EP1709093A1 - Acrylat-polymerisate auf basis von tert.-butylacrylat zur verwendung in sprayformulierungen - Google Patents

Acrylat-polymerisate auf basis von tert.-butylacrylat zur verwendung in sprayformulierungen

Info

Publication number
EP1709093A1
EP1709093A1 EP05700874A EP05700874A EP1709093A1 EP 1709093 A1 EP1709093 A1 EP 1709093A1 EP 05700874 A EP05700874 A EP 05700874A EP 05700874 A EP05700874 A EP 05700874A EP 1709093 A1 EP1709093 A1 EP 1709093A1
Authority
EP
European Patent Office
Prior art keywords
polymers
monomer
weight
polymers according
tert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05700874A
Other languages
English (en)
French (fr)
Inventor
Gabi Winter
Son Nguyen Kim
Claudia Wood
Vittoria Signori
Gerd Schuh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1709093A1 publication Critical patent/EP1709093A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/22Peroxides; Oxygen; Ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8158Homopolymers or copolymers of amides or imides, e.g. (meth) acrylamide; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • A61K8/8182Copolymers of vinyl-pyrrolidones. Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1802C2-(meth)acrylate, e.g. ethyl (meth)acrylate

Definitions

  • the present invention relates to polymers obtainable by radical polymerization of a) 30 to 99% by weight of tert-butyl acrylate and / or tert-butyl methacrylate as monomer b) 1 to 70% by weight of acrylic acid and / or methacrylic acid as monomer B and c) 0 to 12% by weight of a free-radically copolymerizable monomer or a free-radically copolymerizable monomer mixture as monomer C, at least one of the monomers C providing a homopolymer with a glass transition temperature below 30 ° C., with the proviso that the weight Add% to 100, the K value of the polymers being between 27 and 38 and the polymerization being carried out in the presence of a regulator if the K value of the polymers is less than or equal to 35, and the use of these polymers in preparations for in particular cosmetics and oral and dental care.
  • Polymers with film-forming properties are used in cosmetics for cosmetic, dermatological, hygienic and / or pharmaceutical formulations and are particularly suitable as additives for hair and skin cosmetics.
  • EP-A 379 082 describes hair fixatives containing, as film formers, copolymers based on tert-butyl acrylate and / or tert-butyl methacrylate with a K value of 10 to 50, which are obtained by radical polymerization of
  • the polymers are preferably obtained by solution polymerization.
  • EP-A 696916 describes hair fixatives containing, as film formers, copolymers based on tert-butyl acrylate or tert-butyl methacrylate with a K value of 10 to 50, obtainable by radical polymerization of A) 30 to 72% by weight tert.
  • WO 02/38638 describes polymers which are obtainable by free-radical polymerization of from 30 to 99% by weight of tert-butyl acrylate and / or tert-butyl methacrylate as monomer A,
  • VOC volatile organic compounds
  • the object of the present invention was to provide polymers for in particular cosmetic preparations and preparations for oral and dental care which can be formulated in solvents or solvent mixtures with an increased water content and whose formulations have better sprayability with good mechanical properties of the films formed.
  • the polymers should give the hair good strengthening and longer hold, good have washability and can be formulated as optically clear VOC-55 aerosols (ie with a VOC content of at most 55% by weight).
  • the object is achieved by the polymers described at the outset.
  • the object is further achieved in particular by polymers obtainable by free-radical polymerization of a) 60 to 80% by weight of tert-butyl acrylate and / or tert-butyl methacrylate as monomer A, b) 20 to 40% by weight of acrylic acid and / or Methacrylic acid as monomer B and c) 0 to 12% by weight of a free-radically copolymerizable monomer or a free-radically copolymerizable monomer mixture as monomer C, at least one of the monomers C providing a homopolymer with a glass transition temperature below 30 ° C., with the proviso that the% by weight add up to 100, the K value of the polymers being between 27 and 38.
  • the polymerization is carried out in the presence of regulators. If the K value of the polymers according to the invention is in the range between 35 and 38, it is optionally possible to work in the presence of regulators.
  • At least one further monomer C may optionally be copolymerized. This monomer or at least one of these monomers is said to be a homopolymer with one
  • these are monomers selected from the group consisting of C ⁇ -C ⁇ 8 -alkyl, CrC 8 alkyl methacrylates, NdC - ⁇ - alkyl acrylamides and N-CrC ⁇ -Alkylmethacryl- amides.
  • Particularly preferred are C 4 NC alkylacrylamides or -methacrylamides, or mixtures of two or more of these monomers, particularly preferred are unbranched C ⁇ - to C 4 alkyl acrylates alone or in admixture with branched NC 3 - to -C -alkylacrylamides.
  • Suitable CrC ⁇ alkyl radicals in the (meth) acrylates and (meth) acrylamides mentioned are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl.
  • Particularly preferred monomers C are ethyl acrylate or a mixture of ethyl acrylate and N-tert-butyl acrylamide.
  • Preferred polymers according to the invention are polymers for the preparation of which the amount of monomer C provided is less than 10% by weight, preferably less than 5% by weight, particularly preferably less than 3% by weight, of the total amount of monomers.
  • the proportion of component C is particularly preferably in the range from 0.01 to 3% by weight.
  • polymers whose components A and B are polymerized, but not C.
  • the polymers according to the invention are distinguished by a significantly improved sprayability of the formulations containing up to a maximum of 55% by weight of organic volatile components and at the same time good mechanical properties of the films.
  • the polymers according to the invention show good compatibility with customary cosmetic ingredients, good washability from, for example, hair and formulation in clear VOC-55 aerosols.
  • monomer A is tert-butyl acrylate
  • monomer B is methacrylic acid
  • monomer C is ethyl acrylate.
  • Particularly preferred embodiments are polymers obtainable by radical polymerization of 75 to 80% by weight of tert-butyl acrylate, 20 to 25% by weight of methacrylic acid and 0 to 2% by weight of ethyl acrylate, with the proviso that the
  • the acrylate polymers are prepared in a known manner by free-radical polymerization of the monomers A, B and, if appropriate, C.
  • the usual polymerization techniques are used here, for example the methods of suspension, emulsion or solution polymerization.
  • the acrylate polymers are preferably prepared in a known manner by free-radically initiated aqueous emulsion polymerization of the monomers A, B and, if appropriate, C.
  • the free-radically initiated aqueous emulsion polymerization usually takes place in such a way that the monomers, usually with the help of Use of dispersants, dispersed in an aqueous medium and polymerized by means of at least one radical polymerization initiator.
  • Free radical polymerization initiators for the free radical aqueous emulsion polymerization according to the invention are all those which are capable of initiating a free radical aqueous emulsion polymerization. In principle, these can be both peroxides and azo compounds. Of course, redox initiator systems can also be used.
  • inorganic peroxides such as hydrogen peroxide or peroxodisulfates, such as the mono- or di-alkali metal or ammonium salts of peroxodisulfuric acid, such as, for example, their mono- and di-sodium, potassium or ammonium salts, or organic peroxides, such as alkyl hydroperoxides, can be used as peroxides , for example tert-butyl, p-menthyl or cumyl hydroperoxide, tert-butyl perpivalate and dialkyl or diaryl peroxides, such as di-tert-butyl or di-cumyl peroxide, 2,5-dimethyl-2,5-di- (t) butyl peroxy (hexane) or dibenzoyl peroxide can be used.
  • organic peroxides such as alkyl hydroperoxides
  • the azo compound found is essentially 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile) and 2,2'-azobis (amidinopropyl) dihydrochloride (AIBA, corresponds to V-50 TM from Wako Chemicals ), 1,1'-azo-bis- (1-cyclohexane carbonitrile), 2,2'-azobis (2-amidinopropane) salts, 4,4'-azobis (4-cyanovaleric acid) or 2- (carbamoylazo) - isobutyronitrile ,
  • the above-mentioned peroxides are essentially suitable as oxidizing agents for redox initiator systems.
  • Sulfur compounds with a low oxidation level such as alkali sulfites, for example potassium and / or sodium sulfite, alkali hydrogen sulfites, for example potassium and / or sodium hydrogen sulfite, alkali metal sulfites, for example potassium and / or sodium metabisulfite, formaldehyde sulfoxylates, for example potassium and / or Sodium formaldehyde sulfoxylate, alkali salts, especially potassium and / or sodium salts of aliphatic sulfinic acids and alkali metal hydrogen sulfides, such as, for example, potassium and / or sodium hydrogen sulfide, salts of polyvalent metals, such as iron (II) sulfate, iron (II) - Ammonium sulfate, iron (II) phosphate, end
  • Alkanthiols are preferably used as regulators. Mixtures of several controllers can also be used. Linear and branched alkane thiols with a C chain length of C 10 to C 22 are used as alkane thiols. Linear alkanethiols are particularly preferred, further preferred are alkanethiols with a chain length of C 12 to C ⁇ , in particular of C 12 to C 18 .
  • Preferred alkanethiols are n-decanethiol, n-dodecanethiol, tert-dodecanethiol, n-tetradecanethiol, n-pentadecanethiol, n-hexadecanethiol, n-heptadecanethiol, n-octadecanethiol, n-nonadecanethiol, n-eicosanethiol and n-docosanethiol , Linear, even-numbered alkane thiols are particularly preferred.
  • the alkane thiols can also be used in mixtures.
  • the alkane thiols are usually used in amounts of 0.1 to 5% by weight, in particular 0.25 to 2% by weight, based on the monomers to be polymerized.
  • the alkanethiols are usually added to the polymerization together with the monomers.
  • alkanethiols with a C chain length of C 10 to C 13 are used in the polymerization, a subsequent hydrogen peroxide treatment is necessary in order to obtain odorlessly neutral polymers.
  • this hydrogen peroxide treatment following the polymerization usually 0.01 to 2.0% by weight, in particular 0.02 to 1.0% by weight, preferably 0.3 to 0.8% by weight, are further preferred 0.03 to 0.15% by weight of hydrogen peroxide, based on the monomers to be polymerized. It has proven to be advantageous to carry out the hydrogen peroxide treatment at a temperature of 20 to 100 ° C., in particular 30 to 80 ° C.
  • the hydrogen peroxide treatment is usually carried out for a period of 30 minutes to 240 minutes, in particular 45 minutes to 90 minutes.
  • hydrogen peroxide treatment can be omitted. In a further embodiment of the invention, however, hydrogen peroxide treatment can also be used when using alkanethiols with a chain length of C 4 to C 22 .
  • the polymers according to the invention have K values between 27 and 38.
  • the K value of the polymers according to the invention is in the range from 29 to 35, particularly preferably in the range from 30 to 34 and very particularly preferably in the range from 30 to 32.
  • the K value desired in each case can be selected by choosing the polymerization conditions , for example the polymerization temperature and the initiator concentration.
  • regulators are used to adjust the K value, in particular when using emulsion and suspension polymerization.
  • the K value can be set by selecting the type and / or the quantity of the controller. In a preferred embodiment, lower K values are set by larger amounts of regulator based on the total amount of monomer.
  • the monomers C which are optionally used to prepare the polymers according to the invention, are selected so that at least one of the monomers C provides a homopolymer with a glass transition temperature below 30 ° C.
  • the polymers according to the invention usually have glass transition temperatures T g between 50 and 130 ° C., in particular between 60 and 100 ° C.
  • the glass transition temperature T g means the limit value of the glass transition temperature which, according to G. Kanig (Colloid Journal & Journal for Polymers, Vol. 190, page 1, equation 1), strives with increasing molecular weight.
  • the glass transition temperature is determined using the DSC method (differential scanning calorimetry, 20 K / min, midpoint measurement, DIN 53 765).
  • Tg values for the homopolymers of the abovementioned monomers are known and are listed, for example, in Ullmann's Ecyclopedia of Industrial Chemistry, Verlag Chemie, Weinheim, 1992, Vol. 5, Vol. A21, page 169; Further sources for glass transition temperatures of homopolymers are, for example, J. Brandrup, EH Immergut, Polymer Handbook, Ist Ed., J. Wiley, New York 1966, 2nd Ed. J. Wiley, New York 1975, and 3 rd Ed. J. Wiley, New York 1989).
  • x1, x2, .... xn are the mass fractions of the monomers 1, 2 n and T g 1, T g 2 T g n are the glass transition temperatures of the build-up of only one of the monomers 1, 2, .... n Polymer in degrees Kelvin mean.
  • the emulsion polymerization is usually carried out with the exclusion of oxygen, for example under a nitrogen or argon atmosphere, at temperatures in the range from 20 to 200.degree. Polymerization temperatures in the range from 50 to 130, in particular 70 to 95 ° C. are advantageous. In the case of free-radically initiated emulsion polymerization, care must be taken, in particular at higher temperatures, to avoid the formation of coagulum that the polymerization mixture does not boil. This can be avoided, for example, by the polymerization reaction being carried out at an inert gas pressure which is higher than the vapor pressure of the polymerization mixture, for example 1.2 bar, 1.5 bar, 2 bar, 3 bar, 5 bar, 10 bar or even higher ( absolute values).
  • the polymerization can be carried out batchwise, semi-continuously or continuously.
  • the polymerization or the monomer and regulator metering are frequently carried out semi-continuously by the feed process.
  • the amounts of monomers and dispersants are expediently chosen so that they contain a 30 to 80% by weight dispersion of the copolymers.
  • at least some of the monomers, initiators and optionally regulators are metered uniformly into the reaction vessel during the polymerization.
  • the monomers and the initiator can also be placed in the reactor and polymerized, with cooling possibly being necessary.
  • the polymerization is carried out using a seed latex.
  • the seed latex is expediently prepared from the polymers to be polymerized in the first polymerization phase in a conventional manner.
  • the remaining part of the monomer mixture is then added, preferably by the feed process.
  • the polymerization reaction advantageously takes place up to a monomer conversion> 95% by weight, preferably> 98% by weight or> 99% by weight.
  • aqueous polymer dispersion obtained is subjected to a post-polymerization step in order to further reduce the amount of unreacted monomer.
  • This measure is known to the person skilled in the art (for example EP-B 3957, EP-B 28348, EP-B 563726, EP-A 764699, EP-A 767180, DE-A 3718 520, DE-A 3834734, DE-A 4232194, DE -A 19529599, DE-A 19741187, DE-A 19839199, DE-A 19840586, WO 95/33775 or US 4529753).
  • aqueous polymer dispersions obtainable according to the invention can be dried in a simple manner to give redispersible polymer powders.
  • the polymer is prepared by emulsion polymerization, the one obtained can
  • Dispersion can either be incorporated directly into an aqueous, aqueous-alcoholic or alcoholic cosmetic preparation, for example a hair-setting preparation, or the dispersion is dried, for example spray drying or freeze-drying, so that the polymer can be used and processed as a powder.
  • aqueous polymer dispersion obtained it is also possible to subject the aqueous polymer dispersion obtained to an inert gas and / or steam stripping which is also known to the person skilled in the art before or after the postpolymerization step. This stripping process preferably takes place after the post-polymerization step.
  • partial neutralization of the dispersion to a pH in the range from 5 to 7, preferably to a pH in the range from 5.5 to 6.5 is advantageous before the physical deodorization.
  • the polymers present in the aqueous dispersion before or after the aftertreatment can be partially or completely neutralized. Partial or complete neutralization of the polymer dispersions is advantageous, in particular for the use of the polymers in hair cosmetic preparations.
  • the neutralization of the polymers is usually carried out partially or completely with an alkali metal hydroxide or preferably with an amine, advantageously to 5 to 100%, or frequently to 30 to 95%.
  • the polymers are partially neutralized, in a particularly preferred embodiment completely.
  • the neutralization is advantageously carried out using a mono-, di- or trialkanolamine having 2 to 5 carbon atoms in the alkanol radical, which is optionally present in etherified form, for example mono-, di- and triethanolamine, mono-, di- and tri-n-propanolamine , Mono-, di- and tri-so-propanolamine, 2-amino-2-methylpropanol and di (2-methoxyethyl) amine, an alkanediolamine with 2 to 5 carbon atoms, for example 2-amino-2-methylpropane-1, 3- diol and 2-amino-2-ethylpropane-1,3-diol, or a primary, secondary or tertiary alkylamine with a total of 5 to 10 carbon atoms, for example N, N-diethylpropylamine or 3-diethyI-amino-1-propylamine.
  • Sodium, or potassium and ammonium hydroxide are particularly suitable as alkali metal hydroxides for neutralization.
  • Aqueous buffer solutions such as buffers based on alkali or ammonium carbonate or bicarbonate, are also suitable for neutralization.
  • the neutralizing agents are preferably added to the polymer dispersion as a dilute aqueous solution.
  • the pH can optionally also be adjusted by adding a buffer solution, buffers based on alkali or ammonium carbonate or bicarbonate being preferred.
  • the polymer particles present in aqueous dispersion generally have a weight-average particle diameter> 5 nm,> 10 nm,> 20 nm,> 30 nm,> 40 nm,> 50 nm,> 60 nm,> 70 nm,> 80 nm,> 90 nm or> 100 nm and all values in between and ⁇ 700 nm, ⁇ 500 nm, ⁇ 400 nm, ⁇ 350 nm, ⁇ 300 nm, ⁇ 250 nm,
  • weight-average particle diameter is understood to mean the weight-average D w50 value determined by the analytical ultracentrifuge method (cf. SE Harding et al., Analytical Ultra-centrifugation in Biochemistry and Polymer Science, Royal Society of Chemistry, Cam-bridge, Great Britain 1992, Chapter 10, Analysis of Polymer Dispersions with an Eight-Cell-AUC-Multiplexer: High Resolution Particie Size Distribution and Density Gradient Techniques, W. Switzerland, pages 147 to 175).
  • the polymer solids content of the aqueous polymer dispersions accessible according to the invention is frequently 5 to 70% by weight, often 20 to 60% by weight or 30 to 60% by weight.
  • the (meth) acrylate polymers according to the invention are used in cosmetic, hygienic dermatological and / or pharmaceutical preparations, the preparation of which is carried out according to the usual rules familiar to the person skilled in the art.
  • the (meth) acrylate polymers according to the invention are preferred in cosmetic
  • Preparations particularly preferably used in hair cosmetic preparations.
  • the (meth) acrylate polymers according to the invention are furthermore preferably used in preparations for oral and dental care.
  • the (meth) acrylate polymers according to the invention are notable for excellent film-forming properties. Another object of the invention therefore relates to the use of the (meth) acrylate polymers as film formers.
  • the (meth) acrylate polymers present in partial or completely neutralized form are particularly suitable for use in cosmetic preparations. Cosmetic preparations
  • the (meth) acrylate polymers according to the invention can be used in cosmetic preparations as aqueous or aqueous-alcoholic solutions, O / W and W / O emulsions in the form of shampoos, creams, foams, sprays (pump spray or aerosol), gels, gel sprays, Lotions or mousse are present and can be formulated accordingly with the usual other auxiliaries.
  • the (meth) acrylate polymers according to the invention are preferably formulated in cosmetic preparations as sprays (pump spray or aerosol). They are particularly preferably provided as VOC-55 formulations.
  • the cosmetic, dermatological, hygienic and / or pharmaceutical preparations can also contain conventional additives such as emulsifiers and co-emulsifiers, surfactants, oil bodies, preservatives, perfume oils, cosmetic care products. and active ingredients such as AHA acids, fruit acids, cerarnides, phytantriol, collagen, vitamins and provitamins, for example vitamins A, E and C, retinol, bisabolol, panthenol, natural and synthetic light stabilizers, natural substances, opacifiers, solubilizers, repellents, bleaches, colorants, Tinting agents, browning agents (e.g.
  • micropigments such as titanium oxide or zinc oxide, superfatting agents, pearlescent waxes, consistency agents, thickeners, solubilizers, complexing agents, fats, waxes, silicone compounds, hydrotropes, dyes, stabilizers, pH value regulators, reflectors, proteins and protein hydro Contain lysates (e.g. wheat, almond or pea proteins), ceramide, protein hydrolysates, salts, gelling agents, consistency agents, silicones, humectants, moisturizers and other common additives.
  • further polymers can also be included to adjust the properties desired in each case.
  • UV light stabilizers can also be present in the cosmetic preparations.
  • the auxiliaries can be present during the polymerization and / or can be added after the polymerization. Examples of the respective classes of auxiliaries are given below, without restricting the possible auxiliaries to those mentioned by way of example.
  • Another object of the invention accordingly relates to the use of the polymers according to the invention in cosmetic and / or pharmaceutical preparations.
  • the purpose of the light protection filters used in cosmetic and pharmaceutical preparations is to prevent or at least to reduce the harmful effects of sunlight on human skin.
  • these light protection filters also serve to protect other ingredients from destruction or degradation by UV radiation.
  • damage to the keratin fiber by UV rays is to be reduced.
  • the sunlight reaching the earth's surface has a share of UV-B (280 to 320 nm) and UV-A radiation (320 to 400 nm), which directly adjoin the range of visible light.
  • the influence on human skin is particularly noticeable with UV-B radiation due to sunburn.
  • the narrower range around 308 nm is given as a maximum of the erythema effectiveness of sunlight.
  • UV-B radiation Numerous compounds are known for protection against UV-B radiation, which include are derivatives of 3-benzylidene camphor, 4-aminobenzoic acid, cinnamic acid, salicylic acid, benzophenone and 2-phenylbenzimidazole. It is also important to have filter substances available for the range between about 320 nm and about 400 nm, the so-called UV-A range, since their rays can cause reactions in light-sensitive skin. It has been proven that UV-A radiation leads to damage to the elastic and collagen fibers of the connective tissue, which causes the skin to age prematurely, and that it can be seen as the cause of numerous phototoxic and photoallergic reactions. The damaging influence of UV-B radiation can be intensified by UV-A radiation.
  • Oil-soluble organic UV-A filters and / or UV-B filters and / or water-soluble organic UV-A filters and / or UV-B filters can be used as UV light protection filters.
  • the total amount of UV light protection filters is generally 0.1% by weight to 30% by weight, preferably 0.5 to 15% by weight, in particular 1 to 10% by weight, based on the total weight of the preparations.
  • the UV light protection filters are advantageously chosen so that the preparations protect the skin from the entire range of ultraviolet radiation.
  • UV light protection filters are:
  • combinable light stabilizers include the following compounds:
  • UV light protection filters which can be used in combination with the polymers according to the invention, is of course not intended to be limiting.
  • Germ inhibitors can also be used. These generally include all suitable preservatives with a specific effect against gram-positive bacteria, e.g. triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether), chlorhexidine (1,1 - hexamethylene bis [5- (4-chlorophenyl) biguanide) and TTC (3,4,4'-trichlorocarbanilide). Quaternary ammonium compounds are also suitable in principle, but are preferably used for disinfectant soaps and washing lotions. Numerous fragrances also have antimicrobial properties. Special combinations with particular effectiveness against gram-positive bacteria are used for the composition of so-called deoparfums.
  • Clove oil (eugenol), mint oil (menthol) or thyme oil (thymol) show a pronounced antimicrobial activity.
  • the antibacterial substances are generally used in concentrations of approx. 0.1 to 0.3% by weight.
  • Cosmetic preparations include, for example, skin cosmetic preparations, in particular those for the care and / or cleaning of the skin. These are in particular available as W / O or O / W skin creams, day and night creams, eye creams, face creams, anti-wrinkle creams, facial expression creams, moisturizing creams, bleaching creams, vitamin creams, skin lotions, care lotions and moisturizing lotions. Furthermore, they are suitable for skin cosmetic preparations such as facial tonic, face masks, deodorants and other cosmetic lotions and for use in decorative cosmetics, for example as concealer, theater paint, in mascara and eyeshadow, lipsticks, eye pencils, eyeliners, makeup, foundations, blushes and powders and eyebrow pencils.
  • skin cosmetic preparations such as facial tonic, face masks, deodorants and other cosmetic lotions and for use in decorative cosmetics, for example as concealer, theater paint, in mascara and eyeshadow, lipsticks, eye pencils, eyeliners, makeup, foundations, blushes and powders and eyebrow pencils.
  • the (meth) acrylate polymers according to the invention can be used in nose strips for pore cleaning, in anti-acne agents, repellents, shaving agents, hair removal agents, intimate hygiene products, foot care products and in baby care.
  • the polymers according to the invention are used as or in coating compositions for keratin-containing and keratin-analog surfaces, such as hair, skin and nails.
  • the polymers according to the invention are also used in cosmetic compositions for cleaning the skin.
  • cosmetic cleaning agents are, for example, bar soaps, such as toilet soaps, core soaps, transparent soaps, luxury soaps, deodorant soaps, cream soaps, baby soaps, skin protection soaps, abrasive soaps and syndets, liquid soaps, such as pasty soaps, soft soaps and washing pastes, and liquid washing, showering and bathing preparations, such as washing lotions, shower baths and gels, bubble baths, oil baths and scrub preparations, shaving foams, lotions, and creams.
  • bar soaps such as toilet soaps, core soaps, transparent soaps, luxury soaps, deodorant soaps, cream soaps, baby soaps, skin protection soaps, abrasive soaps and syndets
  • liquid soaps such as pasty soaps, soft soaps and washing pastes
  • showering and bathing preparations such as washing lotions, shower baths and gels, bubble baths, oil baths and scrub
  • the agents according to the invention can be applied in a form suitable for skin care, for example as a cream, foam, gel, stick, mousse, milk, spray or lotion.
  • a form suitable for skin care for example as a cream, foam, gel, stick, mousse, milk, spray or lotion.
  • the skin cosmetic preparations can also contain other active ingredients and auxiliaries customary in skin cosmetics, as described above. These preferably include emulsifiers, preservatives, perfume oils, cosmetic active ingredients such as phytantriol, vitamins A, E and C, retinol, bisabolol, panthenol, natural and synthetic light stabilizers, bleaches, colorants, tinting agents, tanning agents, collagen, protein hydrolyzates, stabilizers, pH Value regulators, dyes, salts, thickeners, gelling agents, consistency agents, silicones, humectants, lipid replenishers and other common additives.
  • active ingredients and auxiliaries customary in skin cosmetics as described above. These preferably include emulsifiers, preservatives, perfume oils, cosmetic active ingredients such as phytantriol, vitamins A, E and C, retinol, bisabolol, panthenol, natural and synthetic light stabilizers, bleaches, colorants, tinting agents, tanning agents, collagen,
  • Preferred oil and fat components of the skin cosmetic and dermatological agents are the aforementioned mineral and synthetic oils, such as paraffins, silicone oils and aliphatic hydrocarbons with more than 8 carbon atoms, animal and vegetable oils, such as sunflower oil, coconut oil, avocado oil, olive oil, lanolin, or waxes, fatty acids, fatty acid esters, such as, for example, 6. triglycerides of C 6 -C 30 fatty acids, wax esters, such as, for example, jojoba oil, fatty alcohols, petroleum jelly, hydrogenated lanolin and acetylated lanolin and mixtures thereof.
  • the polymers according to the invention can also be mixed with conventional polymers if special properties are to be set.
  • the skin cosmetic and dermatological preparations can also contain conditioning substances based on silicone compounds in order to adjust certain properties, such as, for example, improving the feel, the spreading behavior, the water resistance and / or the binding of active ingredients and auxiliaries such as pigments.
  • Suitable silicone compounds are, for example, polyalkylsiloxanes, polyarylsiloxanes, polyarylalkylsiloxanes, polyether siloxanes or silicone resins.
  • the cosmetic or dermatological preparations are produced by customary methods known to the person skilled in the art.
  • the cosmetic and dermatological agents are preferably in the form of emulsions, in particular in the form of water-in-oil (W / O) or oil-in-water (O / W) emulsions.
  • hydro-dispersions for example hydro-dispersions, gels, oils, oleogels, multiple emulsions, for example in the form of W / O / W or O / W / O emulsions, anhydrous ointments or ointment bases, etc.
  • Emulsions are prepared by known methods.
  • the emulsions generally contain customary constituents, such as fatty alcohols, fatty acid esters and in particular fatty acid triglycerides, acids, lanolin and derivatives thereof, natural or synthetic oils or waxes and emulsifiers in the presence of water.
  • customary constituents such as fatty alcohols, fatty acid esters and in particular fatty acid triglycerides, acids, lanolin and derivatives thereof, natural or synthetic oils or waxes and emulsifiers in the presence of water.
  • a suitable emulsion e.g. for a skin cream etc., generally contains an aqueous phase which is emulsified in an oil or fat phase by means of a suitable emulsifier system.
  • the proportion of the emulsifier system in this type of emulsion is preferably about 4 to 35% by weight, based on the total weight of the emulsion.
  • the proportion of the fat phase is preferably about 20 to 60% by weight.
  • the proportion of the aqueous phase is preferably about 20 and 70%, in each case based on the total weight of the emulsion.
  • the emulsifiers are those which are usually used in this type of emulsion.
  • C 12 -C 18 sorbitan fatty acid esters esters of hydroxystearic acid and C 2 -C 30 fatty alcohols, mono- and diesters of C 12 -C 18 fatty acids and glycerol or polyglycerol, condensates of ethylene oxide and propylene glycols, oxypropylenated / oxyethylated C ⁇ 2 -C 18 fatty alcohols, polycyclic alcohols such as sterols, aliphatic alcohols with a high molecular weight such as lanolin, mixtures of oxypropylenated / polyglycerolated alcohols and magnesium isostearate; Succine esters of polyoxyethylene or polyoxypropylene fatty alcohols and mixtures of magnesium, calcium, lithium, zinc or aluminum lanolate and hydrogenated lanolin or lanolin alcohol.
  • Preferred fat components which can be contained in the fat phase of the emulsions are hydrocarbon oils such as paraffin oil, purcellin oil, perhydrosqualene and solutions of microcrystalline waxes in these oils, animal or vegetable oils such as sweet almond oil, avocado oil, calophylum oil, lanolin and derivatives thereof, castor oil , Sesame oil, olive oil, jojoba oil, karite oil, hoplostethus oil, mineral oils whose distillation begins at atmospheric pressure at approx. 250 ° C and whose distillation end point is approx. 410 ° C, such as Vaseline oil, esters of saturated or unsaturated fatty acids such as alkyl myristates, e.g.
  • the fat phase can also contain silicone oils soluble in other oils such as, for example, dimethylpolysiloxane, methylphenylpolysiloxane and the silicone glycol copolymer, fatty acids and fatty alcohols.
  • oils such as, for example, B. carnauba wax, candililla wax, beeswax, microcrystalline wax, ozokerite wax and Ca, Mg and Al oleates, myristates, linoleates and stearates.
  • the water-in-oil emulsions are prepared by placing the fat phase and the emulsifier in a batch container.
  • the agents according to the invention are a shower gel, a shampoo formulation or a bath preparation.
  • shower gels are preferred, in particular clear shower gels.
  • Such formulations contain at least one polymer according to the invention and usually anionic surfactants as base surfactants and amphoteric and / or nonionic surfactants as cosurfactants.
  • Further suitable active substances and / or auxiliary substances are usually selected from lipids, perfume oils, dyes, organic acids, preservatives and antioxidants as well as thickeners / gel formers, skin conditioners and humectants.
  • formulations preferably contain about 2 to 50% by weight, preferably 5 to 40% by weight, particularly preferably 8 to 30% by weight, of surfactants, based on the total weight of the formulation.
  • All anionic, neutral, amphoteric or cationic surfactants commonly used in personal cleansing agents can be used in the washing, showering and bathing preparations.
  • Suitable anionic surfactants are, for example, alkyl sulfates, alkyl ether sulfates, alkyl sulfonates, alkyl aryl sulfonates, alkyl succinates, alkyl sulfosuccinates, N-alkoyl sarcosinates, acyl taurates, acyl isothionates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, in particular alkali metal alkali metal sulfates, for example alkali metal alkali metal sulfates Sodium, potassium, magnesium, calcium, and ammonium and triethanolamine salts.
  • the alkyl ether sulfates, alkyl ether phosphates and alkyl ether carboxylates can have between 1 and 10 ethylene oxide or propylene oxide units, preferably 1 to 3 ethylene oxide units, in the molecule.
  • Suitable amphoteric surfactants are, for example, alkylbetaines, alkylamidopropylbetaines, alkylsulfobetaines, alkylglycinates, alkylcarboxyglycinates, alkylamphoacetates or propionates, alkylamphodiacetates or dipropionates.
  • cocodimethylsulfopropylbetaine laurylbetaine, cocamidopropylbetaine or sodium cocamphopropionate can be used.
  • Suitable nonionic surfactants are, for example, the reaction products of aliphatic alcohols or alkylphenols with 6 to 20 carbon atoms in the alkyl chain, which can be linear or branched, with ethylene oxide and / or propylene oxide.
  • the amount of alkylene oxide is about 6 to 60 moles per one mole of alcohol.
  • Alkylamine oxides, mono- or dialkylalkanolamides, fatty acid esters of polyethylene glycols, ethoxylated fatty acid amides, alkylpolyglycosides or sorbitan ether esters are also suitable.
  • washing, showering and bathing preparations can contain conventional cationic surfactants, such as e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • conventional cationic surfactants such as e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • cationic polymers can also be used, e.g. Copolymers of acrylamide and dimethyldiallylammonium chloride (polyquaternium-7), cationic cellulose derivatives (polyquaternium-4, polyquaternium-10), guar hydroxypropyltrimethylammonium chloride (INCI: hydroxylpropyl guar hydroxypropyltrimonium chloride), copolymers of N-vinylpyridoleminone 16, -44, -46), copolymers of N-vinylpyrrolidone / dimethylaminoethyl methacrylate, quaternized with diethyl sulfate (Polyquaternium-11) and others.
  • shower gel / shampoo formulations can include thickeners, e.g. Table salt, PEG-55, propylene glycol oleate, PEG-120 methyl glucose dioleate and others, as well as preservatives, other active and auxiliary substances and water.
  • thickeners e.g. Table salt, PEG-55, propylene glycol oleate, PEG-120 methyl glucose dioleate and others, as well as preservatives, other active and auxiliary substances and water.
  • hair cosmetic preparations are hair treatments, hair lotions, hair rinses, hair emulsions, tip fluids, leveling agents for perms, hot oil treatment preparations, conditioners, curl relaxers, styling wrap solutions, setting lotions, shampoos, hair waxes, pomades, hair foams, or hair colorants hairsprays. It is particularly preferred to use the (meth) acrylic polymers in hairstyle fixtures which are in the form of spray preparations and / or hair foams.
  • the (meth) acrylate polymers according to the invention are distinguished in hair cosmetic preparations by their high compatibility with the non-polar blowing agents in spray preparations, in particular with hydrocarbons such as n-propane, isopropane, n-butane, iso-butane, n-pentane and mixtures thereof and in particular from the excellent sprayability as a pump spray or aerosol.
  • Additives have a good hair-setting effect, form films with very good mechanical properties and are characterized by the fact that they practically do not stick the hair together.
  • the (meth) acrylate polymers have outstanding results in terms of the application properties in hair cosmetic preparations. They are clearly soluble in alcohols such as ethanol or isopropanol and in mixtures of these alcohols with water. The clarity of the solutions is also retained when the solutions are used in standard spray formulations together with blowing agents such as dimethyl ether. In particular, they can be clearly formulated in aqueous low-VOC preparations with a maximum of 55% by weight of volatile organic constituents (VOC-55).
  • the hair fixatives according to the invention can be washed out of the hair perfectly. Hair treated with them has increased suppleness and a pleasant natural feel. At the same time, the strengthening effect is high, so that in principle it is possible to reduce the amount of film former required in the hair spray formulation. Due to the odorlessness of the
  • (meth) acrylate polymers can be dispensed with the addition of odor-covering perfume oils.
  • the (meth) acrylate polymers are particularly suitable as film formers in hair cosmetic preparations.
  • the (meth) acrylate polymers are usually present in 0.1 to 20% by weight, preferably 0.5 to 10% by weight, in particular 2 to 10% by weight, of the partially or completely neutralized (meth) acrylate polymer based on the cosmetic preparation used.
  • a customary organic solvent such as, above all, ethanol, isopropanol and dimethoxymethane and also acetone, n-propanol, n-butanol, 2-methoxypropan-1-ol, n-pentane, n-hexane, cyclohexane, n-heptane, n-octane or dichloromethane or mixtures thereof
  • a conventional blowing agent such as n-propane, iso-propane, n-butane, sobutane, 2,2-dimethylbutane, n -Pentane, isopentane, dimethyl ether, difluoroethane, fluorotrichloromethane, dichlorodifluoromethane or dichlorotetrafluoroethane, HFC 152 A or mixtures thereof
  • Alkanolamines are used to neutralize various types of acids and to adjust the pH of cosmetic products.
  • Examples (INCI) are aminomethyl propanol, diethanolamine, diisopropanolamine, ethanolamine, methylethanolamine, N-lauryl diethanolamine, triethanolamine, triisoproanolamine, etc.
  • alkali metal hydroxides eg NaOH, KOH
  • other bases can be used for neutralization (eg histidine, arginine , Lysine or ethylenediamine, diethylene triamine, melamine, benzoguanamine). All of the stated bases can be used alone or as a mixture with other bases for neutralizing acidic cosmetic products.
  • Propellant gases Propellant gases
  • blowing agents used above all are the hydrocarbons, in particular propane, n-butane, n-pentane and mixtures thereof, and also dimethyl ether and difluoroethane. If appropriate, one or more of the chlorinated hydrocarbons mentioned are also used in blowing agent mixtures, but only in small amounts, approximately up to 20% by weight, based on the blowing agent mixture.
  • the hair cosmetic preparations according to the invention are also particularly suitable for pump spray preparations without the addition of blowing agents or also for aerosol sprays with conventional compressed gases such as nitrogen, compressed air or carbon dioxide as blowing agents.
  • a water-containing standard spray formulation for example, has the following composition:
  • anionic, cationic, amphoteric and neutral polymers are suitable as conventional polymers.
  • Copolymers of acrylic acid, methyl methacrylate, octylacrylamide, butylaminoethyl methyl acrylate and hydroxypropyl methacrylate
  • Copolymers of vinyl acetate and crotonic acid and / or (vinyl) neodecanoate
  • Copolymers of tert-butyl acrylate, methacrylic acid and dimethicone copolyol are preferred.
  • preparations which contain the polymers in combination with these other polymers have unexpected properties.
  • the preparations according to the invention are superior in particular to the preparations of the prior art with regard to their skin and hair care properties. Furthermore, they have very good film-forming and strengthening properties.
  • Copolymer are available, for example, as commercial products Luviflex TM Soft (BASF).
  • Copolymers of N-tert-butylacrylamide, ethyl acrylate and acrylic acid are available, for example, as commercial products Ultrahold Strang TM, Ultrahold 8 TM (BASF).
  • Polyvinylpyrrolidones (INCI name: PVP) are available, for example, under the trade names Luviskol K TM, Luviskol K 30 TM (BASF) and PVP K (ISP).
  • Polyvinylcaprolactams (INCI: Polyvinylcaprolactame) are available, for example, under the trade name Luviskol Plus TM (BASF).
  • Polyurethanes (INCI: Polyurethane -1) are, for example, under the trade name
  • Luviset TM PUR available.
  • Copolymers of acrylic acid, methyl methacrylate, octylacrylamide, butylaminoethyl methacrylate, hydroxypropyl methacrylate are known, for example, under the trade names Amphomer TM 28-4910 and Amphomer TM LV-71 (National Starch).
  • Copolymers of vinyl acetate and crotonic acid are available, for example, under the trade names Luviset CA 66 TM (BASF), Resyn TM 28-1310 (National Starch) and Aristoflex TM A (Celanese).
  • Copolymers of vinyl acetate, crotonic acid and (vinyl) neodecanoate are available, for example, under the trade names Resyn TM 28-2930 (National Starch) and Luviset TM CAN (BASF).
  • Copolymers of vinyl acetate and N-vinylpyrrolidone are available, for example, under the trade names Luviskol VA TM (BASF) and PVP / VA (ISP).
  • Carboxy-functional copolymers of vinyl pyrrolidone, t-butyl acrylate, methacrylic acid are available, for example, under the trade name Luviskol TM VBM (BASF).
  • Copolymers of tert-butyl acrylate, methacrylic acid and dimethicone copolyol are available, for example, under the trade name Luviflex TM Silk (BASF).
  • Anionic polymers are suitable as further polymers.
  • Such anionic polymers are homopolymers and copolymers of acrylic acid and methacrylic acid or their salts, copolymers of acrylic acid and acrylamide and their salts, sodium salts of polyhydroxycarboxylic acids, copolymers of acrylic acid and methacrylic acid with, for example, hydrophobic monomers, for example C 4 , from the (meth) acrylate polymers according to the invention -C 30 alkyl esters of (meth) acrylic acid, C -C 30 alkyl vinyl esters, C 4 -C 30 alkyl vinyl ethers and hyaluronic acid as well as others under the trade names Amerhold DR-25, Ultrahold TM, Luviset TM PUR, Acronal TM, Acu- dyne TM, Lovocryl TM, Versatyl TM, Amphomer TM (28-4910, LV-71), Placise TM L53, Gantrez
  • additional polymers are water-soluble or water-dispersible polyesters, polyureas, co-polyurethaneureas, maleic anhydride copolymers which may have been reacted with alcohols or anionic polysiloxanes.
  • Additional suitable polymers are, for example, cationic polymers with the INCI name Polyquaternium, for example
  • Copolymers of N-vinylcaprolactam / N-vinylpyrrolidone / N-vinylimidazolium salts available, for example, under the trade name Luviquat Hold TM
  • copolymers of N-vinylpyrrolidone / dimethylaminoethyl methacrylate, quaternized with diethyl sulfate available, for example, under the trade name Luviquat TM
  • Neutral polymers such as polyvinylpyrrolidone, copolymers of N-vinylpyrrolidone and vinyl acetate and / or vinyl propionate, polysiloxanes, polyvinylcaprolactam and copolymers with N-vinylpyrrolidone, cellulose derivatives, polyaspartic acid salts and derivatives are also suitable as further hair cosmetic polymers.
  • These include the Luviskol TM (K, VA, Plus), PVP K, PVP / VA, Advantage TM HC and H 2 OLD EP-1 known under the trade names.
  • biopolymers i.e. Polymers that are obtained from naturally renewable raw materials and are built up from natural monomer components, e.g. Cellulose derivatives, chitin, chitosan, DNA, hyaluronic acid and RNA derivatives.
  • Suitable polymers are betaine polymers such as Yukaformer (R205, SM) and Diaformer.
  • Suitable anionic surfactants include for example alkyl sulfates, alkyl ether sulfates, alkyl sulfonates, alkyl aryl carboxylate, alkyl succinates, alkyl sulphosuccinates, N-AIkoylsarkosinate, acyl taurates, acyl isethionates, alkyl phosphates, alkyl ether phosphates, alkyl ether, alpha-olefin sulfonates, especially the alkali metal and alkaline earth metal salts, eg sodium, potassium , Magnesium, calcium, and ammonium and triethanolamine salts.
  • the alkyl ether sulfates, alkyl ether phosphates, alkyl glycol alkoxylates and - diglycol alkoxylates and alkyl ether carboxylates can be between 1 to 10 ethylene oxide or
  • Propylene oxide units preferably 1 to 3 ethylene oxide units in the molecule.
  • sodium lauryl sulfate, ammonium lauryl sulfate, sodium lauryl ether sulfate, ammonium lauryl ether sulfate, sodium lauryl sarcosinate, sodium oleyl succinate, ammonium lauryl sulfosuccinate, sodium dodecylbenzenesulfonate, triethanolamine dodecyl benzene sulfonate are suitable.
  • Suitable amphoteric surfactants are, for example, alkylbetaines, alkylamidopropylbetaines, alkylsulfobetaines, alkylglycinates, alkylcarboxyglycinates, alkylamphoacetates or propionates, alkylamphodiacetates or dipropionates.
  • cocodimethylsulfopropylbetaine laurylbetaine, cocamidopropylbetaine or sodium cocamphopropionate can be used.
  • Suitable nonionic surfactants are, for example, the reaction products of aliphatic alcohols or alkylphenols with 6 to 20 carbon atoms in the alkyl chain, which can be linear or branched, with ethylene oxide and / or propylene oxide.
  • the amount of alkylene oxide is about 6 to 60 moles per mole of alcohol.
  • Alkylamine oxides, mono- or dialkylalkanolamides, fatty acid esters of polyethylene glycols, ethoxylated fatty acid amides, alkylpolyglycosides, alkylglycol alkoxylates and diglycol alkoxylates or sorbitan ether esters are also suitable.
  • the agents can contain conventional cationic surfactants, e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • conventional cationic surfactants e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • the (meth) acrylate polymers according to the invention are used in shampoo formulations, they usually contain anionic surfactants as base surfactants and amphoteric and nonionic surfactants as cosurfactants.
  • anionic surfactants as base surfactants
  • amphoteric and nonionic surfactants as cosurfactants.
  • relevant reviews such as J. Falbe (ed.), “Surfactants in Consumer Products”, Springer Verlag, Berlin, 1987, pp. 54-124 or J. Falbe (ed.), “Catalysts , Tenside und Mineralöladditive ", Thieme Verlag, Stuttgart, 1978, pp. 123-217.
  • the cosmetic preparations usually contain 2 to 50% by weight of surfactants, preferably 5 to 40% by weight, particularly preferably 8 to 30% by weight.
  • Suitable emulsifiers are, for example, nonionic surfactants from at least one of the following groups:
  • alkyl mono- and oligoglycosides with 8 to 22 carbon atoms in the alkyl radical and their ethoxylated analogs
  • polyol and in particular polyglycerol esters such as polyglycerol polyricin oleate, polyglycerol poly-12-hydroxystearate or polyglycerol dimerate. Mixtures of compounds from several of these classes of substances are also suitable; (7) adducts of 2 to 15 moles of ethylene oxide with castor oil and / or hardened castor oil;
  • partial esters based on linear, branched, unsaturated or saturated C6 / 22 - fatty acids, ricinoleic acid and 12-hydroxystearic acid and glycerol, polyglycerol, pentaerythritol, dipentaerythritol, sugar alcohols (for example sorbitol), alkyl glucosides (for example methyl glucoside, Butyl glucoside, lauryl glucoside) and polyglucosides (eg cellulose);
  • the adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols, glycerol mono- and diesters and sorbitan mono- and diesters of fatty acids or with castor oil are known, commercially available products. These are mixtures of homologs, the middle of which Degree of alkoxylation corresponds to the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate with which the addition reaction is carried out.
  • C 12 to C 18 fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE-PS 2024051 as refatting agents for cosmetic preparations.
  • C 8 to C 18 alkyl mono- and oligoglycosides their preparation and their use are known from the prior art. They are produced in particular by reacting glucose or oligosaccharides with primary alcohols with 8 to 18 carbon atoms.
  • glycoside ester both monoglycosides in which a cyclic sugar residue is glycosidically bonded to the fatty alcohol and oligomeric glycosides with a degree of oligomerization of up to about 8 are suitable.
  • the degree of oligomerization is a statistical mean value which is based on a homolog distribution customary for such technical products.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are surface-active compounds that carry at least one quaternary ammonium group and at least one carboxylate and / or one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylamino propyl-N, N-dimethylammonium glycinate, for example coconut acylaminopropyl dimethylammonium glycinate, and 2-alkyl-3 -carboxylmethyl-3-hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • fatty acid amide derivative known under the CTFA name Cocamidopropyl Betaine is particularly preferred.
  • Suitable emulsifiers are ampholytic surfactants.
  • Ampholytic surfactants are understood to mean those surface-active compounds which, in addition to a C 8 -C 18 -alkyl or -acyl group, contain at least one free amino group and at least one -COOH and / or -SO 3 H group in the molecule and for the formation of internal ones Salts are capable.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylamino-butyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkyl sarcosines, 2-alkylaminopropionic acids and alkylamino acetic acids, each with about 8 to 18 carbon atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and C 12 to C-
  • quaternary emulsifiers are also suitable, those of the esterquat type, preferably methylquaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • Pearlescent waxes that can be used are, for example: alkylene glycol esters, special ethylene glycol masterate; Fatty acid alkanolamides, especially coconut fatty acid diethanoamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols with 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fat- acids such as stearic acid, hydroxystearic acid or behenic acid, ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15 carbon
  • Suitable consistency agents are primarily fatty alcohols or hydroxy fatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and also partial glycerides, fatty acids or hydroxy fatty acids. A combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Suitable thickeners are, for example, polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl cellulose, and also higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates (for example Carbopol TM from Goodrich or Synthalen TM from Sigma), polyacrylic amides, polyvinyl alcohol and polyvinyl pyrrolidone, surfactants such as, for example, ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as, for example, pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with restricted homolog distribution or alkyl oligoglucosides, and electrolytes such as sodium chloride and ammonium chloride.
  • polysaccharides in particular xanthan gum, guar gu
  • Typical examples of fats are glycerides, waxes include Beeswax, carnauba wax, candelilla wax, montan wax, paraffin wax or micro waxes, optionally in combination with hydrophilic waxes, e.g. Cetylstearyl alcohol or partial glycerides in question.
  • Metal salts of fatty acids such as e.g. Magnesium, calcium, aluminum and / or zinc stearate or ricinoleate can be used.
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluorine-, glycoside- and / or alkyl-modified silicone compounds which can be both liquid and resinous at room temperature.
  • Hydrotropes such as ethanol, isopropyl alcohol or polyols can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups. Typical examples are
  • Alkylene glycols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1000 daltons; technical oligoglycerol mixtures with a degree of self-condensation of 1.5 to 10 such as technical diglycerol mixtures with a diglycerol content of 40 to 50% by weight; Methylol compounds, such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol; - Lower alkyl glucosides, especially those with 1 to 8 carbons in the alkyl radical, such as methyl and butyl glucoside;
  • Aminosugars such as glucamine.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Ordinance.
  • Perfume oils include, for example, mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, rose, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit shells (bergamot, Lemon, orange), roots (mace, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme ), Needles and twigs (spruce, fir, pine, mountain pine), resins and balsams (galbanum, elemi, benzoin, myrrh, olivanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, 4-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phthalate nyl ethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenyl glycinate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals with 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonate, the ketones, for example, the jonones, cc-isomethyl ions and methyl cedryl ketone the alcohols anethof, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terioneol, the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • bergamot oil dihydromyrcenol, lilial, lyral, citronellol, phenylethyl alcohol, a-hexylcinnamaldehyde, geraniol, benzyl acetone, cyclamen aldehyde, linalool, Boisambrene Forte, Ambroxan, indole, hedione, Sandelice, lemon oil, mandarin oil, orange oil, allyl amyl glycolate, Cyclovertal, lavandin oil, muscatel Sage oil, b-damascone, geranium oil bourbon, cyclohexyl salicylate, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, phenylacetic acid, geranyl acetate, benzyl acetate, rose oxide, romillate, iroty
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • the total proportion of auxiliaries and additives can be 1 to 50, preferably 5 to 40% by weight, based on the composition.
  • the polymers according to the invention are readily soluble in solvents and solvent mixtures with an increased water content. Because of the ability of the polymers according to the invention to form films with good mechanical properties, they can be used in preparations for dental care. Possible forms of provision are, for example, toothpastes, toothbrush jelly, chewing gum or mouthwash.
  • the polymers according to the invention are provided in the non, partially or completely neutralized form, preferably in the non or partially neutralized form, for oral and dental care.
  • the polymers according to the invention and the films made from these polymers are therefore preferably in an anionic charge state.
  • the agents for oral and dental care contain customary constituents such as abrasives and polishes (for example chalk), humectants (for example sorbitol, glycerol, polyethylene glycols), surfactants (for example lauryl sulfate, betaines, alkyl polyglucosides), aroma components, consistency regulators, deodorant agents, swelling agents, binders (e.g. carboxymethyl cellulose, xanthan gum), agents against mouth or tooth diseases, water-soluble fluorine compounds (e.g. sodium fluoride).
  • abrasives and polishes for example chalk
  • humectants for example sorbitol, glycerol, polyethylene glycols
  • surfactants for example lauryl sulfate, betaines, alkyl polyglucosides
  • aroma components for example e.g., sorbitol, glycerol, polyethylene glycols
  • surfactants for example lauryl sulf
  • anionic surfactants are soaps, alkylbenzene sulfonates, alkane sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, glycerol ether sulfates, hydroxy mixed ether sulfates, fatty acid amide (ether) sulfates, mono- and dialkyl sulfosuccinic acid amides, sulfosuccinic acid amide, sulfosuccinic acid amide and sulfosuccinic acid amide their salts, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, N-acylamino acids, such as, for example, acyl lactylates, acyl tartrates, acyl glutamates and acyl aspartates
  • anionic surfactants contain polyglycol ether chains, these can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, glucoronic acid derivatives, fatty acid-N-alkylglucamides, wheat-based, protein hydrolysate products, especially protein hydrolysate products , Sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of amphoteric or zwitterionic surfactants are aminopropionates, aminoglycinates.
  • betaines, monoglyceride (ether) sulfates and alkyl and or alkenyl oligoglycosides, mono- and dialkyl sulfosuccinates and / or taurates are preferably added to the alkoxylated carboxylic acid esters.
  • the surfactants mentioned are exclusively known compounds. With regard to the structure and manufacture of these substances, reference is made to relevant reviews, for example, J.
  • the K values are measured according to Fikentscher, Cellulosechemie, vol. 13, pp. 58 to 64 (1932) at 25 ° C in aqueous / ethanolic or ethanolic solution and represent a measure of the molecular weight.
  • the aqueous / Ethanolic or ethanolic solution of the polymer contains 1 g polymer in 100 ml solution.
  • appropriate amounts of the dispersion are made up to 100 ml with ethanol, depending on the polymer content of the dispersion, so that the concentration of 1 g of polymer in 100 ml of solution is formed.
  • the K value is measured in a Micro Ubbelohde capillary type M Ic from Schott.
  • the setting of polymeric film formers is also measured physically as the bending stiffness of thin strands of hair that have been treated with the polymer solution and dried again.
  • a force transducer determines the force required for bending, while the entire measurement takes place under standardized conditions in a climate room at 65% relative air humidity.
  • bending stiffness 3.0% by weight solutions of the polymers according to the invention were prepared. The bending stiffness was measured on 5 to 10 strands of hair (approximately 3 g and 24 cm in length) at 20 ° C. and 65% relative humidity. The weighed, dry tresses of hair were immersed in the 3.0% by weight polymer solution, with an even distribution being ensured by immersion and removal three times. The excess film-forming solution was then wiped off between the thumb and forefinger and the strands of hair were then carefully squeezed out by squeezing between filter paper. The strands were then shaped by hand so that they had a round cross-section. At 20 ° C and 65% relative humidity it was dried overnight in a climatic room.
  • the tests were carried out in a climate room at 20 ° C and 65% relative humidity using a tension / pressure tester.
  • the lock of hair was placed symmetrically on two cylindrical rollers of the sample holder. Exactly in the middle, the strand was bent from above with a rounded punch 40 mm (breaking the polymer film).
  • the force required for this was measured with a load cell (50 N) and given in Newtons.
  • the particle sizes of the liquid aerosols were determined using the scattered light analysis method with a commercial Malvern TM Master Sizer X (Malvern Instruments Inc., Southborough MA, USA).
  • the measuring system is based on laser light diffraction on the particle.
  • this method is also suitable for determining the size of solids, suspensions and emulsions in the size range from 0.1 ⁇ m to 2000 ⁇ m.
  • the aerosols were sprayed at a distance of 29.5 cm from the laser beam.
  • the spray cone entered at right angles to the laser beam.
  • the aerosol cans were fixed to a permanently installed holding device, so that it was achieved that all aerosols to be tested were measured at exactly the same distance.
  • the evaluation contained a tabular representation over 32 class widths from 0.5 ⁇ m to 2000 ⁇ m and also a graphic representation of the particle size distribution.
  • the mean diameter "D" (v, 0.5) was given.
  • this value is dependent on the polymer content, valve, spray head geometry, solvent ratio and propellant gas - Quantities below 120 ⁇ m, preferably below 10 ⁇ m, particularly preferably in the range from 30 ⁇ m to 70 ⁇ m.
  • valve A Seaquist Perfect; Cone 0.32 mm, 0.50 VPH 0.40 mm (239436) as spray head: SK1 (yellow); DU381
  • feed II was metered in over the course of 3 hours with constant feed streams.
  • reaction mixture was stirred for a further hour at 80 ° C. and then cooled to 60 ° C.
  • Feed III was added while maintaining the temperature at 60.degree. It is then cooled to 35 ° C. and feed IV was added while maintaining the reaction temperature.
  • Feed II is an aqueous monomer emulsion made from:
  • TweenTM 80 for example, can be used as the nonionic emulsifier.
  • Example FB1 hairspray as VOC 55 formulation
  • Example FB 1 was repeated with the copolymers S1, S2, S4, S5, S6, S7.
  • Example FB 2 hairspray with some additives as VOC 55 formulation
  • Example FB 2 was repeated with the copolymers S1, S2, S4, S5, S6, S7.
  • Example FB 3 hairspray with HF 152A as VOC 55 formulation
  • Example FB 4 hairspray with HF 152A and DME as VOC 55 formulation
  • Example FB 4 was repeated with the copolymers S1, S2, S4, S5, S6, S7.
  • Example FB 5 hairspray with acrylates copolymer as VOC 55 formulation wt .-% INCI
  • Example FB 5 was repeated with the copolymers S1, S2, S4, S5, S6, S7.
  • Example FB 6 hairspray with octylacrylamide / acrylates / butylaminoethyl methacrylate copolymer as VOC 55 formulation
  • Example FB 6 was repeated with the copolymers S1, S2, S4, S5, S6, S7.
  • Example FB 7 hairspray with acrylate / octylacrylamide copolymer as VOC 55 formulation
  • Example FB 7 was repeated with the copolymers S1, S2, S4, S5, S6, S7.
  • Example FB 8 hairspray with VA / Crotonates / Vinyl Neodecanoate as VOC 55 formulation
  • Example FB 8 was repeated with the copolymers S1, S2, S4, S5, S6, S7.
  • Example FB 9 aerosol hair spray as VOC80 formulation wt .-% INCI
  • Example FB 9 was repeated with the copolymers S1, S2, S4, S5, S6, S7.
  • Example FB 10 aerosol hair spray with Polyurethane-1 as VOC80 formulation
  • Example FB 10 was repeated with the copolymers S1, S2, S4, S5, S6, S7.
  • Example FB 11 aerosol hair spray with PEG / PPG-25/25 dimethicone / acrylates copolymer as VOC80 formulation
  • Example FB 11 was repeated with the copolymers S1, S2, S4, S5, S6, S7.
  • Example FB 12 aerosol hair spray as VOC95 formulation
  • Example FB 12 was repeated with the copolymers S1, S2, S4, S5, S6, S7.
  • Example FB 13 Pump hair spray wt .-% INCI:
  • Example FB 13 was repeated with the copolymers S1, S2, S4, S5, S6, S7.
  • Example FB 14 Pump hair spray with VP / methacrylamide / vinyl imidazole copolymer wt .-% INCI
  • Example FB 14 was repeated with the copolymers S1, S2, S4, S5, S6, S7. Results of the application tests of aerosol formulations containing the polymers according to the invention

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Cosmetics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Die vorliegende Erfindung betrifft Polymerisate erhältlich durch radikalische Polymerisation von a) 30 bis 99 Gew.-% tert.-Butylacrylat und/oder tert.-Butylmethacrylat als Monomer A, b) 1 bis 70 Gew.-% Acrylsäure und/oder Methacrylsäure als Monomer B und c) 0 bis 12 Gew.-% eines radikalisch copolymerisierbaren Monomeren oder einer radikalisch copolymerisierbaren Monomerenmischung als Monomer C, wobei mindestens eines der Monomere C ein Homopolymerisat mit einer Glasübergangstemperatur kleiner als 30°C liefert, mit der Maßgabe, daß sich die Gew.-% zu 100 addieren, wobei der K-Wert der Polymerisate zwischen 27 und 38 liegt und wobei die Polymerisation in Gegenwart eines Reglers durchgeführt wird, wenn der K-Wert der Polymerisate kleiner oder gleich 35 ist, sowie die Verwendung dieser Polymerisate in Zubereitungen für insbesondere die Kosmetik und die Mund- und Zahnpflege.

Description

Acrylat-Polymerisate auf Basis von tert.-Butylacrylat zur Verwendung in Sprayformulierungen
Beschreibung
Die vorliegende Erfindung betrifft Polymerisate erhältlich durch radikalische Polymerisation von a) 30 bis 99 Gew.-% tert.-Butylacrylat und/oder tert.-Butylmethacrylat als Monomer b) 1 bis 70 Gew.-% Acrylsäure und/oder Methacrylsäure als Monomer B und c) 0 bis 12 Gew.-% eines radikalisch copolymerisierbaren Monomeren oder einer radikalisch copolymerisierbaren Monomerenmischung als Monomer C, wobei mindestens eines der Monomere C ein Homopolymerisat mit einer Glasübergangstemperatur kleiner als 30°C liefert, mit der Maßgabe, dass sich die Gew.-% zu 100 addieren, wobei der K-Wert der Polymerisate zwischen 27 und 38 liegt und wobei die Polymerisation in Gegenwart eines Reglers durchgeführt wird, wenn der K-Wert der Polymerisate kleiner oder gleich 35 ist, sowie die Verwendung dieser Polymerisate in Zubereitungen für insbesondere die Kosmetik und die Mund- und Zahnpflege.
Polymere mit filmbildenden Eigenschaften werden in der Kosmetik für kosmetische, dermatoiogische, hygienische und/oder pharmazeutische Formulierungen verwendet und eignen sich insbesondere als Zusatzstoffe für Haar- und Hautkosmetika.
EP-A 379 082 beschreibt Haarfestigungsmittel, enthaltend als Filmbildner Copolymeri- sate auf der Basis von tert.-Butylacrylat und/oder tert.-Butylmethacrylat mit einem K-Wert von 10 bis 50, die durch radikalische Polymerisation von
A) 75 bis 99 Gew.-% tert.-Butylacrylat und/oder tert.-Butylmethacrylat
B) 1 bis 25 Gew.-% Acrylsäure und/oder Methacrylsäure und C) 0 bis 10 Gew.-% eines weiteren radikalisch copolymerisierbaren Monomeren C, erhältlich sind und wobei die Carboxylgruppen der Copolymerisate teilweise oder vollständig durch Amine neutralisiert sind. Bevorzugt werden die Polymerisate durch Lösungspolymerisation erhalten.
EP-A 696916 beschreibt Haarfestigungsmittel, enthaltend als Filmbildner Copolymerisate auf der Basis von tert.-Butylacrylat oder tert.- Butylmethacrylat mit einem K-Wert von 10 bis 50, erhältlich durch radikalische Polymerisation von A) 30 bis 72 Gew.-% tert.-Butylacrylat oder tert.-Butylmethacrylat oder einer Mischung hieraus als Monomerem A, B) 10 bis 28 Gew.-% Acrylsäure oder Methacrylsäure oder einer Mischung hieraus als Monomerem B und C) 0 bis 60 Gew.-% eines radikalisch copolymerisierbaren Monomeren oder einer radikalisch copolymerisierbaren Monomerenmischung als Monomerem C, wobei mindestens eines der Monomeren C ein Homopolymerisat mit einer Glasübergangstemperatur kleiner als 30°C liefert, wobei die Carboxylgruppen der Copolymerisate teilweise oder vollständig neutralisiert sind.
In der WO 02/38638 werden Polymerisate beschrieben, die erhältlich sind durch radikalische Polymerisation von - 30 bis 99 Gew.-% tert.-Butylacrylat und/oder tert.-ButylmethacryIat als Monomerem A,
1 bis 28 Gew.-% Acrylsäure und/oder Methacrylsäure als Monomerem B und 0 bis 60 Gew.-% eines radikalisch copolymerisierbaren Monomeren oder einer radikalisch copolymerisierbaren Monomerenmischung als Monomerem C, wobei wenigstens eines der Monomeren C ein Homopolymerisat mit einer Glasübergangstemperatur kleiner als 30°C liefert, wobei als Regler optional Alkanthiole mit einer Cι4-C22-Kohlenstoffkette oder Alkan- thiole mit einer C10-C22-Kohlenstoffkette mit nachfolgender Wasserstoffperoxid- Behandlung eingesetzt werden.
Strengere Umweltauflagen und wachsendes ökologisches Bewusstsein fordern zunehmend immer geringere Anteile an flüchtigen organischen Komponenten (englisch: volatile organic compounds, VOC) in beispielsweise Haarsprays. Der VOC-Gehalt in Haarsprays ist im wesentlichen durch die nicht-wässrigen Lösungsmittel und die Treibmittel gegeben. Daher wurde anstelle von nicht-wässrigen Lösungsmittel verstärkt auf Wasser als Lösungsmittel zurückgegriffen. Dieser Ersatz der organischen Lösungsmitteln bringt aber insbesondere auf dem Gebiet der Haarspray-Formulierungen einige Probleme mit sich.
So sind Formulierungen der vorgenannten filmbildenden Polymerisate aus dem Stand der Technik, die die entsprechenden VOC-Auflagen erfüllen, beispielsweise nicht oder erst nach weiterer Verdünnung sprühbar und somit nur bedingt für die Verwendung in Haarsprays geeignet. Dies wiederum führt zu Filmen, die mitunter nicht die notwendige mechanische Qualität und somit ungenügende Festigungswirkung und schlechten Halt für das Haar mit sich bringen.
Die Aufgabe der vorliegenden Erfindung bestand darin, Polymere für insbesondere kosmetische Zubereitungen und Zubereitungen für die Mund- und Zahnpflege bereitzustellen, die in Lösungsmitteln oder Lösungsmittelgemischen mit erhöhtem Wasseranteil formulierbar sind und deren Formulierungen eine bessere Sprühbarkeit bei gleichzeitig guten mechanischen Eigenschaften der gebildeten Filme aufweisen. Neben der guten Verträglichkeit mit den üblichen kosmetischen Inhaltsstoffen sollen die Polymerisate dem Haar gute Festigung und längeren Halt verleihen, gute Aus- waschbarkeit aufweisen und sich als optisch klare VOC-55-Aerosole (d.h. mit einem VOC-Anteil von höchstens 55 Gew.-%) formulieren lassen.
Die Aufgabe wird durch die eingangs beschriebenen Polymerisate gelöst. Die Aufgabe wird weiterhin insbesondere gelöst durch Polymerisate erhältlich durch radikalische Polymerisation von a) 60 bis 80 Gew.-% tert.-Butylacrylat und/oder tert.-Butylmethacrylat als Monomer A, b) 20 bis 40 Gew.-% Acrylsäure und/oder Methacrylsäure als Monomer B und c) 0 bis 12 Gew.-% eines radikalisch copolymerisierbaren Monomeren oder einer radikalisch copolymerisierbaren Monomerenmischung als Monomer C, wobei mindestens eines der Monomeren C ein Homopolymerisat mit einer Glastemperatur kleiner als 30°C liefert, mit der Maßgabe, dass sich die Gew.-% zu 100 addieren, wobei der K-Wert der Polymerisate zwischen 27 und 38 liegt.
Für den Fall, dass der K-Wert der erfindungsgemäßen Polymerisate kleiner oder gleich 35 ist, wird die Polymerisation in Gegenwart von Reglern durchgeführt. Liegt der K-Wert der erfindungsgemäßen Polymerisate im Bereich zwischen 35 und 38, so kann optional in Gegenwart von Reglern gearbeitet werden.
Monomere C
Zur Modifikation der Eigenschaften des (Meth)Acrylatpolymerisates kann gegebenenfalls noch wenigstens ein weiteres Monomer C einpolymerisiert sein. Dieses Monomer oder mindestens eines dieser Monomere soll dabei ein Homopolymerisat mit einer
Glasübergangstemperatur kleiner 30°C liefern. Vorzugsweise handelt es sich dabei um Monomere, die ausgewählt sind aus der Gruppe bestehend aus Cι-Cι8-Alkylacrylate, CrC 8-Alkylmethacrylate, N-d-C-^-Alkylacrylamiden und N- CrC^-Alkylmethacryl- amiden. Besonders bevorzugt sind N-C C4-Alkylacrylamide oder -Methacrylamide oder Gemische von zwei oder mehreren dieser Monomere, besonders bevorzugt sind unverzweigte C- bis C4-Alkylacrylate allein oder in Mischung mit verzweigten N-C3- bis -C -Alkylacrylamiden. Als CrC^Alkylreste in den genannten (Meth)acrylaten und (Meth)acrylamiden kommen Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec- Butyl und tert.-Butyl in Betracht. Besonders bevorzugte Monomere C sind Ethylacrylat oder ein Gemisch aus Ethylacrylat und N-tert.-Butylacrylamid.
Bevorzugte erfindungsgemäße Polymerisate sind Polymerisate zu deren Herstellung die bereitgestellte Menge des Monomeren C weniger als 10 Gew.-%, bevorzugt weniger als 5 Gew.-%, besonders bevorzugt weniger als 3 Gew.-% von der Gesamtmenge der Monomeren beträgt. Besonders bevorzugt liegt der Anteil der Komponente C im Bereich von 0,01 bis 3 Gew.-%. Weiterhin besonders bevorzugt sind Polymerisate, zu deren Herstellung die Komponenten A und B polymerisiert werden, nicht aber C. Im Gegensatz zu den Polymerisaten aus dem Stand der Technik, insbesondere zu Polymerisaten gemäß WO 02/38638, zeichnen sich die erfindungsgemäßen Polymerisate durch eine deutlich verbesserte Sprühbarkeit der bis zu höchstens 55 Gew.-% an organischen flüchtigen Komponenten enthaltenden Formulierungen bei gleichzeitig guten mechanischen Eigenschaften der Filme aus. Gleichzeitig zeigen die erfindungsgemäßen Polymerisate gute Verträglichkeit mit üblichen kosmetischen Inhaltsstoffen, eine gute Auswaschbarkeit aus beispielsweise Haaren und Formulierbarkeit in klaren VOC-55-Aerosolen. In einer bevorzugten Ausführungsform bedeuten Monomer A tert.-Butylacrylat, Monomer B Methacrylsäure und Monomer C Ethylacrylat.
Besonders bevorzugte Ausführungsformen sind Polymerisate erhältlich durch radikalische Polymerisation von 75 bis 80 Gew.-% tert-Butylacrylat, 20 bis 25 Gew.-% Methacrylsäure und 0 bis 2 Gew.-% Ethylacrylat, mit der Maßgabe, dass sich die
Gew.-% zu 100 addieren, wobei der K-Wert der Polymerisate zwischen 30 und 34 liegt und wobei die Polymerisation in Gegenwart eines Reglers durchgeführt wird.
Herstellung der Polymerisate
Die Acryatpolymerisate werden in bekannter Weise durch radikalische Polymerisation der Monomeren A, B und gegebenenfalls C hergestellt. Hierbei arbeitet man nach den üblichen Polymerisationstechniken, zum Beispiel nach den Methoden der Suspensi- ons-, Emulsions- oder Lösungspolymerisation. Bevorzugt werden die Acryatpolymerisate in bekannter Weise durch radikalisch initiierte wässrige Emulsionspolymerisation der Monomeren A, B und gegebenenfalls C hergestellt.
Emulsionspolymerisation
Die Methode der radikalisch initiierten wässrigen Ernulsionspolymerisation ist vielfach vorbeschrieben und dem Fachmann daher hinreichend bekannt [vgl. z.B. Encyclopedia of Polymer Science and Engineering, Vol. 8, Seiten 659 bis 677, John Wiley & Sons, Inc., 1987; D.C. Blackley, Emulsion Polymerisation, Seiten 155 bis 465, Applied Scien- ce Publishers, Ltd., Essex, 1975; D.C. Blackley, Polymer Latices, 2nd Edition, Vol. 1 , Seiten 33 bis 415, Chapman & Hall, 1997; H. Warson, The Applications of Synthetic Resin Emulsions, Seiten 49 bis 244, Ernest Benn, Ltd., London, 1972; D. Diederich, Chemie in unserer Zeit 1990, 24, Seiten 135 bis 142, Verlag Chemie, Weinheim; J. Piirma, Emulsion Polymerisation, Seiten 1 bis 287, Academic Press, 1982; F. Hölscher, Dispersionen synthetischer Hochpolymerer, Seiten 1 bis 160, Springer-Verlag, Berlin, 1969 und die DE-A 40 03422]. Die radikalisch initiierte wässrige Emulsionspolymerisation erfolgt üblicherweise so, dass man die Monorneren, in der Regel unter Mitver- wendung von Dispergiermitteln, in wässrigem Medium dispers verteilt und mittels wenigstens eines radikalischen Polymerisationsinitiators polymerisiert.
Initiatoren
Als radikalische Polymerisationsinitiatoren kommen für die erfindungsgemäße radikalische wässrige Emulsionpolymerisation alle diejenigen in Betracht, die in der Lage sind, eine radikalische wässrige Emulsionspolymerisation auszulösen. Es kann sich dabei prinzipiell sowohl um Peroxide als auch um Azoverbindungen handeln. Selbstverständlich kommen auch Redoxinitiatorsysteme in Betracht.
Als Peroxide können prinzipiell anorganische Peroxide, wie Wasserstoffperoxid oder Peroxodisulfate, wie die Mono- oder Di-Alkalimetall- oder Ammoniumsalze der Peroxo- dischwefelsäure, wie beispielsweise deren Mono- und Di-Natrium-, -Kalium- oder Ammoniumsalze oder organische Peroxide, wie Alkylhydroperoxide, beispielsweise tert.-Butyl-, p-Menthyl- oder Cumylhydroperoxid, tert.-Butylperpivalat sowie Dialkyl- oder Diarylperoxide, wie Di-tert.-Butyl- oder Di-Cumylperoxid, 2,5-Dimethyl-2,5-di- (t)butylperoxy(hexan) oder Dibenzoylperoxid eingesetzt werden. Als Azoverbindung finden im wesentlichen 2,2'-Azobis(isobutyronitril), 2,2'-Azobis(2,4- dimethylvaleronitril) und 2,2'-Azobis(amidinopropyl)dihydrochlorid (AIBA, entspricht V-50™ von Wako Chemicals), 1,1'-Azo-bis-(1-cyclohexancarbonitril), 2,2'-Azobis(2- amidinopropan)salze, 4,4'-Azobis(4-Cyanovaleriansäure) oder 2-(Carbamoylazo)- isobutyronitril Verwendung.
Als Oxidationsmittel für Redoxinitiatorsysteme kommen im wesentlichen die oben genannten Peroxide in Betracht. Als entsprechende Reduktionsmittel können Schwefel- Verbindungen mit niedriger Oxidationsstufe, wie Alkalisulfite, beispielsweise Kalium- und/oder Natriumsulfit, Alkalihydrogensulfite, beispielsweise Kalium- und/oder Natriumhydrogensulfit, Alkalimetabisulfite, beispielsweise Kalium- und/oder Natriummetabisulfit, Formaldehydsulfoxylate, beispielsweise Kalium- und/oder Natriumformaldehyd- sulfoxylat, Alkalisalze, speziell Kalium- und/oder Natriumsalze aliphatischer Sulfin- säuren und Alkalimetallhydrogensulfide, wie beispielsweise Kalium- und/oder Natrium- hydrogensulfid, Salze mehrwertiger Metalle, wie Eisen-(ll)-sulfat, Eisen-(ll)-Ammonium- sulfat, Eisen-(ll)-phosphat, Endiole, wie Dihydroxymaleinsäure, Benzoin und/oder Ascorbinsäure sowie reduzierende Saccharide, wie Sorbose, Glucose, Fructose und/oder Dihydroxyaceton eingesetzt werden. Die Initiatoren werden üblicherweise in Mengen bis zu 10, vorzugsweise 0,02 bis 5 Gew.-%, bezogen auf die zu polymerisierenden Monomeren eingesetzt.
Regler
Als Regler werden bevorzugt Alkanthiole eingesetzt. Es können auch Gemische von mehreren Reglern eingesetzt werden. Als Alkanthiole werden lineare und verzweigte Alkanthiole mit einer C-Kettenlänge von C10 bis C22 eingesetzt. Besonders bevorzugt sind lineare Alkanthiole, weiterhin bevorzugt sind Alkanthiole mit einer Kettenlänge von C12bis C∑∑, insbesondere von C12 bis C18. Als bevorzugte Alkanthiole seien genannt n-Decanthiol, n-Dodecanthiol, tert- Dodecanthiol, n-Tetradecanthiol, n-Pentadecanthiol, n-Hexadecanthiol, n-Heptadecan- thiol, n-Octadecanthiol, n-Nonadecanthiol, n-Eicosanthiol, n-Docosanthiol. Besonders bevorzugt sind lineare, geradzahlige Alkanthiole. Die Alkanthiole können auch in Mischungen eingesetzt werden. Die Alkanthiole werden üblicherweise in Mengen von 0,1 bis 5 Gew.-%, insbesondere 0,25 bis 2 Gew.-% bezogen auf die zu polymerisierenden Monomere eingesetzt. Üblicherweise werden die Alkanthiole zusammen mit den Monomeren der Polymerisation zugesetzt.
Wasserstoffperoxidbehandlung
Werden bei der Polymerisation Alkanthiole mit einer C-Kettenlänge von C10 bis C13 eingesetzt, ist eine anschließende Wasserstoffperoxidbehandlung erforderlich, um geruchlich neutrale Polymerisate zu erhalten. Für diese sich an die Polymerisation anschließende Wasserstoffperoxidbehandlung werden üblicherweise 0,01 bis 2,0 Gew.-%, insbesondere 0,02 bis 1,0 Gew.-%, bevorzugt 0,3 bis 0,8 Gew.-%, weiterhin bevorzugt 0,03 bis 0,15 Gew.-% Wasserstoffperoxid, bezogen auf die zu polymerisierenden Monomere eingesetzt. Es hat sich als vorteilhaft erwiesen, die Wasserstoffperoxidbehandlung bei einer Temperatur von 20 bis 100°C, insbesondere von 30 bis 80°C durchzuführen. Die Wasserstoffperoxidbehandlung wird üblicherweise für eine Dauer von 30 min bis 240 min, insbesondere von 45 min bis 90 min durchgeführt.
Werden Alkanthiole mit einer C-Kettenlänge von C14 bis C22 eingesetzt, kann die Wasserstoffperoxidbehandlung entfallen. In einer weiteren Ausführungsform der Erfindung kann jedoch auch bei der Verwendung von Alkanthiolen mit einer Ketten- länge von C 4 bis C22 eine Wasserstoffperoxidbehandlung angeschlossen werden.
K-Wert
Die erfindungsgemäßen Polymerisate weisen K-Werte zwischen 27 und 38 auf. In einer bevorzugten Ausführungsform liegt der K-Wert der erfindungsgemäßen Polymerisate im Bereich von 29 bis 35, besonders bevorzugt im Bereich von 30 bis 34 und ganz besonders bevorzugt im Bereich von 30 bis 32. Der jeweils gewünschte K-Wert lässt sich durch Wahl der Polymerisationsbedingungen, beispielsweise der Polymerisationstemperatur und der Initiatorkonzentration, einstellen. In einer bevorzugten Ausführungsform werden zur Einstellung des K-Wertes, insbesondere bei Anwendung der Emulsions- und Suspensionspolymerisation, Regler eingesetzt. Der K-Wert kann durch die Wahl der Art und/oder der Menge des Reglers eingestellt werden. In einer bevorzugten Ausführungsform werden niedrigere K-Werte durch größere Mengen an Regler bezogen auf die Gesamtmenge an Monomer eingestellt.
Glasübergangstemperatur
Die Monomeren C, die gegebenenfalls zur Herstellung der erfindungsgemäßen Polymerisate eingesetzt werden, werden so gewählt, dass mindestens eines der Monomere C ein Homopolymerisat mit einer Glasübergangstemperatur kleiner als 30°C liefert. Die erfindungsgemäßen Polymerisate haben üblicherweise Glasübergangstemperaturen Tg zwischen 50 und 130°C, insbesondere zwischen 60 und 100°C.
Mit der Glasübergangstemperatur Tg, ist der Grenzwert der Glasübergangstemperatur gemeint, dem diese gemäß G. Kanig (Kolloid-Zeitschrift & Zeitschrift für Polymere, Bd. 190, Seite 1 , Gleichung 1 ) mit zunehmendem Molekulargewicht zustrebt. Die Glasübergangstemperatur wird nach dem DSC-Verfahren ermittelt (Differential Scanning Calorimetry, 20 K/min, midpoint-Messung, DIN 53 765).
Die Tg-Werte für die Homopolymerisate der vorgenannten Monomeren sind bekannt und z.B. in Ullmann's Ecyclopedia of Industrial Chemistry, Verlag Chemie, Weinheim, 1992, Bd. 5, Vol. A21 , Seite 169 aufgeführt; weitere Quellen für Glasübergangstemperaturen von Homopolymerisaten bilden z.B. J. Brandrup, E.H. Immergut, Polymer Handbook, Ist Ed., J. Wiley, New York 1966, 2nd Ed. J.Wiley, New York 1975, und 3rd Ed. J. Wiley, New York 1989).
Nach Fox (T.G. Fox, Bull. Am. Phys. Soc. 1956 [Ser. II] 1, Seite 123 und gemäß Ullmann's Encyclopädie der technischen Chemie, Bd. 19, Seite 18, 4. Auflage, Verlag Chemie, Weinheim, 1980) gilt für die Glasübergangstemperatur von höchstens schwach vernetzten Mischpolymerisaten in guter Näherung:
1/Tg = x1/ Tg1 + x2/ Tg 2 + .... xn/ Tg n,
wobei x1 , x2, .... xn die Massenbrüche der Monomeren 1, 2 n und Tg 1 , Tg 2 Tg n die Glasübergangstemperaturen der jeweils nur aus einem der Monomeren 1 , 2, .... n auf-gebauten Polymerisaten in Grad Kelvin bedeuten.
Durchführung der Emulsionspolymerisation
Die Emulsionspolymerisation erfolgt üblicherweise unter Sauerstoffausschluss, bei- spielsweise unter Stickstoff- oder Argonatmosphäre, bei Temperaturen im Bereich von 20 bis 200°C. Vorteilhaft sind Polymerisationstemperaturen im Bereich von 50 bis 130, insbesondere 70 bis 95°C. Bei der radikalisch initiierten Emulsionspolymerisation ist insbesondere bei höheren Temperaturen zur Vermeidung von Koagulatbildung darauf zu achten, dass das Polymerisationsgemisch nicht siedet. Dies kann beispielsweise dadurch vermieden werden, dass die Polymerisationsreaktion bei einem Inertgasdruck erfolgt, welcher höher ist als der Dampfdruck des Polymerisationsgemisches, beispielsweise 1 ,2 bar, 1 ,5 bar, 2 bar, 3 bar, 5 bar, 10 bar oder noch höher (jeweils Absolutwerte). Die Polymerisation kann diskontinuierlich, semikontinuierlich oder kontinuierlich durchgeführt werden. Häufig erfolgt die Polymerisation bzw. die Monomeren- und die Reglerdosierung semikontinuierlich nach dem Zulaufverfahren. Die Mengen an Monomeren und Dispergiermittel wählt man zweckmäßigerweise so, dass man eine 30 bis 80 gew.-%ige Dispersion der Copolymerisate enthält. Vorzugsweise dosiert man zumindest einen Teil der Monomere, Initiatoren und gegebenenfalls Regler während der Polymerisation gleichmäßig in das Reaktionsgefäß. Die Monomere und der Initiator können jedoch auch im Reaktor vorgelegt und polymerisiert werden, wobei gegebenenfalls gekühlt werden muss.
Gemäß einer bevorzugten Ausführungsform führt man die Polymerisation unter Verwendung eines Saatlatex durch. Zweckmäßigerweise wird der Saatlatex aus den zu polymerisierenden Polymeren in der ersten Polymerisationsphase in üblicher Weise hergestellt. Anschließend gibt man den verbleibenden Teil der Monomerenmischung zu, vorzugsweise nach dem Zulaufverfahren.
Die Polymerisationsreaktion erfolgt vorteilhaft bis zu einem Monomerenumsatz > 95 Gew.-%, bevorzugt > 98 Gew.-% oder > 99 Gew.-%.
Häufig ist es sinnvoll, wenn die erhaltene wässrige Polymerisatdispersion zur weiteren Absenkung der nicht umgesetzten Monomerenmenge einem Nachpolymerisationsschritt unterzogen wird. Diese Maßnahme ist dem Fachmann bekannt (beispielsweise EP-B 3957, EP-B 28348, EP-B 563726, EP-A 764699, EP-A 767180, DE-A 3718 520, DE-A 3834734, DE-A 4232194, DE-A 19529599, DE-A 19741187, DE-A 19839199, DE-A 19840586, WO 95/33775 oder US 4529753).
Aufbereitung der Dispersionen
Die erfindungsgemäß erhältlichen wässrigen Polymerisatdispersionen sind in einfacher Weise zu redispergierbaren Polymerisatpulvern trockenbar.
Wird das Polymerisat durch Emulsionspolymerisation hergestellt, kann die erhaltene
Dispersion entweder direkt in eine wässrige, wässrig-alkoholische oder alkoholische kosmetische Zubereitung, beispielsweise eine Haarfestigungszubereitung eingearbeitet werden oder es erfolgt eine Trocknung der Dispersion, z.B. Sprühtrocknung oder Gefriertrocknung, so dass das Polymerisat als Pulver verwendet und verarbeitet werden kann. Selbstverständlich ist es auch möglich, die erhaltene wässrige Polyrnerisatdispersion vor oder nach dem Nachpolymerisationsschritt einer dem Fachmann ebenfalls bekannten Inertgas- und/oder Wasserdampfstrippung zu unterziehen. Bevorzugt erfolgt dieser Strippvorgang nach dem Nachpolymerisationsschritt. Wie in EP-A 805169 beschrieben, ist eine Teilneutralisation der Dispersion auf einen pH-Wert im Bereich von 5 bis 7, bevorzugt auf einen pH-Wert im Bereich von 5,5 bis 6,5 vor der physikalischen Desodorierung von Vorteil.
Neutralisation
Darüber hinaus können die in der vor oder nach der Nachbehandlung in wässriger Dispersion vorliegenden Polymerisate teilweise oder vollständig neutralisiert werden. Insbesondere zur Verwendung der Polymerisate in haarkosmetischen Zubereitungen ist eine teilweise oder vollständige Neutralisation der Polymerisat-Dispersionen vorteil- haft.
Dabei erfolgt die Neutralisation der Polymerisate üblicherweise mit einem Alkalimetall- hydroxid oder vorzugsweise mit einem Amin teilweise oder vollständig, zweckmäßigerweise zu 5 bis 100 %, oder häufig zu 30 bis 95 %. In einer bevorzugten Ausführungsform werden die Polymerisate teilweise, in einer besonders bevorzugten Ausführungsform vollständig neutralisiert.
Die Neutralisation erfolgt vorteilhaft mit einem Mono-, Di- oder Trialkanolamin mit 2 bis 5 Kohlenstoffatomen im Alkanol- rest, der gegebenenfalls in veretherter Form vorliegt, beispielsweise Mono-, Di- und Triethanolamin, Mono-, Di- und Tri-n-propanolamin, Mono-, Di- und Trii-so- propanolamin, 2-Amino-2-methylpropanol und Di(2-methoxyethyl)amin, einem Alkandiolamin mit 2 bis 5 Kohlenstoffatomen, beispielsweise 2-Amino-2- methylpropan-1 ,3-diol und 2-Amino-2-ethylpropan-1,3-diol, oder einem primären, sekundären oder tertiären Alkylamin mit insgesamt 5 bis 10 Kohlenstoffatomen, beispielsweise N,N-Diethylpropylamin oder 3-DiethyI- amino-1-propylamin.
Häufig werden gute Neutralisationsergebnisse mit 2-Amino-2-methyIpropanol, Triiso- propanolamin, 2-Amino-2-ethylpropan-1 ,3-diol oder 3-Diethylamino-1 -propylamin erhalten.
Als Alkalimetallhydroxide eignen sich zur Neutralisation vor allem Natrium-, oder Kalium- sowie Ammoniumhydroxid.
Weiterhin eignen sich zur Neutralisation wässrige Pufferlösungen, wie beispielsweise Puffer basierend auf Alkali- bzw. Ammoniumcarbonat oder -bicarbonat.
Die Neutralisationsmittel werden vorzugsweise als verdünnte wässrige Lösung zur Polymerisatdispersion gegeben. Die Einstellung des pH-Wertes kann gegebenenfalls auch durch die Zugabe einer Pufferlösung erfolgen, wobei Puffer auf der Basis von Alkali- oder Ammoniumcarbonat oder -hydrogencarbonat bevorzugt sind.
Bestimmung der Teilchengröße
Die in wässriger Dispersion vorliegenden Polymerisatteilchen weisen in der Regel einen gewichtsmittleren Teilchendurchmesser > 5 nm, > 10 nm, > 20 nm, > 30 nm, > 40 nm, > 50 nm, > 60 nm, > 70 nm, > 80 nm, > 90 nm oder > 100 nm und alle Werte dazwischen sowie < 700 nm, < 500 nm, < 400 nm, < 350 nm, < 300 nm, < 250 nm,
< 200 nm, < 150 nm, < 100 nm, < 90 nm, < 80 nm, < 70 nm, < 60 nm, < 50 nm oder
< 40 nm und alle Werte dazwischen auf.
Die Bestimmung der gewichtsmittleren Teilchendurchmesser ist dem Fachmann bekannt und erfolgt beispielsweise über die Methode der Analytischen Ultrazentrifuge. Unter gewichtsmittlerem Teilchendurchmesser wird in dieser Schrift der nach der Methode der Analytischen Ultrazentrifuge ermittelte gewichtsmittlere Dw50-Wert verstanden (vgl. hierzu S.E. Harding et al., Analytical Ultra-centrifugation in Biochemistry and Polymer Science, Royal Society of Chemistry, Cam-bridge, Great Britain 1992, Chapter 10, Analysis of Polymer Dispersions with an Eight-Cell-AUC-Multiplexer: High Resolution Particie Size Distribution and Density Gradient Techniques, W. Mächtle, Seiten 147 bis 175).
Der Polymerisatfeststoffgehalt der erfindungsgemäß zugänglichen wässrigen Poly merisatdispersionen beträgt häufig 5 bis 70 Gew.-%, oft 20 bis 60 Gew-% bzw. 30 bis 60 Gew.-%.
Verwendung der Polymerisate
Die erfindungsgemäßen (Meth)Acrylatpolymerisate werden in kosmetischen, hygie- nischen dermatologischen und/oder pharmazeutischen Zubereitungen eingesetzt, deren Herstellung nach den üblichen, dem Fachmann geläufigen Regeln erfolgt.
Die erfindungsgemäßen (Meth)Acrylatpolymerisate werden bevorzugt in kosmetischen
Zubereitungen, besonders bevorzugt in haarkosmetischen Zubereitungen eingesetzt.
Die erfindungsgemäßen (Meth)Acrylatpolymerisate werden weiterhin bevorzugt in Zubereitungen für die Mund- und Zahnpflege verwendet.
Die erfindungsgemäßen (Meth)Acrylatpolymerisate zeichnen sich durch hervorragende film-bildende Eigenschaften aus. Ein weiterer Gegenstand der Erfindung betrifft daher die Verwendung der (Meth)Acrylatpolymerisate als Filmbildner. Zur Verwendung in kosmetischen Zubereitungen eignen sich insbesondere die in teilweiser oder vollständig neutralisierter Form vorliegenden (Meth)Acrylatpolymerisate. Kosmetische Zubereitungen
Die erfindungsgemäßen (Meth)Acrylatpolymerisate können in kosmetischen Zubereitungen als wässrige oder wässrig-alkoholische Lösungen, O/W- sowie W/O-Emul- sionen in Form von Shampoos, Cremes, Schäumen, Sprays (Pumpspray oder Aerosol), Gelen, Gelsprays, Lotionen oder Mousse vorliegen und dementsprechend mit üblichen weiteren Hilfsstoffen formuliert werden.
Die erfindungsgemäßen (Meth)Acrylatpolymerisate werden bevorzugt in kosmetischen Zubereitungen als Sprays (Pumpspray oder Aerosol) formuliert. Besonders bevorzugt werden sie als VOC-55-Formulierungen bereitgestellt.
Zusätze
Die kosmetischen, dermatologischen, hygienischen und/oder pharmazeutischen Zube- reitungen können neben den erfindungsgemäßen (Meth)Acrylatpolymerisaten und geeigneten Lösungsmitteln noch in derartigen Formulierungen übliche Zusätze wie Emul- gatoren und Co-Emulgatoren, Tenside, ölkörper, Konservierungsmittel, Parfümöle, kosmetische Pflege- und Wirkstoffe wie AHA-Säuren, Fruchtsäuren, Cerarnide, Phytantriol, Collagen, Vitamine und Provitamine, beispielsweise Vitamin A, E und C, Retinol, Bisabolol, Panthenol, natürliche und synthetische Lichtschutzmittel, Naturstoffe, Trübungsmittel, Lösungsvermittler, Repellents, Bleichmittel, Färbemittel, Tönungsmittel, Bräunungsmittel (z.B. Dihydroxyaceton), Mikropigmente wie Titanoxid oder Zinkoxid, Überfettungsmittel, Perlglanzwachse, Konsistenzgeber, Verdicker, Solubilisatoren, Komplexbildner, Fette, Wachse, Silikonverbindungen, Hydrotrope, Farbstoffe, Stabilisatoren, pH-Wert Regulatoren, Reflektoren, Proteine und Protein- hydrolysate (z.B. Weizen-, Mandel- oder Erbsenproteine), Ceramid, Eiweißhydro- lysate, Salze, Gelbildner, Konsistenzgeber, Silikone, Feuchthaltemittel, Rückfetter und weitere übliche Additive enthalten. Des weiteren können zur Einstellung der jeweils gewünschten Eigenschaften insbesondere auch weitere Polymere enthalten sein. Zum Schutz der Haut und der Haare vor Beeinträchtigungen durch UV-Strahlung können in den kosmetischen Zubereitungen auch UV-Lichtschutzmittel enthalten sein. Die Hilfsstoffe können bei der Polymerisation anwesend sein und/oder nach der Polymerisation zugefügt werden. Beispiele für die jeweiligen Klassen von Hilfsstoffen sind im folgenden genannt, ohne dabei die möglichen Hilfsstoffe auf die beispielhaft genannten zu begrenzen.
Ein weiterer Gegenstand der Erfindung betrifft demnach die Verwendung der erfindungsgemäßen Polymerisaten in kosmetischen und/oder pharmazeutischen Zubereitungen. UV-Lichtschutz
Die in kosmetischen und pharmazeutischen Zubereitungen eingesetzten Lichtschutzfilter haben die Aufgabe, schädigende Einflüsse des Sonnenlichts auf die menschliche Haut zu verhindern oder zumindest in ihren Auswirkungen zu reduzieren. Daneben dienen diese Lichtschutzfilter aber auch dem Schutz weiterer Inhaltsstoffe vor Zerstörung oder Abbau durch UV-Strahlung. In haarkosmetischen Formulierungen soll eine Schädigung der Keratinfaser durch UV-Strahlen vermindert werden. Das an die Erdoberfläche gelangende Sonnenlicht hat einen Anteil an UV-B- (280 bis 320 nm) und an UV-A-Strahlung (320 bis 400 nm), welche sich direkt an den Bereich des sichtbaren Lichtes anschließen. Der Einfluss auf die menschliche Haut macht sich besonders bei der UV-B-Strahlung durch Sonnenbrand bemerkbar. Als ein Maximum der Erythemwirksamkeit des Sonnenlichtes wird der engere Bereich um 308 nm angegeben. Zum Schutz gegen UV-B-Strahlung sind zahlreiche Verbindungen bekannt, bei denen es sich u.a. um Derivate des 3-Benzylidencamphers, der 4-Aminobenzoesäure, der Zimtsäure, der Salicylsäure, des Benzophenons sowie des 2-Phenylbenzimidazols handelt. Auch für den Bereich zwischen etwa 320 nm und etwa 400 nm, des sogenannten UV- A-Bereich, ist es wichtig, Filtersubstanzen zur Verfügung zu haben, da dessen Strahlen Reaktionen bei lichtempfindlicher Haut hervorrufen können. Es ist erwiesen, dass UV- A-Strahlung zu einer Schädigung der elastischen und kollagenen Fasern des Bindegewebes führt, was die Haut vorzeitig altern lässt, und dass sie als Ursache zahlreicher phototoxischer und photoallergischer Reaktionen zu sehen ist. Der schädigende Ein- fluss der UV-B-Strahlung kann durch UV-A-Strahlung verstärkt werden.
Als UV-Lichtschutzfilter können öllösliche organische UV-A-Filter und/oder UV— B- Filter und/oder wasserlösliche organische UV-A-Filter und/oder UV-B-Filter eingesetzt werden. Die Gesamtmenge der UV-Lichtschutzfilter liegt in der Regel bei 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise 0,5 bis 15 Gew.-%, insbesondere 1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen.
Vorteilhafterweise werden die UV-Lichtschutzfilter so gewählt, dass die Zubereitungen die Haut vor dem gesamten Bereich der ultravioletten Strahlung schützen.
Beispielsweise sind als UV-Lichtschutzfilter zu nennen:
Weitere kombinierbare Lichtschutzmittel sind u.a. folgende Verbindungen:
H3CO
COO-isooctyl C00CH2CH (OH) CH20H
[H3CCH(OH)CH2]2N COOC2H5
COO-isooctyl
Die Liste der genannten UV-Lichtschutz-Filter, die in Kombination mit den erfindungs- gemäßen Polymerisaten verwendet werden können, soll selbstverständlich nicht limitierend sein.
Keimhemmende Mittel
Weiterhin können auch keimhemmende Mittel eingesetzt werden. Dazu gehören generell alle geeigneten Konservierungsmittel mit spezifischer Wirkung gegen grampositive Bakterien, z.B. Triclosan (2,4,4'-Trichlor-2'-hydroxydiphenylether), Chlorhexidin (1,1 - Hexamethylenbis[5-(4-chIorphenyl)-biguanid) sowie TTC (3,4,4'-Trichlorcarbanilid). Quartäre Ammonium-Verbindungen sind prinzipiell ebenfalls geeignet, werden jedoch bevorzugt für desinfizierende Seifen und Waschlotionen verwendet. Auch zahlreiche Riechstoffe haben antimikrobielle Eigenschaften. Spezielle Kombinationen mit besonderer Wirksamkeit gegenüber grampositiven Bakterien werden für die Komposition sog. Deoparfums eingesetzt.
Auch eine große Anzahl etherischer Öle bzw. deren charakteristische Inhaltsstoffe wie z.B. Nelkenöl (Eugenol), Minzöl (Menthol) oder Thymianöl (Thymol), zeigen eine ausgeprägte antimikrobielle Wirksamkeit.
Die antibakteriell wirksamen Stoffe werden in der Regel in Konzentrationen von ca. 0,1 bis 0,3 Gew.-% eingesetzt.
Hautkosmetische Zubereitungen
Als kosmetische Zubereitungen seien beispielsweise hautkosmetische Zubereitungen genannt, insbesondere solche zur Pflege und/oder Reinigung der Haut. Diese liegen insbesondere als W/O- oder O/W-Hautcremes, Tag- und Nachtcremes, Augencremes, Gesichtscremes, Antifaltencremes, Mimikcremes, Feuchthaltecremes, Bleichcremes, Vitamincremes, Hautlotionen, Pflegelotionen und Feuchthaltelotionen vor. Weiterhin eignen sie sich für hautkosmetische Zubereitungen wie Gesichtswasser, Gesichtsmasken, Deodorantien und andere kosmetische Lotionen und für die Verwendung in der dekorativen Kosmetik, beispielsweise als Abdeckstift, Theaterfarbe, in Mascara und Lidschatten, Lippenstiften, Kajalstiften, Eyelinern, Makeup, Grundierungen, Rouges und Pudern und Augenbrauenstiften.
Außerdem können die erfindungsgemäßen (Meth)Acrylatpolymerisate verwendet werden in Nose-Strips zur Porenreinigung, in Antiaknemitteln, Repellents, Rasiermitteln, Haarentfernungsmitteln, Intimpflegemitteln, Fußpflegemitteln sowie in der Babypflege. Weiterhin werden die erfindungsgemäßen Polymere als oder in Beschichtungsmittel(n) für keratinhaltige und keratinanaloge Oberflächen, wie Haar, Haut und Nägel verwendet.
Beispielsweise werden die erfindungsgemäßen Polymerisate auch in kosmetischen Mitteln zur Reinigung der Haut verwendet. Solche kosmetischen Reinigungsmittel sind beispielsweise Stückseifen, wie Toilettenseifen, Kernseifen, Transparentseifen, Luxusseifen, Deoseifen, Cremeseifen, Babyseifen, Hautschutzseifen, Abrasivseifen und Syndets, flüssige Seifen, wie pastöse Seifen, Schmierseifen und Waschpasten, und flüssige Wasch-, Dusch-, und Badepräparate, wie Waschlotionen, Duschbäder, und -gele, Schaumbäder, Ölbäder und Scrub-Präparate, Rasierschäume, -lotionen, -cremes. Je nach Anwendungsgebiet können die erfindungsgemäßen Mittel in einer zur Hautpflege geeigneten Form, z.B. als Creme, Schaum, Gel, Stift, Mousse, Milch, Spray oder Lotion appliziert werden. Besonders bevorzugt ist ein Einsatz in Form eines Gels, insbesondere in Form eines klaren Gels.
Die hautkosmetischen Zubereitungen können neben den erfindungsgemäßen Polymerisaten und geeigneten Trägern noch weitere in der Hautkosmetik übliche Wirkstoffe und Hilfsstoffe, wie zuvor beschrieben, enthalten. Dazu zählen vorzugsweise Emul- gatoren, Konservierungsmittel, Parfümöle, kosmetische Wirkstoffe wie Phytantriol, Vitamin A, E und C, Retinol, Bisabolol, Panthenol, natürliche und synthetische Lichtschutzmittel, Bleichmittel, Färbemittel, Tönungsmittel, Bräunungsmittel, Collagen, Eiweißhydrolysate, Stabilisatoren, pH-Wert-Regulatoren, Farbstoffe, Salze, Verdicker, Gelbildner, Konsistenzgeber, Silikone, Feuchthaltemittel, Rückfetter und weitere übliche Additive.
Bevorzugte Öl- und Fettkomponenten der hautkosmetischen und dermatologischen Mittel sind die zuvor genannten mineralischen und synthetischen Öle, wie z.B. Paraffine, Silikonöle und aliphatische Kohlenwasserstoffe mit mehr als 8 Kohlenstoffatomen, tierische und pflanzliche Öle, wie z.B. Sonnenblumenöl, Kokosöl, Avocadoöl, Olivenöl, Lanolin, oder Wachse, Fettsäuren, Fettsäureester, wie z.B. 6. Triglyceride von C6-C30-Fettsäuren, Wachsester, wie z.B. Jojobaöl, Fettalkohole, Vaseline, hydriertes Lanolin und acetyliertes Lanolin sowie Mischungen davon. Man kann die erfindungsgemäßen Polymere auch mit herkömmlichen Polymeren abmischen, falls spezielle Eigenschaften eingestellt werden sollen. Zur Einstellung bestimmter Eigenschaften wie z.B. Verbesserung des Anfassgefühls, des Spreitverhaltens, der Wasserresistenz und/oder der Bindung von Wirk- und Hilfsstoffen wie Pigmenten, können die hautkosmetischen und dermatologischen Zubereitungen zusätzlich auch konditionierende Substanzen auf Basis von Silikonverbindungen enthalten. Geeignete Silikonverbindungen sind beispielsweise Polyalkyl- siloxane, Polyarylsiloxane, Polyarylalkylsiloxane, Polyethersiloxane oder Silikonharze. Die Herstellung der kosmetischen oder dermatologischen Zubereitungen erfolgt nach üblichen, dem Fachmann bekannten Verfahren.
Bevorzugt liegen die kosmetischen und dermatologischen Mittel in Form von Emulsionen insbesondere als Wasser-in-ÖI-(W/O)- oder öl-in-Wasser(O/W)-Emulsionen vor.
Es ist aber auch möglich, andere Formulierungsarten zu wählen, beispielsweise Hydro- dispersionen, Gele, Öle, Oleogele, multiple Emulsionen, beispielsweise in Form von W/O/W- oder O/W/O-Emulsionen, wasserfreie Salben bzw. Salbengrundlagen, usw.
Die Herstellung von Emulsionen erfolgt nach bekannten Methoden. Die Emulsionen enthalten neben den erfindungsgemäßen Polymerisaten in der Regel übliche Bestandteile, wie Fettalkohole, Fettsäureester und insbesondere Fettsäuretriglyceride, Fett- säuren, Lanolin und Derivate davon, natürliche oder synthetische Öle oder Wachse und Emulgatoren in Anwesenheit von Wasser. Die Auswahl der Emulsionstyp- spezifischen Zusätze und die Herstellung geeigneter Emulsionen ist beispielsweise beschrieben in Schrader, Grundlagen und Rezepturen der Kosmetika, Hüthig Buch Verlag, Heidelberg, 2. Auflage, 1989, dritter Teil, worauf hiermit ausdrücklich Bezug genommen wird.
Eine geeignete Emulsion, z.B. für eine Hautcreme etc., enthält im Allgemeinen eine wässrige Phase, die mittels eines geeigneten Emulgatorsystems in einer Öl- oder Fett- phase emulgiert ist.
Der Anteil des Emulgatorsystems beträgt in diesem Emulsionstyp bevorzugt etwa 4 bis 35 Gew.-%, bezogen auf das Gesamtgewicht der Emulsion. Vorzugsweise beträgt der Anteil der Fettphase etwa 20 bis 60 Gew.-%. Vorzugsweise beträgt der Anteil der wässrigen Phase etwa 20 und 70 %, jeweils bezogen auf das Gesamtgewicht der Emulsion. Bei den Emulgatoren handelt es sich um solche, die in diesem Emulsionstyp üblicherweise verwendet werden. Sie werden z.B. ausgewählt unter C12-C18-Sorbitan- Fettsäureestem, Estern von Hydroxystearinsäure und Cι2-C30-Fettalkoholen, Mono- und Diestem von C12-C18-Fettsäuren und Glycerin oder Polyglycerin, Kondensaten von Ethylenoxid und Prppylenglykolen, oxypropylenierten/oxyethylierten C-ι2-C18-Fett- alkoholen, polycyclischen Alkoholen wie Sterolen, aliphatischen Alkoholen mit einem hohen Molekulargewicht wie Lanolin, Mischungen von oxypropylenierten/poly- glycerinierten Alkoholen und Magnesiumisostearat; Succinestern von polyoxyethyle- nierten oder polyoxypropylenierten Fettalkoholen und Mischungen von Magnesium-, Calcium-, Lithium-, Zink- oder Aluminiumlanolat und hydriertem Lanolin oder Lanolin- alkohol.
Bevorzugte Fettkomponenten, welche in der Fettphase der Emulsionen enthalten sein können, sind Kohlenwasserstofföle wie beispielsweise Paraffinöl, Purcellinöl, Per- hydrosqualen und Lösungen mikrokristalliner Wachse in diesen Ölen, tierische oder pflanzliche Öle wie beispielsweise Süßmandelöl, Avocadoöl, Calophylumöl, Lanolin und Derivate davon, Rizinusöl, Sesamöl, Olivenöl, Jojobaöl, Karite-Öl, Hoplostethus- Öl, mineralische Öle, deren Destillationsbeginn unter Atmosphärendruck bei ca. 250°C und deren Destillationsendpunkt bei ca. 410°C liegt, wie z.B. Vaselinöl, Ester gesättigter oder ungesättigter Fettsäuren wie beispielsweise Alkylmyristate, z.B. i-Propyl-, Butyl- oder Cetylmyristat, Hexadecylstearat, Ethyl- oder i-Propylpalmitat, Octan- oder Decansäuretriglyceride und Cetylricinoleat.
Die Fettphase kann auch in anderen Ölen lösliche Silikonöle wie beispielsweise Di- methylpolysiloxan, Methylphenylpolysiloxan und das Silikonglykol-Copolymer, Fettsäuren und Fettalkohole enthalten. Um die Retention von Ölen zu begünstigen, können neben den erfindungsgemäßen Polymerisaten auch Wachse verwendet werden, wie z. B. Carnaubawachs, Candililla- wachs, Bienenwachs, mikrokristallines Wachs, Ozokeritwachs und Ca-, Mg- und Al-Oleate, -Myristate, -Linoleate und -Stearate. Im Allgemeinen werden die Wasser-in-ÖI-Emulsionen so hergestellt, dass die Fettphase und der Emulgator in einen Ansatzbehälter gegeben werden. Man erwärmt diesen bei einer Temperatur von etwa 50 bis 75°C, gibt dann die in Öl löslichen Wirkstoffe und/oder Hilfsstoffe zu und fügt unter Rühren Wasser hinzu, welches vorher et- wa auf die gleiche Temperatur erwärmt wurde und worin man gegebenenfalls die wasserlöslichen Ingredienzien vorher gelöst hat. Man rührt, bis man eine Emulsion der gewünschten Feinheit erhält und lässt dann auf Raumtemperatur abkühlen, wobei gegebenenfalls weniger gerührt wird.
Nach einer weiteren bevorzugten Ausführungsform handelt es sich bei den erfindungsgemäßen Mitteln um ein Duschgel, eine Shampoo-Formulierung oder ein Badepräparat. Bevorzugt sind Duschgele, insbesondere klare Duschgele. Solche Formulierungen enthalten wenigstens ein erfindungsgemäßes Polymerisat sowie üblicherweise anionische Tenside als Basistenside und amphotere und/oder nichtionische Tenside als Cotenside. Weitere geeignete Wirkstoffe und/oder Hilfsstoffe sind üblicherweise ausgewählt unter Lipiden, Parfümölen, Farbstoffen, organischen Säuren, Konservierungsstoffen und Antioxidantien sowie Verdickern/Gelbildnern, Hautkonditioniermitteln und Feuchthaltemitteln.
Diese Formulierungen enthalten vorzugsweise etwa 2 bis 50 Gew.-%, bevorzugt 5 bis 40 Gew.-%, besonders bevorzugt 8 bis 30 Gew.-% Tenside, bezogen auf das Gesamtgewicht der Formulierung.
In den Wasch-, Dusch- und Badepräparaten können alle in Körperreinigungsmitteln üblicherweise eingesetzten anionischen, neutralen, amphoteren oder kationischen Tenside verwendet werden.
Geeignete anionische Tenside sind beispielsweise Alkylsulfate, Alkylethersulfate, Alkylsulfonate, Alkylarylsulfonate, Alkylsuccinate, Alkylsulfosuccinate, N-Alkoyl- sarkosinate, Acyltaurate, Acylisothionate, Alkylphosphate, Alkyletherphosphate, Alkyl- ethercarboxylate, Alpha-Olefinsulfonate, insbesondere die Alkali- und Erdalkalimetallsalze, z.B. Natrium, Kalium, Magnesium, Calcium, sowie Ammonium- und Triethanol- amin-Salze. Die Alkylethersulfate, Alkyletherphosphate und Alkylethercarboxylate können zwischen 1 bis 10 Ethylenoxid- oder Propylenoxideinheiten, bevorzugt 1 bis 3 Ethylenoxid- einheiten im Molekül aufweisen.
Dazu zählen z.B. Natriumlaurylsulfat, Ammoniumlaurylsulfat, Natriumlaurylether- sulfat, Ammoniumlaurylethersulfat, Natriumlaurylsarkosinat, Natriumoleylsuccinat, Ammoniumlaurylsulfosuccinat, Natriumdodecylbenzolsulfonat, Triethanolamindo- decylbenzol-Sulfonat. Geeignete amphotere Tenside sind z.B. Alkylbetaine, Alkylamidopropylbetaine, Alkyl-sulfobetaine, Alkylglycinate, Alkylcarboxyglycinate, Alkylamphoacetate oder -propionate, Alkylamphodiacetate oder -dipropionate.
Beispielsweise können Cocodimethylsulfopropylbetain, Laurylbetain, Cocamidopropyl- betain oder Natriumcocamphopropionat eingesetzt werden.
Als nichtionische Tenside sind beispielsweise geeignet die Umsetzungsprodukte von aliphatischen Alkoholen oder Alkylphenolen mit 6 bis 20 C-Atomen in der Alkylkette, die linear oder verzweigt sein kann, mit Ethylenoxid undloder Propylenoxid. Die Menge Alkylenoxid beträgt ca. 6 bis 60 Mole pro ein Mol Alkohol. Ferner sind Alkylaminoxide, Mono- oder Dialkylalkanolamide, Fettsäureester von Polye^hylenglykolen, ethoxylierte Fettsäureamide, Alkylpolyglycoside oder Sorbjtanetherester geeignet.
Außerdem können die Wasch-, Dusch- und Badepräparate übliche kationische Tenside enthalten, wie z.B. quatemäre Ammoniumverbindungen, beispielsweise Cetyltrimethyl- ammoniumchlorid.
Zusätzlich können auch weitere übliche kationische Polymere eingesetzt werden, so z.B. Copolymere aus Acrylamid und Dimethyldiallylammoniumchlorid (Poly- quaternium-7), kationische Cellulosederivate (Polyquatemium-4, Polyquatemium-10), Guarhydroxypropyltrimethylammoniumchlorid (INCI: Hydroxylpropyl Guar Hydroxy- propyltrimonium Chloride), Copolymere aus N-Vinylpyrrolidon und quaternisiertem N-Vinylimidazol (PoIyquaterinium-16, -44, -46), Copolymere aus N-Vinylpyrrolidon /Di- methylaminoethylmethacrylat, quaternisiert mit Diethylsulfat (Polyquaternium-11 ) und andere. Weiterhin können die Duschgel-/Shampoo-Formulierungen Verdicker, wie z.B. Kochsalz, PEG-55, Propylenglykololeat, PEG-120 Methylglucosedioleat und andere, sowie Konservierungsmittel, weitere Wirk- und Hilfsstoffe und Wasser enthalten.
Haarkosmetische Zubereitungen
Besonders bevorzugt ist die Verwendung der (Meth)Acrylatpolymerisate in haarkosmetischen Zubereitungen. Als haarkosmetische Zubereitungen seien genannt Haarkuren, Haarlotionen, Haarspülungen, Haaremulsionen, Spitzenfluids, Egalisierungsmittel für Dauerwellen, Hot-Oil-Treatment-Präparate, Conditioner, Curl relaxer, Styling wrap lo- tions, Festigerlotionen, Shampoos, Haarwachse, Pomaden, Haarschäume, Haarfärbemittel oder Haarsprays. Besonders bevorzugt ist die Verwendung der (Meth)AcryΙ- atpolymerisate in Frisurenfestigem, die in Form von Sprayzubereitungen und/oder Haarschäumen vorliegen.
Die erfindungsgemäßen (Meth)Acrylatpolymerisate zeichnen sich in haarkosmetischen Zubereitungen durch ihre hohe Verträglichkeit mit den unpolaren Treibmitteln in Sprayzubereitungen, insbesondere mit Kohlenwasserstoffen wie n-Propan, iso-Propan, n-Butan, iso-Butan, n-Pentan und Mischungen daraus und insbesondere durch die hervorragende Sprühbarkeit als Pumpspray oder Aerosol aus.
Sie sind weiterhin sehr gut verträglich mit sonstigen in der Haarkosmetik üblichen
Zusätzen, weisen eine gute haarfestigende Wirkung auf, bilden Filme mit sehr guten mechanischen Eigenschaften und zeichnen sich dadurch aus, dass sie das Haar praktisch nicht verkleben.
Neben der Geruchsfreiheit weisen die (Meth)Acrylatpolymerisate bei den anwendungstechnischen Eigenschaften in haarkosmetischen Zubereitungen hervorragende Ergeb- nisse auf. Sie sind in Alkoholen wie Ethanol oder Isopropanol und in Gemischen dieser Alkohole mit Wasser klar löslich. Die Klarheit der Lösungen bleibt auch erhalten, wenn die Lösungen in Standard-Sprayformulierungen zusammen mit Treibmitteln wie Di- methylether eingesetzt werden. Insbesondere sind sie in wässrigen Low-VOC-Zube- reitungen mit höchstens 55 Gew.-% an flüchtigen organischen Bestandteilen (VOC-55) klar formulierbar.
Die erfindungsgemäßen Haarfestigungsmittel sind einwandfrei aus dem Haar auswaschbar. Mit ihnen behandeltes Haar weist eine erhöhte Geschmeidigkeit und einen angenehmen natürlichen Griff auf. Die Festigungswirkung ist gleichzeitig dabei hoch, so dass prinzipiell eine Senkung der benötigten Menge an Filmbildner in der Haar- sprayformulierung möglich ist. Aufgrund der Geruchsfreiheit der
(Meth)Acrylatpolymerisate kann bei Bedarf auf einen Zusatz von geruchsüberdeckenden Parfümölen verzichtet werden. Aus den genannten Gründen eignen sich die (Meth)Acrylatpolymerisate insbesondere als Filmbildner in haarkosmetischen Zubereitungen.
Die (Meth)Acrylatpolymerisate werden üblicherweise in 0,1 bis 20 Gew.-% vorzugsweise 0,5 bis 10 Gew.-%, insbesondere 2 bis 10 Gew.-% des teilweise oder vollständig neutralisierten (Meth)Acrylatpolymerisates bezogen auf die kosmetische Zubereitung eingesetzt.
Haarspray-Formulierungen
Bevorzugt ist die Verwendung der (Meth)Acrylatpolymerisate in kosmetischen Zubereitungen, insbesondere in Haarsprayzubereitungen, welche die folgenden Bestandtei- le enthalten:
0,1 bis 20 Gew.-%, vorzugsweise 0,5 bis 15 Gew.-%, insbesondere 1 bis 10 Gew.-% des teilweise oder vollständig neutralisierten (Meth)Acrylatpolymeri- sates 0 bis 99,9 Gew.-%, vorzugsweise 1 bis 50 Gew.-%, insbesondere 10 bis
20 Gew.-% Wasser 0 bis 95 Gew.-%, vorzugsweise 20 bis 60 Gew.-%, insbesondere 25 bis 50 Gew.-% eines üblichen organischen Lösungsmittels wie vor allem Ethanol, Isopropanol und Dimethoxymethan und daneben auch Aceton, n-Propanol, n-Butanol, 2-Methoxypropan-1-ol, n-Pentan, n-Hexan, Cyclohexan, n-Heptan, n-Octan oder Dichlormethan oder deren Gemische
0 bis 90 Gew.-%, vorzugsweise 30 bis 80 Gew.-%, insbesondere 45 bis 60 Gew.-% eines üblichen Treibmittels wie n-Propan, iso-Propan, n-Butan, sobutan, 2,2-Dimethylbutan, n-Pentan, Isopentan, Dimethylether, Difluorethan, Fluortrichlormethan, Dichlordifluormethan oder Dichlortetrafluorethan, HFC 152 A oder deren Gemische
Alkanolamine werden zur Neutralisation verschiedener Typen von Säuren und zum Einstellen des pH-Werts kosmetischer Produkte eingesetzt. Beispiele (INCI) sind Aminomethyl Propanol, Diethanolamine, Diisopropanolamine, Ethanolamine, Methyl- ethanolamine, N-Lauryl Diethanolamine, Triethanolamine, Triisoproanolamine, usw. Außerdem können Alkalihydroxide (z.B. NaOH, KOH) und andere Basen zur Neutralisation verwendet werden (z.B. Histidin, Arginin, Lysin oder Ethylenediamine, Diethylen- triamin, Melamin, Benzoguanamin). Alle angegebenen Basen können allein oder als Gemisch mit anderen Basen zur Neutralisation säurehaltiger kosmetischer Produkte eingesetzt werden.
Treibmittel (Treibgase)
Als Treibmittel (Treibgase) kommen von den genannten Verbindungen vor allem die Kohlenwasserstoffe, insbesondere Propan, n-Butan, n-Pentan und Gemische hieraus sowie Dimethylether und Difluorethan zur Anwendung. Gegebenenfalls werden einer oder mehrere der genannten chlorierten Kohlenwasserstoffe in Treibmittelmischungen mitverwendet, jedoch nur in geringen Mengen, etwa bis zu 20 Gew.-%, bezogen auf die Treibmittelmischung. Die erfindungsgemäßen haarkosmetischen Zubereitungen eignen sich auch besonders für Pumpsprayzubereitungen ohne den Zusatz von Treibmitteln oder auch für Aerosolsprays mit üblichen Druckgasen wie Stickstoff, Druckluft oder Kohlendioxid als Treibmittel.
Eine wasserhaltige Standard-Sprayformulierung weist beispielsweise die folgende Zusammensetzung auf:
• 2 bis 10 Gew.-% des zu 100 % mit 2-Amino-2-methylpropanol neutralisierten (Meth)Acrylatpolymerisates
• 10 bis 76 Gew.-% Ethanol
• 2 bis 20 Gew.-% Wasser « 10 bis 60 Gew.-% Dimethylether und/oder Propan/ n-Butan und/oder Propan/iso- Butan. Weitere Polymere
Zur gezielten Einstellung der Eigenschaften von kosmetischen, insbesondere haut- und haarpflegenden Zubereitungen kann es von Vorteil sein, die erfindungsgemäßen (Meth)Acrylatpolymerisate als Mischung mit weiteren Polymeren einzusetzen.
Als herkömmliche Polymere eignen sich dazu beispielsweise anionische, kationische, amphotere und neutrale Polymere.
Bevorzugte Beispiele für solche weiteren Polymere sind
- Copolymere aus Ethylacrylat und Methacrylsäure
- Copolymere aus N-tert.-Butylacrylamid, Ethylacrylat und Acrylsäure Polyvinylpyrrolidone
Polyvinylcaprolactame - Polyurethane
Copolymere aus Acrylsäure, Methyl methacrylat, Octylacrylamid, Butylamino- ethylmethylacrylat und Hydroxypropylmethacrylat,
Copolymere aus Vinylacetat und Crotonsäure und/oder (Vinyl)-Neodecanoat,
Copolymere aus Vinylacetat und/oder Vinylpropionat und N-Vinylpyrrolidon, - carboxyfunktionelle Copolymere aus Vinylpyrrolidon, t-Butylacrylat, Methacrylsäure,
Copolymere aus tert.-Butylacrylat, Methacrylsäure und Dimethicone Copolyol.
Überraschenderweise wurde gefunden, dass Zubereitungen, welche die Polymerisate in Kombination mit diesen weiteren Polymeren enthalten, unerwartete Eigenschaften aufweisen. Die erfindungsgemäßen Zubereitungen sind insbesondere hinsichtlich ihrer haut- und haarpflegenden Eigenschaften den Zubereitungen des Standes der Technik überlegen. Weiterhin weisen sie sehr gute filmbildende und festigende Eigenschaften auf.
Copolymere aus Ethylacrylat und Methacrylsäure (INCI Bezeichnung: Acrylates
Copolymer), sind beispielsweise als Handelsprodukte Luviflex™ Soft (BASF) erhältlich.
Copolymere aus N-tert.-Butylacrylamid, Ethylacrylat und Acrylsäure (INCI Bezeichnung: Acrylates/Acrylamide Copolymer) sind beispielsweise als Handelsprodukte Ultrahold Strang™, Ultrahold 8™ (BASF) erhältlich.
Polyvinylpyrrolidone (INCI Bezeichnung: PVP) sind beispielsweise unter den Handelsnamen Luviskol K™, Luviskol K 30™ (BASF) und PVP K (ISP) erhältlich.
Polyvinylcaprolactame (INCI: Polyvinylcaprolactame) sind beispielsweise unter dem Handelsnamen Luviskol Plus™ (BASF) erhältlich. Polyurethane (INCI: Polyurethane -1) sind beispielsweise unter dem Handelsnamen
Luviset™ PUR erhältlich.
Copolymere aus Acrylsäure, Methylmethacrylat, Octylacrylamid, Butylaminoethyl- methylacrylat, Hydroxypropylmethacrylat (INCI: Octylacrylamide/Acrylates/Butyl- aminoethyl Methacrylate Copolymer) sind beispielsweise unter den Handelsnamen Amphomer™ 28-4910 und Amphomer™ LV-71 (National Starch) bekannt.
Copolymere aus Vinylacetat und Crotonsäure (INCI: VA/Crotonate/Copolymer) sind beispielsweise unter den Handelsnamen Luviset CA 66™ (BASF), Resyn™ 28-1310 (National Starch) und Aristoflex™ A (Celanese) erhältlich.
Copolymere aus Vinylacetat, Crotonsäure und (Vinyl)neodecanoate (INCI: VA/Croto- nates/Neodecanoate Copolymer) sind beispielsweise unter den Handelsnamen Re- syn™ 28-2930 (National Starch) und Luviset™ CAN (BASF) erhältlich.
Copolymere aus Vinylacetat und N-Vinylpyrrolidon (INCI: PVP/VA) sind beispielsweise unter den Handelsnamen Luviskol VA™ (BASF) und PVP/VA (ISP) erhältlich.
Carboxyfunktionelle Copolymere aus Vinylpyrrolidon, t-Butylacrylat, Methacrylsäure sind beipielsweise unter dem Handelsnamen Luviskol™ VBM (BASF) erhältlich.
Copolymere aus tert.-Butylacrylat, Methacrylsäure und Dimethicone Copolyol sind beipielsweise unter dem Handelsnamen Luviflex™ Silk (BASF) erhältlich.
Als weitere Polymere eignen sich beispielsweise anionische Polymere. Solche anionischen Polymere sind von den erfindungsgemäßen (Meth)Acrylatpolymerisaten verschiedene Homo- und Copolymerisate von Acrylsäure und Methacrylsäure oder deren Salze, Copolymere von Acrylsäure und Acrylamid und deren Salze, Natriumsalze von Polyhydroxycarbonsäuren, Copolymere von Acrylsäure und Methacrylsäure mit beispielsweise hydrophoben Monomeren, z.B. C4-C30-Alkylester der (Meth)acrylsäure, C -C30-Alkylvinylester, C4-C30-Alkylvinylether und Hyaluronsäure so wie weitere unter den Handeisnamen Amerhold DR-25, Ultrahold™, Luviset™ P.U.R., Acronal™, Acu- dyne™, Lovocryl™, Versatyl™, Amphomer™ (28-4910, LV-71), Placise™ L53, Gantrez™ ES 425, Advantage Plus™, Omnirez™ 2000, Resyn™ 28-1310, Resyn™ 28-2930, Balance™ (0/55), Acudyne™ 255, Aristoflex™A oder Eastman AQ™ bekannte Polymere.
Als zusätzliche Polymere weiterhin geeignet können wasserlösliche oder wasser- dispergierbare Polyester, Polyharnstoffe, Co-Polyurethanharnstoffe, gegebenenfalls mit Alkoholen umgesetzte Maleinsäureanhydridcopolymere oder anionische Poly- siloxane sein. Als zusätzliche weiterhin geeignete Polymere sind z.B. auch kationische Polymere mit der INCI-Bezeichnung Polyquaternium wie beispielsweise
- Copolymere aus N-Vinylpyrrolidon/N-Vinylimidazoliumsalzen (erhältlich beispiels- weise unter den Handelsnamen Luviquat™ FC, Luviquat™ HM, Luviquat™ MS, Lu- viquat™ Care (BASF),
Copolymere aus N-Vinylcaprolactam/N-Vinylpyrrolidon/N-Vinylimidazoliumsalzen (erhältlich beispielsweise unter dem Handelsnamen Luviquat Hold™), Copolymere aus N-Vinylpyrrolidon/Dimethylaminoethylmethacrylat, quatemisiert mit Diethylsulfat (erhältlich beispielsweise unter dem Handelsnamen Luviquat™
PQ11), kationische Cellulosederivate (Polyquatemium-4 und -10),
- Acrylamidcopolymere (Polyquatemium-7),
- Styleeze™ CC-10, Aquaflex™ SF-40, - Guar-hydroxypropyltrimethylammoniumchlorid (INCI: Hydroxypropyl Guar Hydroxy- propyltrimonium Chloride), Polyethylenimine und deren Salze,
- Polyvinylamine und deren Salze.
Als weitere Haarkosmetik-Polymere sind auch neutrale Polymere geeignet wie Poly- vinylpyrrolidon, Copolymere aus N-Vinylpyrrolidon und Vinylacetat und/oder Vinyl- propionat, Polysiloxane, Polyvinylcaprolactam und Copolymere mit N-Vinylpyrrolidon, Cellulosederivate, Polyasparaginsäuresalze und Derivate. Dazu gehören die unter den Handelsnamen bekannten Luviskol™ (K, VA, Plus), PVP K, PVP/VA, Advantage™HC und H2OLD EP-1.
Außerdem geeignet sind auch Biopolymere, d.h. Polymere, die aus natürlich nachwachsenden Rohstoffen gewonnen werden und aus natürlichen Monomerbausteinen aufgebaut sind, z.B. Cellulosederivate, Chitin-, Chitosan-, DNA-, Hyaluronsäure- und RNA-Derivate.
Weitere geeignete Polymere sind auch betaine Polymere wie Yukaformer (R205, SM) und Diaformer.
Tenside
Geeignete anionische Tenside sind beispielsweise Alkylsulfate, Alkylethersulfate, Alkyl- sulfonate, Alkylarylsulfonate, Alkylsuccinate, Alkylsulfosuccinate, N-AIkoylsarkosinate, Acyltaurate, Acylisethionate, Alkylphosphate, Alkyletherphosphate, Alkylether- carboxylate, Alpha-Olefinsulfonate, insbesondere die Alkali- und Erdalkalimetallsalze, z.B. Natrium, Kalium, Magnesium, Calcium, sowie Ammonium- und Triethanolamin- Salze. Die Alkylethersulfate, Alkyletherphosphate, Alkylglykolalkoxylate und — diglykol- alkoxylate und Alkylethercarboxylate können zwischen 1 bis 10 Ethylenoxid oder
Propylenoxid-Einheiten, bevorzugt 1 bis 3 Ethylenoxideinheiten im Molekül aufweisen.
Geeignet sind zum Beispiel Natriumlaurylsulfat, Ammoniumlaurylsulfat, Natriumlauryl- ethersulfat, Ammoniumlaurylethersulfat, Natriumlaurylsarkosinat, Natriumoleylsuccinat, Ammoniumlaurylsulfosuccinat, Natriumdodecylbenzolsulfonat, Triethanolamindodecyl- benzolsulfonat.
Geeignete amphotere Tenside sind zum Beispiel Alkylbetaine, Alkylamidopropyl- betaine, Alkylsulfobetaine, Alkylglycinate, Alkylcarboxyglycinate, Alkylamphoacetate- oder -propionate, Alkylamphodiacetate, oder -dipropionate.
Beispielsweise können Cocodimethylsulfopropylbetain, Laurylbetain, Cocamidopropyl- betain oder Natriumcocamphopropionat eingesetzt werden.
Als nichtionische Tenside sind beispielsweise geeignet die Umsetzungsprodukte von aliphatischen Alkoholen oder Alkylphenolen mit 6 bis 20 C-Atomen in der Alkylkette, die linear oder verzweigt sein kann, mit Ethylenoxid und/oder Propylenoxid. Die Menge Alkylenoxid beträgt ca. 6 bis 60 Mole auf ein Mol Alkohol. Ferner sind Alkylaminoxide, Mono- oder Dialkylalkanolamide, Fettsäureester von Polyethylenglykolen, ethoxylierte Fettsäureamide, Alkylpolyglykoside, Alkylglykolalkoxylate und -diglykolalkoxylate oder Sorbitanetherester geeignet.
Außerdem können die Mittel übliche kationische Tenside enthalten, wie z.B. quatemäre Ammoniumverbindungen, beispielsweise Cetyltrimethylammoniumchlorid.
Werden die erfindungsgemäßen (Meth)Acrylatpolymerisate in Shampooformulierungen eingesetzt, so enthalten diese üblicherweise anionische Tenside als Basistenside und amphotere und nichtionische Tenside als Cotenside. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten wie beispielsweise J. Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J. Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen.
Die kosmetischen Zubereitungen enthalten üblicherweise 2 bis 50 Gew..-% Tenside, bevorzugt 5 bis 40 Gew.-%, besonders bevorzugt 8 bis 30 Gew.-%.
ölkörper
Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen säuren mit linearen C6-C22-Fettalkoholen, Ester von verzweigten C6-Cι3-Carbonsäuren mit linearen C6-C22-Fettalkoholen, Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Hydroxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, insbesondere 2-Hydroxybemstein- säuredioctylester, Ester von linearen und/oder verzweigten Fettsäuren mit mehr- wertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guer- betalkoholen, Triglyceride auf Basis C6-C10-Fettsäuren, flüssige Mono-/Di-/Triglycerid- mischungen auf Basis von C6-Cι8-Fettsäuren, Ester von C6-C2 -Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolvä TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Silikonöle und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe in Betracht.
Emulgatoren
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
(1) Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkyl- gruppe;
(2) C12/18-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin;
(3) Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxid- anlagerungsprodukte;
(4) Alkylmono- und -oligoglycoside mit 8 bis 22 Kohlenstoffatomen im Alkylrest und deren ethoxylierte Analoga;
(5) Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
(6) Polyol- und insbesondere Polyglycerinester, wie z.B. Polyglycerinpolyricinoleat, Polyglycerinpoly-12-hydroxystearat oder Polyglycerindimerat. Ebenfalls geeignet sind Gemische von Verbindungen aus mehreren dieser Substanzklassen; (7) Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
(8) Partialester auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter C6/22- Fettsäuren, Ricinolsäure sowie 12-Hydroxystearinsäure und Glycerin, Poly- glycerin, Pentaerythrit, Dipentaerythrit, Zuckeralkohole (z.B. Sorbit), Alkyl- glucoside (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Poly- glucoside (z.B. Cellulose);
(9) Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkyl- phosphate und deren Salze;
(10) Wollwachsalkohole;
(11 ) Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
(12) Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE-PS 1165574 und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoff- atomen, Methylglycose und Polyolen, vorzugsweise Glycerin oder Polyglycerin sowie
(13) Polyalkylenglykole.
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole, Glycerinmono- und -diester sowie Sorbitanmono- und -diester von Fettsäuren oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxy- lierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. C12- bis C18-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE-PS 2024051 als Rückfettungsmittel für kosmetische Zubereitungen bekannt. C8- bis C18-Alkylmono- und -oligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbe- sondere durch Umsetzung von Glucose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 C-Atomen. Bezüglich des Glycosidesters gilt, dass sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt. Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und/oder eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammonium- glycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylamino- propyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyl- dimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacyl- aminoethylhydroxyethylcarboxy-methylglycinat.
Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8- bis C18-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- und/oder -SO3H- Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylamino- buttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessig- säuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylamino- ethylaminopropionat und das C12 bis C-|8-Acylsarcosin.
Neben den ampholytischen kommen auch quartäre Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretriethanol- aminester-Salze, besonders bevorzugt sind.
Überfettungsmittel
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäure- ester, Monoglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Perlglanzwachse
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, spezielle Ethylenglycoldisterat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanoamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoff- atomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fett- säuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Konsistenzgeber
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partial- glyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten. Geeignete Ver- dickungsmittel sind beispielsweise Polysaccharide, insbesondere Xanthan-Gum, Guar- Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethyl- cellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate (z.B. Carbopol™ von Goodrich oder Synthalen™ von Sigma), Polyacryl- amide, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologen- Verteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Fette
Typische Beispiele für Fette sind Glyceride, als Wachse kommen u.a. Bienenwachs, Carnaubawachs, Candelillawachs, Montanwachs, Paraffinwachs oder Mikrowachse gegebenenfalls in Kombination mit hydrophilen Wachsen, z.B. Cetylstearylalkohol oder Partialglyceriden in Frage. Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Calcium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat einge- setzt werden.
Geeignete Silikonverbindungen sind beispielsweise Dimethylpolysiloxane, Methyl- phenylpolysiloxane, cyclische Silikone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Silikonverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können.
Hydrotrope
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Typische Beispiele sind
Glycerin;
- Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1000 Dalton; technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglycerin- gemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%; Methylolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit; - Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
- Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit;
- Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccha- rose;
- Aminozucker, wie beispielsweise Glucamin.
Konservierungsmittel
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehyd- lösung, Parabene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen.
Parfümöle
Der Zusatz von Parfümölen zur Geruchüberdeckung der Polymerisate ist nicht erforderlich.
Gegebenenfalls können die kosmetischen Zubereitungen trotzdem Parfümöle ent- halten. Als Parfümöle seien beispielsweise Gemische aus natürlichen und synthetischen Riechstoffen genannt. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rose, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Pat- chouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orange), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Oli- banum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Pro- dukte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethyliso- butyrat, 4-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phe- nylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclo- hexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonat, zu den Ketonen z.B. die Jonone, cc-lso- methylionen und Methylcedrylketon, zu den Alkoholen Anethof, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terioneol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine an- sprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzeöl, Zimtblätteröl, Lindenblütenöl, Wacholder- beerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, a-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, b-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romillat, Irotyl und Floramat allein oder in Mischungen eingesetzt.
Farbstoffe
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Sub- stanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S. 81-106, zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen.
Mund- und Zahnpflege
Die erfindungsgemäßen Polymerisate sind gut löslich in Lösungsmitteln und Lösungsmittelgemischen mit erhöhtem Wasseranteil. Aufgrund der Fähigkeit der erfindungsgemäßen Polymerisate, Filme mit guten mechanischen Eigenschaften auszubilden, können sie in Zubereitungen für die Zahnpflege verwendet werden. Mögliche Formen der Bereitstellung sind beispielsweise Zahncremes, Zahnputzgelee, Kaugummis oder Mundspülungen. Die erfindungsgemäßen Polymerisate werden in der nicht, teilweise oder vollständig neutralisierten Form, bevorzugt in der nicht oder teilweise neutralisierten Form für die Mund- und Zahnpflege bereitgestellt. Die erfindungsgemäßen Polymerisate und die Filme aus diesen Polymerisaten liegen demnach bevorzugt in einem anionischen Ladungszustand vor.
Die Mittel zur Mund- und Zahnpflege enthalten neben den erfindungsgemäßen Polymerisaten übliche Bestandteile wie Schleif- und Poliermittel (beispielsweise Kreide), Feuchthaltemittel (beispielsweise Sorbit, Glycerin, Polyethylenglykole), Tenside (beispielsweise Laurylsulfat, Betaine, Alkylpolyglucoside), Aromakomponenten, Kon- sistenzregler, desodorierende Wirkstoffe, Quellstoffe, Bindemittel (beispielsweise Carboxymethylcellulose, Xanthan Gum), Wirkstoffe gegen Mund- oder Zahnerkrankungen, wasserlösliche Fluorverbindungen (beispielsweise Natriumfluorid). Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkan- sulfonate, Alkylethersulfonate, Glycerinethersulfonate, a-Methylestersulfonate, Sulfo- fettsäuren, Glycerinethersulfate, Hydroxymischethersulfate, Fettsäureamid(ether)- sulfate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ether- carbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäure- tauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylgluta- mate und Acylaspartate, Alkyloligogluco- sidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherket- ten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fett- säureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Misch- ether bzw. Mischformale, Glucoronsäurederivate, Fettsäure-N-alkylglucamide, Protein- hydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugs- weise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Aminopropionate, Aminoglycinate. Vorzugsweise werden den alkoxylierten Carbonsäureestem neben Olefinsulfonaten, Betainen, Monoglycerid(ether)sulfaten sowie Alkyl- undoder Alkenyloligoglycosiden als weitere Tenside Mono- und Dialkylsulfosuccinate und/oder Taurate zugesetzt. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J. Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J. Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen. Der Anteil der Hilfs- und Zusatzstoffe ist an sich unkritisch und richtet sich nach der Art des schliesslich zu konfektionierenden Mittels. Üblicherweise wird der Anteil 5 bis 98, bevorzugt 80 bis 90 Gew.-% - bezogen auf die fertigen Zubereitungen - betragen. Messmethoden
Bestimmung des K-Wertes Die K-Werte werden nach Fikentscher, Cellulosechemie, Bd. 13, S. 58 bis 64 (1932) bei 25°C in wässrig/ethanolischer oder ethanolischer Lösung gemessen und stellen ein Maß für das Molgewicht dar. Die wässrig/ethanolische oder ethanolische Lösung der Polymerisate enthält 1 g Polymerisat in 100 ml Lösung. Für den Fall, dass die Polymerisate in Form von wässrigen Dispersionen vorliegen, werden in Abhängigkeit vom Polymergehalt der Dispersion entsprechende Mengen der Dispersion mit Ethanol auf 100 ml aufgefüllt, so dass die Konzentration von 1 g Polymerisat in 100 ml Lösung entstehen.
Die Messung des K-Wertes erfolgt in einer Micro-Ubbelohde-Kapillare Typ M Ic der Fa. Schott.
Berechnung des K-Wertes mit Mischungskorrektur für Wasser in Ethanol
Die unten aufgeführten Faktoren in der Gleichung der Mischungskorrektur beziehen sich ausschließlich auf diesen Kapillartyp bei einer Messtemperatur von 25°C.
Berechnung K-Wert: K-Wert:
K = k * 1000; z = ηreι Relative Viskosität: ηrel = (tLsg - HCι_sg) / (tL - HC|_M)
Berechnung der Mischungskorrektur:
Mischungen von Wasser in Ethanol zeigen nichtproportionale Veränderungen der Viskosität des Lösemittelgemischs in Bezug auf den Anteil von Wasser.
Auf Grund der Beschaffenheit der Probe (wässrige Dispersion eines Polymers) wird in die ethanolische Probelösung durch die Probeneinwaage Wasser eingebracht. Diese Wassermenge wird durch die Mischungskorrektur in die Laufzeit des Lösemittels eingerechnet, so dass die relative Viskosität entsprechend der Zumischung von Wasser korrigiert wird.
Laufzeit Lösemittelmischung: Laufzeitkorrektur. tM = - 7,486100e-5 * cw 4 + 3,785884 E-3 * Cw3
- 8,063441 E-2 * Cw2 + 1 ,999207 * Cw + 2.959258E-2
Lösemittelanteil Wasser: cw = c / FG / 100 * ( 1 - FG / 100 )
c Konzentration der Messlösung [g/100ml] cw Konzentration an Wasser in der Messlösung [g/100ml] FG Feststoffgehalt der Probe [g/100g]
HC Hagenbach-Korrektur des Lösemittels [-s]
HCLsg Hagenbach-Korrektur der Messlösung [-s] t Durchlaufzeit des Lösemittels mischungskorrigiert [s] tLsg Durchlaufzeit der Messlösung, gemessen [s] t0 Durchlaufzeit des Lösemittels, gemessen [s] tM Laufzeitkorrektur für die Lösemittelmischung, berechnet [s] z ηι in der Fikentscher-Gleichung (K-Wert-Berechnung)
Bestimmung der Klarheit als Aerosol
Die Bestimmung der Klarheit einer Aerosolsprayformulierung erfolgt in druckfesten, dickwandigen Glasaerosolgefäßen visuell. Als klar wird eine Formulierung ohne jegliche Trübungen, Schlieren oder Flocken (Ausfällungen) bezeichnet.
Bestimmung der Biegesteifigkeit
Die Festigung von polymeren Filmbildnern wird außer der subjektiven Beurteilung auch physikalisch als Biegesteifigkeit von dünnen Haarsträhnen gemessen, die mit der Polymerlösung behandelt und wieder getrocknet wurden. Dabei bestimmt ein Kraft- aufnehmer die zum Biegen erforderliche Kraft, während die gesamte Messung unter standardisierten Bedingungen in einem Klimaraum bei 65 % relativer Luftfeuchte abläuft.
Zur Messung der Biegesteifigkeit wurden 3,0 gew.-%ige Lösungen der erfindungs- gemäßen Polymerisate hergestellt. Die Messung der Biegesteifigkeit wurde an 5 bis 10 Haarsträhnen (ä ca. 3 g und 24 cm Länge) bei 20°C und 65 % relativer Feuchte durchgeführt. Die gewogenen, trockenen Haarsträhnen wurden in die 3,0 gew.-%ige Polymerlösung getaucht, wobei durch dreimaliges Eintauchen und Herausnehmen eine gleichmäßige Verteilung sichergestellt wurde. Die überschüssige Filmbildnerlösung wurde dann zwischen Daumen und Zeigefinger abgestreift und die Haarsträhnen anschließend durch Ausdrücken zwischen Filterpapier sorgfältig ausgedrückt. Danach wurden die Strähnen von Hand so geformt, dass sie einen runden Querschnitt erhielten. Bei 20°C und 65 % relativer Feuchte wurde über Nacht im Klimaraum getrocknet.
Die Prüfungen wurden in einem Klimaraum bei 20°C und 65 % relativer Feuchte mittels ei-nes Zug/Druck-Prüfgerätes durchgeführt. Die Haarsträhne wurde symmetrisch auf zwei zylindrische Rollen der Probenaufnahme gelegt. Genau in der Mitte wurde die Strähne nun von oben mit einem abgerundetem Stempel 40 mm durchgebogen (Brechen des Polymerfilms). Die dafür erforderliche Kraft wurde mit einer Wägezelle (50 N) gemessen und in Newton angegeben.
Bestimmung der Tröpfchengrößenverteilung
Die Partikelgrößen der Flüssigkeits-Aerosole wurden mit der Methode der Streulichtanalyse mit einem kommerziellen Malvern™ Master Sizer X (Malvern Instruments Inc., Southborough MA, USA) bestimmt.
Messprinzip:
Das Messsystem beruht auf der Laserlicht-Beugung am Partikel. Diese Methode eignet sich außer zur Spray-Analyse (Aerosole, Pumpsprays) auch zur Größenbestimmung von Feststoffen, Suspensionen und Emulsionen im Größenbereich von 0,1 μm bis 2000 μm.
Ein Partikelkollektiv (=Tröpfchen) wird von einem Laser beleuchtet. An jedem Tröpfchen wird ein Teil des einfallenden Laserlichtes gestreut. Dieses Licht wird an einem Multielement-Detektor empfangen und die dazugehörige Lichtenergie-verteilung bestimmt. Aus diesen Daten wird über die Auswertesoftware die dazugehörige Partikelverteilung berechnet.
Durchführung:
Die Aerosole wurden in einem Abstand von 29,5 cm zum Laserstrahl eingesprüht. Der Sprühkegel trat rechtwinklig zum Laserstrahl ein.
Die Aerosoldosen wurden vor jeder Messung an einer fest installierten Haltevorrichtung fixiert, somit wurde erreicht, dass alle zu prüfenden Aerosole im exakt gleichen Ab- stand vermessen wurden.
Vor der eigentlichen Partikelmessung wurde eine Messung des Backgrounds durchgeführt. Dadurch lassen sich prinzipiell die Auswirkungen von Staub und anderen Verschmutzungen im Messbereich messtechnisch eliminieren. Anschließend wurde das Aerosol in den Prüfraum eingesprüht. Das gesamte Partikel- volumen wurde über eine Prüfdauer von 2 Sekunden erfasst und ausgewertet. Auswertung:
Die Auswertung enthielt eine tabellarische Darstellung über 32 Klassenbreiten von 0,5 μm bis 2000 μm und zusätzlich eine graphische Darstellung der Partikelgrößen- Verteilung.
Da es sich bei den Sprühversuchen um eine gleichmäßige Verteilung handelte, wurde der mittlere Durchmesser „Mean Diameter" D(v,0.5) angegeben. Bei gut sprühbaren Aerosolsystemen im kosmetischen Bereich liegt dieser Wert, je nach Polymergehalt, Ventil, Sprühkopfgeometrie, Lösemittelverhältnis und Treibgas- mengen unterhalb von 120 μm, bevorzugt unterhalb von 10Q μm, besonders bevorzugt im Bereich von 30 μ bis 70 μm.
Es wurden verwendet als Ventil A: Seaquist Perfect; Kegel 0,32 mm, 0,50 VPH 0,40 mm (239436) als Sprühkopf: SK1 (gelb); DU381
Beispiele
Beispiele zur Herstellung der erfindungsgemäßen Polymerisate
Beispiel S1 tert.-Butylacrylat/Ethylacrylat/Methacrylsäure 69/10/21 w/w/w
In einem 2-l-Polymerisationsgefäß mit Rührer sowie Heiz- und Kühleinrichtungen wurden bei einer Temperatur von 20 bis 25°C
vorgelegt und unter Rühren und Stickstoffatmosphäre auf 45°C aufgeheizt. Nach Erreichen der Temperatur wurde Zulauf I innerhalb von 5 Minuten zugegeben. Anschließend wurde auf 80°C aufgeheizt und unter Rühren und Beibehaltung der Reaktionstemperatur Zulauf II innerhalb von 3 Stunden mit gleichbleibenden Zulaufströmen zudosiert.
Nach Ende der Zuläufe wurde das Reaktionsgemisch für eine weitere Stunde bei 80°C gerührt und dann auf 60°C abgekühlt.
Unter Beibehaltung der Temperatur von 60°C wurde Zulauf III zugegeben. Anschließend wird auf 35°C abgekühlt und unter Beibehaltung der Reaktionstemperatur wurde Zulauf IV zugegeben.
Zulauf I 6 g 7 gew.-%ige wässrige Lösung von Natriumpersulfat in entionisiertem Wasser
Zulauf II ist eine wässrige Monomerenemulsion hergestellt aus:
als nichtionischer Emulgator kann beispielsweise TweenTM 80 eingesetzt werden. Herstellung Zulauf II
Zu dem vorgelegten, entionisierten Wasser gab man unter Rühren die Gesamtmenge der 15 gew.-%igen wässrigen Lösung von Natriumlaurylsulfat. Zu der homogenen Lösung, die weiterhin gerührt wurde, wurden in der angegebenen Reihenfolge die entsprechenden Mengen
1) t-Butylacrylat,
2) eine Lösung eines nichtionischen Emulgators in Ethylacrylat,
3) Methacrylsäure und
4) n-Dodecylmercaptan zugegeben.
Zulauf III:
Die erfindungsgemäßen Polymerisate der Beispiele 3 bis 7 wurden analog zu Beispiel 2 synthetisiert, wobei Zulauf II wie unten für jedes Beispiel angegeben entsprechend gewählt wurde.
Formulierungsbeispiele (FB)
Beispiel FB1 : Haarspray als VOC 55 Formulierung
Gew.-% INCI
5,00 erfindungsgemäßes Copolymer S3
0,5-3,0 Aminomethyl Propanol (je nach NG*) q.s. Fragrance
15,00 Alcohol ad 100 Water
40,00 Dimethyl Ether
Beispiel FB 1 wurde mit den Copolymeren S1, S2, S4, S5, S6, S7 wiederholt.
NG bedeutet „Neutralisationsgrad" Beispiel FB 2: Haarspray mit einigen Zusätzen als VOC 55 Formulierung
Gew.-% INCI
5,00 erfindungsgemäßes Copolymer S3
0,5-3,0 Aminomethyl Propanol Qe nach NG)
0,10 Dimethicone Copolyol
0,03 PPG-3 Methyl Ether
0,10 Panthenol
0,10 Benzophenone-3
0,10 Niacinamide q.s. Frag ran ce
15,00 Alcohol ad 1O0 Water
40,00 Dimethylether Dimethyl Ether Beispiel FB 2 wurde mit den Copolymeren S1 , S2, S4, S5, S6, S7 wiederholt.
Beispiel FB 3: Haarspray mit HF 152A als VOC 55 Formulierung
Gew.-% INCI
4,00 erfindungsgemäßes Copolymer S3
0,5-1 ,3 Aminomethyl Propanol (je nach NG)
55.0O Alcohol q.s. Fragrance ad 1O0 Water
40,00 Hydrofluorocarbon 152a Beispiel FB 3 wurde mit den Copolymeren S1 , S2, S4, S5, S6, S7 wiederholt.
Beispiel FB 4: Haarspray mit HF 152A und DME als VOC 55 Formulierung
Gew.-% INCI :
3,00 erfindungsgemäßes Copolymer S3
0,4-1 ,0 Aminomethyl Propanol Qe nach NG)
35,0O Alcohol q.s. Fragrance ad 1O0 Water
20,00 Dimethyl Ether
20,00 Hydrofluorocarbon 152a
Beispiel FB 4 wurde mit den Copolymeren S1, S2, S4, S5, S6, S7 wiederholt. Beispiel FB 5: Haarspray mit Acrylates Copolymer als VOC 55 Formulierung Gew.-% INCI
3,00 erfindungsgemäßes Copolymer S3
5,00 Acrylates Copolymer
0,95 Aminomethyl Propanol q.s. Fragrance
15,00 Alcohol ad 100 Water
40,00 Dimtehyl Ether Beispiel FB 5 wurde mit den Copolymeren S1 , S2, S4, S5, S6, S7 wiederholt.
Beispiel FB 6: Haarspray mit Octylacrylamide/Acrylates/Butylaminoethyl Methacrylate Copolymer als VOC 55 Formulierung
Gew.-% INCI : 2,50 Octylacrylamide/Acrylates/Butylaminoethyl Methacrylate Copolymer
2,50 erfindungsgemäßes Copolymer S3
0,80 Aminomethyl Propanol
0,03 PPG-3 Methyl Ether
0,10 Panthenol 0,20 Phenyltrimethicone
0,10 Benzophenone-3
0,10 Niacinamide q.s. Fragrance
15,00 Alcohol ad 100 Water
40,00 Dimethyl Ether
Beispiel FB 6 wurde mit den Copolymeren S1, S2, S4, S5, S6, S7 wiederholt.
Beispiel FB 7: Haarspray mit Acrylat/Octylacrylamide Copolymer als VOC 55 Formu- lierung
Gew.-% INCI :
3,00 erfindungsgemäßes Copolymer S3
1 ,50 Acrylat/Octylacrylamide Copolymer
0,52 Aminomethyl Propanol
0,30 Phenyltrimethicone q.s. Fragrance
15,00 Alcohol ad 100 Water
40,00 Dimtehyl Ether Beispiel FB 7 wurde mit den Copolymeren S1 , S2, S4, S5, S6, S7 wiederholt. Beispiel FB 8: Haarspray mit VA/Crotonates/Vinyl Neodecanoate als VOC 55 Formulierung
Gew.-% INCI :
3,40 erfindungsgemäßes Copolymer S3 1 ,60 VA/Crotonates/Vinyl Neodecanoate Copolymer
0,2-1 ,0 Aminomethyl Propanol (je nach NG) 0,10 Potassium Hydroxide q.s. Fragrance
15,00 Alcohol ad 100 Water
40,00 Dimethyl Ether
Beispiel FB 8 wurde mit den Copolymeren S1 , S2, S4, S5, S6, S7 wiederholt.
Beispiel FB 9: Aerosolhaarspray als VOC80 Formulierung Gew.-% INCI
5,00 erfindungsgemäßes Copolymer S3
0,9-1,5 Aminomethyl Propanol Qe nach NG)
0,50 Panthenol
0,10 Phytantriol ad 100 Water
55,00 Alcohol q.s. Fragrance
10,00 Butane
15,00 Dimethyl Ether Beispiel FB 9 wurde mit den Copolymeren S1 , S2, S4, S5, S6, S7 wiederholt.
Beispiel FB 10: Aerosolhaarspray mit Polyurethane-1 als VOC80 Formulierung
Gew.-% INCI
3,00 erfindungsgemäßes Copolymer S3
5,00 Polyurethane-1
0,1-0,4 Aminomethyl Propanol Qe nach NG) ad 100 Water
35,50 Alcohol
40,00 Dimethyl Ether Beispiel FB 10 wurde mit den Copolymeren S1, S2, S4, S5, S6, S7 wiederholt. Beispiel FB 11 : Aerosolhaarspray mit PEG/PPG-25/25 Dimethicone/Acrylates Copolymer als VOC80 Formulierung
Gew.-% INCI :
3,00 erfindungsgemäßes Copolymer S3 3,00 PEG/PPG-25/25 Dimethicone/Acrylates Copolymer
0,1-0,5 Aminomethyl Propanol Qe nach NG) ad 100 Water 35,50 Alcohol
40,00 Dimethyl Ether Beispiel FB 11 wurde mit den Copolymeren S1 , S2, S4, S5, S6, S7 wiederholt.
Beispiel FB 12: Aerosolhaarspray als VOC95 Formulierung
Gew.-% INCI
5,00 erfindungsgemäßes Copolymer S3 0,7-1 ,2 Aminomethyl Propanol Qe nach NG)
0,10 Dimethicone Copolyol
0,10 Cetearyl Octanoate
0,10 Panthenol q.s. Fragrance ad 100 Alcohol
40,00 Propane/Butane
Beispiel FB 12 wurde mit den Copolymeren S1, S2, S4, S5, S6, S7 wiederholt.
Beispiel FB 13: Pumphaarspray Gew.-% INCI :
5,00 erfindungsgemäßes Copolymer S3
0,5-1 ,0 Aminomethyl Propanol Qe nach NG) q.s. Fragrance
55,00 Alcohol ad 100 Water
Beispiel FB 13 wurde mit den Copolymeren S1, S2, S4, S5, S6, S7 wiederholt.
Beispiel FB 14: Pumphaarspray mit VP/Methacrylamide/ Vinyl Imidazole Copolymer Gew.-% INCI
3,00 erfindungsgemäßes Copolymer S3
2,00 VP/Methacrylamide/Vinyl Imidazole Copolymer
0,5-1,0 Aminomethyl Propanol Qe nach NG) q.s. Fragrance
55,00 Alcohol ad 100 Water
Beispiel FB 14 wurde mit den Copolymeren S1, S2, S4, S5, S6, S7 wiederholt. Ergebnisse der anwendungstechnischen Tests von Aerosol-Formulierungen enthaltend die erfindungsgemäßen Polymerisate
VOC-55- Aerosol mit 5 Gew.-% Polymer (zu 100 % mit AMP neutralisiert) und 40 %
DME
Biegesteifigkeit resultierend aus Anwendung von VOC-55-Aerosolen mit 3 Gew.-%
Polymer (zu 100 % mit AMP neutralisiert)

Claims

Patentansprüche
1. Polymerisate erhältlich durch radikalische Polymerisation von a) 30 bis 99 Gew.-% tert.-Butylacrylat und/oder tert.-Butylmethacrylat als Monomer A, b) 1 bis 70 Gew.-% Acrylsäure und/oder Methacrylsäure als Monomer B und c) 0 bis 12 Gew.-% eines radikalisch copolymerisierbaren Monomeren oder einer radikalisch copolymerisierbaren Monomerenmischung als Monomer C, wobei mindestens eines der Monomere C ein Homopolymerisat mit einer Glastemperatur kleiner als 30°C liefert, mit der Maßgabe, daß sich die Gew.-% zu 100 addieren, wobei der K-Wert der Polymerisate zwischen 27 und 38 liegt, mit der Maßgabe, dass die Polymerisation in Gegenwart eines Reglers durchgeführt wird, wenn der K-Wert der Polymerisate kleiner oder gleich 35 ist.
2. Polymerisate gemäß Anspruch 1 erhältlich durch radikalische Polymerisation von a) 60 bis 80 Gew.-% Monomer A, b) 20 bis 40 Gew.-% Monomer B und c) 0 bis 12 Gew.-% Monomer oder Monomerenmischung C.
3. Polymerisate nach einem der Ansprüche 1 oder 2, wobei die Menge an Monomer C weniger als 10 Gew.-% beträgt.
4. Polymerisate nach einem der Ansprüche 1 bis 3, wobei die Menge an Monomer C weniger als 3 Gew.-% beträgt
5. Polymerisate nach einem der Ansprüche 1 bis 4, wobei der K-Wert im Bereich von 29 bis 35 liegt.
6. Polymerisate nach einem der Ansprüche 1 bis 5, wobei der K-Wert im Bereich von 30 bis 34 liegt.
7. Polymerisate nach einem der Ansprüche 1 bis 6, wobei die Carboxylatgruppen teilweise oder vollständig neutralisiert sind.
Polymerisate nach einem der Ansprüche 1 bis 7, wobei Monomer A tert-Butylacrylat, Monomer B Methacrylsäure und Monomer C Ethylacrylat bedeuten.
9. Verfahren zu Herstellung der Polymerisate gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man Monomer A, Monomer B und Monomer oder Monomerenmischung C radikalisch polymerisiert, wobei der K-Wert der Polymerisate zwischen 27 und 38 liegt, mit der Maßgabe, dass die Polymerisation in Gegenwart eines Reglers durchgeführt wird, wenn der K-Wert der Polymerisate kleiner oder gleich 35 ist.
10. Verwendung der Polymerisate gemäß einem der Ansprüche 1 bis 8 als Filmbildner.
11. Verwendung der Polymerisate gemäß einem der Ansprüche 1 bis 8 in kosmetischen Zubereitungen, insbesondere in haarkosmetischen Zubereitungen.
12. Verwendung der Polymerisate gemäß einem der Ansprüche 1 bis .8 in Zube- reitungen für die Mund- und Zahnpflege.
13. Filmbildner enthaltend mindestens eines der Polymerisate gemäß einem der Ansprüche 1 bis 8.
14. Kosmetische Zubereitungen enthaltend mindestens eines der Polymerisate gemäß einem der Ansprüche 1 bis 8.
15. Zubereitungen für die Mund- und Zahnpflege enthaltend mindestens eines der Polymerisate gemäß einem der Ansprüche 1 bis 8.
EP05700874A 2004-01-16 2005-01-13 Acrylat-polymerisate auf basis von tert.-butylacrylat zur verwendung in sprayformulierungen Withdrawn EP1709093A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004002650A DE102004002650A1 (de) 2004-01-16 2004-01-16 Acrylat-Polymerisate auf Basis von tert.-Butylacrylat zur Verwendung in Sprayformulierungen
PCT/EP2005/000258 WO2005068520A1 (de) 2004-01-16 2005-01-13 Acrylat-polymerisate auf basis von tert.-butylacrylat zur verwendung in sprayformulierungen

Publications (1)

Publication Number Publication Date
EP1709093A1 true EP1709093A1 (de) 2006-10-11

Family

ID=34744867

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05700874A Withdrawn EP1709093A1 (de) 2004-01-16 2005-01-13 Acrylat-polymerisate auf basis von tert.-butylacrylat zur verwendung in sprayformulierungen

Country Status (9)

Country Link
US (1) US20080312395A1 (de)
EP (1) EP1709093A1 (de)
JP (1) JP2007517950A (de)
KR (1) KR20070001132A (de)
CN (1) CN1910211A (de)
CA (1) CA2552231A1 (de)
DE (1) DE102004002650A1 (de)
RU (1) RU2006129559A (de)
WO (1) WO2005068520A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123115A1 (ja) * 2006-04-17 2007-11-01 Mitsubishi Pencil Company, Limited 水系液体メイクアップ化粧料
EP2180873B1 (de) 2007-07-25 2018-04-11 3M Innovative Properties Company Therapeutische Dentalzusammensetzung zur Verwendung bei der Hemmung der Biofilmbildung in der Mundhöhle
EP2106784B1 (de) * 2008-04-03 2015-04-22 Rohm and Haas Company Haarstylingzusammensetzung
US20100272657A1 (en) 2009-04-27 2010-10-28 Akzo Nobel Chemicals International B.V. Enhanced efficiency of sunscreen compositions
EP2322570A1 (de) * 2009-11-16 2011-05-18 DSM IP Assets B.V. Acrylpolymer
US9345656B2 (en) * 2010-12-02 2016-05-24 Dsm Ip Assets B.V. Acrylic polymer
US8607803B2 (en) 2011-09-29 2013-12-17 The Procter & Gamble Company Hair treatment process providing dispersed colors by light diffraction
WO2013103980A2 (en) * 2012-01-06 2013-07-11 Enamelite Llc Acrylic spray
JP5840025B2 (ja) * 2012-02-20 2016-01-06 株式会社マンダム 整髪用エアゾールスプレー化粧料
CN104853808A (zh) 2013-03-28 2015-08-19 宝洁公司 通过光衍射提供分散颜色的毛发处理方法
CN104745125B (zh) * 2013-12-27 2017-03-15 比亚迪精密制造有限公司 可喷涂胶液及其制备方法和带有嵌件的注塑产品的制备方法
EP3630296B1 (de) * 2017-05-23 2023-08-02 Basf Se Verwendung bestimmter polymere zur herbeiführung eines anti-pollution-effekts
WO2021168062A1 (en) 2020-02-21 2021-08-26 Swimc Llc Stain-blocking polymers, primers, kits, and methods

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529753A (en) * 1984-04-10 1985-07-16 Polysar Limited Chemical/steam stripping
DE3718520A1 (de) * 1987-06-03 1988-12-15 Bayer Ag Emulsionspolymerisate
DE3901325A1 (de) * 1989-01-18 1990-07-19 Basf Ag Haarfestigungsmittel
DE4003422A1 (de) * 1990-02-06 1991-08-08 Basf Ag Waessrige polyurethanzubereitungen
DE4210208A1 (de) * 1992-03-28 1993-09-30 Hoechst Ag Verfahren zur Verminderung des Restmonomerengehaltes in wäßrigen Kunststoffdispersionen auf Polyvinylesterbasis
DE4314305A1 (de) * 1993-04-30 1994-11-03 Basf Ag Haarfestigungsmittel
CN1120180C (zh) * 1994-06-03 2003-09-03 巴斯福股份公司 聚合物水分散液的制备
DE19741187A1 (de) * 1997-09-18 1999-03-25 Basf Ag Verfahren zur Verminderung des Restmonomerengehalts in wässrigen Polymerdispersionen
DE19839199A1 (de) * 1998-08-28 2000-03-02 Basf Ag Verfahren zur Verminderung der Restmonomerenmenge in wässrigen Polymerdispersionen
DE19840586A1 (de) * 1998-09-05 2000-03-09 Basf Ag Verfahren zur Verminderung der Restmonomerenmenge in wässrigen Polymerdispersionen
CN1197887C (zh) * 2000-11-10 2005-04-20 巴斯福股份公司 基于丙烯酸叔丁酯和/或甲基丙烯酸叔丁酯的丙烯酸酯聚合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005068520A1 *

Also Published As

Publication number Publication date
CN1910211A (zh) 2007-02-07
WO2005068520A1 (de) 2005-07-28
JP2007517950A (ja) 2007-07-05
US20080312395A1 (en) 2008-12-18
DE102004002650A1 (de) 2005-08-11
RU2006129559A (ru) 2008-02-27
KR20070001132A (ko) 2007-01-03
CA2552231A1 (en) 2005-07-28

Similar Documents

Publication Publication Date Title
EP1709093A1 (de) Acrylat-polymerisate auf basis von tert.-butylacrylat zur verwendung in sprayformulierungen
EP1915122B1 (de) Copolymere für kosmetische anwendungen
EP1335943B1 (de) Acrylatpolymerisate auf basis von tert.butylacrylat und/oder tert.-butylmethacrylat
WO2006079632A1 (de) Verwendung von wasser-in-wasser-emulsionspolymerisaten als verdicker in kosmetischen zubereitungen
EP1581569A2 (de) Ampholytisches copolymer und dessen verwendung
EP1503722A2 (de) Kosmetisches mittel enthaltend wenigstens ein wasserlösliches copolymer mit (meth)acrylsäureamideinheiten
EP1804920A1 (de) Kosmetische zubereitungen enthaltend copolymere von ethylmethacrylat und mindestens einer monoethylenisch ungesättigten carbonsäure
EP1732961A1 (de) Diallylamine enthaltende polymerisate
EP1916991A1 (de) Vernetzte methylmethacrylat-copolymere für kosmetische anwendungen
EP1919565A1 (de) Anionische, ampholytische copolymere für low-voc-zusammensetzungen
EP1937732B1 (de) Haarfestiger auf basis von t-butylacrylat und hydroxyalkylmethacrylat
WO2001013884A2 (de) Kosmetische und/oder pharmazeutische zubereitungen enthaltend polysiloxanhaltige polymerisate und deren verwendung
EP1455739A1 (de) Kosmetisches mittel enthaltend wenigstens ein copolymer mit n-vinyllactameinheiten
DE10357532A1 (de) Verwendung von Polymerisaten auf Basis von N-Vinylcaprolactam für die Haarkosmetik
DE10163523A1 (de) Verfahren zur Herstellung von Polymerisaten
EP1915124B1 (de) Festigerpolymere auf basis von polyesteracrylaten
EP1458811A1 (de) Verfahren zur herstellung von polymerisaten
EP2718339B1 (de) Assoziativverdicker auf basis von (meth)acrylat
DE102004024795A1 (de) Kosmetische Mittel enthaltend sulfonierte Polyaryletherketone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

17Q First examination report despatched

Effective date: 20080303

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120801