EP1458341A1 - Formulations cosmetiques et dermatologiques de protection solaire contenant des benzotriazoles et des derives de benzoxazole - Google Patents

Formulations cosmetiques et dermatologiques de protection solaire contenant des benzotriazoles et des derives de benzoxazole

Info

Publication number
EP1458341A1
EP1458341A1 EP02795211A EP02795211A EP1458341A1 EP 1458341 A1 EP1458341 A1 EP 1458341A1 EP 02795211 A EP02795211 A EP 02795211A EP 02795211 A EP02795211 A EP 02795211A EP 1458341 A1 EP1458341 A1 EP 1458341A1
Authority
EP
European Patent Office
Prior art keywords
preparations
preparation according
cosmetic
advantageous
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02795211A
Other languages
German (de)
English (en)
Inventor
Anja Göppel
Jens Schulz
Birgit Grotelüschen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beiersdorf AG
Original Assignee
Beiersdorf AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beiersdorf AG filed Critical Beiersdorf AG
Publication of EP1458341A1 publication Critical patent/EP1458341A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/494Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
    • A61K8/4966Triazines or their condensed derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/494Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations

Definitions

  • Cosmetic and dermatological light protection formulations containing benzotriazoles and benzoxazole derivatives containing benzotriazoles and benzoxazole derivatives
  • the present invention relates to cosmetic and dermatological light protection preparations, in particular it relates to cosmetic and dermatological formulations with increased UV-A protection.
  • the damaging effect of the ultraviolet part of solar radiation on the skin is generally known. Depending on their wavelength, the rays have different effects on the skin organ:
  • UV-C radiation with a wavelength between 100 and 280 nm is absorbed by the ozone layer in the earth's atmosphere and is therefore not found in the solar spectrum. It is therefore of no physiological importance when sunbathing.
  • UV-B range is between 290 nm and 320 nm. UV-B rays are essential for long-lasting tanning of the skin, but can also cause erythema, simple sunburn or even more or less severe burns. Chronic light damage, photodermatosis and herpes solaris can also be caused by UV-B radiation.
  • UV-A radiation with a wavelength between 320 nm and 400 nm has only a negligible biological effect and that UV-B rays are accordingly responsible for most light damage to human skin.
  • UV-A radiation is pho- todynamic, especially phototoxic reactions and chronic changes in the skin is far more dangerous than UV-B radiation.
  • the damaging influence of UV-B radiation can also be intensified by UV-A radiation.
  • UV-A radiation About 90% of the ultraviolet radiation reaching the earth consists of UV-A rays. While UV-B radiation varies greatly depending on numerous factors (eg time of year and time of day or latitude), UV-A radiation remains relatively constant day by day, irrespective of the time of year, day or geographical factors , At the same time, the majority of UV-A radiation penetrates the living epidermis, while around 70% of UV-B rays are retained by the horny layer.
  • the ultraviolet rays can be attenuated by two effects: on the one hand by reflection and scattering of the rays on the surface of powdery solids (physical light protection) and on the other hand by absorption of chemical substances (chemical light protection). It differs depending on which wavelength range is absorbed between UV-B filters (absorption range 280 to 320 nm), UV-A filters (absorption range 320 to 400 nm) and broadband filters (absorption range 290 to approx. 380 nm).
  • UV-B filters are e.g. B. derivatives of 3-benzylidene camphor, 4-aminobenzoic acid, cinnamic acid, salicylic acid, benzophenone and also 2-phenylbenzimidazole.
  • UV-A filter substances are certain water-soluble, sulfonated UV filter substances, such as. B. phenylene-1,4-bis (2-benzimidazyl) -3,3'-5,5'-tetrasulfonic acid and its salts.
  • This group of broadband filters includes, for example, asymmetrically substituted s-triazine compounds, such as. B. 2,4-bis - ⁇ [4- (2-ethylhexyloxy) -2-hydroxy] phenyl ⁇ -6- (4-methoxyphenyl) -1,3,5-triazine (INCI: bis -Ethylhexyloxylphenol methoxy-phenyl triazine), certain benzophenones, such as. B.
  • the light absorption behavior of light protection filter substances is very well known and documented, especially since in most industrialized countries there are positive lists for the use of such substances, which apply very strict standards to the documentation. Since not only the position of the absorption maximum, but above all the absorption range is important for the characterization of a filter substance, absorption spectra of each substance are recorded. For the dosage of the substances in the finished formulations, however, the extinction values can at best be an orientation offer assistance because interactions with ingredients of the skin or the surface of the skin itself can cause uncertainties. Furthermore, it is generally difficult to estimate in advance how evenly and in what layer thickness the filter substance is distributed in and on the horny layer of the skin.
  • the preparations according to the invention are extremely satisfactory preparations, which are not limited to a restricted selection of raw materials are. Accordingly, they are particularly suitable to serve as the basis for forms of preparation with a variety of uses.
  • the preparations according to the invention show very good sensory and cosmetic properties, such as, for example, the distributability on the skin or the ability to be absorbed into the skin, and are also notable for very good light protection effectiveness, an extremely high UV-A protection performance and excellent skin compatibility at the same time excellent skin care data.
  • the invention therefore also relates to cosmetic or dermatological preparations which have a light protection effect, characterized in that they contain synergistic combinations of substances
  • (b) contain at least one benzoxazole derivative, the UV protection, in particular the UV-A protection, of these preparations being increased disproportionately.
  • the combinations of substances according to the invention are surprisingly synergistic, that is to say superadditive in relation to the individual components. They are photostable without further additives and show a surprisingly high protection performance in the UV-A range.
  • R 1 , R 2 and R 3 are independently selected from the group of branched or unbranched, saturated or unsaturated alkyl radicals having 1 to 10 carbon atoms. It is particularly advantageous according to the invention to choose the radicals R 1 and R 2 the same, in particular from the group of the branched alkyl radicals having 3 to 5 carbon atoms. It is furthermore particularly advantageous for the purposes of the present invention if R 3 is an unbranched or branched alkyl radical having 8 carbon atoms, in particular the 2-ethylhexyl radical.
  • Benzoxazole derivative which is particularly preferred according to the invention is 2,4-bis- [5-1 (dimethylpropyl) benzoxazol-2-yl- (4-phenyl) -imino] -6- (2-ethylhexyl) -imino-1, 3,5-triazine with CAS No. 288254-16-0, which is characterized by the structural formula
  • the benzoxazole derivative or derivatives are advantageously present in dissolved form in the cosmetic preparations according to the invention. However, it may also be advantageous if the benzoxazole derivative or derivatives in pigmentary, ie. H. undissolved form - for example in particle sizes from 10 nm to 300 nm - is available.
  • the total amount of one or more benzoxazole derivatives in the finished cosmetic or dermatological preparations is advantageously chosen from the range from 0.01% by weight to 20% by weight, preferably from 0.1 to 10% by weight, in each case ⁇ referred to the total weight of the preparations.
  • Benzotriazoles are characterized by the following structural formula:
  • R 1 and R 2 independently of one another are linear or branched, saturated or unsaturated, substituted (e.g. substituted with a phenyl residue) or unsubstituted alkyl residues with 1 to 18 carbon atoms and / or polymer residues which do not themselves absorb UV rays (such as e.g. As silicone residues, acrylate residues and the like), can represent and
  • R 3 is selected from the group H or alkyl radical with 1 to 18 carbon atoms.
  • An advantageous benzotriazole for the purposes of the present invention is 2,2'-methylene-bis- (6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol) Broadband filter, which by the chemical structural formula
  • Tinosorb® M is marked and is available under the trade name Tinosorb® M from CIBA-Chemical GmbH.
  • An advantageous benzotriazole for the purposes of the present invention is also 2- (2H-benzotriazol-2-yl) -4-methyl-6- [2-methyl-3- [1,3,3-tetramethyl-1- [(trimethylsilyl) oxy] disiloxa- nyl] -propyl] -phenol (CAS no .: 155633-54-8) with the INCI name Drometrizole Trisiloxane, which is characterized by the chemical structural formula
  • benzotriazoles for the purposes of the present invention are [2,4'-di-hydroxy-3- (2H-benzotriazol-2-yl) -5- (1,1,3,3-tetramethylbutyl) -2'-n- octoxy-5'-benzoyl] di-phenylmethane, 2,2 'methylene-bis- [6- (2H-benzotriazol-2-yl) -4- (methyl) phenol], 2,2'-methylene-bis- [ 6- (2H-benzotiazol-2-yl) -4- (1,1,3,3-trtramethylbutyl) phenol], 2- (2'-hydroxy-5'-octylphenyl) benzotriazole (CAS No .: 003147- 75-9), 2- (2'-Hydroxy-3 ⁇ 5'-di-t-amylphenyl) benzotriazole (CAS No .: 025973-55-1) and 2- (2'-Hydroxy-5
  • the total amount of one or more benzotriazoles in the finished cosmetic or " dermatological preparations is advantageously chosen from the range from 0.01% by weight to 20% by weight, preferably from 0.1 to 10% by weight, in each case based on the total weight of the preparations.
  • weight ratios of the benzoxazole derivative (s) to the benzotriazole (s) such as 30: 1 to 1:30, preferably as 10: 1 to 1:10, particularly preferably as 5: 1 to 1: 5 to choose.
  • the preparations can preferably contain, in addition to one or more oil phases, one or more water phases and, for example, in the form of W / O-, O ⁇ / V-, W / O ⁇ / V- or OA / V / O- Emulsions are present.
  • Such formulations can preferably also be microemulsions, sticks, foams (so-called mousse), solid emulsions (ie emulsions which are stabilized by solids, for example Pickering emulsions), sprayable emulsions or hydrodispersions.
  • the preparations can advantageously also be oil-free and / or aqueous / alcoholic solutions.
  • Sprayable emulsions especially microemulsions
  • Sprayable O / W emulsions in particular O / W microemulsions, are particularly advantageous for the purposes of the present invention.
  • the droplet diameters of the usual “simple”, ie non-multiple emulsions are in the range from approx. 1 ⁇ m to approx. 50 ⁇ m.
  • Such “macroemulsions” are colored milky white and opaque without further coloring additives.
  • Finer “macroemulsions”, whose droplet diameters are in the range from approximately 0.5 ⁇ m to approximately 1 ⁇ m, are again blue-white in color and opaque, without coloring additives.
  • Such “macroemulsions” usually have a high viscosity.
  • microemulsions in the context of the present invention is in the range from about 50 to about 500 nm.
  • Such microemulsions are colored bluish white to translucent and mostly of low viscosity.
  • the viscosity of many O / W type microemulsions is comparable to that of water.
  • microemulsions are that active substances can be present in a much finer disperse in the disperse phase than in the disperse phase of "macroemulsions". Another advantage is that they can be sprayed due to their low viscosity. If microemulsions are used as cosmetics, corresponding products are distinguished characterized by high cosmetic elegance.
  • O / W microemulsions which are obtainable with the aid of so-called phase inversion temperature technology and contain at least one emulsifier (emulsifier A), which is selected from the group of emulsifiers with the following properties, are particularly advantageous according to the invention: their lipophilicity depends on the temperature, in such a way that the lipophilicity increases by increasing the temperature and the lipophilicity of the emulsifier decreases by lowering the temperature.
  • Advantageous emulsifiers A are e.g. B.
  • polyethoxylated fatty acids PEG-00 stearate, PEG-20 stearate, PEG-150 Laurath, PEG-8 distearate and the like
  • polyethoxylated fatty alcohols Cetearath-12, Cetearath-20, isoceteth-20, Beheneth-20, Lau - reth-9 etc.
  • alkyl polyglycosides cetearyl glycoside, stearyl glycoside, palmityl glycoside etc.
  • O / W emulsions in particular O / W microemulsions
  • the size of the oil droplets being essentially determined by the concentration of the emulsifier (s) used, such that a higher emulsifier concentration causes smaller droplets and a lower emulsifier concentration leads to larger droplets.
  • the droplet sizes are usually between 20 and 500 nm.
  • alkyl methicon copolyols and / or alkyl dimethicone copolyols (in particular cetyl dimethicone copolyol, lauryl methicone copolyol), W / O emulsifiers (such as sorbitan stearate, glyceryl stearate, glycerol stearate, sorbitan oleate, lecithin, glyceryl isostearate 3-polygly , Polyglyceryl-3 diisostearate, PEG-7-hydrogenated castor oil, polyglyceryl-4-isostearate, acrylate / C 1Q .
  • W / O emulsifiers such as sorbitan stearate, glyceryl stearate, glycerol stearate, sorbitan oleate, lecithin, glyceryl isostearate 3-polygly , Polyglyce
  • sulfuric or phosphoric acid cetyl phosphate, trilaureth-4-phosphate 8-phosphate, stearyl phosphate, cetearyl sulfate etc.
  • Further advantageous sprayable O / W emulsions for the purposes of the present invention are low-viscosity cosmetic or dermatological hydrodispersions which contain at least one oil phase and at least one water phase, the preparation being stabilized by at least one gel former and not necessarily having to contain emulsifiers, but one or can contain several emulsifiers.
  • Advantageous gel formers for such preparations are, for example, copolymers of C 10 _ 3 o-alkyl acrylates and one or more monomers of acrylic acid, methacrylic acid or their esters.
  • the INCI name for such compounds is "Acrylates / C 10-30 Alkyl Acrylate Crosspolymer".
  • the Pemulen® types TR 1, TR 2 and TRZ from Goodrich (Noveon) are particularly advantageous.
  • Carbopole are also advantageous gel formers for such preparations.
  • Carbopols are polymers of acrylic acid, especially also acrylate-alkyl acrylate copolymers.
  • Advantageous carbopoles are, for example, types 907, 910, 934, 940, 941, 951, 954, 980, 981, 1342, 1382, 2984 and 5984.
  • ETD types 2020, 2050 and Carbopol Ultrez 10 are also further advantageous gel formers for such Preparations are xanthan gum, cellulose derivatives and locust bean gum.
  • Possible (optional) emulsifiers which can be used are ethoxylated fatty alcohols or ethoxylated fatty acids (in particular PEG-100 stearate, ceteareth-20) and / or other nonionic surface-active substances.
  • the very low viscosity to sprayable emulsions can also be W / O or water-in-silicone oil (W / S) emulsions.
  • W / O or W / S emulsions which contain at least one silicone emulsifier (W / S) with an HLB value ⁇ 8 and / or at least one W / O emulsifier with an HLB value ⁇ 7 and are particularly advantageous. contain at least one O / W emulsifier with an HLB value> 10.
  • Such preparations also contain at least 20% by weight of lipids, the lipid phase advantageously also containing silicone oils or even consisting entirely of such oils.
  • the silicone emulsifier (s) can advantageously be selected from the group of alkyl methicon copolyols and / or alkyl dimethicone copolyols (for example dimethicone copolyols, which are available from Goldschmidt AG under the trade names ABIL® B 8842, ABIL® B 8843, ABIL® B 8847 , ABIL® B 8851, ABIL® B 8852, ABIL® B 8863, ABIL® B 8873 and ABIL® B 88183 are sold, cetyl dimethicone copolyol [Goldschmidt AG / ABIL® EM 90], cyclomethicone dimethicone copolyol [Goldschmidt AG / ABIL® EM 97 ], Lauryl methicone copolyol [Dow Corning Ltd./Dow Corning® 5200 Formulation Aid], octyl dimethi
  • the one or more W / O emulsifiers with an HLB value ⁇ 7 can advantageously be selected from the following group: sorbitan stearate, sorbitan oleate, lecithin, glyceryl alcoholate, lanolin, hydrogenated castor oil, glyceryl isostearate, polyglyceryl-3-oleate, pentaerythrithyl isostearate, methylglucose dioleate Mixture with hydroxystearate and beeswax, PEG-7 hydrogenated castor oil, polyglyceryl 4-isostearate, hexyl laurate, acrylate / C 10 .
  • the O / W emulsifier (s) with an HLB value> 10 can advantageously be selected from the following group: glyceryl stearate in a mixture with ceteareth-20, ceteareth-25, ceteareth-6 in a mixture with stearyl alcohol, cetylstearyl alcohol in a mixture with PEG-40 - Castor oil and sodium cetyl stearyl sulfate, triceteareth-4 phosphate, glyceryl stearate, sodium cetyl stearyl sulfate, lecithin trilaureth-4 phosphate, laureth-4 phosphate, stearic acid, propylene glycol stearate SE, PEG-9 stearate, PEG-20 stearate, PEG-PEG Stearate, PEG-100 stearate, ceteth-2, ceteth-20, polysorbate-20, polysorbate-60, polysorbate-65, polysorbate-100, glyceryl ste
  • Aqueous-alcoholic solutions are also advantageous. They can contain from 0% by weight to 90% by weight of ethanol. Aqueous-alcoholic solutions can be lying invention advantageously contain solubilizers such. B. PEG-40 or PEG-60 hydrogenated castor oil.
  • the preparations according to the invention can advantageously also be used as cosmetic or dermatological impregnation solutions, with which in particular water-insoluble substrates - such as, for. B. woven or non-woven cloths - are moistened.
  • Such impregnation solutions are preferably low-viscosity, in particular sprayable (such as, for example, PIT emulsions, hydrodispersions, W / O emulsions, oils (see below), aqueous solutions, etc.) and preferably have a viscosity of less than 2000 mPa-s, especially less than 1,500 mPa-s (measuring device: Haake Viscotester VT-02 at 25 ° C).
  • sprayable such as, for example, PIT emulsions, hydrodispersions, W / O emulsions, oils (see below), aqueous solutions, etc.
  • the preparations according to the invention can advantageously also be present as anhydrous oils or oil gels or pastes.
  • Advantageous oils are e.g. B. synthetic, semi-synthetic or natural oils such as rapeseed oil, rice oil, avocado oil, olive oil, mineral oil, cocoglycerides, butylene glycol dicaprylate / dicaprate, C 12 - ⁇ s alkyl benzoate, dicaprylyl carbonate, octyldodecanol and the like.
  • Various waxes with a melting point> 25 ° C can be used as oil gel formers.
  • Gel formers from the group of aerosils, alkylgalactomannans (for example N-Hance AG 200 and N-Hance AG 50 from Hercules) and polyethylene derivatives are also advantageous.
  • Self-foaming, foam-like, post-foaming or foamable cosmetic and dermatological preparations are also particularly advantageous for the purposes of the present invention.
  • “Self-foaming”, “foam-like”, “post-foaming” or “foamable” are understood to mean preparations from which foams - be it already during manufacture Adjustment process, be it in the application by the consumer or in another way - can be produced in principle by entering one or more gases.
  • the gas bubbles are (arbitrarily) distributed in one (or more) liquid phase (s), the (foamed) preparations not necessarily having to have the appearance of a foam macroscopically.
  • (Foamed) cosmetic or dermatological preparations according to the invention (hereinafter also referred to simply as foams for the sake of simplicity) can, for. B. represent macroscopically visible dispersed systems from gases dispersed in liquids.
  • the foam character can, for example, only become visible under a (light) microscope.
  • foams according to the invention - especially when the gas bubbles are too small to be recognized under a light microscope - can also be recognized from the large increase in volume of the system.
  • such preparations advantageously contain an emulsifier system which consists of
  • At least one emulsifier A selected from the group of fully, partially or not neutralized, branched and / or unbranched, saturated and / or unsaturated fatty acids with a chain length of 10 to 40 carbon atoms,
  • At least one emulsifier B selected from the group of polyethoxylated fatty acid esters with a chain length of 10 to 40 carbon atoms and with one
  • At least one co-emulsifier C selected from the group consisting of saturated and / or unsaturated, branched and / or unbranched fatty alcohols with a chain length of 10 to 40 carbon atoms.
  • the emulsifier (s) A are preferably selected from the group of fatty acids which are wholly or partly neutralized with customary alkalis (such as sodium and / or potassium hydroxide, sodium and / or potassium carbonate and mono- and / or triethanolamine) ,
  • customary alkalis such as sodium and / or potassium hydroxide, sodium and / or potassium carbonate and mono- and / or triethanolamine
  • stearic acid and stearates isostearic acid and isostearates, palmitic acid and palmitates, and myristic acid and myristates are particularly advantageous.
  • the emulsifier (s) B are preferably selected from the following group: PEG-9 stearate, PEG-8 distearate, PEG-20 stearate, PEG-8 stearate, PEG-8 oleate, PEG-25 glyceryl trioleate, PEG-40 sorbitan lanolate, PEG-15 glyceryl ricinoleate, PEG-20 glyceryl stearate, PEG-20 glyceryl isostearate, PEG-20 glyceryl oleate, PEG-20 stearate, PEG-20 methylglucose sesquistearate 30-glyceryl isostearate, PEG-20 glyceryl laurate, PEG-30 stearate, PEG-30 glyceryl stearate, PEG-40 stearate, PEG-30 glyceryl laurate, PEG-50 stearate, PEG-100 stearate, PEG-150- laurate.
  • the co-emulsifier (s) C are preferably selected from the following group: behenyl alcohol (C 22 H 45 OH), cetearyl alcohol [a mixture of cetyl alcohol (C 16 H 33 OH) and stearyl alcohol (C-, 8 H 37 OH)], lanolin alcohols (Wool wax alcohols, which represent the unsaponifiable alcohol fraction of the wool wax, which is obtained after the saponification of wool wax). Cetyl and cety stearyl alcohol are particularly preferred.
  • weight ratios of emulsifier A to emulsifier B to coemulsifier C (A: B: C) as a: b: c, where a, b and c independently of one another are rational numbers from 1 to 5, preferably from 1 can represent up to 3.
  • a weight ratio of approximately 1: 1: 1 is particularly preferred.
  • the total amount of emulsifiers A and B and of coemulsifier C is advantageous for the total amount of emulsifiers A and B and of coemulsifier C to be in the range from 2 to 20% by weight, advantageously from 5 to 15% by weight, in particular from 7 to 13% by weight. %, each based on the total weight of the formulation.
  • Cosmetic or dermatological preparations which are only stabilized by finely divided solid particles are also particularly advantageous in the sense of the present invention.
  • Such “emulsifier-free” emulsions are also referred to as Pickering emulsions.
  • the solid material In Pickering emulsions, the solid material accumulates at the oil / water phase boundary in the form of a layer, which prevents the disperse phases from flowing together.
  • the Surface properties of the solid particles which should show both hydrophilic and lipophilic properties.
  • the stabilizing solid particles can also advantageously be surface-water-treated (“coated”), an amphiphilic character of these solid particles being formed or to be retained.
  • the surface treatment can consist in the solid particles being coated with a thin hydrophobic material by methods known per se or hydrophilic layer.
  • the average particle diameter of the microfine solid particles used as a stabilizer is preferably chosen to be less than 100 ⁇ m, particularly advantageously less than 50 ⁇ m. It is essentially irrelevant in which form (platelets, rods, beads, etc.) or modification the solid particles used are present.
  • microfine solid particles are preferably selected from the group of the amphiphilic metal oxide pigments. The following are particularly advantageous:
  • Titanium dioxides (coated and uncoated): e.g. B. Eusolex T-2000 from Merck, titanium dioxide MT-100 Z from Tayca Corporation
  • microfine solid particles are selected from the following group: boron nitrides, starch derivatives (tapioca starch, sodium com starch octynyl succinate etc.), talc, latex particles.
  • the solid-stabilized emulsions contain significantly less than 0.5% by weight of one or more emulsifiers or are even completely emulsifier-free.
  • Preparations in the form of pens are also advantageous for the purposes of the invention.
  • most stick formulations are water-free fat mixtures from solid or semi-solid waxes and liquid oils, with highly purified paraffin oils and waxes being the stick base.
  • Typical raw materials for stick-like preparations are, for example, liquid oils (such as paraffin oils, castor oil, isopropyl myristate, C 12 . ⁇ s alkyl benzoate), semi-solid components (e.g. petroleum jelly, lanolin), solid components (e.g. beeswax, ceresin and microcrystalline waxes or ozokerite) and / or high-melting waxes (eg carnauba wax, candelilla wax).
  • Water-containing stick-like preparations are also known per se, although these can also be in the form of W / O emulsions.
  • the cosmetic or dermatological light protection formulations according to the invention can be composed as usual and can be used for cosmetic or dermatological light protection, also for the treatment, care and cleaning of the skin and / or hair and as a make-up product in decorative cosmetics.
  • cosmetic or topical dermatological compositions can be used for the purposes of the present invention, for example as skin protection cream, cleansing milk, day or night cream, etc. It may be possible and advantageous to use the compositions according to the invention as the basis for pharmaceutical formulations.
  • the cosmetic and dermatological preparations are applied to the skin and / or the hair in a sufficient amount in the manner customary for cosmetics.
  • the cosmetic and dermatological preparations according to the invention can contain cosmetic auxiliaries as are usually used in such preparations, e.g. B. preservatives, preservation aids, complexing agents, bactericides, perfumes, substances to prevent or increase foaming, dyes, pigments that have a coloring effect, thickeners, moisturizing and / or moisturizing substances, fillers that improve the feeling on the skin, fats, oils, Waxes or other common components of a cosmetic or dermatological formulation such as alcohols, polyols, polymers, foam stabilizers, electrolytes, organic solvents or silicone derivatives.
  • cosmetic auxiliaries e.g. B. preservatives, preservation aids, complexing agents, bactericides, perfumes, substances to prevent or increase foaming, dyes, pigments that have a coloring effect, thickeners, moisturizing and / or moisturizing substances, fillers that improve the feeling on the skin, fats, oils, Waxes or other common components of a cosmetic or dermatological formulation such as alcohols
  • Advantageous preservatives for the purposes of the present invention are, for example, formaldehyde releasers (such as, for example, DMDM hydantoin, which, for example, are listed under the trade name Glydant TM is available from Lonza), iodopropylbutyl carbamate (for example those available under the trade names Glycacil-L, Glycacil-S from Lonza and / or Dekaben LMB from Jan Dekker), parabens ( ie p-hydroxybenzoic acid alkyl esters such as methyl, ethyl, propyl and / or butyl paraben), phenoxyethanol, ethanol, benzoic acid and the like.
  • the preservation system usually also advantageously comprises preservation aids, such as, for example, octoxyglycerol, glycine soya, etc.
  • Advantageous complexing agents for the purposes of the present invention are, for example, EDTA, [S, S] -ethylenediamine disuccinate (EDDS), which is available, for example, from Octel under the trade name Octaquest, pentasodium-ethylenediaminetetramethylenephosphonate, which, for. B. is available under the trade name Dequest 2046 from Monsanto and / or iminodisuccinic acid, which u. a. is firmly available from Bayer AG under the trade names Iminodisuccinat VP OC 370 (approx. 30% solution) and Baypure CX 100.
  • EDDS EDTA
  • [S, S] -ethylenediamine disuccinate (EDDS) which is available, for example, from Octel under the trade name Octaquest
  • pentasodium-ethylenediaminetetramethylenephosphonate which, for. B.
  • Dequest 2046 from Monsanto and / or iminodis
  • compositions are also obtained if antioxidants are used as additives or active ingredients.
  • the preparations advantageously contain one or more antioxidants. All of the antioxidants suitable or customary for cosmetic and / or dermatological applications can be used as inexpensive, but nevertheless optional, antioxidants.
  • water-soluble antioxidants such as vitamins, e.g. B. ascorbic acid and its derivatives.
  • Preferred antioxidants are also vitamin E and its derivatives and vitamin A and its derivatives.
  • the amount of the antioxidants (one or more compounds) in the preparations is preferably 0.001 to 30% by weight, particularly preferably 0.05 to 20% by weight, in particular 0.1 to 10% by weight, based on the total weight the preparation. If vitamin E and / or its derivatives represent the antioxidant (s), it is advantageous to choose their respective concentrations from the range from 0.001 to 10% by weight, based on the total weight of the formulation.
  • vitamin A or vitamin A derivatives or carotenes or their derivatives represent the antioxidant or antioxidants, it is advantageous to add their respective concentrations in the range from 0.001 to 10% by weight, based on the total weight of the formulation choose.
  • the cosmetic preparations according to the present invention contain cosmetic or dermatological active ingredients, preferred active ingredients being antioxidants which can protect the skin from oxidative stress.
  • active ingredients in the sense of the present invention are natural active ingredients and / or their derivatives, such as.
  • Recipes according to the invention which, for. B. known anti-wrinkle agents such as flavone glycosides (especially q-glycosylrutin), coenzyme Q10, vitamin E and / or derivatives and the like, are particularly advantageous for the prophylaxis and treatment of cosmetic or dermatological skin changes, such as z. B. occur with skin aging (such as dryness, roughness and formation of dry lines, itching, reduced re-greasing (e.g. after washing), visible vasodilation (telangiectasias, cuperosis), flaccidity and formation of wrinkles and fine lines, local hyper- , Hypo and incorrect pigmentation (e.g. age spots), increased susceptibility to mechanical stress (e.g. cracking) and the like). They are also advantageous against the appearance of dry or rough skin.
  • skin aging such as dryness, roughness and formation of dry lines, itching, reduced re-greasing (e.g. after washing), visible vasodilation (telan
  • the water phase of the preparations according to the invention can advantageously contain customary cosmetic auxiliaries, such as, for example, alcohols, in particular those of low ger C number, preferably ethanol and / or isopropanol, diols or polyols of low C number and their ethers, preferably propylene glycol, glycerol, butylene glycol, ethylene glycol, ethylene glycol monoethyl or monobutyl ether, propylene glycol monomethyl, monoethyl or monobutyl ether , Diethylenglykolmonomethyl- or -monoethylether and analog products, polymers, foam stabilizers, electrolytes and in particular one or more thickeners, which or which can advantageously be selected from the group silicon dioxide, aluminum silicates, polysaccharides or their derivatives, eg.
  • customary cosmetic auxiliaries such as, for example, alcohols, in particular those of low ger C number, preferably ethanol and / or is
  • B. hyaluronic acid, xanthan gum, hydroxypropylmethyl cellulose particularly advantageously from the group of polyacrylates, preferably a polyacrylate from the group of so-called carbopoles [from Bf. Goodrich], for example carbopoles of types 980, 981, 1382, 2984, 5984 , ETD 2020, ETD 2050, Ultrez 10, each individually or in combination.
  • the preparations according to the invention can also advantageously contain self-tanning substances, such as, for example, dihydroxyacteon and / or melanin derivatives in concentrations of 1% by weight to 8% by weight, based on the total weight of the preparation.
  • self-tanning substances such as, for example, dihydroxyacteon and / or melanin derivatives in concentrations of 1% by weight to 8% by weight, based on the total weight of the preparation.
  • the preparations according to the invention can also advantageously contain repellents for protection against mosquitoes, ticks and spiders and the like.
  • repellents for protection against mosquitoes, ticks and spiders and the like.
  • B N, N-diethyl-3-methylbenzamide (trade name: Meta-delphene, "DEET"), dimethyl phthalate (trade name: Palatinol M, DMP) and in particular 3- (Nn-butyl-N-acetylamino) - ethyl propiori acid (available under the trade name Insekt Repellent® 3535 from Merck)
  • the repellents can be used both individually and in combination.
  • Moisturizers are substances or mixtures of substances that give cosmetic or dermatological preparations the property of reducing the release of moisture from the skin layer (also called trans-epidermal water loss (TEWL)) and / or hydrating the skin after application or distribution on the skin surface To influence the layer on the home.
  • TEWL trans-epidermal water loss
  • moisturizers for the purposes of the present invention are, for example, glycerol, lactic acid and / or lactates, in particular sodium lactate, butylene glycol, propylene glycol, biosaccaride gum-1, glycine soya, ethylhexyloxyglycerol, pyrrolidonecarboxylic acid and urea.
  • polymeric moisturizers from the group of water-soluble and / or water-swellable and / or water-gelable polysaccharides.
  • hyaluronic acid chitosan and / or a fucose-rich polysaccharide
  • chitosan and / or a fucose-rich polysaccharide which is filed in the Chemical Abstracts under the registration number 178463-23-5 and z.
  • B. is available under the name Fucogel®1000 from the company SOLABIA SA.
  • Moisturizers can also advantageously be used as anti-wrinkle active ingredients for the prophylaxis and treatment of cosmetic or dermatological skin changes, such as those described for. B. occur in skin aging, are used.
  • the cosmetic or dermatological preparations according to the invention can furthermore advantageously, although not necessarily, contain fillers which, for. B. further improve the sensory and cosmetic properties of the formulations and, for example, cause or intensify a velvety or silky feeling on the skin.
  • Advantageous fillers for the purposes of the present invention are starch and starch derivatives (such as tapioca starch, distarch phosphate, aluminum or sodium starch, octenyl succinate and the like), pigments which have neither primarily UV filter nor coloring effects (such as e.g. boron nitride etc.) and / or Aerosile ® (CAS No. 7631-86-9).
  • the oil phase of the formulations according to the invention is advantageously selected from the group of polar oils, for example from the group of lecithins and fatty acid triglycerides, in particular the triglycerol esters of saturated and / or unsaturated, branched and / or unbranched alkane carboxylic acids with a chain length of 8 to 24, in particular 12 to 18 carbon atoms.
  • the fatty acid triglycerides can, for example, advantageously be selected from the group of synthetic, semi-synthetic and natural oils, such as. B.
  • cocoglyceride olive oil, sunflower oil, soybean oil, peanut oil, rapeseed oil, almond oil, palm oil, coconut oil, castor oil, wheat germ oil, grape seed oil, safflower oil, evening primrose oil, macadamia nut oil and the like.
  • z. B natural waxes of animal and vegetable origin, such as beeswax and other insect waxes and berry wax, shea butter and / or lanolin (wool wax).
  • further advantageous polar oil components can also be selected from the group of esters from saturated and / or unsaturated, branched and / or unbranched alkane carboxylic acids having a chain length of 3 to 30 carbon atoms and saturated and / or unsaturated, branched and / or unbranched alcohols with a chain length of 3 to 30 C atoms and from the group of esters from aromatic carboxylic acids and saturated and / or unsaturated, branched and / or unbranched alcohols with a chain length of 3 to 30 C atoms.
  • ester oils can then advantageously be selected from the group octyl palmitate, octyl co-coat, octyl isostearate, octyl dodeceyl myristate, octyl dodecanol, cetearyl isononanoate, isopropyl myristate, isopropyl palmitate, isopropyl stearate, isopropyl oleate, n-butyl stearate, n-stonolate, n-stonolate, n-stonyl-n-stonate, 2-ethylhexyl palmitate, 2-ethylhexyl laurate, 2-hexyldecyl stearate, 2-octyldodecyl palmitate, stearyl heptanoate, oleyl oleate, olerlerucate, erucyl oleate, erucylerucate
  • the oil phase can advantageously be selected from the group of dialkyl ethers and dialkyl carbonates.
  • the oil component (s) from the group isoeicosane, neopentyl glycol diheptanoate, propylene glycol dicaprylate / dicaprate, caprylic / capric / diglyceryl succinate, butylene glycol dicaprylate / dicaprate, C 12 . 13 alkyl lactate, di-C 12 . 13 -alkyl tartrate, triiso- stearin, dipentaerythrityl hexacaprylate / hexacaprate, propylene glycol monoisostearate, tri-caprylin, dimethylisosorbide. It is particularly advantageous if the oil phase of the formulations according to the invention contains C 12 . 15 alkyl benzoate or consists entirely of this.
  • Advantageous oil components are also e.g. B. butyl octyl salicylate (for example that available under the Hallbrite BHB trade name from CP Hall), hexadecyl benzoate and butyl octyl benzoate and mixtures thereof (Hallstar AB) and / or diethyl hexyl naphthalate (Hallbrite TQ or Corapan TQ from H&R). Any mixtures of such oil and wax components can also be used advantageously for the purposes of the present invention.
  • B. butyl octyl salicylate for example that available under the Hallbrite BHB trade name from CP Hall
  • hexadecyl benzoate and butyl octyl benzoate and mixtures thereof Hallstar AB
  • Hallbrite TQ or Corapan TQ from H&R diethyl hexyl naphthalate
  • the oil phase can also advantageously also contain non-polar oils, for example those which are selected from the group of branched and unbranched hydrocarbons and waxes, in particular mineral oil, petroleum jelly (petrolatum), paraffin oil, squalane and squalene, polyolefins, hydrogenated polyisobutenes and isohexa - decan.
  • non-polar oils for example those which are selected from the group of branched and unbranched hydrocarbons and waxes, in particular mineral oil, petroleum jelly (petrolatum), paraffin oil, squalane and squalene, polyolefins, hydrogenated polyisobutenes and isohexa - decan.
  • polyolefins polydecenes are the preferred substances.
  • the oil phase can advantageously also have a content of cyclic or linear silicone oils or consist entirely of such oils, although it is preferred to use an additional content of other oil phase components in addition to the silicone oil or the silicone oils.
  • Silicon oils are high-molecular synthetic polymeric compounds in which silicon atoms are linked in a chain and / or network-like manner via oxygen atoms and the remaining valences of silicon by hydrocarbon residues (mostly methyl, more rarely ethyl, propyl, phenyl groups) are saturated).
  • the silicone oils are systematically referred to as polyorganosiloxanes.
  • the methyl-substituted polyorganosiloxanes which are the most important compounds of this group in terms of quantity and are characterized by the following structural formula
  • Dimethicone is available in different chain lengths or with different molecular weights.
  • Particularly advantageous polyorganosiloxanes for the purposes of the present invention are, for example, dimethylpolysiloxanes [poly (dimethylsiloxane)], which are available, for example, under the trade names Abil 10 to 10,000 from Th. Goldschmidt.
  • phenylmethylpolysiloxanes INCI: phenyl dimethicone, phenyl trimethicone
  • cyclic silicones octamethylcyclotetrasiloxane or decamethylcyclopentasiloxane
  • aminomodifi- graced silicones INCI: Amodimethicone
  • silicone waxes e.g. B.
  • polysiloxane-polyalkylene copolymers (INCI: stearyl dimethicone and cetyl dimethicone) and dialkoxydimethyl polysiloxanes (stearoxy dimethicone and behenoxy stearyl dimethicone), which are available as different Abil-Wax types from Th. Goldschmidt.
  • other silicone oils can also be used advantageously for the purposes of the present invention, for example cetyldimethicone, hexamethylcyclotrisiloxane, polydimethylsiloxane, poly (methylphenylsiloxane).
  • the preparations according to the invention can furthermore advantageously contain one or more substances from the following group of siloxane elastomers, for example in order to increase the water resistance and / or the sun protection factor of the products:
  • Siloxane elastomers which contain the units R 2 SiO and RSiO 1 ⁇ 5 and / or R 3 SiO 0.5 and / or SiO 2 , the individual radicals R each independently of one another being hydrogen, C 1 -C 4 -alkyi (such as, for example, methyl , Ethyl, propyl) or aryl (such as phenyl or tolyl), alkenyl (such as vinyl) and the weight ratio of the units R 2 SiO to RSiO ⁇ is selected from the range from 1: 1 to 30: 1;
  • Siloxane elastomers which are insoluble and swellable in silicone oil and which can be obtained by the addition reaction of an organopolysiloxane (1) which contains silicon-bonded hydrogen with an organopolysiloxane (2) which contains unsaturated aliphatic groups, the proportions used be chosen so that the amount of hydrogen of the organopolysiloxane (1) or the unsaturated aliphatic groups of the organopolysiloxane (2) • is in the range from 1 to 20 mol% if the organopolysiloxane is not cyclic and in the range from 1 to 50 mol -% is when the organopolysiloxane is cyclic.
  • the siloxane elastomer or elastomers are advantageously in the form of spherical powders or in the form of gels.
  • advantageous siloxane elastomers in the form of spherical powders are those with the INCI name Dimethicone / Vinyl Dimethicone Crosspolymer, for example that available from DOW CORNING under the trade names DOW CORNING 9506 Powder.
  • siloxane elastomer is used in combination with oils from hydrocarbons of animal and / or vegetable origin, synthetic oils, synthetic esters, synthetic ethers or mixtures thereof.
  • siloxane elastomer is used in combination with unbranched silicone oils which are liquid or pasty at room temperature or cyclic silicone oils or mixtures thereof.
  • Organopolysiloxane elastomers with the INCI name Dimethicone / Polysilicone-11 are particularly advantageous, especially the Gransil types GCM, GCM-5, DMG-6, CSE Gel, PM-Gel, LTX, ININ available from Grant Industries Inc. Gel, AM-18 gel and / or DMCM-5.
  • the siloxane elastomer is used in the form of a gel composed of siloxane elastomer and a lipid phase, the content of the siloxane elastomer in the gel being 1 to 80% by weight, preferably 0.1 to 60% by weight , each based on the total weight of the gel.
  • the total amount of the siloxane elastomers (active content) is in the range from 0.01 to 10% by weight, advantageously from 0.1 to 5% by weight, based in each case on the total weight of the formulation, to choose.
  • the cosmetic and dermatological preparations according to the invention can contain dyes and / or color pigments, in particular if they are in the form of decorative cosmetics.
  • the dyes and pigments can be selected from the corresponding positive list in the Cosmetics Ordinance or the EC list of cosmetic colorants. In most cases, they are identical to the colorants approved for food.
  • Advantageous color pigments are, for example, titanium dioxide, mica, iron oxides (eg Fe 2 0 3 , Fe 3 0 4 , FeO (OH)) and / or tin oxide.
  • Advantageous dyes are, for example, carmine, Berlin blue, chrome oxide green, ultramarine blue and / or manganese violet.
  • the dyes and / or color pigments are in the form of products which are used on the face, it is advantageous to choose one or more substances from the following group as the dye: 2,4-dihydroxyazobenzene, 1- (2'-chloro-4'- nitro-1'-phenylazo) -2-hydroxynaphthalene, ceres red, 2- (sulfo-1-naphthylazo) -1-naphthol-4-sulfonic acid, calcium salt of 2-hydroxy-1, 2'-azonaphthalene-1'- sulfonic acid, calcium and barium salts of 1- (2-sulfo-4-methyl-1-phenylazo) -2-naphthylcarboxylic acid, calcium salt of 1- (2-sulfo-1-naphthylazo) -2-hydroxynaphthalen
  • oil-soluble natural dyes such as. B. paprika extracts, ß-carotene or cochineal.
  • Formulations containing pearlescent pigments are also advantageous for the purposes of the present invention.
  • the types of pearlescent pigments listed below are particularly preferred: 1. Natural pearlescent pigments, such as. B.
  • Monocrystalline pearlescent pigments such as B. Bismuth oxychloride (BiOCI)
  • Layer-substrate pigments e.g. B. mica / metal oxide
  • Pearlescent pigments are based, for example, on powdered pigments or castor oil dispersions of bismuth oxychloride and / or titanium dioxide and bismuth oxychloride and / or titanium dioxide on mica. Particularly advantageous is z. B. the gloss pigment listed under CIN 77163. The following pearlescent pigment types based on mica / metal oxide are also advantageous:
  • B the pearlescent pigments available from Merck under the trade names Timiron, Colorona or Dichrona.
  • pearlescent pigments which are advantageous in the sense of the present invention are obtainable in numerous ways known per se. For example, let other substrates apart from mica coated with further metal oxides such. B. silica and the like. Are advantageous for. B. with TiO 2 and Fe 2 O 3 coated SiO 2 particles ("Ronaspheren”), which are sold by Merck and are particularly suitable for the optical reduction of fine wrinkles.
  • Iron pearlescent pigments which are produced without the use of mica are particularly preferred. Such pigments are e.g. B. available under the trade name Sicopearl copper 1000 from BASF. Also particularly advantageous are effect pigments, which are available from Flora Tech under the trade name Metasomes Standard / Glitter in various colors (yello, red, green, blue).
  • the glitter particles are present in mixtures with various auxiliaries and dyes (such as, for example, the dyes with the Color Index (Cl) numbers 19140, 77007, 77289, 77491).
  • the dyes and pigments can be present both individually and in a mixture and can be mutually coated, different color effects generally being produced by different coating thicknesses.
  • the total amount of dyes and coloring pigments is advantageously from the range of z. B. 0.1 wt .-% to 30 wt .-%, preferably from 0.5 to 15 wt .-%, in particular from 1, 0 to 10 wt .-%, each based on the total weight of the preparations. It is also advantageous for the purposes of the present invention to produce cosmetic and dermatological preparations, the main purpose of which is not to protect against sunlight, but which nevertheless contain other UV protection substances. So z. B. usually incorporated into day creams or makeup products UV-A or UV-B filter substances. UV protection substances, like antioxidants and, if desired, preservatives, also provide effective protection of the preparations themselves against spoilage. Cosmetic and dermatological preparations which are in the form of a sunscreen are also favorable.
  • the preparations in the sense of the present invention preferably contain at least one further UV-A, UV-B and / or broadband filter substance.
  • the formulations may, although not necessary, optionally also contain one or more organic and / or inorganic pigments as UV filter substances, which may be present in the water and / or the oil phase.
  • the preparations according to the invention can also advantageously be in the form of so-called oil-free cosmetic or dermatological emulsions which contain a water phase and at least one UV filter substance which is liquid at room temperature as a further phase.
  • Particularly advantageous UV filter substances which are liquid at room temperature for the purposes of the present invention are homomenthyl salicylate (INCI: homosalate), 2-ethylhexyl-2-cyano-3,3-diphenylacrylate (INCI: octocrylene), 2-ethylhexyl-2-hydroxybenzoate (2- Ethyl hexyl salicylate, octyl salicylate, INCI: octyl salicylate) and esters of cinnamic acid, preferably 4-methoxycinnamic acid (2-ethylhexyl) ester (2-ethylhexyl-4-methoxycinnamate, INCI: octyl methoxycin
  • Preferred inorganic pigments are metal oxides and / or other metal compounds which are sparingly soluble or insoluble in water, in particular oxides of titanium (Ti0 2 ), zinc (ZnO), iron (e.g. Fe 2 0 3 ), zirconium (Zr0 2 ), silicon ( Si0 2 ), manganese (e.g. MnO), aluminum (Al 2 0 3 ), cerium (e.g. Ce 2 0 3 ), mixed oxides of the corresponding metals as well as mixtures of such oxides and the sulfate of barium (BaS ⁇ 4 ).
  • the pigments can also advantageously be used in the form of commercially available oily or aqueous predispersions. Dispersing aids and / or solubilizing agents can advantageously be added to these predispersions.
  • the pigments can advantageously be surface-treated (“coated”), with a hydrophilic, amphiphilic or hydrophobic character, for example, being formed or retained.
  • This surface treatment can consist in the pigments being coated with a thin film using methods known per se hydrophilic and / or hydrophobic inorganic and / or organic layer
  • the various surface coatings can also contain water in the sense of the present invention.
  • Inorganic surface coatings in the sense of the present invention can consist of aluminum oxide (Al 2 0 3 ), aluminum hydroxide Al (OH) 3 , or aluminum oxide hydrate (also: alumina, CAS no .: 1333-84-2), sodium hexametaphosphate (NaP0 3 ) 6 , sodium metaphosphate (NaP0 3 ) n , silicon dioxide (Si0 2 ) (also: silica, CAS No .: 7631-86-9), or iron oxide (Fe 2 0 3 ).
  • Al 2 0 3 aluminum oxide
  • Al (OH) 3 aluminum hydroxide Al
  • aluminum oxide hydrate also: alumina, CAS no .: 1333-84-2
  • sodium hexametaphosphate (NaP0 3 ) 6 sodium metaphosphate (NaP0 3 ) n
  • silicon dioxide (Si0 2 ) also: silica, CAS No .: 7631-86-9
  • iron oxide Fe 2 0
  • Organic surface coatings in the sense of the present invention can consist of vegetable or animal aluminum stearate, vegetable or animal stearic acid, lauric acid, dimethylpolysiloxane (also: dimethicone), methylpolysiloxane (methicone), simethicone (a mixture of dimethylpolysiloxane with an average chain length of 200 to 350 dimethylsiloxane Units and silica gel) or alginic acid. These organic surface coatings can be used alone, in combination
  • Zinc oxide particles and predispersions of zinc oxide particles suitable according to the invention are available under the following trade names from the companies listed:
  • Suitable titanium dioxide particles and predispersions of titanium dioxide particles are available under the following trade names from the companies listed:
  • Latex particles which are advantageous according to the invention are those described in the following documents: US Pat. No. 5,663,213 or EP 0 761 201. Particularly advantageous latex particles are those which are formed from water and styrene / acrylate copolymers and z. B. are available under the trade name "Alliance SunSphere” from Rohm & Haas.
  • UV-A filter substances for the purposes of the present invention are dibenzoylmethane derivatives, in particular 4- (tert-butyl) -4'-methoxydibenzoylmethane (CAS-Nr. 70356-09-1), marketed by Givaudan under the trade name Parsol ® 1789 and is sold by Merck under the trade name Eusolex® 9020.
  • dibenzoylmethane derivatives in particular 4- (tert-butyl) -4'-methoxydibenzoylmethane (CAS-Nr. 70356-09-1), marketed by Givaudan under the trade name Parsol ® 1789 and is sold by Merck under the trade name Eusolex® 9020.
  • UV-A filter substances for the purposes of the present invention are hydroxybenzophenones, which are distinguished by the following structural formula:
  • R 1 and R 2 independently of one another hydrogen, CC 20 alkyl, C 3 -C 10 cycloalkyl or
  • R 3 represents a C-rC ⁇ alkyl radical.
  • a particularly advantageous hydroxybenzophenone in the context of the present invention is 2- (4'-diethylamino-2'-hydoxybenzoyl) benzoic acid hexyl ester (also: aminobenzophenone), which is distinguished by the following structure:
  • UV filter substances in the sense of the present invention are sulfonated, water-soluble UV filters, such as.
  • 1,4-di (2-oxo-10-sulfo-3-bomylidenemethyl) -benzene also: 3,3 '- (1,4-phenylenedimethylene)) -bis- (7,7-dimethyl-2- oxo-bicyclo- [2.2.1] hept-1-ylmethane sulfonic acid) and its salts (especially the corresponding 10-sulfato compounds, especially the corresponding sodium, potassium or triethanolammonium salt), which is also known as benzene-1, 4-di (2-oxo-3-bornylidenemethyl-10-sulfonic acid) Benzene-1, 4- di (2-oxo-3-bornylidenemethyl-10-sulfonic acid) has the INCI name Terephthalic Dicampher Sulfonic Acid ( CAS.-No .: 90457-82-2) and is available, for example, under the trade name Mexoryl SX from Chimex; sulfonic acid derivatives of 3-benzylid
  • Advantageous UV filter substances in the sense of the present invention are also so-called broadband filters, i.e. Filter substances that absorb both UV-A and UV-B radiation.
  • Advantageous broadband filters or UV-B filter substances are, for example, triazine derivatives, such as. B. 2,4-bis - ⁇ [4- (2-ethylhexyloxy) -2-hydroxy] phenyl ⁇ -6- (4-methoxyphenyl) -1, 3,5-triazine (INCI: bis-ethylhexyloxylphenol methoxyphenyl triazine) , which is available under the trade name Tinosorb® S from CIBA-Chemicals GmbH; Dioctylbutylamidotriazon (INCI: Dioctylbutamidotriazone), which is available under the trade name UVASORB HEB from Sigma 3V;
  • triazine derivatives such as. B. 2,4-bis - ⁇ [4- (2-ethylhexyloxy) -2-hydroxy] phenyl ⁇ -6- (4-methoxyphenyl) -1, 3,5-triazine (INCI
  • the other UV filter substances can be oil-soluble or water-soluble.
  • Advantageous oil-soluble filter substances are e.g. E.g .: • 3-benzylidene camphor derivatives, preferably 3- (4-methylbenzylidene) camphor, 3-
  • 4-aminobenzoic acid derivatives preferably 4- (dimethylamino) benzoic acid (2-ethylhexyl) ester, 4- (dimethylamino) benzoic acid amyl ester;
  • esters of benzalmalonic acid preferably 4-methoxybenzalmalonic acid di (2-ethylhexyl) ester;
  • esters of cinnamic acid preferably 4-methoxycinnamic acid (2-ethylhexyl) ester, 4-methoxycinnamic acid isopentyl ester;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone and UV filters bound to polymers.
  • Advantageous water-soluble filter substances are e.g. B.: Sulfonic acid derivatives of 3-benzylidene camphor, such as. B. 4- (2-oxo-3-bomylidene methyl) benzenesulfonic acid, 2-methyl-5- (2-oxo-3-bornylidene methyl) sulfonic acid and salts thereof.
  • a further light protection filter substance according to the invention to be used advantageously is ethylhexyl-2-cyano-3,3-diphenyl acrylate, sold under the name Uvinul ® N 539 T is available (octocrylene) from BASF.
  • Particularly advantageous preparations within the meaning of the present invention which are distinguished by a high or very high UV-A protection, preferably contain, in addition to the filter substance (s) according to the invention, further UV-A and / or broadband filters, in particular dibenzoylmethane derivatives [ for example the 4- (tert-butyl) -4'-methoxydibenzoylmethane] and / or the 2,4-bis - ⁇ [4- (2-ethylhexyloxy) -2-hydroxy] phenyl ⁇ -6- (4-methoxyphenyl) -1, 3,5-triazine and / or the 2- (4'-diethylamino-2'-hydoxybenzoyl) benzoic acid hexyl ester, in each case individually or in any combination with one another.
  • dibenzoylmethane derivatives for example the 4- (tert-butyl) -4'-methoxydibenzoylmethane
  • the preparations according to the invention advantageously contain the substances which absorb UV radiation in the UV-A and / or UV-B range in a total amount of, for. B. 0.1 wt .-% to 30 wt .-%, preferably 0.5 to 20 wt .-%, in particular 1, 0 to 15.0 wt .-%, each based on the total weight of the preparations to cosmetic To provide preparations that protect the hair or skin from the entire range of ultraviolet radiation.
  • film formers may also be advantageous to incorporate film formers into the cosmetic or dermatological preparations according to the invention, for example in order to improve the water resistance of the preparations or to increase the UV protection performance (UV-A and / or UV-B boosting).
  • Both water-soluble or ⁇ dispersible and fat-soluble film formers are suitable, in each case individually or in combination with one another.
  • B. Polyurethanes e.g. Avalure® types from Goodrich
  • Dimethicone Copolyol Polyacrylate Silsoft Surface® from the Witco Organo Silicones Group
  • PVP ⁇ A (VA vinyl acetate) copolymer
  • Liviscol VA 64 Powder from BASF C 20 -4o carboxylic acid with polyethylene (Performacid 350 from New Phase Technologies) etc.
  • Advantageous fat-soluble film formers are e.g. B., the film formers from the group of polymers based on polyvinylpyrrolidone (PVP)
  • copolymers of polyvinylpyrrolidone for example the PVP hexadecene copolymer and the PVP eicosen copolymer, which are available under the trade names Antaron V216 and Antaron V220 from GAF Chemicals Cooperation, as well as the Tricontayl PVP and the like.
  • UVASorb® K2A 2,4-bis- [5-1 (dimethylpropyl) benzoxazol-2-yl- (4-phenyl) -imino] -6- (2-ethylhexyl) -imino-1, 3,5-triazine [CAS No. 288254-16-0]

Abstract

L'invention concerne des préparations cosmétiques ou dermatologiques à effet de protection solaire, qui se caractérisent en ce qu'elles contiennent (a) au moins un benzotriazole et (b) au moins un dérivé de benzoxazole.
EP02795211A 2001-12-20 2002-12-17 Formulations cosmetiques et dermatologiques de protection solaire contenant des benzotriazoles et des derives de benzoxazole Withdrawn EP1458341A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10162842A DE10162842A1 (de) 2001-12-20 2001-12-20 Kosmetische und dermatologische Lichtschutzformulierungen mit einem Gehalt an Benzotriazolen und Benzoxazol-Derivaten
DE10162842 2001-12-20
PCT/EP2002/014392 WO2003053391A1 (fr) 2001-12-20 2002-12-17 Formulations cosmetiques et dermatologiques de protection solaire contenant des benzotriazoles et des derives de benzoxazole

Publications (1)

Publication Number Publication Date
EP1458341A1 true EP1458341A1 (fr) 2004-09-22

Family

ID=7710104

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02795211A Withdrawn EP1458341A1 (fr) 2001-12-20 2002-12-17 Formulations cosmetiques et dermatologiques de protection solaire contenant des benzotriazoles et des derives de benzoxazole

Country Status (5)

Country Link
US (1) US7029660B2 (fr)
EP (1) EP1458341A1 (fr)
JP (1) JP2005513091A (fr)
DE (1) DE10162842A1 (fr)
WO (1) WO2003053391A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469819B1 (fr) * 2002-01-31 2019-01-09 Ciba Holding Inc. Melanges de micropigments
DE10245727A1 (de) * 2002-10-01 2004-04-15 Beiersdorf Ag Als Aerosol versprühbare W/O-Emulsionen
DE10260877A1 (de) * 2002-12-23 2004-07-01 Beiersdorf Ag Stabile zinkoxidhaltige Öl-in-Wasser-Emulsionen
FR2864898B1 (fr) * 2004-01-09 2006-03-24 Expanscience Lab Composition de type ecran solaire organo-mineral adaptee pour l'application par pompe de propulsion
DE102004020627A1 (de) 2004-03-23 2005-10-13 Beiersdorf Ag Kosmetische und dermatologische Lichtschutzformulierungen
US20050287088A1 (en) * 2004-06-28 2005-12-29 L'oreal Fine oil-in-water emulsion containing a hydrophilic screening agent
JP2006169195A (ja) * 2004-12-17 2006-06-29 Kao Corp メイクアップ用化粧料
JP2006169194A (ja) * 2004-12-17 2006-06-29 Kao Corp メイクアップ用化粧料
US20060171971A1 (en) * 2005-02-01 2006-08-03 The Procter & Gamble Company Composition for wet wipes containing a non-irritating skin health benefit ingredient and the process for making
KR20080056114A (ko) * 2005-10-05 2008-06-20 가부시키가이샤 시세이도 자외선 차단 화장료
US7544375B1 (en) 2006-06-12 2009-06-09 Swiss Skin Repair, Inc. Composition
DE102007005335A1 (de) 2007-02-01 2008-08-07 Beiersdorf Ag Lichtschutzzubereitung mit einer Kombination von Mikropigmenten
DE102007005333A1 (de) * 2007-02-01 2008-08-07 Beiersdorf Ag Organische Mikropigmente in kosmetischen Lichtschutzemulsionen
EP1994921A1 (fr) * 2007-05-21 2008-11-26 L'Oreal Composition parfumante comprenant l'association d'un filtre A hydroxyaminobenzophenone, d'un filtre B cinnamate et d'un composé C pipéridinol, benzotriazole ou dibenzoylméthane
ES2543200T3 (es) * 2007-07-27 2015-08-17 Shiseido Company, Ltd. Preparado protector solar de tipo emulsión de aceite en agua
US20120244316A1 (en) * 2010-07-08 2012-09-27 Sven Dobler Body art transfer device
FR2941712B1 (fr) * 2009-02-04 2012-09-14 Arras Thierry D Toile pour la destructuration de la lumiere
SG168436A1 (en) * 2009-07-24 2011-02-28 Molex Singapore Pte Ltd Electrical connector with a light pipe
DE102009048555B4 (de) 2009-10-07 2011-12-22 Beiersdorf Ag Verwendung von sprühbaren Zubereitungen mit hohem Treibgasanteil
FR2976479B1 (fr) * 2011-06-16 2013-09-06 Oreal Compositions cosmetiques filtrantes comprenant une association de particules d'oxyde de titane
JP6526965B2 (ja) * 2014-12-26 2019-06-05 ポーラ化成工業株式会社 日焼け止め化粧料
KR101992104B1 (ko) * 2017-04-13 2019-06-24 코스맥스 주식회사 피부 보습용 화장료 조성물
KR20200134263A (ko) * 2018-03-20 2020-12-01 디에스엠 아이피 어셋츠 비.브이. 국소 조성물

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076687A (en) * 1976-08-16 1978-02-28 Eastman Kodak Company Bichromophoric benzotriazole-benzoxazole ultraviolet stabilizers and their use in organic compositions
CA1125768A (fr) 1978-10-31 1982-06-15 Hoffmann-La Roche Limited Derives de benzoxazole
LU85304A1 (fr) * 1984-04-13 1985-11-27 Oreal Composition solaire filtrante contenant du polyisobutylene et son utilisation pour la protection de l'epiderme humain contre les radiations ultraviolettes
JPH078991B2 (ja) 1989-07-18 1995-02-01 花王株式会社 中性液体洗浄剤組成物
FR2662079B1 (fr) 1990-05-18 1993-11-05 Oreal Emulsion cosmetique filtrante comprenant un filtre uv-a et un filtre uv-b et son utilisation pour la protection de la peau contre les radiations ultraviolettes.
ES2157268T5 (es) 1994-02-24 2004-12-01 SYMRISE GMBH & CO KG Preparados cosmeticos y dermatologicos que contienen acidos fenilen-1,4-bisbencimidazolsulfonicos.
DE19543730A1 (de) 1995-11-23 1997-05-28 Ciba Geigy Ag Bis-Resorcinyl-Triazine
IT1284526B1 (it) 1996-09-13 1998-05-21 3V Sigma Spa Derivati di benzossazolo loro uso come stabilizzanti contro le radiazioni uv
IT1284525B1 (it) * 1996-09-13 1998-05-21 3V Sigma Spa Derivati di benzossazolo loro uso come stabilizzanti contro le radiazioni uv
DE19648010A1 (de) 1996-11-20 1998-05-28 Haarmann & Reimer Gmbh Verwendung von substituierten Benzazolen als UV-Absorber, neue Benzazole und Verfahren zu ihrer Herstellung
FR2772030B1 (fr) * 1997-12-04 2000-01-28 Oreal Nouveaux derives silicies de benz-x-azoles filtres, compositions cosmetiques photoprotectrices les contenant et utilisations
FR2779957B1 (fr) 1998-06-18 2000-08-04 Oreal Compositions cosmetiques photoprotectrices contenant un benzazole n-substitue, un derive de 1,3,5-triazine et un filtre organique uv-a
IT1312374B1 (it) 1999-01-11 2002-04-15 3V Sigma Spa Associazioni di filtri solari e composizioni cosmetiche che licontengono
FR2789578A1 (fr) * 1999-02-12 2000-08-18 Oreal Compositions photoprotectrices contenant un derive de benzotriazole et un compose a groupements benzoazolyle ou benzodiazolyle
FR2789581B1 (fr) * 1999-02-12 2001-05-04 Oreal Compositions photoprotectrices contenant un derive de benzotriazole, un derive de bis-resorcinyl triazine et un compose a groupements benzoazolyle ou benzodiazolyle
FR2789582B1 (fr) 1999-02-12 2001-05-04 Oreal Compositions photoprotectrices contenant un derive de bis-resorcinyl triazine et un compose a groupements benzoazolyle ou benzodiazolyle
DE19917906A1 (de) 1999-04-20 2000-10-26 Basf Ag Verwendung von aminosubstituierten Hydroxybenzophenonen als photostabile UV-Filter in kosmetischen und pharmazeutischen Zubereitungen
FR2794645B1 (fr) * 1999-06-08 2001-08-10 Oreal Compositions photoprotectrices contenant un compose hydrocarbone bis-hydroxyphenylbenzotriazole et un compose a groupements benzoazolyle ou benzodiazolyle
FR2803194A1 (fr) 2000-01-03 2001-07-06 Oreal Nouveaux derives de s-triazine, leur procede de preparation, compositions les contenant et leurs utilisations
IT1317825B1 (it) 2000-02-11 2003-07-15 3V Sigma Spa Derivati del benzossazolo, loro impiego in composizioni cosmetiche enella stabilizzazione di polimeri sintetici.
DE10012408A1 (de) 2000-03-15 2001-09-20 Basf Ag Verwendung von Lichtschutzmittelkombinationen, die als wesentlichen Bestandteil aminosubstituierte Hydroxybenzophenone enthalten als photostabile UV-Filter in kosmetischen und pharmazeutischen Zubereitungen
DE10017214A1 (de) 2000-04-06 2001-10-11 Beiersdorf Ag Kosmetische und dermatologische Lichtschutzformulierungen mit einem Gehalt an unsymmetrisch substituierten Triazinderivaten und Propylenglykoldicaprylatdicaprat
DE10063946A1 (de) 2000-12-20 2002-07-04 Basf Ag Verwendung von Lichtschutzmittelkombinationen, die als wesentlichen Bestandteil 2,2'-p-Phenylen-bis(3,1-benzoxazin-4-on) enthalten als photostabile UV-Filter in kosmetischen und pharmazeutischen Zubereitungen
DE10063867A1 (de) * 2000-12-21 2002-07-11 Haarmann & Reimer Gmbh Kosmetische Lichtschutzzubereitungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03053391A1 *

Also Published As

Publication number Publication date
WO2003053391A1 (fr) 2003-07-03
US7029660B2 (en) 2006-04-18
JP2005513091A (ja) 2005-05-12
DE10162842A1 (de) 2003-07-03
US20050025726A1 (en) 2005-02-03

Similar Documents

Publication Publication Date Title
WO2003053389A1 (fr) Formulations cosmetiques et dermatologiques a effet de protection solaire, contenant des derives de bis-resorcinyltriazine et des derives de benzoxazole
WO2003053395A1 (fr) Formulations cosmetiques et dermatologiques a effet de protection solaire, contenant des substances filtrant les u.v., solubles dans l'eau et des derives de benzoxazole
EP1458341A1 (fr) Formulations cosmetiques et dermatologiques de protection solaire contenant des benzotriazoles et des derives de benzoxazole
EP1380288B1 (fr) Compositions cosmétiques et dermatologiques de protection solaire contenant des Polymeres d'acide acrylamidométhylpropane sulfonique (AMPS) hydrophobes
EP1352639A1 (fr) Composition cosmétique comprenant des benzophénones hydroxylées et un ou plusieurs dérivés d'amidon prégelatinisées et réticulées
WO2003053390A1 (fr) Formulations cosmetiques et dermatologiques de protection contre la lumiere contenant des derives benzoxazol
WO2003053393A1 (fr) Formulations de protection solaire cosmetiques et dermatologiques contenant des hydroxylbenzophenones et des derives de benzoxazol
EP1492489B1 (fr) Formulations cosmetiques et dermatologiques de protection solaire resistantes a l'eau contenant des polymeres sequences de polyoxyethylene-polydodecylglycol
DE10214054A1 (de) Wasserfeste kosmetische und dermatologische Lichtschutzformulierungen mit einem Gehalt an Alpha Olefin/Maleinsäureanhydrid-Copolymeren
WO2003082237A2 (fr) Formulations de protection solaire cosmetiques et dermatologiques hydroresistantes contenant une quantite d'esters acetyles de l'acide stearique
DE10214053A1 (de) Wasserfeste kosmetische und dermatologische Lichtschutzformulierungen mit einem Gehalt an Acrylat-Alkylmethacrylat-Copolymeren
DE102004003001B4 (de) Kosmetische und dermatologische Lichtschutzformulierungen
DE10214059A1 (de) Wasserfeste kosmetische und dermatologische Lichtschutzformulierungen mit einem Gehalt an Polyoxyethylen-Polyoxypropylen-Blockpolymeren
WO2005067883A1 (fr) Visualisation d'agents de protection solaire sur la peau
EP1555016A1 (fr) Compositions photoprotectrices
DE10249367A1 (de) Kosmetische und dermatologische Lichtschutzformulierungen mit einem Gehalt an Hydroxybenzophenonen und Benzoxazol-Derivaten
DE102004002602A1 (de) Visualisierung von Sonnenschutzmitteln auf der Haut
DE20314969U1 (de) Lichtschutzzubereitung mit einem Gehalt an reflektierenden Pigmenten (Mikrospiegeln)
DE102004002999A1 (de) Kosmetische und dermatologische Lichtschutzformulierungen
DE102004002601A1 (de) Visualisierung von Sonnenschutzmitteln auf der Haut
WO2005067882A1 (fr) Visualisation d'agents de protection solaire sur la peau
DE102004002609A1 (de) Visualisierung von Sonnenschutzmitteln auf der Haut
DE102004002606A1 (de) Visualisierung von Sonnenschutzmitteln auf der Haut
WO2005067880A1 (fr) Visualisation de produits antisolaires sur la peau
DE102004002608A1 (de) Visualisierung von Sonnenschutzmitteln auf der Haut

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHULZ, JENS

Inventor name: GROTELUESCHEN, BIRGIT

Inventor name: GOEPPEL, ANJA

17Q First examination report despatched

Effective date: 20070611

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080725