-06-07 1998-02-03 Lemelson; Jerome H. Synthetic diamond overlays for gas turbine engine parts having thermal barrier coatings
DE19625329A1 (de) * 1996-06-25 1998-01-08 Karlsruhe Forschzent Stoffverbund und Verfahren zu dessen Herstellung
DE19808180A1 (de) * 1998-02-26 1999-09-09 Bosch Gmbh Robert Kombinierte Verschleißschutzschicht, Verfahren zur Erzeugung derselben, die damit beschichteten Objekte und deren Verwendung
JP2003501555A (ja) * 1999-06-08 2003-01-14 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム ドープダイヤモンド状カーボン皮膜
DE10026477A1 (de) * 2000-05-27 2001-11-29 Abb Patent Gmbh Schutzüberzug für metallische Bauelemente
DE10056241B4 (de) * 2000-11-14 2010-12-09 Alstom Technology Ltd. Niederdruckdampfturbine
DE10056242A1 (de) * 2000-11-14 2002-05-23 Alstom Switzerland Ltd Kondensationswärmeübertrager
DE50203708D1 (de) 2001-11-19 2005-08-25 Alstom Technology Ltd Baden Verdichter für gasturbinen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03044374A1 *

Also Published As

Publication number Publication date
DE50203708D1 (de) 2005-08-25
EP1458981B1 (de) 2005-07-20
WO2003044374A1 (de) 2003-05-30
US7083389B2 (en) 2006-08-01
US20040213675A1 (en) 2004-10-28
AU2002366009A1 (en) 2003-06-10
JP2005518490A (ja) 2005-06-23

Similar Documents

Publication Publication Date Title
EP1458981B1 (de) Verdichter für gasturbinen
DE10056241B4 (de) Niederdruckdampfturbine
DE60219116T2 (de) Verfahren zur Entfernung von einer Metallverkleidung von einem Turbinenschaufel
DE60301074T2 (de) Verfahren zur Entfernung der Beschichtung eines Durchganglochs in einem Bauteil und auf diese Weise bearbeitetes Bauteil
WO2002040934A1 (de) Kondensationswärmeübertrager
EP2478300B1 (de) Verfahren zum herstellen einer beschichteten auszugsführung
EP2352907B1 (de) Erosionsschutzschicht für aerodynamische komponenten und strukturen und verfahren zu ihrer herstellung
EP3320127B1 (de) Konturtreue schutzschicht für verdichterbauteile von gasturbinen
EP1902160A1 (de) Keramische wärmedämmschicht
DE112009002430T5 (de) Verfahren zur Abscheidung einer Beschichtung auf eine Blisk
DE10192241B4 (de) Schutzüberzug für metallische Bauelemente
EP1260602A1 (de) Verfahren zum Erzeugen eines wärmedämmenden Schichtsystems auf einem metallischen Substrat
DE19622732C2 (de) Oberflächenmodifikation von Magnetköpfen
DE10112854B4 (de) Si-dotierte amorphe C-Beschichtung für Lackierglocken
EP2390467A1 (de) Schutzschicht zur Vermeidung von Tropfenschlagerosion
DE102005024518B4 (de) Verfahren und Anordnung zum Beschichten eines Substrates
EP0451512B1 (de) Verfahren zum Beschichten von Schaufeln
DE102009003898A1 (de) Turbinenschaufeln und andere massive Bauteile
DE102012105521A1 (de) Verwendung einer Kohlenstoffbeschichtung sowie Maskierungsmittel und Beschichtungsanlage zum thermischen Spritzen
WO1982001898A1 (en) Method for coating a metal with a protection layer resistant to hot gas corrosion
EP1598444B1 (de) Verfahren zum Einstellen der elektrischen Leitfähigkeit einer durch Druck in ihrer elektrischen Leitfähigkeit veränderbaren Beschichtung eines Maschinenbauteils durch Trockeneisstrahlen
EP1477579A1 (de) Beschichtetes Substrat, das bei hohen Temperaturen gegen Oxidation und Korrossion geschützt ist
EP1561542A1 (de) Verfahren zur Entfernung einer Schicht eines Bauteils
DE102006044956A1 (de) Oberflächenbeschichtung gegen Tropfenschlagerosion
DE102019124080B4 (de) Verfahren zur Instandsetzung von DLC-beschichteten Bauteilen und DLC-beschichtetes Flugzeugbauteil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50203708

Country of ref document: DE

Date of ref document: 20050825

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050917

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101022

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20111130

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50203708

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121112