EP1454174A2 - Systeme de gestion de cablage de connexion - Google Patents
Systeme de gestion de cablage de connexionInfo
- Publication number
- EP1454174A2 EP1454174A2 EP02785404A EP02785404A EP1454174A2 EP 1454174 A2 EP1454174 A2 EP 1454174A2 EP 02785404 A EP02785404 A EP 02785404A EP 02785404 A EP02785404 A EP 02785404A EP 1454174 A2 EP1454174 A2 EP 1454174A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- modules
- plug
- module
- management system
- patch cable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 16
- 230000008878 coupling Effects 0.000 claims description 20
- 238000010168 coupling process Methods 0.000 claims description 20
- 238000005859 coupling reaction Methods 0.000 claims description 20
- 239000013307 optical fiber Substances 0.000 claims description 19
- 230000004807 localization Effects 0.000 abstract 1
- 238000005553 drilling Methods 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4439—Auxiliary devices
- G02B6/444—Systems or boxes with surplus lengths
- G02B6/4452—Distribution frames
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4439—Auxiliary devices
- G02B6/444—Systems or boxes with surplus lengths
- G02B6/44528—Patch-cords; Connector arrangements in the system or in the box
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/3897—Connectors fixed to housings, casing, frames or circuit boards
Definitions
- the invention relates to a patch cable management system for a
- each subrack preferably accommodating up to twelve plug modules and / or splice modules.
- a patch cable management system with electronic location of the inserted optical fiber connections that is to say electronic patch cable location
- the plug modules and / or the splicing modules are inserted into the subrack - also called module rack.
- the subrack also called module rack.
- backplane On the back of the subrack there is a back wall - so-called backplane - which takes over the power supply and connects the data lines with the connector modules and / or splice modules.
- rigid wiring is used for the electronic addressing of the inserted plug modules.
- the use of such a rigid rear wall is disadvantageous, since the dimensions and other properties of the rear wall of the rear wall have to be matched to the design of the subrack, which limits the flexibility of the patch cable management system. Proceeding from this, the present invention is based on the problem of creating a new type of patch cable management system for an optical fiber distribution device.
- the patch cable management system according to the invention is characterized by great flexibility.
- Existing patch cable management systems can also be retrofitted in a simple manner.
- Fig. 1 an inventive patch cable management system for a
- Optical waveguide distribution device namely an optical waveguide distribution cabinet, in a perspective rear view after a first
- FIG. 2 the patch cable management system according to the invention of FIG. 1 in a perspective front view
- FIG. 3 an inventive patch cable management system for an optical fiber distribution cabinet in a perspective rear view according to a second exemplary embodiment of the invention
- FIG. 4 the patch cable management system according to the invention from FIG 3 shows a perspective front view
- FIG. 5 shows an inventive patch cable management system for an optical waveguide distribution cabinet in a perspective rear view according to a third exemplary embodiment of the invention
- 6 the patch cable management system according to the invention from FIG. 5 in a perspective front view
- FIG. 7 a highly schematic block diagram to illustrate the
- Optical waveguide distribution cabinet in a perspective front view according to a fourth embodiment of the invention.
- Figures 1 and 2 show an inventive patch cable management system according to a first embodiment of the invention, wherein Figure 1 shows the same in a perspective rear view and Figure 2 in a perspective front view.
- Figures 1 and 2 show a total of three connector modules 11 which are inserted into a subrack, not shown.
- the plug modules 11 have a front plate 12 and a support plate 13 which runs orthogonally to the front plate 12.
- a plurality of couplings 14 for optical fibers are arranged on one side of the support plate 13 of the plug modules 11.
- eight couplings 14 are provided for each plug module. It is also possible to provide more than eight couplings 14 per plug module, as is shown in the exemplary embodiment in FIG. 8.
- the couplings 14 extend through the front plate 12 of the plug modules 11, so that optical waveguides can be brought up to the plug module 11 from the front of the front plate 12 and inserted into the couplings 14, while contact with another optical waveguide is made from the rear can be.
- Edges 15 of the support plate 13 are designed in such a way that the plug modules 11 can be inserted into the guide systems of a subrack.
- the plug modules 11 can additionally be fastened to a frame, not shown, of the subrack, not shown, via bores 16 made in the front plate 12.
- an electronics module 17 is provided, which can be positioned as desired within the optical waveguide distribution cabinet or the patch cable management system 10.
- An embodiment of the electronics module 17 is preferred, in which the electronics module 17 can be inserted into the respective subrack together with the plug modules 11. If the subrack has a guide system, edges 18 of the electronic module 17 are adapted to the guide system. In other words, the edges 18 of the electronic module 17 then correspond to the edges 15 of the plug modules 11.
- Splice modules and the electronics module 17 can be positioned at any point and in any order or arrangement in the rack.
- the electronic module 17 which are integrated on the rigid rear wall - the so-called backplane - in systems according to the prior art.
- the electronic module 17 thus has a plug connector 19 for connecting a power supply and a plug connector 20 for connecting a data bus.
- the electronic module 17 also serves for the electronic addressing of the patch cable or the plugged-in optical fiber connections.
- the plug modules 11 can be connected to the electronic module 17 via flexible connecting cables 21.
- the connecting cables 21 are not shown in FIG. 2.
- a plug connector 22 or 23 is assigned to each end of a connecting cable 21 and can be connected either to the plug module 11 or to the electronic module 17. If the connectors 27 or 23 are to be saved in order to reduce costs, it is also conceivable to use either the connector modules 11 or the electronics module 17 Attach connection cable 21 firmly and thereby save the respective connector.
- the electronic module 17 has a total of twelve plug connectors 22 for connecting a total of twelve plug modules 11 or splice modules.
- the number of twelve connectors is based on the currently customary arrangement of conventional systems.
- the number of connectors and thus the number of connector modules and / or splice modules that can be assigned to an electronic module can be between one and the number required for a complete expansion of the distribution cabinet. For reasons of clarity, however, a maximum of sixteen connectors per electronic module should be aimed for. However, several such electronic modules with sixteen connectors can be used until the distribution cabinet or rack has been fully expanded.
- the electronics module 17 is inserted together with the connector modules 11 into a subrack (not shown), not only do the edges 15 and 18 of the connector modules 11 and the electronics module 17 match, but rather the electronics module 17 also has a front plate 24 with similar dimensions like the front plates 12 of the plug modules 11.
- the front plate 24 of the electronics module 17 can also be assigned holes 25 in order to fasten the electronics module 17 to a frame of the subrack, similarly to the connector modules 11.
- FIG. 1 shows that not only does the front plate 12 of the plug modules 11 have bores 16, but rather the support plate 13 of the plug modules 11 also has bores 26. This allows, for example, splice cassettes or strain relief devices for optical fiber cables to be removed to be fastened to the support plates 13 of the plug modules 11.
- a board 27 is arranged on the side of the support plate 13 opposite the couplings 14, said board 27 being connected to interrogation buttons 28 and corresponding signaling lights 29 which are designed as LEDs.
- circuit board 27 which is used for the electronic addressing and location of plugged-in fiber optic connections, is arranged on the opposite side of the support plate 13 as the couplings 14, the circuit board 27 is spatially separated from the couplings 14 and the optical fibers to be handled. This makes it possible to replace a circuit board 27 without having to interrupt optical fiber connections made via the couplings 14.
- the connecting cables 21 can be guided in any manner from the plug modules 11 to the electronics module 17.
- the length and wiring path of the connecting cables 21 can be freely varied, which increases the flexibility of the patch cable management system.
- the order in which the plug modules 11 and the electronics module 12 are inserted into a subrack is therefore arbitrary. In this way, subracks that are not yet fully equipped can be easily retrofitted with the patch cable management system according to the invention.
- Power supply lines, address lines and data lines are integrated in each of the connecting cables 21.
- the plug modules 11 are accordingly supplied with electrical energy via the power supply lines of the connecting cables 21 and thus via the electronic module 17. Via the data lines of the connecting cables 21, the plug modules 11 can be connected to a data bus via the electronic module 17.
- the address lines of the connecting cables 21 ensure the electronic addressing and location of the inserted optical fiber connections. It is therefore within the meaning of the invention to transfer all functions which are carried out by the so-called backplane in the case of patch cable management systems according to the prior art to a separate module, namely the electronic module 17. This can then be handled like the plug modules 11.
- FIGS. 3 and 4 show a Patach cable management system 30 according to a second embodiment of the invention.
- the exemplary embodiment in FIGS. 3 and 4 differs from the exemplary embodiment in FIGS. 1 and 2 only in that the connector modules 11 are connected to the electronic module 17. To avoid repetition, the same reference numbers are therefore used for the same modules.
- the connector modules 11 are not connected to the electronic module 17 via flexible connecting lines, but via a connector strip 31.
- the connector strip 31 carries a plurality of connector connectors 32.
- the connector connectors 32 reach from FIG the back into the plug modules 11 and the electronics module 17. This configuration is particularly advantageous when a clear order of the modules 11, 17 is desired.
- FIGS. 5 and 6 A further possibility for connecting the plug modules 11 to the electronics module 17 is shown in the exemplary embodiment according to FIGS. 5 and 6. Also in the patch cable management system 33 according to the invention shown there, a plurality of plug modules 11 are connected to the electronics module 17 via a plug connector 34. In contrast to the exemplary embodiment in FIGS. 3 and 4, however, the plug connectors 35 of the plug connector 34 engage in the modules 11, 17 from the front.
- FIG. 8 shows a plug module 11 with a total of twelve couplings 14 for optical fibers or patch cables.
- FIG. 8 shows patch cables 42 which are plugged into the couplings 14 of the plug module 11 via corresponding plugs 43.
- a patch cable 42 is shown.
- the main difference between the exemplary embodiment in FIG. 8 and the exemplary embodiments in FIGS. 1 to 6 does not lie in the number of couplings 14, but in the fact that the circuit board 27, which serves for electronic addressing and location, is integrated in an electronic block 41, which is on the outside of the front plate 12 of the plug module 11 can be placed.
- This electronics block 41 contains the already mentioned electronics board 27 as well as the query buttons 28 and the signaling lights 29. Each connector module 11 is then connected to an electronics module 17 via the electronics block 41 or via the connecting cable 21 engaging the electronics block.
- a chip 44 is placed on each patch cable 42 or the plug 43 thereof, which, in conjunction with the circuit board 27, serves to electronically locate the inserted optical waveguide connections. This creates a solution that enables a retrofit of an existing distribution panel that is in operation.
- the connection between the electronics block 41 and the locating chips 44 is created by an electrical contact (not shown in detail).
- the electronic module 17 is used for electronic addressing and the circuit board 27 for the plug modules 11 or splice modules for electronic addressing and location of the plugged-in optical fiber connections.
- Electronic addressing is to be understood to mean that all the couplings 14 of all plug modules or splice modules can be identified precisely with the aid of a unique address. It must be identifiable which connector 14 is assigned to which connector module 11 and which connector module 11 which electronic module 17. Furthermore, the electronic location is important such that plugged connections of optical fibers (patching), for example between two connector modules 11, can be clearly identified.
- a processor 36 is assigned to the electronics module 17.
- the electronics module 17 has a switch 38, a so-called DIP switch.
- the processor 36 of the electronic module 17 and the processors 37 of the respective plug modules 11 communicate via address lines 39.
- the processor 37, which is assigned to each plug module 11 on the circuit board 27, forms an address for the couplings 14 of the respective plug module 11 assigned to the electronics module 17 is the processor 36, which sends a bit pattern to each of its connected plug modules 11 via the address lines 39, which bit pattern corresponds to an address within the rack.
- the electronics module 17 has the switch 38, with the aid of which the module rack or the electronics modules 17 in the distribution field, the optical fiber distribution cabinet, is assigned a number. This number is also sent to the processor 37 in the plug module 11. The processor 37 in the plug module 11 sends these three address components with a status statement about the
- the address lines 39 are integrated in the connecting cables 21.
- the address lines 39 run within the connector strips 31 and 34, respectively. Since each connector module 11 is connected to the electronics module 17 or to the processor 36 of the electronics module 17 via a separate connector Address line 39 a unique data packet can be assigned, which can be read out by the processors 37 of the connector modules and from which a unique address for each Plug module 11 can be removed. Communication with the central computer, not shown, then takes place via bus lines 40.
- the switch 38 which assigns a unique number to each electronic module 17, can also be dispensed with.
- the electronic module 17 is then assigned a unique number from the central computer via the bus lines 40. This has the advantage that the initialization process of the individual modules can be simplified.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Structure Of Telephone Exchanges (AREA)
Abstract
L'invention concerne un système de gestion de câblage de connexion destiné à un dispositif de répartition de guides d'ondes optiques, comprenant plusieurs modules à fiches (11) et/ou modules d'épissure qui sont disposés dans un support de sous-ensemble, et un dispositif de repérage électronique de câblage de connexion. L'invention est caractérisée en ce qu'il est prévu au moins un module électronique (17) pouvant être positionné de manière quelconque dans le dispositif de répartition de guides d'ondes optiques, et en ce que le module électronique peut être connecté avec les modules à fiches (11) et/ou les modules d'épissure et assure l'alimentation des modules à fiches (11) et/ou des modules d'épissure ainsi que l'adressage électronique des modules (11) enfichés et/ou des modules d'épissure.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE20120192U DE20120192U1 (de) | 2001-12-13 | 2001-12-13 | Patchkabelmanagementsystem |
DE20120192U | 2001-12-13 | ||
PCT/EP2002/013112 WO2003050582A2 (fr) | 2001-12-13 | 2002-11-22 | Systeme de gestion de cablage de connexion |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1454174A2 true EP1454174A2 (fr) | 2004-09-08 |
Family
ID=7965119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02785404A Withdrawn EP1454174A2 (fr) | 2001-12-13 | 2002-11-22 | Systeme de gestion de cablage de connexion |
Country Status (6)
Country | Link |
---|---|
US (1) | US7140782B2 (fr) |
EP (1) | EP1454174A2 (fr) |
AU (1) | AU2002350709A1 (fr) |
CA (1) | CA2470120A1 (fr) |
DE (1) | DE20120192U1 (fr) |
WO (1) | WO2003050582A2 (fr) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6788786B1 (en) * | 2000-09-22 | 2004-09-07 | Adc Telecommunications, Inc. | Multimedia patching box |
US7652889B2 (en) * | 2005-10-25 | 2010-01-26 | Hewlett-Packard Development Company, L.P. | Information technology (IT) equipment position locating system using jumper connections |
US7782202B2 (en) | 2006-10-31 | 2010-08-24 | Corning Cable Systems, Llc | Radio frequency identification of component connections |
US7772975B2 (en) | 2006-10-31 | 2010-08-10 | Corning Cable Systems, Llc | System for mapping connections using RFID function |
US7760094B1 (en) | 2006-12-14 | 2010-07-20 | Corning Cable Systems Llc | RFID systems and methods for optical fiber network deployment and maintenance |
US8264355B2 (en) | 2006-12-14 | 2012-09-11 | Corning Cable Systems Llc | RFID systems and methods for optical fiber network deployment and maintenance |
US7547150B2 (en) | 2007-03-09 | 2009-06-16 | Corning Cable Systems, Llc | Optically addressed RFID elements |
US7965186B2 (en) | 2007-03-09 | 2011-06-21 | Corning Cable Systems, Llc | Passive RFID elements having visual indicators |
US7428365B1 (en) | 2007-03-29 | 2008-09-23 | Corning Cable Systems Llc | Retention and rotation clamp assembly for use with an angled optical fiber cleaver |
US9084367B2 (en) | 2007-06-01 | 2015-07-14 | Telect, Inc. | Structured cabling chassis |
US8248208B2 (en) | 2008-07-15 | 2012-08-21 | Corning Cable Systems, Llc. | RFID-based active labeling system for telecommunication systems |
US8731405B2 (en) | 2008-08-28 | 2014-05-20 | Corning Cable Systems Llc | RFID-based systems and methods for collecting telecommunications network information |
US9563832B2 (en) | 2012-10-08 | 2017-02-07 | Corning Incorporated | Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods |
CN110031940B (zh) * | 2018-01-05 | 2021-01-19 | 台达电子工业股份有限公司 | 光模块的插拔装置 |
CN114859494B (zh) * | 2022-07-07 | 2022-10-11 | 杭州昱华科技有限公司 | 一种光纤配线架及其辅助配线系统 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3206868A1 (de) * | 1982-02-26 | 1983-09-15 | Hans Kolbe & Co, 3202 Bad Salzdetfurth | Aufnahmevorrichtung fuer geraeteeinheiten der elektrischen und/oder optischen nachrichtenuebertragungstechnik |
DE3836360A1 (de) | 1988-10-21 | 1990-04-26 | Krone Ag | Verteilereinrichtung, insbesondere fuer den hauptverteiler von fernsprechanlagen |
US5204925A (en) | 1991-09-11 | 1993-04-20 | At&T Bell Laboratories | Optical interconnection of circuit packs |
FR2688370B1 (fr) | 1992-03-03 | 1994-05-27 | Yves Saligny | Element de repartiteur telephonique, en particulier reglette. |
JP2532194B2 (ja) * | 1992-03-30 | 1996-09-11 | インターナショナル・ビジネス・マシーンズ・コーポレイション | プロセッサと結合機能間に対するメッセ―ジ経路指定機能を有するデ―タ処理システム |
CA2081608C (fr) * | 1992-10-28 | 1998-05-05 | Joseph Octave Regis Morin | Porte-repartiteur et connecteur optique |
DE4301421A1 (de) * | 1993-01-20 | 1994-07-21 | Siemens Ag | Glasfaser-Hauptverteiler |
DE4306349C1 (de) | 1993-02-23 | 1994-03-17 | Krone Ag | Verteilereinrichtung, insbesondere für den Hauptverteiler von Fernsprech- und Datenleitungen |
US5544004A (en) | 1993-10-14 | 1996-08-06 | Nippon Telegraph And Telephone Corporation | Pin-board matrix switch |
US5353367A (en) * | 1993-11-29 | 1994-10-04 | Northern Telecom Limited | Distribution frame and optical connector holder combination |
US5448675A (en) * | 1994-06-09 | 1995-09-05 | At&T Ipm Corp. | Telecommunications distribution frame with tracing |
US5838845A (en) * | 1996-09-09 | 1998-11-17 | Lucent Technologies Inc. | Primary stage optical switch assembly for an optical fiber administration system |
US5784516A (en) * | 1996-09-09 | 1998-07-21 | Lucent Technologies Inc. | Optical fiber distribution shelf assembly containing a modular optical switch |
US5764043A (en) * | 1996-12-20 | 1998-06-09 | Siecor Corporation | Traceable patch cord and connector assembly and method for locating patch cord ends |
US5960130A (en) | 1997-09-22 | 1999-09-28 | Lucent Technologies Inc. | Method of testing splice connections in an optical fiber cable |
US6208796B1 (en) * | 1998-07-21 | 2001-03-27 | Adc Telecommunications, Inc. | Fiber optic module |
-
2001
- 2001-12-13 DE DE20120192U patent/DE20120192U1/de not_active Expired - Lifetime
-
2002
- 2002-11-22 AU AU2002350709A patent/AU2002350709A1/en not_active Abandoned
- 2002-11-22 US US10/498,585 patent/US7140782B2/en not_active Expired - Fee Related
- 2002-11-22 EP EP02785404A patent/EP1454174A2/fr not_active Withdrawn
- 2002-11-22 WO PCT/EP2002/013112 patent/WO2003050582A2/fr not_active Application Discontinuation
- 2002-11-22 CA CA002470120A patent/CA2470120A1/fr not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO03050582A3 * |
Also Published As
Publication number | Publication date |
---|---|
DE20120192U1 (de) | 2003-02-06 |
AU2002350709A8 (en) | 2003-06-23 |
WO2003050582A3 (fr) | 2004-02-19 |
AU2002350709A1 (en) | 2003-06-23 |
CA2470120A1 (fr) | 2003-06-19 |
US7140782B2 (en) | 2006-11-28 |
WO2003050582A2 (fr) | 2003-06-19 |
US20050169595A1 (en) | 2005-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3851988T2 (de) | Anordnung zum Verbinden elektronischer Bausteine untereinander. | |
DE69531382T2 (de) | Telekommunikationsverteiler mit Trassierung | |
DE69020732T2 (de) | Rückwand für optische fasern. | |
DE69010655T2 (de) | Anordnung für doppelseitige Rückwand. | |
EP1543685B1 (fr) | Dispositif permettant de surveiller des champs de connexion sur des points de repartition dans des reseaux de donnees | |
DE60123984T2 (de) | Modulares verbindungssystem für ethernet-anwendungen im industriellen sektor | |
EP1454174A2 (fr) | Systeme de gestion de cablage de connexion | |
DE102007058724B3 (de) | Datenverarbeitungssystem | |
EP1784738B1 (fr) | Plaque enfichable destinee a etre utilisee dans des racks pour appareils peripheriques | |
DE69013635T2 (de) | Funktionseinheit für elektronische Ausrüstung. | |
EP2174174A1 (fr) | Système constitué de plusieurs dispositifs répartiteurs de fibres optiques | |
EP1120674A1 (fr) | Réseau de connexion pour connexion des câbles à fibres optique | |
EP0316821B1 (fr) | Boîtier pour contenir des constituants électriques | |
EP1808027B1 (fr) | Systeme de surveillance de champs de connexion de points de distribution de reseaux de donnees | |
DE10148470A1 (de) | Vorrichtung und Verfahren zum elektrischen und mechanischen Verbinden von Komponenten eines Automatisierungssystems | |
EP1986280A2 (fr) | Dispositif destiné à recevoir des connexions enfichables | |
DE60105268T2 (de) | Paneelsystem für Kommunikationsklinken | |
DE202009014308U1 (de) | Pigtail-Handhabungseinrichtung und Lichtwellenleiterverteilereinrichtung | |
DE2417285C2 (de) | Gestell zur Aufnahme von elektrischen oder elektronischen Schaltungen | |
DE2209858A1 (de) | Einschub fuer schalttafeln oder -schraenke | |
DE29618489U1 (de) | Vorrichtung zur Umsetzung und/oder Übertragung von optischen und/oder elektrischen Signalen | |
DE60104683T2 (de) | Optische anordnung | |
DE10229170A1 (de) | Steckfassung mit im unbestückten Zustand kurzgeschlossenen Kontaktelementen | |
DE102013101267B4 (de) | Gerätebuchse | |
DE102017115689A1 (de) | Optische Übertragungsvorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040512 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20100628 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120613 |