EP1458817A1 - Verfahren zur herstellung von polymerisaten - Google Patents

Verfahren zur herstellung von polymerisaten

Info

Publication number
EP1458817A1
EP1458817A1 EP02793049A EP02793049A EP1458817A1 EP 1458817 A1 EP1458817 A1 EP 1458817A1 EP 02793049 A EP02793049 A EP 02793049A EP 02793049 A EP02793049 A EP 02793049A EP 1458817 A1 EP1458817 A1 EP 1458817A1
Authority
EP
European Patent Office
Prior art keywords
polymers
acid
weight
acrylate
monomers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02793049A
Other languages
English (en)
French (fr)
Inventor
Christian Drohmann
Klemens Mathauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1458817A1 publication Critical patent/EP1458817A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • A61K8/894Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone modified by a polyoxyalkylene group, e.g. cetyl dimethicone copolyol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • A61Q1/06Lipsticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/10Preparations containing skin colorants, e.g. pigments for eyes, e.g. eyeliner, mascara
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences

Definitions

  • Polymers with film-forming properties are used for cosmetic preparations and are particularly suitable as additives for hair and skin cosmetics.
  • polymers can have a particular effect.
  • the polymers can contribute, among other things, to moisturizing and conditioning the skin and to improving the feeling on the skin.
  • the skin becomes smoother and more supple.
  • polymers are used to strengthen, improve the structure and shape of the hair. They increase combability and improve the feel of the hair.
  • These hair treatment compositions generally contain a solution of the film former in an alcohol or a mixture of alcohol and water.
  • hair treatment agents One requirement for hair treatment agents is to give the hair shine, flexibility and a natural, pleasant feel.
  • Polysiloxanes are often used, but are incompatible with polar polymers and often require further additives in order to be able to be formulated at all. Demixing can cause problems both during storage of the formulation and during use. In order to prevent segregation, there has been no lack of attempts to covalently bind polysiloxane groups to the polymer.
  • EP-A 408 311 describes graft copolymers with a carbon main chain to which polydimethylsiloxane side chains are bound. Only polymers are described which are produced with the aid of unsaturated monomers which carry a polysiloxane chain.
  • EP-A 670 342 describes the use of alkoxylated silicones in hair care products.
  • the use of polymers of unsaturated compounds in hair care products is not disclosed.
  • the use of alkoxylated silicones as an additive to commercially available hair setting polymers improves their grip, but at the same time leads to a reduced setting effect.
  • EP-A 412 704 and EP-A 412 707 describe polysiloxane groups in the form of macromonomers with molecular weights from 1000 to 50,000, which are polymerized with conventional hydrophobic and hydrophilic monomers. The synthesis of these monomers is extremely complex. Unreacted macromonomers and their unreactive impurities can hardly be separated from the polymers due to their high molecular weight. They represent a toxicological and allergenic risk. In addition, in order to achieve a good effect, the copolymers obtained can often only be formulated in combination with other polymers, carriers and other auxiliaries, such as the abovementioned. Teach patents.
  • WO 99/04750 describes polymers which are obtainable by radical polymerization of ethylenically unsaturated monomers in the presence of silicone derivatives containing polyalkylene oxide.
  • WO 99/04750 describes the preparation of polymers with the addition of ethyl hexylthioglycolate (Examples 15 to 20).
  • a disadvantage of the polymers obtainable according to WO 99/04750 is above all their strong inherent odor, which in some cases increases when they are stored and / or formulated in cosmetic products. This means that the known products can only be used to a limited extent. Cosmetic formulations attempt to mask this inherent smell of the polymers by using perfume oils. Apart from the fact that the complete coverage of the Odor is not always possible, the use of perfume oils leads to undesirable allergic reactions in individual cases. This limits the use of the known polymers in cosmetic products. In addition, the polymers themselves should be less irritating than the products of the prior art and should therefore be suitable for use in anti-allergenic cosmetic preparations.
  • the object of the present invention "has thus been to provide a process for disposal can be obtained in the polymers which are suitable because of their neutral odor for a wide range of applications, in particular in cosmetic compositions and in particular to formulations without the addition of It is of particular interest here that the polymers in cosmetic preparations do not develop their own odor even after storage, and there are also application properties, such as washability from the hair, compatibility with other cosmetic ingredients, in particular solubility in water-containing preparations, handle and setting The provision of polymers which are less irritating than the products of the prior art is also desirable. Another object was to provide polymers which can be used in powder form and are particularly suitable for special decorative cosmetic preparations.
  • the task is solved by a method in which one
  • the task is solved by a method in which one
  • the polymers obtainable in this way are odorless and do not develop any odor even when stored both as individual substances and in cosmetic preparations. At the same time, the polymers obtainable in this way show good film-forming properties and good compatibility with conventional cosmetic ingredients.
  • Linear and branched alkane thiols with a C chain length of C 10 to C 22 are used as alkane thiols.
  • Linear alkanethiols are particularly preferred, further preferred are alkanethiols with a chain length of C 13 to C 22, in particular C 14 to C 18.
  • n-decanethiol, n-dodecanethiol, tert-dodecanethiol, n-tetradecanethiol, n are mentioned Pentadecanethiol, n-hexadecanethiol, n-heptadecanethiol, n-octadecanethiol, n-nonadecanethiol, n-eicosanethiol, n-docosanethiol. Linear, even-numbered alkane thiols are particularly preferred.
  • the alkane thiols can also be used in mixtures.
  • the alkane thiols are usually used in amounts of 0.1 to 5% by weight, in particular 0.25 to 2% by weight, based on the monomers to be polymerized.
  • the alkanethiols are usually added to the polymerization together with the monomers.
  • a subsequent hydrogen peroxide treatment is required in order to obtain odorless, neutral polymers.
  • 0.01 to 2.0% by weight, in particular 0.02 to 1.0% by weight, particularly preferably 0.03 to 0.15% by weight, of hydrogen peroxide are usually used, in particular 0.1 to 1.0% by weight, based on the monomers to be polymerized. It has proven advantageous to carry out the hydrogen peroxide treatment at a temperature of 20 to 100 ° C., in particular 30 to 80 ° C.
  • the hydrogen peroxide treatment is usually between 30 min. and 240 min. , in particular carried out between 45 and 90 min.
  • the hydrogen peroxide treatment can be omitted. In a further embodiment of the invention, however, hydrogen peroxide treatment can also be added when alkanethiols with a chain length of C 13 to C 22 are added.
  • the polymers are transferred in powder form. All methods known to those skilled in the art are suitable for this, such as spray drying, freeze drying and fluidized bed drying.
  • Spray drying is particularly preferred.
  • Suitable suitable polymerizable monomers (a) are ethylenically unsaturated monomers. Either single monomers or combinations of two or more monomers can be used.
  • Monomers that can be polymerized with a free radical initiated reaction are preferred.
  • ethylenically unsaturated means that the monomers have at least one polymerizable carbon-carbon double bond which can be mono-, di-, tri- or tetrasubstituted.
  • the ethylenically unsaturated monomers (a) can be described by the following general formula:
  • X is selected from the group consisting of -OH, -0M, -OR 8 , NH, -NHR 8 , N (R 8 ) 2 ;
  • M is a cation selected from the group consisting of: Na +, K +, Mg ++, Ca ++, Zn ++, NH4 +, alkylammonium, dialkylammonium, trialkylammonium and tetraalkylammonium;
  • radicals R 8 can be selected identically or differently from the group consisting of -H, C1-C40 linear or branched-chain alkyl radicals, N, N-dimethylaminoethyl, 2-hydroxyethyl,
  • R 7 and R 6 are independently selected from the group consisting of: -H, Ci-Cs linear or branched chain alkyl chains, methoxy, ethoxy, 2-hydroxyethoxy, 2-methoxyethoxy and 2-ethoxyethyl.
  • Suitable monomers (a) are, for example, acrylic acid and its salts, esters and amides.
  • the salts can be of any non-toxic Metal, ammonium or substituted ammonium counterions can be derived.
  • the esters can be derived from C 1 -C 40 linear, C 3 -C 4 o branched, or C 3 -C 4 carbocyclic alcohols, from multifunctional alcohols with 2 to about 8 hydroxyl groups such as ethylene glycol, hexylene glycol, glycerol , and 1, 2, 6-hexanetriol, of amino alcohols or of alcohol ethers such as methoxyethanol and ethoxyethanol or polyethylene glycols.
  • N, N-dialkylaminoalkyl acrylates and methacrylates and N-dialkylaminoalkyl acrylates and methacrylamides are also suitable.
  • R 9 H, alkyl with 1 to 8 C atoms
  • R 11 alkylene with 1 to 24 carbon atoms, optionally substituted by alkyl,
  • R 12 , R 13 C 1 -C 40 alkyl radical
  • the ide can be unsubstituted, N-alkyl or N-alkylamino monosubstituted, or N, N-dialkyl-substituted or N, N-dialkylamino disubstituted, in which the alkyl or alkylamino groups of C 1 -C 40 linear, C 3 -C 4 o branched chain or C3-C40 carbocyclic units are derived.
  • the alkylamino groups can be quaternized.
  • Preferred monomers of formula II are N, N-dimethylaminomethyl (meth) acrylate, N, N-diethylaminomethyl (meth) acrylate, N, N-dimethyl-a inoethyl (meth) crylate, N, N-diethylaminoethyl (meth) acrylate.
  • Monomers (a) which can also be used are substituted acrylic acids and salts, esters and amides thereof, where the substituents on the carbon atoms are in the two or three positions of acrylic acid and are selected independently of one another from the group consisting of C 1 -C 4 alkyl, -CN, COOH particularly preferably methacrylic acid, ethacrylic acid and 3-cyanoacrylic acid.
  • These salts, esters and amides of these substituted acrylic acids can be as above described for the salts, esters and amides of acrylic acid.
  • Suitable monomers (a) are vinyl and allyl esters of C 1 -C 40 linear, C 3 -C 4 o branched-chain or C 3 -C 4 o carbocyclic carboxylic acids (for example: vinyl acetate, vinyl propionate, vinyl neonononate, vinyl neoundecanoic acid or t- Vinyl butyl benzoate); Vinyl or allyl halides, preferably vinyl chloride and allyl chloride, vinyl ether, preferably methyl, ethyl, butyl or dodecyl vinyl ether, vinylformamide, vinyl methylacetamide, vinylamine; Vinyl lactams, preferably vinyl pyrrolidone and vinyl caprolactam, vinyl or allyl-substituted heterocyclic compounds, preferably vinyl pyridine, vinyl oxazoline and allyl pyridine.
  • N-vinylimidazoles of the general formula III are suitable, in which R 14 to R 15 independently of one another are hydrogen, C 1 -C 4 -alkyl or phenyl:
  • R 17 C 1 -C 24 alkyl
  • Suitable monomers (a) are vinylidene chloride; and hydrocarbons with at least one carbon-carbon double bond, preferably styrene, alpha-methylstyrene, tert-butylstyrene, butadiene, isoprene, cyclohexadiene, ethylene, propylene, 1-butene, 2-butene, isobutylene, vinyltoluene, and mixtures of these monomers.
  • Particularly suitable monomers (a) are acrylic acid, methacrylic acid, ethyl acrylic acid, methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, iso-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, methyl methacrylate, ethyl methacrylate, Propyl methacrylate, n-butyl methacrylate, iso-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, methyl ethacrylate, ethyl ethacrylate, n-butyl ethacrylate, iso-butyl ethacrylate, t-butyl ethacrylate, 2-ethylhexyl ethacrylate, decyl
  • vinyl ether for example: methyl, ethyl, butyl or dodecyl vinyl ether
  • vinyl formamide vinyl methylacetamide
  • vinylamine Methyl vinyl ketone
  • maleimide vinyl pyridine
  • vinyl imidazole vinyl furan
  • styrene styrene sulfonate
  • allyl alcohol and mixtures thereof.
  • acrylic acid, methacrylic acid, maleic acid, fumaric acid, crotonic acid, maleic anhydride and its half esters methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, t-butyl acrylate, t-butyl methacrylate, isobutyl acrylate, isobutyl acrylate are particularly preferred acrylate, 2-ethylhexyl acrylate, Nt-butylacrylamide, N-octylacrylamide, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, alkylene glycol (meth) acrylates, unsaturated sulfonic acids such as, for example, acrylamidopropanesulfonic acid, vinyl ether pyrrol
  • Monomers with a basic nitrogen atom can be quaternized in the following way:
  • alkyl halides with 1 to 24 carbon atoms in the alkyl group e.g. Methyl chloride, methyl bromide, methyl iodide, ethyl chloride, ethyl bromide, propyl chloride, hexyl chloride, dodecyl chloride, lauryl chloride and benzyl halides, especially benzyl chloride and benzyl bromide.
  • Other suitable quaternizing agents are dialkyl sulfates, especially dimethyl sulfate or diethyl sulfate.
  • the quaternization of the basic amines can also be carried out with alkylene oxides such as ethylene oxide or propylene oxide in the presence of acids.
  • alkylene oxides such as ethylene oxide or propylene oxide
  • Preferred quaternizing agents are: methyl chloride, dimethyl sulfate or diethyl sulfate.
  • (meth) acrylates are used as monomers (a).
  • the quaternization can be carried out before the polymerization or after the polymerization.
  • reaction products of unsaturated acids such as acrylic acid or methacrylic acid
  • Examples include: (meth) acryloyloxyhydroxy-propyltrimethylammonium chloride and (meth) acryloyloxyhydroxypropyltriethylammonium chloride.
  • the basic monomers can also be cationized by reacting with mineral acids such as e.g. Sulfuric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, phosphoric acid or nitric acid, or with organic acids, e.g. Formic acid, acetic acid, lactic acid, or citric acid can be neutralized.
  • mineral acids such as e.g. Sulfuric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, phosphoric acid or nitric acid
  • organic acids e.g. Formic acid, acetic acid, lactic acid, or citric acid can be neutralized.
  • macromonomers such as, for example, silicone-containing macromonomers with one or more radical-polymerizable groups or alkyloxazoline macromonomers as described, for example, in EP 408 311 can be used as monomers (a).
  • crosslinking compounds or compounds which regulate the molecular weight can be used in combination or alone.
  • sulfur compounds e.g. mercaptoethanol, 2-ethylhexylthioglycolate, thioglycolic acid or dodecyl mercaptan
  • tribromochloromethane or other compounds which have a regulating effect on the molecular weight of the polymers obtained can be used as regulators.
  • silicone compounds containing thiol groups can also be used. Silicone-free controllers are preferably used.
  • Crosslinking monomers which can be used are compounds having at least two ethylenically unsaturated double bonds, for example esters of ethylenically unsaturated carboxylic acids, such as acrylic acid or methacrylic acid and polyhydric alcohols, ethers of at least dihydric alcohols, for example vinyl ether or allyl ether. Also suitable are straight-chain or branched, linear or cyclic aliphatic or aromatic hydrocarbons which have at least two double bonds which must not be conjugated to the aliphatic hydrocarbons.
  • Amides of acrylic and methacrylic acid and N-allylamines of at least divalent amines such as (1, 2-diaminoethane, 1,3-diamino-propane) are also suitable.
  • triallylamine or corresponding ammonium salts N-vinyl compounds of urea derivatives, at least divalent amides, cyanurates or urethanes.
  • More suitable Crosslinkers are divinyldioxane, tetraallylsilane or tetravinylsilane.
  • crosslinking agents are, for example, methylene bisacrylamide, triallylamine and triallylammonium salts, divinyl imidazole, N, N'-divinylethylene urea, reaction products of polyhydric alcohols with acrylic acid or methacrylic acid, methacrylic acid esters and acrylic acid esters of polyalkylene oxides or polyhydric alcohols with ethylene oxide and / or propylene / or epichlorohydrin have been implemented.
  • the monomers (a) according to the invention can be partially or completely neutralized with acids or bases before or after the polymerization in order, for example, to adjust the water solubility or dispersibility to a desired level.
  • mineral bases such as sodium carbonate, alkali hydroxides and ammonia
  • organic bases such as amino alcohols, especially 2-amino-2-methyl-1-propanol, monoethanolamine, diethanolamine, triethanolamine, triisopropanolamine, tri [(2 -hydroxy) 1-propyl] amine, 2-A ino-2-methyl-1,3-propanediol, 2-amino-2-hydroxymethyl-1, 3-propanediol and diamines such as lysine can be used.
  • mineral acids such as hydrochloric acid, sulfuric acid or phosphoric acid
  • organic acids such as carboxylic acids, lactic acid, citric acid or others can be used as neutralizing agents for monomers bearing cationizable groups.
  • Particularly suitable polyalkylene oxide-containing silicone derivatives (b) are those which contain the following structural elements:
  • R 1 can be identical or different and either come from the group of aliphatic hydrocarbons with 1 to 20 carbon atoms, are cyclic aliphatic hydrocarbons with 3 to 20 C atoms, are aromatic in nature or are equal to R 5 , where:
  • radicals R 1 , R 2 or R 3 are a radical containing polyalkylene oxide as defined above, and n is an integer from 1 to 6,
  • x and y are integers such that the molecular weight of the polysiloxane block is between 300 and 30000,
  • a, b can be integers between 0 and 50, with the proviso that the sum of a and b is greater than 0 and C is 0 or 1.
  • Preferred radicals R 2 and R 5 are those in which the sum of a + b is between 5 and 30.
  • the groups R 1 are preferably selected from the following group: methyl, ethyl, propyl, butyl, isobutyl, pentyl, isopentyl, hexyl, octyl, decyl, dodecyl and octadecyl, cycloaliphatic radicals, especially cyclohexyl, aromatic groups, especially phenyl or naphthyl, mixed aromatic-aliphatic radicals such as benzyl or phenylethyl as well as tolyl and xylyl and R 5 .
  • R 1 -CH 3
  • R 4 -H; -C0CH 3 , alkyl with C ⁇ -C 4
  • n 1 to 6, in particular 2 to 4, preferably 3
  • x and y are integers such that the molecular weight of the polysiloxane block is between 1000 and 10,000,
  • a, b can be integers between 0 and 50, with the proviso that the sum of a and b is greater than 0.
  • silicone derivatives which are available under the trade names Belsil DMC 6032 TM (Wacker) and Dow Coming 190 TM (Dow Chemicals).
  • the monomers (a) of the polysiloxane-containing polymers of the present invention can make up from 50 to 99.9% by weight, preferably 70 to 99% by weight, particularly preferably 85 to 98% by weight. If the ethylenically unsaturated monomers (a) are used as a combination of two monomers (al and a2), it has proven advantageous
  • the silicone derivatives (b) are generally present in the polymer according to the invention in amounts of 0.1 to 50, preferably 0.5 to 20, particularly preferably 2 to 20 15% by weight.
  • a monomer mixture is used
  • R 1 -CH 3
  • R 4 -H; -C0CH 3 , alkyl with C 1 -C 4
  • n 1 to 6, in particular 2 to 4, preferably 3
  • 5 x and y are integers such that the molecular weight of the polysiloxane block is between 1000 and 10,000,
  • a, b can be integers between 0 and 50 with the proviso that the sum of a and b is greater than O.
  • silicone compounds (b) are not present during the polymerization but are mixed in after the polymerization, generally very soft, sticky films are obtained which are suitable for the applications according to the invention in cosmetics for skin and hair
  • polymerizable it is meant that the monomers used can be polymerized using any conventional synthetic method.
  • this can be solution polymerization, emulsion polymerization, reverse emulsion polymerization, suspension polymerization, reverse suspension polymerization or precipitation polymerization, without the methods which can be used being restricted thereto.
  • solution polymerization water, conventional organic solvents or the silicone derivatives according to the invention themselves or mixtures of the solvents mentioned can be used as solvents.
  • the polymers according to the invention preferably have a K value (according to Fickentscher, Cellulosechemie, Vol. 13, pp. 58-64 (1932) at 40-25 ° C., measured in 1% by weight ethanolic solution) of 30 to 50, preferably 37 to 41.
  • K value accordinging to Fickentscher, Cellulosechemie, Vol. 13, pp. 58-64 (1932) at 40-25 ° C., measured in 1% by weight ethanolic solution
  • water-dispersible means polymers which form a fluid in contact with the water within 24 hours and which, without optical aids, does not reveal any solid particles to the eye.
  • 100 mg of the polymer in the form of a 100 ⁇ m thick film are placed in 100 ml of water (20 ° C.) and shaken for 24 hours on a commercially available shaking table. If after shaking no more solid particles can be seen, but the fluid is cloudy, the polymer is water-dispersible; without cloudiness it is said to be water soluble.
  • polymers such as, for example, homopolymers and copolymers of ethylenically unsaturated monomers, and also polyamides, polyurethanes or polyesters, may also be present in the polymerization of the monomers.
  • the polyamides, polyurethanes, polyesters are preferably ionically modified, e.g. with carboxylate or sulfonate groups.
  • the polymers are prepared in a customary manner using initiators, such as peroxo or azo compounds, for example dibenzoyl oxide, t-butyl perpivalate, t-butyl per-2-ethylhexanoate, di-t-butyl peroxide, t-butyl hydroperoxide, 2,5- Dimethyl-2, 5-di (t) butylperoxy (hexane), alkali metal or ammonium persulfates, azo-bis-isobutyronitrile, 2, 2 '-azo-bis- (2-methylbutyronitrile), 2, 2' -azo-bis- (2, 4-dimethylvaleronitrile), 1, 1 '-azo-bis- (1-cyclohexanecarbonitrile), 2, 2' -azo-bis- (2-amidino-propane) salts, 4,4'-azo-bis- (4-cyanovaleric acid) or 2- (carbamoylazo) isobutyronitrile etc
  • the emulsion polymerization is usually carried out with the exclusion of oxygen at temperatures in the range from 20 to 200.degree.
  • the polymerization can be carried out batchwise or continuously.
  • the monomers, initiators and alkanethiols are metered uniformly into the reaction vessel during the polymerization.
  • the monomers, the alkanethiol and the initiator can, however, also be placed in the reactor and polymerized, with cooling possibly being necessary.
  • post-polymerization with the addition of suitable initiators can be carried out in a known manner in order to reduce the residual monomer content.
  • physical deodorization can also be carried out in the usual way, for example by introducing water vapor.
  • the K value desired in each case can be divided in a manner known per se by choosing the polymerization conditions, for example the polymerization temperature and the initiator concentration. If necessary, especially when using emulsion and suspension polymerization, the use of regulators, in particular sulfur compounds such as mercaptoethanol, 2-ethylhexylthioglycolate, thioglycolic acid or dodecyl mercaptan, can be appropriate to reduce the K value.
  • the K values are measured according to Fikentscher, Cellulosechemie, vol. 13, pp. 58 to 64 (1932) at 25 ° C in 1% by weight ethanolic solution and represent a measure of the molecular weight.
  • the dispersion obtained can either be incorporated directly into an aqueous, aqueous-alcoholic or alcoholic cosmetic preparation, for example a hair-setting preparation, or drying, e.g. Spray drying, the dispersion, so that the polymer can be used and processed as a powder.
  • the invention further relates to polymers obtainable by the process according to claims 1 to 13.
  • the polymers obtainable in this way are notable for their low odor, low allergenic potential and, at the same time, good hair cosmetic properties.
  • Another object of the invention relates to the use of the polymers according to the invention in particular in powder form in cosmetic preparations, in particular in hair cosmetic preparations.
  • hair cosmetic preparations are hair treatments, hair lotions, hair rinses, hair emulsions, tip fluids, leveling agents for perms, hot oil treatment preparations, conditioners, curl relaxers, styling wrap lotions, setting lotions, shampoos, hair waxes, pomades, hair foams, hair colorants or hair sprays. It is particularly preferred to use the acrylate polymers in hairstyle fixers, which are in the form of spray preparations and / or hair foams.
  • the polymers according to the invention are notable for their high compatibility with the nonpolar blowing agents in spray preparations, in particular with hydrocarbons such as n-propane, isopropane, n-butane, isobutane, n-pentane and mixtures thereof. They have a good hair-setting effect and are characterized by the fact that they practically do not stick the hair together.
  • the polymers In addition to being odorless, the polymers have excellent results in terms of the application properties in hair cosmetic preparations. They are clearly soluble in alcohols such as ethanol or isopropanol and in mixtures of these alcohols with water. The clarity of the solutions is also retained when the solutions are used in standard spray formulations together with blowing agents such as dimethyl ether.
  • the hair fixatives according to the invention can be washed out of the hair without any problems. Hair treated with them has increased suppleness and a pleasant natural feel. At the same time, the setting effect is high, so that in principle it is possible to reduce the amount of film former required in the hairspray formulation. Due to the odorlessness of the polymers, there is no need to add odor-covering perfume oils if necessary. For the reasons mentioned, the polymers are particularly suitable as film formers in hair cosmetic preparations.
  • wt .-% preferably 20 to 60 wt .-%, in particular 25 to 50 wt .-% of a common organic solvent such as especially ethanol, isopropanol and dirthhoxymethane and also acetone, n-propanol, n-butanol , 2-methoxypropan-l-ol, n-pentane, n-hexane, cyclohexane, n-heptane, n-octane or dichloromethane or mixtures thereof 0 to 90% by weight, preferably 30 to 80% by weight, in particular 45 to 60% by weight, of a conventional blowing agent such as n-propane, iso-propane, n-butane, isobutane, 2,2-dimethylbutane, n -Pentane, isopentane, dimethyl ether, difluoroethane, fluorotrichloromethane
  • blowing agents of the compounds mentioned are, above all, the hydrocarbons, in particular propane, n-butane,
  • the hair cosmetic preparations according to the invention are also particularly suitable for pump spray preparations without the addition of blowing agents or also for aerosol sprays with conventional compressed gases such as nitrogen, compressed air or carbon dioxide as blowing agents.
  • a water-containing standard spray formulation has, for example, the following composition:
  • the polymers according to the invention can be present in final preparations as aqueous or aqueous-alcoholic solutions, 0 / W and 35 W / 0 emulsions in the form of shampoos, creams, foams, lotion, mousse, sprays (pump spray or aerosol), gels or gel sprays and, accordingly, with usual additional auxiliaries can be formulated.
  • auxiliaries are: surfactants, oil bodies, emulsifiers, co-emulsifiers, superfatting agents, pearlescent waxes, consistency agents, thickeners, fats, waxes, silicone compounds, hydrotropes, preservatives, perfume oils, dyes, stabilizers, pH value regulators, cosmetic care and
  • active ingredients such as AHA acids, fruit acids, ceramides, phytantriol, bisabolol, panthenol, collagen, provitamins and vitamins, e.g. vitamins A, E and C, proteins and protein hydrolyzates (e.g. Wheat, almond or pea proteins), solubilizers, complexing agents, repellents, bleaches, colorants, tinting agents, browning agents (for example dihydroxyacetone), micropigments such as titanium dioxide or zinc oxide and the like. Polymers can also be included.
  • active ingredients such as AHA acids, fruit acids, ceramides, phytantriol, bisabolol, panthenol, collagen, provitamins and vitamins, e.g. vitamins A, E and C, proteins and protein hydrolyzates (e.g. Wheat, almond or pea proteins), solubilizers, complexing agents, repellents, bleaches, colorants, tinting agents, browning agents (for example dihydroxyacetone), micropigments such as titanium dioxide or zinc oxide and
  • Suitable anionic surfactants are, for example, alkyl sulfates, alkyl ether sulfates, alkyl sulfonates, alkyl aryl sulfonates, alkyl succinates, alkyl sulfosuccinates, N-alkoyl sarcosinates, acyl taurates, acyl isethionates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alpha-olefin alkali metal salts, in particular the alkali metal alkali metal sulfates, in particular the alkali metal alkali metal sulfates, in particular the alkali metal alkali metal sulfonates, in particular the alkali metal alkali metal sulfonates, in particular the alkali metal alkali metal sulfonates, in particular the alkali metal alkali metal sulfonates
  • sodium lauryl sulfate, ammonium lauryl sulfate, sodium lauryl ether sulfate, ammonium lauryl ether sulfate, sodium lauryl sarcosinate, sodium oleyl succinate, ammonium lauryl sulfosuccinate, sodium dodecylbenzenesulfonate, triethanolamine decylbenzene sulfonate are suitable.
  • Suitable amphoteric surfactants are, for example, alkylbetaines, alkylamidopropylbetaines, alkylsulfobetaines, alkylglycinates, alkylcarboxyglycinates, alkylamphoacetates or propionates, alkylamphodiacetates or dipropionates.
  • cocodi ethyl sulfopropyl betaine lauryl betaine, cocamidopropyl betaine or natrium cocamphopropionate can be used.
  • Suitable nonionic surfactants are, for example, the reaction products of aliphatic alcohols or alkylphenols with 6 to 20 carbon atoms in the alkyl chain, which can be linear or branched, with ethylene oxide and / or propylene oxide.
  • the amount of alkylene oxide is about 6 to 60 moles per mole of alcohol.
  • Alkylamine oxides, mono- or dialkylalkanolamides, fatty acid esters of polyethylene glycols, ethoxylated fatty acid amides, alkylpolyglycosides or sorbitan ether esters are also suitable.
  • the agents can contain customary cationic surfactants, such as quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • customary cationic surfactants such as quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • the agents according to the invention in particular in the form of shampoo formulations, usually contain anionic surfactants as the base side and amphoteric and nonionic surfactants as the side side.
  • compositions usually contain 2 to 50% by weight of surfactants, preferably 5 to 40% by weight, particularly preferably 8 to 30% by weight.
  • Animal and vegetable oils such as e.g. Sunflower oil, coconut oil, avocado oil, olive oil or lanolin.
  • Suitable emulsifiers are nonionic surfactants from at least one of the following groups:
  • alkyl mono- and oligoglycosides with 8 to 22 carbon atoms in the alkyl radical and their ethoxylated analogs
  • polystyrene resin such as polystyrene resin
  • polyglycerol esters such as.
  • 12-hydroxystearic acid and glycerin polyglycerin, pentaerythritol, dipentaerythritol, sugar alcohols (e.g. sorbitol), alkyl glucosides (e.g. methyl glucoside, butyl glucoside, lauryl glucoside) and polyglucosides (e.g. cellulose);
  • sugar alcohols e.g. sorbitol
  • alkyl glucosides e.g. methyl glucoside, butyl glucoside, lauryl glucoside
  • polyglucosides e.g. cellulose
  • adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols, glycerol mono- and diesters and sorbitan mono- and diesters of fatty acids or with castor oil are known, commercially available products. These are mixtures of homologs, the middle of which
  • Ci 2 / i 8 fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE-PS 2024051 as refatting agents for cosmetic preparations.
  • Cs / is alkyl mono- and oligoglycosides, their preparation and their use are known from the prior art. They are produced in particular by reacting glucose or oligosaccharides with primary alcohols with 8 to 18 carbon atoms.
  • both monoglycosides in which a cyclic sugar residue is glycosidically bonded to the fatty alcohol and oligomeric glycosides with a degree of oligomerization of up to preferably about 8 are suitable.
  • the degree of oligomerization is a statistical mean value which is based on a homolog distribution customary for such technical products.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are surface-active compounds that contain at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example coconut acylaminopropyl dimethylammonium glycinate, and 2-alkyl-3 carboxylmethyl-3-hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethyl carboxymethylglycinate.
  • the fatty acid amide derivative known under the CTFA name Cocamidopropyl Betaine is particularly preferred.
  • Suitable emulsifiers are also ampholytic
  • Ampholytic surfactants are surface-active compounds which, in addition to a Cs / is alkyl or acyl group, contain at least one free amino group and at least one -C00H or -S0 3 H group in the molecule and are capable of forming internal salts.
  • ampholytic surfactants are N-alkylglycine, N-alkylpropionic acid, N-alkylaminobutyric acid, N-alkyliminodipropionic acid, N-hydroxyethyl-N-alkylamidopropylglycine, N-alkyltaurine, N-alkyl sarcosine, 2-alkylaminopropionic acid and alkylaminoacetic acid each with about 8 to 18 carbon atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylamino propionate, cocoacylaminoethylaminopropionate and Cat 2 / i 8 acyl sarcosine.
  • quaternary emulsifiers are also suitable, those of the esterquat type, preferably methylquaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • Pearlescent waxes for example, are: alkylene glycol esters, special ethylene glycol masterate; Fatty acid alkanolamides, especially coconut fatty acid diethanoamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15 carbon atoms and
  • the main consistency factors are fatty alcohols or
  • Hydroxy fatty alcohols with 12 to 22 and preferably 16 to
  • Suitable thickeners are, for example, polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, cellulose derivatives, e.g. Carboxymethyl cellulose and hydroxyethyl cellulose, as well as higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates (e.g.
  • surfactants such as ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as, for example, pentaethylene Trimethylolpropane, fatty alcohol ethoxylates with a narrow homolog distribution or alkyl oligoglucosides as well as electrolytes such as table salt and ammonium chloride.
  • Typical examples of fats are glycerides; beeswax, carnauba wax, candelilla wax, montan wax, paraffin wax or microwaxes are suitable waxes, if appropriate in combination with hydrophilic waxes, for example cetylstearyl alcohol or partial glycerides.
  • Metal salts of Fatty acids such as magnesium, aluminum and / or zinc stearate or ricinoleate can be used.
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl-modified silicone compounds, which can be both liquid and resinous at room temperature.
  • Typical examples of fats are glycerides, waxes include Beeswax, carnauba wax, candelilla wax, montan wax, paraffin wax or micro waxes, optionally in combination with hydrophilic waxes, e.g. Cetylstearyl alcohol or partial glycerides in question.
  • Metal salts of fatty acids such as e.g. Magnesium, aluminum and / or zinc stearate can be used.
  • Suitable solvents are in particular water and lower monoalcohols or polyols with 1 to 6 carbon atoms and mixtures thereof; preferred monoalcohols or polyols are ethanol, i-propanol, propylene glycol, glycerin and sorbitol.
  • Hydrotropes such as ethanol, isopropyl alcohol or polyols can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups. Typical examples are
  • Alkylene glycols such as, for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1000 daltons; technical oligoglycerol mixtures with a degree of self-condensation of 1.5 to 10 such as technical diglycerol mixtures with a diglycerol content of 40 to 50% by weight;
  • Methyl compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Lower alkyl glucosides especially those with 1 to 8 carbons in the alkyl radical, such as methyl and butyl glucoside;
  • Sugar alcohols having 5 to 12 carbon atoms such as, for example, sorbitol or mannitol;
  • Sugars with 5 to 12 carbon atoms such as glucose or sucrose
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid and the other classes of substances listed in Appendix 6, Parts A and B, of the Cosmetics Ordinance.
  • Triclosan 2, 4, 4'-trichloro-2 'hydroxydiphenyl ether
  • chlorhexidine 1,1' -hexamethylene bis [5- (4-chlorophenyl) biguanide
  • TTC 3,4,4 'trichlorocarbanilide
  • Quaternary ammonium compounds are also suitable in principle, but are preferably used for disinfectant soaps and washing lotions.
  • Numerous fragrances also have antimicrobial properties.
  • Special combinations with particular effectiveness against gram-positive bacteria are used for the composition of so-called deodorants.
  • a large number of essential oils and their characteristic ingredients such as Clove oil (eugenol), mint oil (menthol) or thyme oil (thymol) have a pronounced antimicrobial effect.
  • the preservatives are usually used in concentrations of approximately 0.1 to 0.3% by weight.
  • Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, cumin, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac,
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert.-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenyl glycinate, allyl cyclohexylpropylyl allyl pentyl propionate.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyelamenaldehyde, hydroxycitronellal, lilial and bourgeonate, the ketones, for example, the jonones, cc-isomethyl ions and methyl cedryl ketone Alcohols Anethof, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol and Terioneol, the hydrocarbons mainly include the terpenes and balms.
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, for example sage oil, kale oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden flower oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavolanum oil and lavolanum oil.
  • the dyes which can be used are the substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • the polymers according to the invention may be advantageous to use as a mixture with other hair-fixing polymers.
  • anionic, cationic, amphoteric and neutral polymers are suitable as other polymers.
  • anionic polymers are homopolymers and copolymers of acrylic acid and methacrylic acid or their salts, homopolymers and copolymers of acrylic acid and acrylamide and their salts, sodium salts of polyhydroxycarboxylic acids, water-soluble or water-dispersible polyesters, polyurethanes (for example Luviset® PUR) and polyureas.
  • Particularly suitable polymers are copolymers of tert. -Butyl acrylate, ethyl acrylate, methacrylic acid (e.g. Luvimer® 100 P), copolymers of ethyl acrylate and methacrylic acid (e.g.
  • Luviflex® Soft copolymers of N-tert-butylacrylamide, ethyl acrylate, acrylic acid (Ultrahold Strong®), copolymers of vinyl acetate , Crotonic acid and possibly other vinyl esters (eg Luviset CA66®), maleic anhydride copolymers, optionally reacted with alcohols, anionic polysiloxanes, for example carboxy-functional copolymers of vinylpyrrolidone, tert. -Butyl acrylate, methacrylic acid (e.g. Luviskol® VBM), terpolymers made from tert-butyl acrylate, methacrylic acid and dimethicone copolyol (e.g. Luviflex Silk).
  • methacrylic acid e.g. Luviskol® VBM
  • terpolymers made from tert-butyl acrylate, methacrylic acid and dimethicone copolyol e.g. Luviflex
  • Copolymers of acrylic acid and methacrylic acid with hydrophobic monomers including C 4 -C 3 O-alkyl esters of (meth) acrylic acid, C 4 -C 3 O-alkyl vinylester, C 4 -C 3 O-alkyl vinyl ether and hyaluronic acid and further under the Tradenames known polymers Amerhold DR-25, Ul- trahold, Luviset® PUR, Acronal®, Acudyne®, Lovocryl®, Versatyl®, Amphomer® (28-4910, LV-71), Placise® L53, Gantrez® ES 425, Advantage Plus®, Omnirez® 2000, Resyn® 28-1310, Resyn® 28-2930, Balance® (0/55), Acudyne® 255, Aristoflex®A or Eastman AQ®.
  • Polysilicone-7 and Polysilicone-8 are the polymers available under the INCI designation Polysilicone-7 and Polysilicone-8 (Plus TM SA70, Plus TM VS70).
  • Designation polyquaternium e.g. Copolymers from vinylpyrrolidone / N-vinylimidazolium salts (Luviquat® FC, Luviquat® HM, Luviquat® MS, Luviquat® Care), copolymers from N-vinylpyrrolidone / diethylaminoethyl methacrylate, quaternized with diethyl sulfate (Luviquat® PQ N-), copolymers Vinylcaprolactam / N-vinylpyrrolidone / N-vinylimidazolium salts (Luviquat® Hold), cationic cellulose derivatives (Polyquaternium-4 and -10), acrylamide copolymers (Polyquaternium-), Styleeze TM CC-10, Aquaflex® SF-40 and chitosan derivatives.
  • Copolymers from vinylpyrrolidone / N-vinylimidazolium salts (L
  • Neutral polymers are also suitable as further polymers, such as polyvinylpyrrolidones, copolymers of N-vinylpyrrolidone and vinyl acetate and / or vinyl propionate, polysiloxanes, polyvinylcapro-lacta and copolymers with N-vinylpyrrolidone, polyethyleneimines and their salts, polyvinylamines and their salts, cellulose derivatives, polyaspartic derivatives and derivatives.
  • These include the polymer Luviskol® (K, VA, Plus), PVP K, PVP / VA, Advantage® HC and H 2 0LD EP-1 known under the following trade names.
  • biopolymers ie polymers which are obtained from naturally renewable raw materials and which are built up from natural monomer building blocks, for example cellulose derivatives, chitin, chitosan, DNA, hyaluronic acid and RNA derivatives.
  • Other polymers include betaine polymers such as Yukaformer (R205, SM) and Diaformer.
  • the total proportion of auxiliaries and additives can be 1 to 50, preferably 5 to 40,% by weight, based on the composition.
  • the auxiliaries can be present during the polymerization and / or can be added after the polymerization.
  • the polymers are particularly suitable for use in cosmetic products.
  • they can be used in cosmetic products for cleaning the skin.
  • Such cosmetic cleaning agents are selected from bar soaps, such as toilet soaps, core soaps, transparent soaps, luxury soaps, deodorant soaps, cream soaps, baby soaps, skin protection soaps, abrasive soaps and syndets, liquid soaps such as pasty soaps, soft soaps and washing pastes, and liquid washing, showering, and bath preparations, such as washing lotions, shower baths and gels, foam baths, oil baths and scrub preparations, shaving foams, lotions, creams.
  • the preparations according to the invention can also be used in cosmetic preparations for skin care.
  • the skin care products are in particular available as W / O or O / W skin creams, day and night creams, eye creams, face creams, anti-wrinkle creams, moisturizing creams, bleaching creams, vitamin creams, skin lotions, care lotions and moisturizing lotions. They are also suitable for skin cosmetic preparations such as facial tonic, face masks, deodorants and other cosmetic lotions.
  • polymers according to the invention can be used as strips for pore cleaning or skin tightening, in anti-acne agents, repellents, shaving agents, hair removal agents, intimate hygiene products, foot care products and in baby care.
  • polymers in preparations of decorative cosmetics in particular the polymers in powder form, is very particularly preferred.
  • a polymer which is obtainable by free-radical polymerization of a monomer mixture according to claim 1 and / or 2 from is particularly suitable for cosmetic preparations
  • R 1 -CH 3
  • R 4 -H; -C0CH 3 , alkyl with C ⁇ ⁇ C 4
  • n 1 to 6, in particular 2 to 4, preferably 3
  • x and y are integers such that the molecular weight of the polysiloxane block is between 1000 and 10,000, a, b can be integers between 0 and 50, with the proviso that the sum of a and b is greater than 0.
  • Preparations for decorative cosmetics include, for example, concealers, theater paint, mascara and eyeshadow, lipsticks, kohl pencils, eyeliner, makeup, foundations, blushes and powders and eyebrow pencils, and in particular nail polishes.
  • the polymers are usually present in the cosmetic preparations in an amount in the range from about 0.001 to 20% by weight, preferably 0.1 to 10% by weight, based on the total weight of the preparations.
  • Feed 1 789 g tert-butyl acrylate 261 g methacrylic acid 540 g water 63 g Disponil FES77 4.53 g n-tetradecylthiol.
  • Example 2 The preparation according to Example 2 is carried out according to Example 1, instead of n-tetradecylthiol, n-eicosylthiol was used.
  • a solution was prepared from 1290 g of water, 6.9 g of Disponol FES77 and 126 g of dimethicone copolyol (Belsil DMC6031) and 113 g of feed 1 and this was heated to 80.degree. Then 24 g of a 7% aqueous sodium persulfate solution were added. Feed 1 was metered in over 2 hours. After another 2 hours and Cooling to 65 ° C., 5.4 g of hydrogen peroxide (30% aqueous solution) were added. After steam distillation, the mixture was cooled to 60 ° C. and 108 g of potassium hydrogen carbonate solution (10% strength) were metered in.
  • Example 4 was prepared according to Example 3, n-eicosylthiol was used instead of the n-tetradecylthiol.
  • Example 5 was prepared according to Example 3, instead of n-tetradecylthiol, n-decylthiol was used.
  • Example 6 was prepared according to Example 3, instead of n-tetradecylthiol, n-dodecylthiol was used.
  • Example 8 was prepared according to Example 7, instead of n-tetradecylthiol, n-eicosylthiol was used. Comparative example
  • the comparative example was prepared as in Example 7, but ethyl hexylthioglycolate was used instead of n-tetradecylthiol.
  • the dispersions prepared according to Examples 1 to 8 and Comparative Example were converted into powder form by means of spray drying.
  • the polymers prepared according to the examples were dried, dissolved in 30% ethanolic solution and then formulated as a 3% aqueous solution and 100% neutralized with 2-amino-2-methylpropanol.
  • they were dissolved in 30% ethanolic solution and then formulated and neutralized as a 3% aqueous solution.
  • the evaluation of the olfactory properties is based on the following classification: w l "no smell” 2 "weak, unpleasant smell” 3 "strong, unpleasant smell.
  • Powders and dispersions were evaluated in terms of odor as follows, grade 1: V3, V4, V6 (each dispersion and powder) grade 2: VI, V2, V5, V7 and V8 (each dispersion and powder) grade 3: comparative example (dispersion and powder) ,
  • Phase B 0.50% powder according to V1-V8
  • Vitamin E acetate tocopheryl acetate 0.87 d, 1-alpha-tocopherol tocopherol 0.58

Abstract

Verfahren zur Herstellung von Polymerisaten durch radikalische Polymerisation aus (a) ethylenisch ungesättigten Monomeren (b) polyalkylenoxid-haltigen Silikonderivaten, wobei man die Polyalkylenoxid-haltigen Silikonderivaten, wobei man die Polymerisation in Gegenwart von Alkanthiolen meit einer C-Kettenläge von C 13 bis C 22 durchfürt.

Description

Verfahren zur Herstellung von Polymerisaten
Beschreibung
Polymerisate mit filmbildenden Eigenschaften werden für kosmetische Zubereitungen verwendet und eignen sich insbesondere als Zusatzstoffe für Haar- und Hautkosmetika.
In kosmetischen Zubereitungen für die Haut können Polymerisate besondere Wirkung entfalten. Die Polymerisate können unter anderem zur Feuchthaltung und Konditionierung der Haut und zur Verbesserung des Hautgefühls beitragen. Die Haut wird glatter und geschmeidiger.
In kosmetischen Zubereitungen für das Haar werden Polymerisate zur Festigung, Strukturverbesserung und Formgebung der Haare verwendet. Sie erhöhen die Kämmbarkeit und verbessern den Griff des Haares. Diese Haarbehandlungsmittel enthalten im Allgemeinen eine Lösung des Filmbildners in einem Alkohol oder einem Gemisch aus Alkohol und Wasser.
Eine Anforderung an Haarbehandlungsmittel ist es, dem Haar unter anderem Glanz, Flexibilität und natürlichen, angenehmen Griff zu verleihen.
Es ist bekannt, Vinyllactam-Homo- und Copolymere oder carboxylat- gruppenhaltige Polymere einzusetzen. Das gewünschte Eigenschaftsprofil wie starke Festigung bei hoher Luftfeuchtigkeit, Elastizi- tat, Auswaschbarkeit vom Haar und Verträglichkeit mit den übrigen Formulierungskomponenten wird durch Copolymerisation einer Kombination von hydrophoben, elastifizierenden und Carboxylgruppen enthaltenden Monomeren erzielt.
Der Griff, der mit diesen Polymerisaten gefestigten Frisuren ist allerdings unangenehm stumpf und unnatürlich. Die Zugabe von Weichmachern verbessert zwar den Griff solcher Frisuren, reduziert aber gleichzeitig die Festigungswirkung.
Häufig werden Polysiloxane eingesetzt, die aber mit polaren Polymeren nicht verträglich sind und oft weitere Zusätze verlangen, um überhaupt formuliert werden zu können. Entmischungen können sowohl während der Lagerung der Formulierung als auch während des Gebrauchs zu Problemen führen. Um Entmischungen zu verhindern, hat es daher nicht an Versuchen gefehlt, Polysiloxangruppen kovalent an das Polymer zu binden. In EP-A 408 311 werden Pfropfcopolymere mit einer Kohlensto fhaupt- kette beschrieben, an die Polydimethylsiloxan-Seitenketten gebunden sind. Es werden nur Polymere beschrieben, die mit Hilfe ungesättigter Mono ere, die eine Polysiloxankette tragen, hergestellt werden.
EP-A 670 342 beschreibt die Verwendung alkoxylierter Silikone in Haarpflegemitteln. Die Verwendung von Polymerisaten aus ungesättigten Verbindungen in Haarpflegemitteln wird nicht offenbart. Die Verwendung alkoxylierter Silikone als Zusatz zu handelsüblichen Haarfestiger-Polymeren verbessert zwar deren Griff, führt aber gleichzeitig zu verringerter Festigungswirkung.
Die europäischen Patentschriften EP-A 412 704 und EP-A 412 707 beschreiben Polysiloxangruppen in Form von Makromonomeren mit Molmassen von 1000 bis 50 000, die mit üblichen hydrophoben und hydrophilen Monomeren polymerisiert werden. Die Synthese dieser Monomeren ist außerordentlich aufwendig. Aus den Polymeren können nicht umgesetzte Makromonomere und deren unreaktive Verunreinigungen aufgrund ihres hohen Molekulargewichtes kaum abgetrennt werden. Sie stellen ein toxikologisches und allergenes Risiko dar. Darüber hinaus sind die erhaltenen Copolymeren, um eine gute Wirkung zu erzielen, oft nur in Kombination mit weiteren Polymeren, Carriern und weiteren Hilfsstoffen zu formulieren, wie die o.g. Patentschriften lehren.
DE 42 40 108 beschreibt polysiloxanhaltige Bindemittel, die sich als schmutzabweisende Überzüge, insbesondere als anti-Graffiti- Überzüge eignen. Diese Bindemittel sind jedoch lackartig und eignen sich nicht für kosmetische Zwecke.
WO 99/04750 beschreibt Polymere, die durch radikalische Polymeri- sation von ethylenisch ungesättigten Monomeren in Gegenwart von polyalkylenoxid-haltigen Silikonderivaten erhältlich sind.
WO 99/04750 beschreibt die Herstellung von Polymerisaten unter Zusatz von Ethyl-hexylthioglykolat (Beispiele 15 bis 20) .
Nachteilig an den gemäß WO 99/04750 erhältlichen Polymerisaten ist vor allem ihr starker Eigengeruch, der z.T. bei der Lagerung und/oder Formulierung in kosmetischen Mitteln noch zunimmt. Dies führt dazu, daß die bekannten Produkte nur begrenzt einsetzbar sind. In kosmetischen Formulierungen wird versucht, diesen Eigengeruch der Polymerisate durch den Einsatz von Parfümölen zu überdecken. Abgesehen davon, daß die vollständige Überdeckung des Eigengeruchs nicht immer möglich ist, führt der Einsatz von Parfümölen in Einzelfällen zu unerwünschten allergischen Reaktionen. Dies limitiert den Einsatz der bekannten Polymerisate in kosmetischen Mitteln. Darüber hinaus sollten die Polymerisate an sich gegenüber den Produkten des Standes der Technik reizärmer sein und somit für den Einsatz in anti-allergenen kosmetischen Zubereitungen geeignet sein.
Die Aufgabe der vorliegenden Erfindung hat" somit darin bestanden, ein Verfahren zu Verfügung zu stellen, bei dem Polymerisate erhalten werden, die aufgrund ihres neutralen Geruchs für ein weites Einsatzspektrum, insbesondere in kosmetischen Mitteln geeignet sind und sich insbesondere auch für Formulierungen ohne den Zusatz von Parfümölen eignen. Hierbei ist insbesondere von Inter- esse, daß die Polymerisate in kosmetischen Zubereitungen auch nach Lagerung keinen Eigengeruch entwickeln. Daneben sind anwendungstechnische Eigenschaften, wie Auswaschbarkeit aus dem Haar, Verträglichkeit mit weiteren kosmetischen Inhaltsstoffen, insbesondere Löslichkeit in wasserhaltigen Zubereitungen, Griff und Festigung des behandelten Haars erwünscht. Auch die Bereitstellung von Polymerisaten, die gegenüber den Produkten des Standes der Technik reizärmer sind, ist wünschenswert. Eine weitere Aufgabe bestand darin, Polymerisate bereitzustellen, die in Pulverform eingesetzt werden können und so insbesondere für spe- zielle dekorative kosmetische Zubereitungen geeignet sind.
Die Aufgabe wird gelöst durch ein Verfahren bei dem man
(a) ethylenisch ungesättigte Monomere und
(b) polyalkylenoxid-haltige Silikonderivate,
durch radikalische Polymerisation in Gegenwart von Alkanthiolen mit einer C-Kettenlänge von C 13 bis C 22 umsetzt.
Die Aufgabe wird gelöst durch ein Verfahren bei dem man
(a) ethylenisch ungesättigte Monomere und
(b) polyalkylenoxid-haltige Silikonderivate,
durch radikalische Polymerisation
i) in Gegenwart von Alkanthiolen mit einer C-Kettenlänge von C 10 bis C 22 umsetzt und anschließend
ii) eine Behandlung mit Wasserstoffperoxid durchführt. Im Gegensatz zu den Produkten des Standes der Technik, insbesondere zu Polymerisaten gemäß WO 99/04750, zeichnen sich die so erhältlichen Polymerisate durch Geruchsfreiheit aus und entwickeln auch bei Lagerung sowohl als Einzelsubstanzen als auch in kosme- tischen Zubereitungen keinen Geruch. Gleichzeitig zeigen die so erhältlichen Polymerisate gute filmbildende Eigenschaften und gute Verträglichkeit mit üblichen kosmetischen Inhaltsstoffen.
Als Alkanthiole werden lineare und verzweigte Alkanthiole mit einer C-Kettenlänge von C 10 bis C 22 eingesetzt. Besonders bevorzugt sind lineare Alkanthiole, weiterhin bevorzugt sind Alkanthiole mit einer Kettenlänge von C 13 bis C 22, insbesondere von C 14 bis C 18. Als Alkanthiole seien genannt n-Decanthiol, n-Dodecanthiol , tert .-Dodecanthiol, n-Tetradecanthiol , n-Penta- decanthiol, n-Hexadecanthiol, n-Heptadecanthiol, n-Octadecan- thiol, n-Nonadecanthiol, n-Eicosanthiol, n-Docosanthiol . Besonders bevorzugt sind lineare, geradzahlige Alkanthiole.
Die Alkanthiole können auch in Mischungen eingesetzt werden.
Die Alkanthiole werden üblicherweise in Mengen von 0, 1 bis 5 Gew.-%, insbesondere 0,25 bis 2 Gew.-% bezogen auf die zu polymerisierenden Monomere eingesetzt. Üblicherweise werden die Alkanthiole zusammen mit den Monomeren der Polymerisation zugesetzt.
Werden Alkanthiole mit einer C-Kettenlänge von C 10 bis. C 12 eingesetzt, ist eine anschließende Wasserstoffperoxidbehandlung erforderlich, um geruchlich neutrale Polymerisate zu erhalten. Für diese sich an die Polymerisation anschließende Wasserstoffperoxidbehandlung werden üblicherweise 0,01 bis 2,0 Gew.-%, insbesondere 0,02 bis 1,0 Gew.-%, besonders bevorzugt 0,03 bis 0,15 Gew.-% Wasserstoffperoxid, insbesondere 0,1 bis 1,0 Gew.-%, bezogen auf die zu polymerisierenden Monomere eingesetzt. Es hat sich als vorteilhaft erwiesen, die Wasserstoffperoxidbehandlung bei einer Temperatur von 20 bis 100°C, insbesondere von 30 bis 80°C durchzuführen. Die Wasserstoffperoxidbehandlung wird üblicherweise zwischen 30 min. und 240 min. , insbesondere zwischen 45 und 90 min durchgeführt durchzuführen.
Werden Alkanthiole mit einer C-Kettenlänge von C 13 bis C 22 eingesetzt, kann die Wasserstoffperoxidbehandlung entfallen. In einer weiteren Ausführungsform der Erfindung kann jedoch auch bei dem Zusatz von Alkanthiolen mit einer Kettenlänge von C 13 bis C 22 eine Wasserstoffperoxidbehandlung angeschlossen werden. In einer bevorzugten Ausführungsform des Verfahrens werden die Polymerisate in Pulverform überführt. Hierzu eignen sich alle dem Fachmann bekannten Methoden, wie z.B. die Sprühtrocknung, Gefriertrocknung und Wirbelschichttrocknung.
Besonders bevorzugt ist die Sprühtrocknung.
Als geeignete polymerisierbare Monomere (a) werden ethylenisch ungesättigte Monomere verwendet. Dabei können entweder einzelne Monomere oder Kombinationen von zwei oder mehr Monomeren verwendet werden.
Monomere, die mit einer durch freie Radikale initiierten Reaktion polymerisiert werden können sind bevorzugt. Der Begriff ethylenisch ungesättigt bedeutet, daß die Monomere zumindest eine polymerisierbare Kohlenstoff-Kohlenstoff Doppelbindung besitzen, die mono-, di-, tri-, oder tetrasubstituiert sein kann.
Die ethylenisch ungesättigten Monomere (a) können durch die folgende allgemeine Formel beschrieben werden:
X-C(0)CR7=CHR6
wobei
X ausgewählt ist aus der Gruppe der Reste -OH, -0M, -OR8, NH , -NHR8, N(R8)2 ;
M ist ein Kation ausgewählt aus der Gruppe bestehend aus: Na+, K+, Mg++, Ca++, Zn++, NH4+, Alkylammonium, Dialkylammonium, Tri- alkylammonium und Tetraalkylammonium;
die Reste R8 können identisch oder verschieden ausgewählt werden aus der Gruppe bestehend aus -H, C1-C40 linear- oder verzweigt- kettige Alkylreste, N,N-Dimethylaminoethyl, 2-Hydroxyethyl,
2-Methoxyethyl, 2-Ethoxyethyl, Hydroxypropyl, Methoxypropyl oder Ethoxypropyl .
R7 und R6 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus: -H, Ci-Cs linear- oder verzweigtkettige Alkyl- ketten, Methoxy, Ethoxy, 2-Hydroxyethoxy, 2-Methoxyethoxy und 2-Ethoxyethyl .
Repräsentative aber nicht limitierende Beispiele von geeigneten Monomeren (a) sind zum Beispiel Acrylsäure und deren Salze, Ester und Amide. Die Salze können von jedem beliebigen nicht toxischen Metall, Ammonium oder substituierten Ammonium-gegenionen abgeleitet sein.
Die Ester können abgeleitet sein von C1-C40 linearen, C3-C4o ver- zweigtkettigen, oder C3-C4o carbocyclisehen Alkoholen, von mehr- fachfunktionellen Alkoholen mit 2 bis etwa 8 Hydroxylgruppen wie Ethylenglycol , Hexylenglycol, Glycerin, and 1, 2, 6-Hexantriol, von Aminoalkoholen oder von Alkoholethern wie Methoxyethanol und Eth- oxyethanol oder Polyethylenglykolen.
Ferner eignen sich N,N-Dialkylaminoalkylacrylate- und meth- acrylate und N-Dialkylaminoalkylacryl- und -methacrylami e der allgemeinen Formel (II)
mit R9 = H, Alkyl mit 1 bis 8 C-Atomen,
Rio = H, Methyl,
R11 = Alkylen mit 1 bis 24 C-Atomen, optional substituiert durch Alkyl,
R12, R13 = C1-C40 Alkylrest,
Z = Stickstoff für x = 1 oder Sauerstoff für x = 0
Die A ide können unsübstituiert, N-Alkyl oder N-alkylamino mono- substituiert, oder N,N-dialkylεubstituiert oder N,N-dialkylamino disubstituiert, worin die Alkyl- oder Alkylaminogruppen von C1-C40 linearen, C3-C4o verzweigtkettigen, oder C3-C40 carbocyclischen Einheiten abgeleitet sind. Zusätzlich können die Alkylaminogruppen quarternisiert werden.
Bevorzugte Monomere der Formel II sind N,N-Dimethylaminomethyl- (meth) acrylat, N,N-Diethylaminomethyl (meth) acrylat, N,N-Dimethyl- a inoethyl (meth) crylat, N,N-Diethylaminoethyl (meth) acrylat .
Ebenfalls verwendbare Monomere (a) sind substituierte Acrylsäuren sowie Salze, Ester und Amide davon, wobei die Substituenten an den Kohlenstoffatomen in der zwei oder drei Position der Acrylsäure stehen, und unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus C1-C4 Alkyl, -CN, COOH besonders bevorzugt Methacrylsäure, Ethacrylsäure und 3-Cyanoacrylsäure. Diese Salze, Ester und Amide dieser substituierten Acrylsäuren können wie oben für die Salze, Ester und Amide der Acrylsäure beschrieben ausgewählt werden.
Andere geeignete Monomere (a) sind Vinyl- und Allylester von C1-C40 linearen, C3-C4o verzweigtkettigen oder C3-C4o carbocyclische Carbonsäuren (z.B. : Vinylacetat, Vinylpropionat, Vinylneonona- noat, Vinylneoundekansäure oder t-Butyl-benzoesäure-vinylester) ; Vinyl- oder Allylhalogenide, bevorzugt Vinylchlorid und Allyl- chlorid, Vinylether, bevorzugt Methyl-, Ethyl-, Butyl-, oder Dodecylvinylether, Vinylformamid, Vinylmethylacetamid, Vinylamin; Vinyllactame, bevorzugt Vinylpyrrolidon und Vinylcaprolactam, Vinyl- oder Allyl-substituierte heterocyclische Verbindungen, bevorzugt Vinylpyridin, Vinyloxazolin und Allylpyridin.
Weiterhin sind N-Vinylimidazole der allgemeinen Formel III geeignet, worin R14 bis R15 unabhängig voneinander für Wasserstoff, Cι~ C4-Alkyl oder Phenyl steht :
Weitere geeignete Monomere (a) sind Diallylamine der allgemeinen Formel (IV)
R17
mit R17= C1-C24 Alkyl
Weitere geeignete Monomere (a) sind Vinylidenchlorid; und Kohlenwasserstoffe mit mindestens einer Kohlenstoff-Kohlenstoff Doppelbindung, bevorzugt Styrol, alpha-Methylstyrol, tert .-Butylstyrol, Butadien, Isopren, Cyclohexadien, Ethylen, Propylen, 1-Buten, 2-Buten, Isobutylen, Vinyltoluol, sowie Mischungen dieser Monomere.
Besonders geeignete Monomere (a) sind Acrylsäure, Methacrylsäure, Ethylacrylsäure, Methylacrylat, Ethylacrylat, Propylacrylat, n-Butylacrylat, iso-Butylacrylat, t-Butylacrylat, 2-Ethylhexyl- acrylat, Decylacrylat, Methylmethacrylat, Ethylmethacrylat, Propylmethacrylat, n-Butylmethacrylat, iso-Butylmethacrylat, t-Butylmethacrylat, 2-Ethylhexylmethacrylat, Decylmethacrylat, Methylethacrylat, Ethylethacrylat, n-Butylethacrylat, iso-Butyl- ethacrylat, t-Butyl-ethacrylat, 2-Ethylhexylethacrylat, Decyl- ethacrylat, 2,3-Dihydroxypropylacrylat, 2,3-Dihydroxypropylmeth- acrylat, 2-Hydroxyethylacrylat, Hydroxypropylacrylate, 2-Hydroxy- ethylmethacrylat, 2-Hydroxyethylethacrylat, 2-Methoxyethyl- acrylat, 2-Methoxyethylmethacrylat, 2-Methoxyethylethacrylat, 2-Ethoxyethylmethacrylat, 2-Ethoxyethylethacrylat, Hydroxypropyl- methacrylate, Glycerylmonoacrylat, Glycerylmonomethacrylat, Poly- alkylenglykol (meth)acrylate, ungesättigte Sulfonsäuren wie zum Beispiel Acrylamidopropansulfonsäure;
Acrylamid, Methacrylamid, Ethacrylamid, N-Methylacrylamid, N,N-Dimethylacrylamid, N-Ethylacrylamid, N-Isopropylacrylamid, N-Butylacrylamid, N-t-Butylacrylamid, N-Octylacrylamid, N-t-Octylacrylamid, N-Octadecylacrylamid, N-Phenylacrylamid, N-Methylmethacrylamid, N-Ethylmethacrylamid, N-Dodecylmethacryl- amid, 1-Vinylimidazol, l-Vinyl-2-methylimidazol, N,N-Dimethyl- aminomethyl (meth) acrylat, N,N-Diethylaminomethyl (meth) acrylat, N, N-Dimethylaminoethyl (meth) acrylat, N,N-Diethylaminoethyl (meth) - acrylat, N,N-Dimethylaminobutyl (meth) acrylat, N,N-Diethylamino- butyl (meth) acrylat, N,N-Dimethylaminohexyl (meth) acrylat, N,N-Di- methylaminooctyl (meth) acrylat, N, -Dimethylaminododecyl (meth) - acrylat, N- [3- (dimethylamino)propyl]methacrylamid, N-[3-(di- methylamino) propyl] acrylamid, N- [3- (dimethylamino) butyl] ethacrylamid, N-[8-(dimethylamino) octyl]methacrylamid, N- [12- (dimethylamino) dodecyl]methacrylamid, N- [3- (diethylamino)propyl] - methacrylamid, N- [3- (diethylamino)propyl] acrylamid;
Maleinsäure, Fumarsäure, Maleinsäureanhydrid und seine Halbester, Crotonsäure, Itaconsäure, Diallyldimethylammoniumchlorid, Vinylether (zum Beispiel: Methyl-, Ethyl-, Butyl-, oder Dodecylvinylether) , Vinylfor amid, Vinylmethylacetamid, Vinylamin; Methyl- vinylketon, Maleimid, Vinylpyridin, Vinylimidazol, Vinylfuran, Styrol, Styrolsulfonat, Allylalkohol, und Mischungen daraus.
Von diesen sind besonders bevorzugt Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Crotonsäure, Maleinsäureanhydrid sowie dessen Halbester, Methylacrylat, Methylmethacrylat, Ethylacrylat, Ethylmethacrylat, n-Butylacrylat, n-Butylmethacrylat, t-Butyl- acrylat, t-Butylmethacrylat, Isobutylacrylat, Isobutylmeth- acrylat, 2-Ethylhexylacrylat, N-t-Butylacrylamid, N-Octylacrylamid, 2-Hydroxyethylacrylat, Hydroxypropylacrylat, 2-Hydroxy- ethylmethacrylat, Hydroxypropylmethacrylat, Alkylenglykol (meth) - acrylate, ungesättigte Sulfonsäuren wie zum Beispiel Acrylamidopropansulfonsäure, Vinylpyrrolidon, Vinylcaprolactam, Vinylether (z.B.: Methyl-, Ethyl-, Butyl-, oder Dodecylvinylether) , Vinyl- forma id, Vinylmethylacetamid, Vinylamin, 1-Vinylimidazol, l-Vinyl-2-methylimidazol, N,N-Dimethylaminomethylmethacrylat und N- [3- (dimethylamino) propyl]methacrylamid ; 3-Methyl-1-vinyl- imidazoliumchlorid, 3-Methyl-l-vinylimidazoliummethylsulfat, N,N-Dimethylaminoethylmethacrylat, N- [3- (dimethylamino)propyl] - methacrylamid quaternisiert mit Methylchlorid, Methylsulfat oder Diethylsulfat.
In einer ganz besonders bevorzugten Ausführungsform werden als Monomere (a) t-Butylacrylat (=al) und Methacrylsäure (=a2) eingesetzt.
Monomere, mit einem basischen Stickstoffatom, können dabei auf folgende Weise quarternisiert werden:
Zur Quaternisierung der Amine eignen sich beispielsweise Alkyl- halogenide mit 1 bis 24 C-Atomen in der Alkylgruppe, z.B. Methylchlorid, Methylbromid, Methyliodid, Ethylchlorid, Ethylbromid, Propylchlorid, Hexylchlorid, Dodecylchlorid, Laurylchlorid und Benzylhalogenide, insbesondere Benzylchlorid und Benzylbromid. Weitere geeignete Quaternierungsmittel sind Dialkylsulfate, insbesondere Dimethylsulfat oder Diethylsulfat. Die Quaternierung der basischen A ine kann auch mit Alkylenoxiden wie Ethylenoxid oder Propylenoxid in Gegenwart von Säuren durchgeführt werden. Bevorzugte Quaternierungsmittel sind: Methylchlorid, Dimethylsulfat oder Diethylsulfat.
In einer bevorzugten Ausführungsform werden als Monomere (a) (Meth)acrylate eingesetzt.
Die Quaternisierung kann vor der Polymerisation oder nach der Polymerisation durchgeführt werden.
Außerdem können die Umsetzungsprodukte von ungesättigten Säuren, wie z.B. Acrylsäure oder Methacrylsäure, mit einem quaterni- sierten Epichlorhydrin der allgemeinen Formel (V) eingesetzt werden (R18 = C 1 bis C 40 Alkyl) .
Beispiele hierfür sind zum Beispiel: (Meth) acryloyloxyhydroxy- propyltrimethylammoniumchlorid und (Meth)acryloyloxyhydroxy- propyltriethylammoniumchlorid.
Die basischen Monomere können auch kationisiert werden, indem sie mit Mineralsäuren, wie z.B. Schwefelsäure, Chlorwasserstoffsäure, Bromwasserstoffsäure, Iodwasserstoffsäure, Phosphorsäure oder Salpetersäure, oder mit organischen Säuren, wie z.B. Ameisensäure, Essigsäure, Milchsäure, oder Citronensäure, neutralisiert werden.
Zusätzlich zu den oben genannten Monomeren können als Monomere (a) sogenannte Makromonomere wie zum Beispiel silikonhaltige Makromonomere mit ein oder mehreren radikalisch polymerisierbaren Gruppen oder Alkyloxazolinmakromonomere eingesetzt werden wie sie zum Beispiel in der EP 408 311 beschrieben sind.
Des weiteren können fluorhaltige Monomere wie sie beispielsweise in der EP 558 423 beschrieben sind, vernetzend wirkende oder das Molekulargewicht regelnde Verbindungen in Kombination oder alleine eingesetzt werden.
Als Regler können die üblichen dem Fachmann bekannten Verbindungen wie zum Beispiel Schwefelverbindungen (z.B.: Mercapto- ethanol, 2-Ethylhexylthioglykolat, Thioglykolsäure oder Dodecyl- mercaptan) sowie Tribromchlormethan oder andere Verbindungen die regelnd auf das Molekulargewicht der erhaltenen Polymerisate wirken, verwendet werden. Es können gegebenenfalls auch thiol- gruppenhaltige Silikonverbindungen eingesetzt werden. Bevorzugt werden silikonfreie Regler eingesetzt.
Als vernetzende Monomere können Verbindungen mit mindestens zwei ethylenisch ungesättigten Doppelbindungen eingesetzt werden wie zum Beispiel Ester von ethylenisch ungesättigten Carbonsäuren, wie Acrylsäure oder Methacrylsäure und mehrwertigen Alkoholen, Ether von mindestens zweiwertigen Alkoholen wie zum Beispiel Vinylether oder Allylether. Außerdem geeignet sind geradkettige oder verzweigte, lineare oder cyclische aliphatische oder aromatische Kohlenwasserstoffe, die über mindestens zwei Doppelbindun- gen verfügen, welche bei den aliphatischen Kohlenwasserstoffen nicht konjugiert sein dürfen. Ferner geeignet sind Amide der Acryl- und Methacrylsäure und N-Allylamine von mindestens zweiwertigen Aminen wie zum Beispiel (1, 2-Diaminoethan, 1,3-Diamino- propan) . Ferner sind Triallylamin oder entsprechende Ammonium- salze, N-VinylVerbindungen von Harnstoffderivaten, mindestens zweiwertigen Amiden, Cyanuraten oder Urethanen. Weitere geeignete Vernetzer sind Divinyldioxan, Tetraallylsilan oder Tetravinyl- silan.
Besonders bevorzugte Vernetzer sind beispielsweise Methylen- bisacrylamid, Triallylamin und Triallylammoniumsalze, Divinyl- imidazol, N,N'-Divinylethylenharnstoff, Umsetzungsprodukte mehrwertiger Alkohole mit Acrylsäure oder Methacrylsäure, Methacryl- säureester und Acrylsäureester von Polyalkylenoxiden oder mehrwertigen Alkoholen die mit Ethylenoxid und/oder Propylenoxid und/ oder Epichlorhydrin umgesetzt worden sind.
Die erfindungsgemäßen Monomere (a) können, sofern sie ionisierbare Gruppen enthalten, vor oder nach der Polymerisation, zum Teil oder vollständig mit Säuren oder Basen neutralisiert werden um so zum Beispiel die Wasserlöslichkeit oder -dispergierbarkeit auf ein gewünschtes Maß einzustellen.
Als Neutralisationsmittel für Säuregruppen tragende Monomere können zum Beispiel Mineralbasen wie Natriumcarbonat, Alkali- hydroxide sowie Ammoniak, organische Basen wie Aminoalkohole speziell 2-Amino-2-Methyl-l-Propanol, Monoethanolamin, Diethanol- amin, Triethanolamin, Triisopropanolamin, Tri [ (2-hydroxy) 1- Propyl] amin, 2-A ino-2-Methyl-l,3-Propandiol, 2-Amino-2-hydroxy- methyl-1, 3-Propandiol sowie Diamine wie zum Beispiel Lysin verwendet werden.
Als Neutralisationsmittel für kationisierbare Gruppen tragende Monomere können zum Beispiel Mineralsäuren wie Salzsäure, Schwefelsäure oder Phosphorsäure, sowie organische Säuren wie Carbonsäuren, Milchsäure, Zitronensäure oder andere eingesetzt werden.
Besonders geeignete polyalkylenoxid-haltige Silikonderivate (b) sind solche, die die folgenden Strukturelemente enthalten:
wobei :
R6 ein organischer Rest aus 1 bis 40 Kohlenstoffatomen, der Amino- , Carbonsäure- oder Sul onatgruppen enthalten kann oder für den Fall c=0, auch das Anion einer anorganischen Säure bedeutet,
und wobei die Reste R1 identisch oder unterschiedlich sein können, und entweder aus der Gruppe der aliphatischen Kohlenwasserstoffe mit 1 bis 20 Kohlenstoffatomen stammen, cyclische aliphatische Kohlenwasserstoffe mit 3 bis 20 C-Atomen sind, aromatischer Natur oder gleich R5 sind, wobei:
mit der Maßgabe, daß mindestens einer der Reste R1, R2 oder R3 ein polyalkylenoxidhaltiger Rest nach obengenannter Definition ist, und n eine ganze Zahl von 1 bis 6 ist,
x und y ganze Zahlen derart sind, daß das Molekulargewicht des Polysiloxan-Blocks zwischen 300 und 30000 liegt,
a,b ganze Zahlen zwischen 0 und 50 sein können mit der Maßgabe, daß die Summe aus a und b größer als 0 ist, und C 0 oder 1 ist.
Bevorzugte Reste R2 und R5 sind solche, bei denen die Summe aus a+b zwischen 5 und 30 beträgt.
Bevorzugt werden die Gruppen R1 aus der folgenden Gruppe ausgewählt: Methyl, Ethyl, Propyl, Butyl, Isobutyl, Pentyl, Isopentyl, Hexyl, Octyl, Decyl, Dodecyl und Octadecyl, cycloaliphatische Reste, speziell Cyclohexyl, aromatische Gruppen, speziell Phenyl oder Naphthyl, gemischt aromatisch-aliphatische Reste wie Benzyl oder Phenylethyl sowie Tolyl und Xylyl und R5.
Besonders geeignete Reste R4 sind solche, bei denen im Falle von R4 = -(CO)c-R6 R6 ein beliebiger Alkyl-, Cycloalkyl oder Arylrest bedeutet, der zwischen 1 und 40 C-Atomen besitzt und der weitere ionogene Gruppen wie NH , C00H, S03H tragen kann.
Bevorzugte anorganische Reste R6 sind, für den Fall c=0, Phosphat und Sulfat.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung werden als polyalkylenoxid-haltiges Silikonderivat (b) Verbindungen gemäß folgender Formel eingesetzt:
wobei
R1 = -CH3
R4 = -H; -C0CH3, Alkyl mit Cχ-C4
n = 1 bis 6, insbesondere 2 bis 4, bevorzugt 3
x und y ganze Zahlen derart sind, daß das Molekulargewicht des Polysiloxan-Blocks zwischen 1000 bis 10 000 liegt,
a, b ganze Zahlen zwischen 0 und 50 sein können mit der Maßgabe, daß die Summe aus a und b größer als 0 ist.
Solche besonders bevorzugten Silikonderivate sind unter der
CAS-Nr. 872 44-72-2 bekannt. Als Handelsprodukte sind sie unter den Namen Belsil DMC 6031™ (Wacker), Dabco DC 193, Dabco DC 5357, Dow Corning 198™, Dow Corning 5039™ und Silwet 7600™ (Witco) erhältlich. Solche besonders bevorzugten Silikonderivate sind unter der CAS-Nr. 71965-38-3 bekannt. Als Handelsprodukte sind sie unter den Namen Abil B 8842, Abil B 8843, Silwet L 7607 (Witco) erhältlich. 5
Ebenso sind solche Silikonderivate besonders bevorzugt, die unter den Handelsnamen Belsil DMC 6032™ (Wacker) und Dow Coming 190™ (Dow Chemicals) erhältlich sind.
10 Die Monomere (a) der polysiloxanhaltigen Polymerisate der vorliegenden Erfindung können von 50 bis 99,9 Gew.-% , bevorzugt 70 bis 99 Gew.-%, besonders bevorzugt 85 bis 98 Gew.-% ausmachen. Werden die ethylenisch ungesättigten Monomere (a) als Kombination von zwei Monomeren (al und a2) eingesetzt, hat es sich als vorteil-
15 haft erwiesen, 49,5 bis 99 Gew.-% (al) und 0,5 bis 40 Gew.-% (a2) einzusetzen.
Die Silikonderivate (b) sind in der Regel in Mengen von 0,1 bis 50, bevorzugt von 0,5 bis 20, besonders bevorzugt von 2 bis 20 15 Gew.-% in dem erfindungsgemäßen Polymerisat enthalten.
In einer besonders bevorzugten Ausführungsform wird ein Mono- merengemisch.es eingesetzt aus
25 (al)49,5 bis 99 Gew.-% (Meth) acrylat, insbesondere tert.-Butyl- acrylat
(a2)0,5 bis 40 Gew.-% eines weiteren (Meth) acrylats , insbesondere Methacrylsäure
30
(b) 0,5 bis 20 Gew.-% eines polyalkylenoxidhaltigen Silikonderivates gemäß folgender Formel :
40 wobei
R1 = -CH3
R4 = -H; -C0CH3, Alkyl mit C1-C4
n = 1 bis 6, insbesondere 2 bis 4, bevorzugt 3
5 x und y ganze Zahlen derart sind, daß das Molekulargewicht des Polysiloxan-Blocks zwischen 1000 bis 10 000 liegt,
a, b ganze Zahlen zwischen 0 und 50 sein können mit der Maßgabe, daß die Summe aus a und b größer als O ist.
10
Sind die Silikonverbindungen (b) nicht während der Polymerisation zugegen, sondern werden nach der Polymerisation eingemischt, so erhält man in der Regel sehr weiche klebrige Filme, die für die erfindungsgemäßen Anwendungen in der Kosmetik für Haut und Haare
15 ungeeignet sind.
Dies deutet darauf hin, daß es während der Polymerisation eventuell zu einem Pfropfen der Polymerisate auf die Silikonverbindungen kommen kann, und dies zu den guten Filmeigenschaften wie 20 Klebfreiheit, hohe Oberflächenglätte und Härte, sowie verbesserte Blockfestigkeit beiträgt. Es sind jedoch auch andere Mechanismen als Pfropfung vorstellbar, durch die die erfindungsgemäßen Polymere zu ihren vorteilhaften Eigenschaften kommen.
25 Mit polymerisierbar ist gemeint, daß die verwendeten Monomere unter Verwendung irgendeiner konventionellen synthetischen Methode polymerisiert werden können.
Beispielsweise können dies Lösungspolymerisation, Emulsionspoly- 30 merisation, umgekehrte Emulsionspolymerisation, Suspensionspolymerisation, umgekehrte Suspensionspolymerisation oder Fällungspolymerisation sein, ohne daß die verwendbaren Methoden darauf beschränkt sind. Bei der Lösungspolymerisation können Wasser, übliche organische Lösungsmittel oder die erfindungsgemäßen 35 Silikonderivate selbst oder Mischungen der genannten Lösungsmittel als Lösungsmittel verwendet werden.
Die erfindungsgemäßen Polymerisate weisen bevorzugt einen K-Wert (nach Fickentscher, Cellulosechemie, Bd. 13, S. 58-64 (1932) bei 40 25°C, in 1 Gew.-% ethanolische Lösung gemessen) von 30 bis 50 auf, bevorzugt 37 bis 41.
Besonders geeignete Polymerisate sind solche, die wasserlöslich sind oder deren Wasserdispergierbarkeit so groß ist, daß sie in 45 einem Lösungsmittelgemisch Wasser:Ethanol = 20:80 (Vol.-%:Vol .-%) in einer Menge von mehr als 0,1 g/1, bevorzugt mehr als 0,2 g/1, löslich sind.
Mit "wasserdispergierbar" im Sinne der Erfindung sind Polymeri- säte gemeint, die im Kontakt im Wasser innerhalb von 24 Stunden ein Fluid bilden, das ohne optische Hilfsmittel mit dem Auge keine festen Partikel erkennen läßt. Zur Überprüfung, ob ein Polymerisat wasserdispergierbar ist, werden 100 mg des Polymerisats in Form eines 100 μm dicken Films in 100 ml Wasser (20°C) ge- geben und auf einem handelsüblichen Schütteltisch für 24 Stunden geschüttelt. Wenn nach dem Schütteln keine festen Partikel mehr erkennbar sind, das Fluid aber eine Trübung besitzt, ist das Polymerisat wasserdispergierbar; ohne Trübung wird es als wasserlöslich bezeichnet.
Bei der Polymerisation der Monomeren können gegebenenfalls auch andere Polymere wie zum Beispiel Homo- und Copolymere von ethylenisch ungesättigten Monomeren sowie Polyamide, Polyurethane oder Polyester zugegen sein. Die Polyamide, Polyurethane, Poly- ester sind vorzugsweise ionisch modifiziert, z.B. mit Carboxylat- oder Sulfonatgruppen.
Die Herstellung der Polymerisate erfolgt in üblicher Weise unter Verwendung von Initiatoren, wie Peroxo- oder Azoverbindungen, beispielsweise Dibenzoyloxid, t-Butylperpivalat, t-Butyl- per-2-ethylhexanoat, Di-t-Butylperoxid, t-Butylhydroperoxid, 2, 5-Dimethyl-2, 5-di (t) butylperoxy(hexan) , Alkalimetall- oder Ammoniumpersulfate, Azo-bis-isobutyronitril, 2 , 2 ' -Azo-bis- (2-Methylbutyronitril) , 2 , 2 '-Azo-bis- (2 , 4-dimethylvaleronitril) , 1, 1' -Azo-bis- (1-cyclohexancarbonitril) , 2, 2 '-Azo-bis- (2-amidino- propan) salze, 4,4'-Azo-bis-(4-Cyanovaleriansäure) oder 2-(Carb- amoylazo) -isobutyronitril etc., Wasserstoffperoxid oder Redox- initiatoren. Die Initiatoren werden üblicherweise in Mengen bis zu 10, vorzugsweise 0,02 bis 5 Gew.-%, bezogen auf die zu poly- merisierenden Monomeren eingesetzt.
Die Emulsionspolymerisation erfolgt üblicherweise unter Sauerstoffausschluß bei Temperaturen im Bereich von 20 bis 200°C. Die Polymerisation kann diskontinuierlich oder kontinuierlich durch- geführt werden.
Vorzugsweise dosiert man zumindest einen Teil der Monomere, Initiatoren und Alkanthiole während der Polymerisation gleichmäßig in das Reaktionsgefäß. Die Monomere, das Alkanthiol und der Ini- tiator können jedoch auch im Reaktor vorgelegt und polymerisiert werden, wobei gegebenenfalls gekühlt werden muß. Nach beendeter Polymerisation kann man zur Senkung des Restmono- merengehaltes eine Nachpolymerisation unter Zugabe geeigneter Initiatoren in bekannter Weise durchführen. Gewünschtenfalls kann auch eine physikalische Desodorierung in üblicher Weise erfolgen, beispielsweise durch Einleiten von Wasserdampf .
Der jeweils gewünschte K-Wert läßt sich in an sich bekannter Weise durch Wahl der Polymerisationsbedingungen, beispielsweise der Polymerisationstemperatur und der Initiatorkonzentration, einesteilen. Gegebenenfalls, insbesondere bei Anwendung der Emulsions- und Suspensionspolymerisation, kann der Einsatz von Reglern, insbesondere von Schwefelverbindungen wie Mercapto- ethanol, 2-Ethylhexylthioglykolat, Thioglykolsäure oder Dodecyl- mercaptan zur Reduzierung des K-Wertes angebracht sein. Die K- Werte werden nach Fikentscher, Cellulosechemie, Bd. 13, S. 58 bis 64 (1932) bei 25°C in 1 gew.-%iger ethanolischer Lösung gemessen und stellen ein Maß für das Molgewicht dar.
Wird das Polymerisat durch Emulsionspolymerisation hergestellt, kann die erhaltene Dispersion entweder direkt in eine wäßrige, wäßrig-alkoholische oder alkoholische kosmetische Zubereitung, beispielsweise eine Haarfestigungszubereitung eingearbeitet werden oder es erfolgt eine Trocknung, z.B. Sprühtrocknung, der Dispersion, so daß das Polymerisat als Pulver verwendet und verar- beitet werden kann.
Ein weiterer Gegenstand der Erfindung betrifft Polymerisate erhältlich nach den Verfahren gemäß Ansprüchen 1 bis 13.
Die so erhältlichen Polymerisate zeichnen sich durch geringen Geruch, geringes allergenes Potential sowie gleichzeitig gute haarkosmetische Eigenschaften aus .
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der erfindungsgemäßen Polymerisate insbesondere in Pulverform in kosmetischen Zubereitungen, insbesondere in haarkosmetischen Zubereitungen.
Besonders bevorzugt ist die Verwendung der Polymerisate in haar- kosmetischen Zubereitungen. Als haarkosmetische Zubereitungen seien genannt Haarkuren, Haarlotionen, HaarSpülungen, Haaremulsionen, Spitzenfluids, Egalisierungsmittel für Dauerwellen, Hot-Oil-Treatment-Präparate, Conditioner, Curl relaxer, Styling wrap lotions, Festigerlotionen, Shampoos, Haarwachse, Pomaden, Haarschäume, Haarfärbemittel oder Haarsprays. Besonders bevorzugt ist die Verwendung der Acrylatpolymerisate in Frisurenfestiger, die in Form von Sprayzubereitungen und/oder Haarschäumen vorliegen.
Die erfindungsgemäßen Polymerisate zeichnen sich in haarkosmeti- sehen Zubereitungen durch ihre hohe Verträglichkeit mit den unpolaren Treibmitteln in Sprayzubereitungen, insbesondere mit Kohlenwasserstoffen wie n-Propan, iso-Propan, n-Butan, iso-Butan, n- Pentan und Mischungen daraus aus. Sie weisen eine gute haarfestigende Wirkung auf und zeichnen dadurch aus, daß sie das Haar praktisch nicht verkleben.
Neben der Geruchsfreiheit weisen die Polymerisate bei den anwendungstechnischen Eigenschaften in haarkosmetischen Zubereitungen hervorragende Ergebnisse auf. Sie sind in Alkoholen wie Ethanol oder Isopropanol und in Gemischen dieser Alkohole mit Wasser klar löslich. Die Klarheit der Lösungen bleibt auch erhalten, wenn die Lösungen in Standard-Sprayformulierungen zusammen mit Treibmitteln wie Dimethylether eingesetzt werden. Die erfindungsgemäßen Haarfestigungsmittel sind einwandfrei aus dem Haar auswaschbar. Mit ihnen behandeltes Haar weist eine erhöhte Geschmeidigkeit und einen angenehmen natürlichen Griff auf. Die Festigungswirkung ist gleichzeitig dabei hoch, so daß prinzipiell eine Senkung der benötigten Menge an Filmbildner in der Haarsprayformulierung möglich ist. Aufgrund der Geruchs- freiheit der Polymerisate kann bei Bedarf auf einen Zusatz von geruchsüberdeckenden Parfümölen verzichtet werden. Aus den genannten Gründen eignen sich die Polymerisate insbesondere als Filmbildner in haarkosmetischen Zubereitungen.
Bevorzugt ist die Verwendung der Polymerisate in kosmetischen Zubereitungen, insbesondere in Haarsprayzubereitungen, welche die folgenden Bestandteile enthalten:
- 0,1 bis 20 Gew.- , vorzugsweise 0,5 bis 10 Gew.-%, ins- besondere 2 bis 6 Gew.-% des Polymerisates
- 1 bis 99,9 Gew.-%, vorzugsweise 5 bis 50 Gew.-%, insbesondere 10 bis 20 Gew.-% Wasser
- 0 bis 95 Gew.-%, vorzugsweise 20 bis 60 Gew.-%, insbesondere 25 bis 50 Gew.-% eines üblichen organischen Lösungsmittels wie vor allem Ethanol, Isopropanol und Dirnethoxymethan und daneben auch Aceton, n-Propanol, n-Butanol, 2-Methoxypropan- l-ol, n-Pentan, n-Hexan, Cyclohexan, n-Heptan, n-Octan oder Dichlormethan oder deren Gemische 0 bis 90 Gew.-%, vorzugsweise 30 bis 80 Gew.-%, insbesondere 45 bis 60 Gew.-% eines üblichen Treibmittels wie n-Propan, iso-Propan, n-Butan, Isobutan, 2, 2-Dimethylbutan, n-Pentan, Isopentan, Dimethylether, Difluorethan, Fluortrichlormethan, 5 Dichlordifluormethan oder Dichlortetrafluorethan, HCF 152 A oder deren Gemische.
Als Treibmittel (Treibgase) kommen von den genannten Verbindungen vor allem die Kohlenwasserstoffe, insbesondere Propan, n-Butan,
10 n-Pentan und Gemische hieraus sowie Dimethylether und Difluorethan zur Anwendung. Gegebenenfalls werden einer oder mehrere der genannten chlorierten Kohlenwasserstoffe in Treibmittelmischungen itverwendet , jedoch nur in geringen Mengen, etwa bis zu 20 Gew.-%, bezogen auf die Treibmittelmischung.
15
Die erfindungsgemäßen haarkosmetischen Zubereitungen eignen sich auch besonders für Pumpsprayzubereitungen ohne den Zusatz von Treibmitteln oder auch für Aerosolsprays mit üblichen Druckgasen wie Stickstoff, Druckluft oder Kohlendioxid als Treibmittel.
20
Eine wasserhaltige Standard-Sprayformulierung weist beispielsweise die folgende Zusammensetzung auf:
2 bis 10 Gew.-% des Polymerisates
25
10 bis 76 Gew.-% Ethanol
2 bis 20 Gew.-% Wasser
30 10 bis 60 Gew.-% Dimethylether und/oder Propan/ n-Butan und/oder
Propan/iso-Butan
Die erfindungsgemäßen Polymerisate können in Endzubereitungen als wässerige oder wässerig-alkoholische Lösungen, 0/W sowie 35 W/0 Emulsionen in Form von Shampoos, Cremes, Schäumen, Lotion, Mousse, Sprays (Pumpspray oder Aerosol) , Gelen oder Gelsprays vorliegen und dementsprechend mit üblichen weiteren Hilfsstoffen formuliert werden.
40 Als weitere übliche Hilfsstoffe seien genannt: Tenside, Olkörper, Emulgatoren, Co-Emulgatoren, Überfettungsmittel, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Fette, Wachse, Siliconverbindungen, Hydrotrope, Konservierungsmittel, Parfümöle, Farbstoffe, Stabilisatoren, pH-Wert Regulatoren, kosmetische Pflege- und
45 Wirkstoffe wie AHA-Säuren, Fruchtsäuren, Ceramide, Phytantriol, Bisabolol, Panthenol, Collagen, Provitamine und Vitamine, z.B. Vitamin A, E und C, Proteine und Proteinhydrolysate (z.B. Weizen-, Mandel- oder Erbsenproteine), Solubilisatoren, Komplexbildner, Repellents, Bleichmittel, Färbemittel, Tönungsmittel, Bräunungsmittel (z.B. Dihydroxyaceton) , Mikropigmente wie Titandioxid oder Zinkoxid und dergleichen enthalten. Des weiteren können Polymere enthalten sein.
Geeignete anionische Tenside sind beispielsweise Alkylsulfate, Alkylethersulfate, Alkylsulfonate, Alkylarylsulfonate, Alkyl- succinate, Alkylsulfosucclnate, N-Alkoylsarkosinate, Acyltaurate, Acylisethionate, Alkylphosphate, Alkyletherphosphate, Alkylether- carboxylate, Alpha-Olefinsulfonate, insbesondere die Alkali- und Erdalkalimetallsalze, z.B. Natrium, Kalium, Magnesium, Calcium, sowie Ammonium- und Triethanolamin-Salze. Die Alkylethersulfate, Alkyletherphosphate und Alkylethercarboxylate können zwischen 1 bis 10 Ethylenoxid oder Propylenoxid-Einheiten, bevorzugt 1 bis 3 Ethylenoxideinheiten im Molekül aufweisen.
Geeignet sind zum Beispiel Natriumlaurylsulfat, Ammoniumlauryl- sulfat, Natriu laurylethersulfat, Ammoniumlaurylethersulfat, Natriumlaurylsarkosinat, Natriumoleylsuccinat, Ammoniumlauryl- sulfosuccinat, Natriumdodecylbenzolsulfonat, Triethanolamindo- decylbenzolsulfonat .
Geeignete amphotere Tenside sind zum Beispiel Alkylbetaine, Alkylamidopropylbetaine, Alkylsulfobetaine, Alkylglycinate, Alkylcarboxyglycinate, Alkylamphoacetate- oder -propionate, Alkylamphodiacetate, oder -dipropionate .
Beispielsweise können Cocodi ethylsulfopropylbetain, Lauryl- betain, Cocamidopropylbetain oder Natriu cocamphopropionat eingesetzt werden.
Als nichtionische Tenside sind beispielsweise geeignet die Umsetzungsprodukte von aliphatischen Alkoholen oder Alkylphenolen mit 6 bis 20 C-Atomen in der Alkylkette, die linear oder verzweigt sein kann, mit Ethylenoxid und/oder Propylenoxid. Die Menge Alkylenoxid beträgt ca. 6 bis 60 Mole auf ein Mol Alkohol. Ferner sind Alkylaminoxide, Mono- oder Dialkylalkanolamide, Fettsäureester von Polyethylenglykolen, ethoxylierte Fettsäureamide, Alkylpolyglykoside oder Sorbitanetherester geeignet.
Außerdem können die Mittel übliche kationische Tenside enthalten, wie z.B. quaternäre Ammoniumverbindungen, beispielsweise Cetyl- trimethylammoniumchlorid. Die erfindungsgemäßen Mittel, insbesondere in Form von Shampoo- formulierungen enthalten üblicherweise anionische Tenside als Basistenside und amphotere und nichtionische Tenside als Coten- side.
Die Mittel enthalten üblicherweise 2 bis 50 Gew.-% Tenside, bevorzugt 5 bis 40 Gew.-%, besonders bevorzugt 8 bis 30 Gew-%.
Als Olkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22~Fettsäuren mit linearen Cg-C22-Fettalkoholen, Ester von verzweigten C6~Cι3-Carbonsäuren mit linearen C6-C22-Fettalkoholen, Ester von linearen C6-C22 _Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Hydroxycarbonsäuren mit linearen oder verzweigten C6-C22-Fett- alkoholen, insbesondere Dioctyl Malate, Ester von linearen und/ oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalko- holen, Triglyceride auf Basis Cg-Cirj-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von Cg-Cis-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, Guerbetcarbo- nate, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22 _Alkoholen (z.B. Finsolv? TN) , lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe in Betracht.
Als Olkörper kommen tierische und pflanzliche Öle, wie z.B. Sonnenblumenöl, Kokosöl, Avocadoöl, Olivenöl oder Lanolin in Betracht .
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
(1) Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis
22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe;
(2) Ci2/i8~Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin; (3) Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxidanlagerungsprodukte;
(4) Alkylmono- und -oligoglycoside mit 8 bis 22 Kohlenstoffatomen im Alkylrest und deren ethoxylierte Analoga;
(5) Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
( 6 ) Polyol- und insbesondere Polyglycerinester, wie z . B . Polygly- cerinpolyricinoleat, Polyglycerinpoly-12-hydroxystearat oder Polyglycerindimerat . Ebenfalls geeignet sind Gemische von Verbindungen aus mehreren dieser Substanzklassen;
(7) Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
(8) Partialester auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter C6/22-Fettsäuren, Ricinolsäure sowie
12-Hydroxystearinsäure und Glycerin, Polyglycerin, Penta- erythrit, Dipentaerythrit, Zuckeralkohole (z.B. Sorbit) , Alkylglucoside (z.B. Methylglucosid, Butylglucosid, Lauryl- glucosid) sowie Polyglucoside (z.B. Cellulose) ;
(9) Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
(10) Wollwachsalkohole;
(11) Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
(12) Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE-PS 1165574 und/oder Mischester von
Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglycose und Polyolen, vorzugsweise Glycerin oder Polyglycerin sowie
(13) Polyalkylenglycole .
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole, Glycerinmono- und -diester sowie Sorbitanmono- und -diester von Fettsäuren oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer
Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/oder Propylenoxid und Substrat, mit denen die Anlagerungs- reaktion durchgeführt wird, entspricht. Ci2/i8-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE-PS 2024051 als Rückfettungsmittel für kosmetische Zubereitungen bekannt. Cs/is-Alkylmono- und -oligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 C-Atomen. Bezüglich des Glycosidesters gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt .
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solcher oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokos- alkyldimethylammoniumglycinat, N-Acylaminopropyl-N,N-dimethyl- ammoniumglycinate, beispielsweise das Kokosacylaminopropyl- dimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydro- xyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethyl- carboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-BeZeichnung Cocamidopropyl Betaine bekannte Fettsäureamid- Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische
Tenside. Unter ampholytisehen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer Cs/is-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -C00H- oder -S03H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxy- ethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkyl- sarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylamino- propionat, das Kokosacylaminoethylaminopropionat und das Cχ2/i8-Acylsarcosin. Neben den ampholytischen kommen auch quartäre Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretriethanolaminester- Salze, besonders bevorzugt sind. Als Überfettungsmittel könne Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Mono- glyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylen- glycolester, spezielle Ethylenglycoldisterat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanoamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearin- säure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoff- atomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder
Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis
18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine
Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Poly- glycerinpoly-12-hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Cellulosederivate, z.B. Carboxymethylcellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate (z.B. Carbopole® von Goodrich oder Synthalene® von Sigma) , Polyacrylamide, Polyvinylalko ol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fett- alkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammonium- chlorid.
Typische Beispiele für Fette sind Glyceride, als Wachse kommen u.a. Bienenwachs, Carnaubawachs, Candelillawachs, Montanwachs, Paraffinwachs oder Mikrowachse gegebenenfalls in Kombination mit hydrophilen Wachsen, z.B. Cetylstearylalkohol oder Partial- glyceriden in Frage. Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
Geeignete Siliconverbindungen sind beispielsweise Dimethylpoly- siloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Typische Beispiele für Fette sind Glyceride, als Wachse kommen u.a. Bienenwachs, Carnaubawachs, Candelillawachs, Montanwachs, Paraffinwachs oder Mikrowachse gegebenenfalls in Kombination mit hydrophilen Wachsen, z.B. Cetylstearylalkohol oder Partialglyceriden in Frage. Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat eingesetzt werden.
Geeignete Lösungsmittel sind insbesondere Wasser und niedrige Monoalkohole oder Polyole mit 1 bis 6 Kohlenstoffatomen und Mischungen davon; bevorzugte Monoalkohole oder Polyole sind Ethanol, i-Propanol, Propylenglycol , Glycerin und Sorbit.
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Typische Beispiele sind
Glycerin;
Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylen- glycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1000 Dalton; technische Oligoglyceringemische mit einem Eigenkondensati- onsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
- Metylolverbindungen, wie insbesondere Trimethylolethan, Trimetylolpropan, Trimetylolbutan, Pentaerythrit und Dipenta- erythrit;
Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit;
Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
- Aminozucker, wie beispielsweise Glucamin. Als Konservierungsmittel eignen sich beispielsweise Phenoxy- ethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B, der Kosmetikverordnung aufgeführten weiteren Stoffklassen.
Dazu gehören beispielsweise alle geeigneten Konservierungsmittel mit spezifischer Wirkung gegen grampositive Bakterien, z.B. Triclosan (2, 4, 4'-Trichlor-2 '-hydroxydiphenylether) , Chlorhexidin (1,1' -Hexamethylenbis [5- (4-chlorphenyl) -biguanid) sowie TTC (3,4,4' -Trichlorcarbanilid) . Quartäre Ammonium-Verbindungen sind prinzipiell ebenfalls geeignet, werden jedoch bevorzugt für desinfizierende Seifen und Waschlotionen verwendet. Auch zahlreiche Riechstoffe haben antimikrobielle Eigenschaften. Spezielle Kombinationen mit besonderer Wirksamkeit gegenüber grampositiven Bakterien werden für die Komposition sog. Deo- parfu s eingesetzt. Auch eine große Anzahl etherischer Öle bzw. deren charakteristische Inhaltsstoffe wie z.B. Nelkenöl (Euge- nol) , Minzöl (Menthol) oder Thymianöl (Thymol) , zeigen eine ausgeprägte antimikrobielle Wirksamkeit.
Die Konservierungsmittel werden üblicherweise in Konzentrationen von ca. 0,1 bis 0,3 Gew.-% eingesetzt.
Als Parfümöle seien genannt Gemische aus natürlichen und synthe- tischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang) , Stengeln und Blättern (Geranium, Patchouli, Petitgrain) , Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen) , Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-,
Zedern-, Rosenholz) , Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian) , Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen) , Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax) . Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetischen RiechstoffVerbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. RiechstoffVerbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-ter .-Butylcyclohexylacetat, Linalyl- acetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalyl- benzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclo- hexylpropionat, Styrallylpropionat und Benzylsalicylat . Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyelamenaldehyd, Hydroxycitronellal , Lilial und Bourgeonat, zu den Ketonen z.B. die Jonone, cc-Isomethylionen und Methylcedrylketon, zu den Alkoholen Anethof, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terioneol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Ka il- lenöl, Nelkenöl, Melissenöl, Minzeöl, Zimtblätteröl , Linden- blütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, a-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyelamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allyla ylglycolat, Cyclo- vertal, Lavandinöl, Muskateller Salbeiöl, b-Damascone, Geranium- öl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranyl- acetat, Benzylacetat, Rosenoxid, Romillat, Irotyl und Floramat allein oder in Mischungen eingesetzt.
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoff- kommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S. 81-106, zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Zur gezielten Einstellung der Eigenschaften von haarkosmetischen Zubereitungen kann es von Vorteil sein, die erfindungsgemäßen Polymerisate als Mischung mit weiteren Haarfestigungspolymeren einzusetzen.
Als andere Polymere eignen sich dazu beispielsweise anionische, kationische, amphotere und neutrale Polymere.
Beispiele für anionische Polymere sind Homo- und Copolymerisate von Acrylsäure und Methacrylsäure oder deren Salze, Homo- und Copolymerisate von Acrylsäure und Acrylamid und deren Salze, Natri- umsalze von Polyhydroxycarbonsäuren, wasserlösliche oder wasserdispergierbare Polyester, Polyurethane (z.B. Luviset® PUR) und Polyharnstoffe. Besonders geeignete Polymere sind Copolymere aus tert . -Butylacrylat, Ethylacrylat, Methacrylsäure (z.B. Luvimer® 100 P) , Copolymere aus Ethylacrylat und Methacrylsäure, (z.B. Lu- viflex® Soft) , Copolymere aus N-tert.-Butylacrylamid, Ethylacrylat, Acrylsäure (Ultrahold Strong®) , Copolymere aus Vinylacetat, Crotonsäure und gegebenenfalls weitere Vinylester (z.B. Luviset CA66®) , Maleinsäureanhydridcopolymere, ggf. mit Alkoholen umgesetzt, anionische Polysiloxane, z.B. carboxyfunktionelle Copolymere aus Vinylpyrrolidon, tert . -Butylacrylat, Methacrylsäure (z.B. Luviskol® VBM) , Terpolymere aus tert.Butylacrylat, Metha- crylsäure und Dimethicone Copolyol (z.B. Luviflex Silk) .
Copolymere von Acrylsäure und Methacrylsäure mit hydrophoben Monomeren, z.B. C4-C3o-Alkylester der (Meth) acrylsäure, C4-C3o-Alkyl- vinylester, C4-C3o-Alkylvinylether und Hyaluronsäure so wie weitere unter den Handelsnamen bekannte Polymere Amerhold DR-25, Ul- - trahold, Luviset® P.U.R. , Acronal®, Acudyne®, Lovocryl®, Versa- tyl®, Amphomer® (28-4910, LV-71) , Placise® L53, Gantrez® ES 425, Advantage Plus®, Omnirez® 2000, Resyn® 28-1310, Resyn® 28-2930, Balance® (0/55), Acudyne® 255, Aristoflex®A oder Eastman AQ®.
Weitere andere Polymere sind die unter der INCI Bezeichnung Poly- silicone-7 und Polysilicone-8 erhältlichen Polymere (Plus™ SA70, Plus™ VS70) .
Weitere andere Polymere sind kationische Polymere mit der
Bezeichnung Polyquaternium nach INCI, z.B. Copolymere aus Vinyl- pyrrolidon/N-Vinylimidazoliumsalzen (Luviquat® FC, Luviquat® HM, Luviquat® MS, Luviquat® Care) , Copolymere aus N-Vinylpyrrolidon/ Di ethylaminoethylmethacrylat, quaternisiert mit Diethylsulfat (Luviquat® PQ 11) , Copolymere aus N-Vinylcaprolactam/N-Vinyl- pyrrolidon/N-Vinylimidazoliumsalzen (Luviquat® Hold) , kationische Cellulosederivate (Polyquaternium-4 und -10) , Acrylamidcopoly- ere (Polyquaternium-), Styleeze™ CC-10, Aquaflex® SF-40 und Chitosanderivate.
Als weitere Polymere sind auch neutrale Polymere geeignet wie Polyvinylpyrrolidone, Copolymere aus N-Vinylpyrrolidon und Vinyl- acetat und/oder Vinylpropionat, Polysiloxane, Polyvinylcapro- lacta und Copolymere mit N-Vinylpyrrolidon, Polyethylenimine und deren Salze, Polyvinylamine und deren Salze, Cellulosederivate, Polyasparaginsäuresalze und Derivate. Dazu gehören die unter den folgenden Handelsnamen bekannten Polymer Luviskol® (K, VA, Plus) , PVP K, PVP/VA, Advantage® HC und H20LD EP-1.
Außerdem geeignet sind auch Biopolymere, d.h. Polymere, die aus natürlich nachwachsenden Rohstoffen gewonnen werden und aus natürlichen Monomerbausteinen aufgebaut sind, z.B. Cellulosederivate, Chitin-, Chitosan-, DNA-, Hyaluronsäure- und RNA- Derivate . Weitere Polymere sind auch betaine Polymere wie Yukaformer (R205, SM) und Diaformer.
Die nachfolgende Liste enthält die INCI/CTFA-Bezeichnungen sowie die Hersteller, der oben aufgeführten Polymere:
Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen.
Die Hilfsstoffe können bei der Polymerisation anwesend sein und/oder nach der Polymerisation zugefügt werden.
Die Polymerisate eignen sich insbesondere zur Verwendung in kosmetischen Mitteln. So können sie beispielsweise in kosmetischen Mitteln zur Reinigung der Haut verwendet werden. Solche kosmetischen Reinigungsmittel sind ausgewählt aus Stückseifen, wie Toilettenseifen, Kernseifen, Transparentseifen, Luxusseifen, Deosei- fen, Cremeseifen, Babyseifen, Hautschutzseifen, Abrasiveseifen und Syndets, flüssigen Seifen, wie pastöse Seifen, Schmierseifen und Waschpasten, und flüssigen Wasch-, Dusch-, und Badepräparaten, wie Waschlotionen, Duschbädern, und -gelen, Schaumbädern, Ölbädern und Scrub-Präparaten, Rasierschäume, -lotionen, -cremes .
Die erfindungsgemäßen Zubereitungen können weiterhin in kosmetischen Zubereitungen zur Pflege der Haut verwendet werden. Die Hautpflegemittel liegen insbesondere als W/O- oder O/W-Haut- cremes, Tag- und Nachtcremes, Augencremes, Gesichtscremes, Anti- faltencremes, Feuchthaltecremes, Bleichcremes, Vitamincremes, Hautlotionen, Pflegelotionen und Feuchthaltelotionen vor. Weiterhin eignen sie sich für hautkosmetische Zubereitungen wie Gesichtswasser, Gesichtsmasken, Deodorantien und andere kosmetische Lotionen.
Außerdem können die erfindungsgemäßen Polymerisate verwendet werden als Strips zur Porenreinigung oder Hautstraffung, in Anti- aknemitteln, Repellents, Rasiermitteln, Haarentfernungsmitteln, Intimpflegemitteln, Fußpflegemitteln sowie in der Babypflege.
Ganz besonders bevorzugt ist die Verwendung der Polymerisate in Zubereitungen der dekorativen Kosmetik, insbesondere die in Pulverform vorliegenden Polymerisate.
Besonders geeignet für kosmetische Zubereitungen ist ein Polyme- risat, welches durch radikalische Polymerisation eines Monomeren- gemisches erhältlich ist gemäß Anspruch 1 und/oder 2 aus
(al)49,5 bis 99 Gew.-% (Meth) acrylat, insbesondere tert. -Butylacrylat, (a2) 0,5 bis 40 Gew.-% eines weiteren (Meth) acrylats, insbesondere Methacrylsäure,
(b) 0,5 bis 20 Gew.-% eines polyalkylenoxidhaltigen Silikonderivates gemäß folgender Formel
wobei
R1 = -CH3
R4 = -H; -C0CH3, Alkyl mit Cι~C4
n = 1 bis 6, insbesondere 2 bis 4, bevorzugt 3
x und y ganze Zahlen derart sind, daß das Molekulargewicht des Polysiloxan-Blocks zwischen 1000 bis 10 000 liegt, a, b ganze Zahlen zwischen 0 und 50 sein können mit der Maßgabe, daß die Summe aus a und b größer als 0 ist.
Als Zubereitungen der dekorativen Kosmetik seien beispielsweise genannt Abdeckstifte, Theaterfarbe, Mascara und Lidschatten, Lippenstifte, Kajalstifte, Eyeliner, Makeup, Grundierungen, Rouges und Pudern und Augenbrauenstiften, sowie insbesondere Nagellacke .
Die Polymerisate sind in den kosmetischen Zubereitungen üblicherweise in einer Menge im Bereich von etwa 0,001 bis 20 Gew.-%, bevorzugt 0,1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht des Zubereitungen enthalten.
Beispiele
Beispiel 1
Herstellung eines Polymerisats {Emulsionspolymerisation)
Aus 120 g Wasser, 6,9 g (= Alkylethersulfonat Na-salz, Henkel) Disponil FES77 und 126 g Dimethiconcopolyol (Belsil DMC6031) und 113 g Zulauf 1 wurde eine Mischung hergestellt und auf 80°C erhitzt. Dann wurden 24 g einer 7 %igen wässrigen Natrium-Persul- fatlösung zugegeben. Anschließend wurde Zulauf 1 während 2 Stunden zudosiert. Nach Wasserdampfdestillation wurde auf 60°C abgekühlt und 108 g Kaliumhydrogencarbonatlösung wurden zudosiert.
Zulauf 1 : 789 g tert .-Butylacrylat 261 g Methacrylsäure 540 g Wasser 63 g Disponil FES77 4,53 g n-Tetradecylthiol.
Beispiel 2
Die Herstellung nach Beispiel 2 erfolgt entsprechend Beispiel 1, anstelle von n-Tetradecylthiol wurde n-Eicosylthiol eingesetzt.
Beispiel 3
Aus 1290 g Wasser, 6,9 g Disponol FES77 und 126 g Dimethiconcopolyol (Belsil DMC6031) und 113 g Zulauf 1 wurde eine Lösung herge- stellt und diese wurde auf 80°C erhitzt. Danach wurden 24 g einer 7 %igen wässrigen Natrium-Persulfatlösung zugegeben. Zulauf 1 wurde während 2 Stunden zudosiert. Nach weiteren 2 Stunden und Abkühlen auf 65°C wurden 5,4 g Wasserstoffperoxid (30 %ige wäss- rige Lösung) zugegeben. Nach Wasserdampfdestillation wurde auf 60°C abgekühlt und 108 g Kaliumhydrogencarbon-Lösung (10 %ig) zudosiert .
Zulauf 1
Entsprechend Beispiel 1.
Beispiel 4
Beispiel 4 wurde gemäß Beispiel 3 hergestellt, anstelle des n-Te- tradecylthiols wurde n-Eicosylthiol eingesetzt.
Beispiel 5
Beispiel 5 wurde entsprechend Beispiel 3 hergestellt, anstelle von n-Tetradecylthiol wurde n-Decylthiol eingesetzt.
Beispiel 6
Beispiel 6 wurde gemäß Beispiel 3 hergestellt, anstelle von n-Tetradecylthiol wurde n-Dodecylthiol eingesetzt .
Beispiel 7
Aus 372 g Wasser, 2,4 g Disponil FES77 (= Alkylethersulfonat Na-salz, Henkel), 42 g Dimethiconcopolyol (Belsil DMC6031 = PEG/ PPG-25/25 Dimethicone, Wacker) und 35 g Zulauf 1 wurde ein Gemisch hergestellt und auf 40°C erhitzt. Danach wurden 8 g einer 7 %igen wässrigen Natrium-Persulfatlösung zugegeben. Danach wurde die Mischung auf 80°C erhitzt und Zulauf 1 während 2 Stunden zudosiert. Und danach wurden 89 g Wasser zugegeben und es wurde 2 Stunden bei 80°C nachpolymerisiert . Nach Abkühlung auf 60°C wurden 47 g Kaliumhydrogencarbonatlösung (10 %ig) zugegeben.
Zulauf 1:
150 g Wasser
21,6 g Disponil FES77 263 g tert . -Butylacrylat 88 g Methacrylsäure
0,96g n-Tetradecylthiol .
Beispiel 8
Beispiel 8 wurde gemäß Beispiel 7 hergestellt, anstelle von n-Tetradecylthiol wurde n-Eicosylthiol eingesetzt. Vergleichsbeispiel
Das Vergleichsbeispiel wurde gemäß Beispiel 7 hergestellt, jedoch anstelle von n-Tetradecylthiol wurde Ethyl-hexylthioglykolat ein- gesetzt.
Die gemäß Beispiel 1 bis 8 sowie Vergleichsbeispiel hergestellten Dispersionen wurden mittels Sprühtrocknung in Pulverform überführt .
Die geruchliche Beurteilung der gemäß Beispiel 1 bis 8 sowie Vergleichsbeispiel hergestellten Polymerisate sowie der daraus hergestellten Pulver erfolgte durch ein Panel von 5 Prüfern. Dazu wurden die gemäß den Beispielen hergestellten Polymerisate ge- trocknet, in 30 %iger ethanolischer Lösung gelöst und anschließend als 3 %ige wässrige Lösung formuliert und zu 100 % mit 2-Amino-2-methylpropanol neutralisiert. Zur geruchlichen Beurteilungen der Pulver wurden diese in 30 %iger ethanolischer Lösung gelöst und anschließend als 3 %ige wässrige Lösung formuliert und neutralisiert.
Die Bewertung der geruchlichen Eigenschaften erfolgt nach folgender Klassifizierung: wl" kein Geruch "2" schwacher, unangenehmer Geruch "3" starker, unangehmer Geruch.
Pulver und Dispersionen wurden wie folgt geruchlich bewertet, Note 1: V3, V4, V6 (jeweils Dispersion und Pulver) Note 2: VI, V2, V5, V7 und V8 (jeweils Dispersion und Pulver) Note 3: Vergleichsbeispiel (Dispersion und Pulver).
Haarsprays mit DME
Haarsprays mit Pr/Bu 3.5 bzw. Pr/Bu 3.5 und DME
Pumpsprays
Haarsprayformulierungen auf Basis iso-Butan und n-Pentan
A) 3,4 % Pulver gemäß VI-V8
0,79 % AMP = 2-Amino-2-Methyl-l-Propanol)
14,2 % n-Pentan
2,4 % n-Butan
35,9 % iso-Butan 43,31 % Ethanol abs . B)
3,0 % Ultrahold Strong
0,5 % Pulver gemäß V1-V8
0,48 % AMP
; 0,03 % DC 190 (PEG/PPG-18/18 Dimethieone; DOW Corning)
14,2 % n-Pentan
2,4 % n-Butan
35,9 % iso-Butan
"43,49 % Ethanol
10
Glanzspray
2,0 % Pulver gemäß VI-V8
0,46 % AMP
15 1,0 % DC 556 (Phenyl Trimethicone; DOW Corning)
0,1 % Niacinamid
0,2 % D-Panthenol
14,2 % n-Pentan
35,9 % n-Butan
20 46,14 % Ethanol
Haarspay VOC 80 mit HFC 152A
3,4 % Pulver gemäß VI-V8
25 0,79 % AMP
60,0 % Ethanol abs.
15,81 % HFC 152A (Hydrofluorocarbon 152a)
20 % Dimethylether
30 Haarspray VOC 55 mit Vitaminen
3,4 % Pulver gemäß VI-V8
0,79 % AMP
0,1 % Niacinamid
35 0,1 % Panthenol
40,61 % Wasser
15,0 % Ethanol
40,0 % DME
40 Sonnenschutz-Pumpspray fürs Haar
1 % Pulver gemäß VI-V8 0,23 % AMP
2 % Uvinul MS 40 (BASF AG) 45 96,77 % Ethanol VOC 80 Rezeptur
3,96 % Pulver gemäß V1-V8
0,92 % AMP 0,10 % Diisobutyladipate
0,05 % Isodecan
0,10 % Parfümöl
0,05 % D-Panthenol USP
14,78 % Wasser dest. 40,04 % Ethanol
40,0 % DME (Dimethylether)
VOC 55 Rezeptur
3,96 % Pulver gemäß V1-V8
0,92 % AMP
36,16 % Wasser dest.
18,96 % Ethanol
40,0 % DME
Hair Repair
3,0 % Pulver gemäß V1-V8
0,69 % AMP
0,2 % Hydrolized wheat protein
0,5 % D-Panthenol
5,0 % Propylen Glycol
10,0 % Ethanol abs .
80,61 % Wasser
Shining Gel für Haare mit UV-Schutz
Phase A 0,8 % Carbopol 2001 ETD (Carbomer, B.F. Goodrich)
34,84 % Wasser
Phase B 5,0 % Abil 200
3,0 % Karion F (D-Sorbitol)
3,0 % 1, 2-Propylenglycol
1,0 % Cremophor RH40 q.s. Konservierungsmittel
Phase C 50,0 % Wasser
0,5 % Uvinul P25
1,0 % Pulver gemäß VI-V8 0,23 % AMP
Phase D 0,63 % AMP Haargel
Phase A 0,50 % Carbopol 940
49,50 % Wasser dest 0,40 % Triethanolamin
Phase B 0,50 % Pulver gemäß V1-V8
0,12 % AMP
20,00 % Ethanol abs . 28,98 % Wasser dest.
Shampoo-Formulierung
1,0 % Pulver gemäß VI-V8
0,23 % AMP
10,0 % Tego-Betain L 7
40,0 % Texapon NSO
0,1 % Euxyl K 100
2,0 % NaCl
46,67 % Wasser
Shampoo-Formulierung mit Luviquat Care
1,0 % Pulver gemäß V1-V8
0,23 % AMP
7,7 % Luviquat Care
10,0 % Tego-Betain L 7
40,0 % Texapon NSO
0,1 % Euxyl K 100
2,0 % NaCl
38,97 % Wasser
Haar-Cocktail
A)
3,00 Luvigel EM
2,00 Wacker Belsil DM 1000
3,00 Wacker Belsil CM 1000
2,00 Wacker Belsil PDM 200 2,00 Wacker Belsil ADM 6057 E
0,50 Wacker Belsil DMC 6031
1,00 Macadamianußö1
0,50 Vitamin-E-Acetat
1,00 Cremophor RH 40 0,40 Parfümöl "Disco" B)
2,00 Pulver gemäß VI-V8
0,46 AMP
0,10 Euxyl K 100 ad 100 Wasser dest.
Maskara (Wimperntusche)
Phase A 1,5 % Cremophor A6
1,5 % Cre ophor A25
2,0 % Stearinsäure
3,0 % Imwitor 960 K
3,0 % Softisan 100
1,5 % Luvigel EM
10,0 % Dow Corning 345
Phase B 2,0 % Pulver gemäß VI-V8
0,46 % AMP
0,3 % Germal 115
74,24 % Wasser
Phase C 0,5 % Phenoxyethanol
Mascara
A)
25,72 Wasser dest.
3,00 Lutrol E 400
0,50 Keltrol F
0,10 Abiol
0,40 Euxyl K 400
1,30 Neutrol TE
B)
25,60 Wasser dest. (heiss
0,98 AMP
4,40 Pulver gemäß VI-V8
C)
8,00 Carnauba Wax
4,00 Bienenwachs
4,00 Isohexadecane
4,00 Panalene H 300 E
5,00 Stearinsäure
1,00 Glycerinmonostearat
2,00 Finsolv TN D) 7 , 00 Sicomet Grün P 77 288
E) 3,00 Sicopearl Fantastico Gold
Lippenstift
Handelsname INCI %
Abil Wax 9801 Cetyl Dimethieone 0,56
Carnauba Wax 2442 L Carnauba Wax 2,89
Candelilla Wax 2039 Y Candelilla Wax 8,67
Lunacera W 80 Ceresin 3 , 82 Rewopol PIB 1000 Polyisobutene 1,16
Adeps Lanae Lite Lanolin 34,68
Crodamol ML Myristyl Lactate 15,03
Napvis D 10 Napvis Polybutene 2,31
Luvitol EHO Ceteraryl Octanoate 25, 26 Rizinusöl Castor Oil 4,05
(-) -alpha-Bisabolol nat . Bisabolol 0,12
Vitamin E Acetat Tocopheryl Acetate 0,87 d, 1-alpha-Tocopherol Tocopherol 0,58
Lippenstiftgrundmasse 49,50g Pulver gemäß V1-V8 0,50g
Lippenstiftgrundmasse schmelzen und unter Rühren Pulver einarbeiten.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Polymerisaten durch radikalische Polymerisation aus
(a) ethylenisch ungesättigten Monomeren
(b) polyalkylenoxid-haltigen Silikonderivaten,
dadurch gekennzeichnet, daß man die Polymerisation in Gegenwart von Alkanthiolen mit einer C-Kettenlänge von C 13 bis C 22 durchführt.
2. Verfahren zur Herstellung von Polymerisaten durch radikalische Polymerisation aus
(a) ethylenisch ungesättigten Monomeren
(b) polyalkylenoxid-haltigen Silikonderivaten,
dadurch gekennzeichnet, daß man
i) die Polymerisation in Gegenwart von Alkanthiolen mit einer C-Kettenlänge von C 10 bis C 22 durchführt und anschließend
ii) eine Behandlung mit Wasserstoffperoxid durchführt.
3. Verfahren nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß das Polymerisat in Pulverform überführt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Polymerisat durch Sprühtrocknung in Pulverform überführt wird.
5. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß man lineare Alkanthiole einsetzt.
6. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß man 0,1 bis 5 Gew.-% Alkanthiole - bezogen auf die Monomere (a) - einsetzt. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß als polyalkylenoxid-haltige Silikonderivate (b) solche der Formel I verwendet werden:
(I)
wobei :
R6 ein organischer Rest aus 1 bis 40 Kohlenstoffatomen, der A ino-, Carbonsäure- oder Sulfonatgruppen enthalten kann oder, für den Fall c=0, auch das Anion einer anorganischen Säure bedeutet,
und wobei die Reste R1 identisch oder unterschiedlich sein können, und entweder aus der Gruppe der aliphatischen Kohlenwasserstoffe mit 1 bis 20 Kohlenstoffatomen stammen, cyclische aliphatische Kohlenwasserstoffe mit 3 bis 20 C-Atomen sind, aromatischer Natur oder gleich R5 sind, wobei :
mit der Maßgabe, daß mindestens einer der Reste R1, R2 oder R3 ein polyalkylenoxidhaltiger Rest nach obengenannter Definition ist,
und n eine ganze Zahl von 1 bis 6 ist, x und y ganze Zahlen derart sind, daß das Molekulargewicht des Polysiloxan-Blocks zwischen 300 und 30000 liegt, a,b ganze Zahlen zwischen 0 und 50 sein können mit der Maßgabe, daß die Summe aus a und b größer als 0 ist, und c 0 oder 1 ist.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß Formel I folgende Bedeutung besitzt
wobei R1 und R5 die in Anspruch 7 angegebene Bedeutung besitzen.
Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß Formel I folgende Bedeutung besitzt
wobei
R1 = -CH3
R4 = -H; -C0CH3, Alkyl mit C1-C4
n = 1 bis 6 , insbesondere 2 bis 4
x und y ganze Zahlen derart sind, daß das Molekulargewicht des Polysiloxan-Blocks zwischen 1000 bis 10000 liegt, a, b ganze Zahlen zwischen 0 und 50 sein können mit der Maßgabe, daß die Summe aus a und b größer als 0 ist.
10. Verfahren nach einem der vorgenannten Ansprüche, dadurch 5 gekennzeichnet, daß (a) mindestens ein (Meth) acrylat ist.
11. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß
10 (a) ausgewählt ist aus der Gruppe bestehend aus
(al) tert . -Butylacrylat und/oder
(a2) Methacrylsäure. 15
12. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet , daß
(a) 50 bis 99,9 Gew.-% und 20
(b) 0,1 bis 50 Gew.-% betragen,
mit der Maßgabe, daß sich die Anteile zu 100 % addieren.
25 13. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß
(al)49,5 bis 99,0 Gew.-% und
30 (a2) 0,5 bis 40 Gew.-%
(b) 0,5 bis 20 Gew.-%
betragen, mit der Maßgabe, daß sich die Anteile zu 100 % 35 addieren.
14. Polymerisat , erhältlich nach einem der Ansprüche 1 bis 13.
15. Polymerisat nach Anspruch 14 in Pulverform. 40
16. Verwendung eines Polymerisats nach den Ansprüchen 14 und/oder 15 in kosmetischen Zubereitungen.
17. Verwendung nach Anspruch 16 in haarkosmetischen Zubereitungen 45 und Zubereitungen der dekorativen Kosmetik.
EP02793049A 2001-12-21 2002-12-17 Verfahren zur herstellung von polymerisaten Withdrawn EP1458817A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10163523A DE10163523A1 (de) 2001-12-21 2001-12-21 Verfahren zur Herstellung von Polymerisaten
DE10163523 2001-12-21
PCT/EP2002/014397 WO2003054088A1 (de) 2001-12-21 2002-12-17 Verfahren zur herstellung von polymerisaten

Publications (1)

Publication Number Publication Date
EP1458817A1 true EP1458817A1 (de) 2004-09-22

Family

ID=7710550

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02793049A Withdrawn EP1458817A1 (de) 2001-12-21 2002-12-17 Verfahren zur herstellung von polymerisaten

Country Status (7)

Country Link
US (1) US20050069510A1 (de)
EP (1) EP1458817A1 (de)
JP (1) JP2005513234A (de)
CN (1) CN1606599A (de)
AU (1) AU2002358738A1 (de)
DE (1) DE10163523A1 (de)
WO (1) WO2003054088A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118478A1 (de) * 2001-04-12 2002-10-17 Basf Ag Polysiloxanhaltige Polymere zur Antiknitterausrüstung von cellulosehaltigen Textilien
EP1603960A2 (de) * 2003-03-07 2005-12-14 Basf Aktiengesellschaft Polymere produkte
FR2915388B1 (fr) * 2007-04-27 2010-12-24 Oreal Film hydrosoluble cosmetique
AU2010333833B2 (en) * 2009-12-23 2014-08-21 Trinseo Europe Gmbh Method for the preparation of low odour copolymer latexes
FR3075631B1 (fr) 2017-12-21 2020-04-03 Lvmh Recherche Composition de mascara contenant un ester de tetrahydroxypropylethylene diamine
CN113287812B (zh) * 2021-05-17 2022-09-16 南京林业大学 一种抗菌抗病毒可降解口罩及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2727032B2 (ja) * 1991-03-27 1998-03-11 東洋化成工業株式会社 樹脂組成物エマルションの製造法
DE4414465C1 (de) * 1994-04-26 1995-05-11 Goldschmidt Ag Th Polymethacrylsäureester-Polysiloxan-Blockmischpolymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung als Modifizierungsmittel und als Lackadditive
DE59814329D1 (de) * 1997-07-23 2009-02-05 Basf Se Verwendung von polysiloxanhaltigen polymeren für kosmetische formulierungen
DE19907587A1 (de) * 1999-02-22 2000-08-24 Basf Ag Haarkosmetische Formulierungen
DE10163118A1 (de) * 2001-12-21 2003-07-03 Basf Ag Verfahren zur Herstellung von Polymerisaten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03054088A1 *

Also Published As

Publication number Publication date
AU2002358738A1 (en) 2003-07-09
DE10163523A1 (de) 2003-07-03
CN1606599A (zh) 2005-04-13
JP2005513234A (ja) 2005-05-12
US20050069510A1 (en) 2005-03-31
WO2003054088A1 (de) 2003-07-03

Similar Documents

Publication Publication Date Title
EP1335943B1 (de) Acrylatpolymerisate auf basis von tert.butylacrylat und/oder tert.-butylmethacrylat
WO2006079632A1 (de) Verwendung von wasser-in-wasser-emulsionspolymerisaten als verdicker in kosmetischen zubereitungen
EP1581569A2 (de) Ampholytisches copolymer und dessen verwendung
EP1503722A2 (de) Kosmetisches mittel enthaltend wenigstens ein wasserlösliches copolymer mit (meth)acrylsäureamideinheiten
EP1709093A1 (de) Acrylat-polymerisate auf basis von tert.-butylacrylat zur verwendung in sprayformulierungen
JP2007514030A (ja) 両性アニオン性コポリマー
EP1116484A2 (de) Verfahren zur Behandlung eines kosmetischen Mittels durch Bestrahlung mit NIR-Strahlung, sowie dessen Verwendung
EP2051780A1 (de) Verwendung von kationischen copolymerisaten aus aminhaltigen acrylaten und n-vinylimidazoliumsalzen in haarkosmetischen zubereitungen
WO2005004821A1 (de) Kosmetische und pharmazeutische mittel auf basis von polyelektrolyt-komplexen
EP1732961A1 (de) Diallylamine enthaltende polymerisate
EP1847253A1 (de) Wasserlösliche Polymere und ihre Verwendung in kosmetischen und pharmazeutischen Zubereitungen
EP1804920A1 (de) Kosmetische zubereitungen enthaltend copolymere von ethylmethacrylat und mindestens einer monoethylenisch ungesättigten carbonsäure
EP1207843A2 (de) Kosmetische und/oder pharmazeutische zubereitungen enthaltend polysiloxanhaltige polymerisate und deren verwendung
EP1083184A2 (de) Silikonhaltige Polymerisate, deren Herstellung und Verwendung
WO2003054088A1 (de) Verfahren zur herstellung von polymerisaten
WO2003054082A1 (de) Verfahren zur herstellung von polymerisaten
DE19951877A1 (de) Silikonhaltige Polymerisate, deren Herstellung und Verwendung
EP1567115B1 (de) Zusammensetzungen, die mindestens ein copolymer (a) und mindestens ein copolymer (b) enthalten, und deren verwendung in kosmetischen zubereitungen
EP1603960A2 (de) Polymere produkte
DE19942565A1 (de) Silikonhaltige Polymerisate, deren Herstellung und Verwendung
WO2007017440A1 (de) Festigerpolymere auf basis von polyesteracrylaten
DE10219889A1 (de) Kosmetisches Mittel enthaltend wenigstens ein wasserlösliches Copolymer mit (Meth)acrylsäureamideinheiten
DE10243573A1 (de) Kosmetisches Mittel enthaltend wenigstens ein wasserlösliches Copolymer mit (Meth)acrylsäureamideinheiten
DE10129712A1 (de) Kationisches Polymerisat und weiteres Polymerisat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MATHAUER, KLEMENS

Inventor name: DROHMANN, CHRISTIAN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080701