EP1452825B1 - Méthode pour programmer la détonation d'un projectile et canon équipé d'un système de programmation - Google Patents

Méthode pour programmer la détonation d'un projectile et canon équipé d'un système de programmation Download PDF

Info

Publication number
EP1452825B1
EP1452825B1 EP03028938A EP03028938A EP1452825B1 EP 1452825 B1 EP1452825 B1 EP 1452825B1 EP 03028938 A EP03028938 A EP 03028938A EP 03028938 A EP03028938 A EP 03028938A EP 1452825 B1 EP1452825 B1 EP 1452825B1
Authority
EP
European Patent Office
Prior art keywords
projectiles
programming
weapon
target
muzzle velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03028938A
Other languages
German (de)
English (en)
Other versions
EP1452825A1 (fr
Inventor
Peter Ettmüller
Klaus Münzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RWM Schweiz AG
Original Assignee
RWM Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RWM Schweiz AG filed Critical RWM Schweiz AG
Publication of EP1452825A1 publication Critical patent/EP1452825A1/fr
Application granted granted Critical
Publication of EP1452825B1 publication Critical patent/EP1452825B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C17/00Fuze-setting apparatus
    • F42C17/04Fuze-setting apparatus for electric fuzes

Definitions

  • the present invention relates to a method for programming the decomposition of projectiles according to claim 1 and a gun barrel with a programming system according to claim 9. Claimed is the priority of Swiss Patent Application No. 2003 0298/03 of 26 February 2003.
  • pipe weapons should be understood to mean those guns which are suitable for firing projectiles, in particular grenades, whose trajectories are highly curved and preferably lie in the lower angle group.
  • the falling angles of the projectiles which are fired with such guns in the sense of the invention are in a range which is greater than about 5 °.
  • Such guns are generally used to combat land and sea targets.
  • the decomposition of the projectile must take place in the immediate spatial environment of the target to be combated.
  • projectiles with programmable detonators commonly referred to as programmable or tactile projectiles.
  • the aim of the programming is to achieve that the same projectiles, which are launched at the same elevation and thus fly basically along the same trajectory, detonate at different decomposition sites, depending on the position of the target relative to the gun.
  • the decomposition of the projectiles should take place at an optimal distance in relation to the target.
  • the reason for this is the following: During the decomposition or detonation of such projectiles numerous fragments or splinters are created. These chips generally have low mass but high initial speed. However, this speed decreases rapidly due to air resistance.
  • the splinters move, starting from the detonation location, in a splinter space, which can be called, for example, a scattering cone.
  • the effectiveness of the splinters is essentially a function of their mass, their material, their shape and their speed in the target.
  • the conditions mentioned set narrow limits for the optimal region of the decomposition site and in particular for the height range of the decomposition site.
  • Cannons are generally used to combat targets in extended shot.
  • the projectile trajectories of projectiles shot in this case are thus stretched or relatively little exaggerated and therefore have everywhere only a small height distance above the ground and the fighting targets.
  • the projectiles are conventionally programmed so that they detonate at a certain length of distance from the weapon. Due to the elongated trajectories, the projectiles detonate in any case at a low altitude above the target.
  • guns project projectiles or shells along trajectories that are more highly curved than the trajectories of the above-mentioned cannon projectiles. If, in the case of such projectiles, the programming is carried out in the same way as in the case of cannon projectiles, the programming does not take into account the important condition that the detonation location of the projectiles should be above the target at a specific, as low as possible height.
  • the detonations of the projectiles are in any case not or only accidentally at exactly those places where they should take place according to the programming, since, as already mentioned, for various reasons always a certain scatter occurs.
  • a major reason for the scattering is that the actual muzzle velocity of the projectiles deviates from the theoretically calculated muzzle velocity of the projectiles, but that the programming was based on the theoretical muzzle velocity.
  • the new method is particularly, but not exclusively, applied to guns, hereafter referred to as weapons, which are shot in the lower angle group.
  • the projectiles are programmed by transmitting a programming or a corresponding signal.
  • the calculations for programming are made taking into account the location of the target, external and final ballistic criteria, a known muzzle velocity, an actual muzzle velocity of at least one of the projectiles, and the constraint that the detonation is to take place at a decomposition location that is at optimum Height above the target.
  • the pre-calculation may be performed before the measurement of the actual muzzle velocity, and after the measurement of the actual muzzle velocity, a calculation correction and thus the final calculation may be performed; or the entire final calculation may take place after determining the actual muzzle velocity.
  • the new method it is achieved that the fragmentation of projectiles in the manner of shells, which are fired along strongly curved trajectories, takes place at an optimum height above the target, and that the usual scattering caused by deviation of the actual muzzle velocity from the previously known muzzle velocity is practically avoided by the consideration of the actual muzzle velocity.
  • the consideration of the actual or measured muzzle velocity to optimize the height of the detonation site because conventionally, by taking into account the actual or measured muzzle velocity, the shot length, that is the length distance of the detonation location of the weapon, optimized.
  • the new method and the new programming system are intended in particular for guns, for example infantry weapons or machine guns, which are suitable for launching projectiles along strongly curved trajectories and preferably in the lower angle group, the angles of fall relative to Horizontal exceed about 5 °.
  • the guns used in the invention are at least semi-automatic or automatic guns, in particular grenade launchers or machine guns.
  • the programming according to the method according to the invention can also be carried out for projectiles delivered in single shot.
  • a gun is used with a programming system.
  • the programming system according to the invention comprises v 0 measuring means, calculating means, including memory means, for calculating data for programming, and transmission means for transmitting the programming or corresponding signals to the projectiles.
  • Integrated distance measuring means are preferably provided in order to measure the longitudinal distance of the target from the gun.
  • external distance measuring means can also be used for this, and in certain cases, the mentioned length spacing can also be determined with the aid of topographical maps.
  • the formation of the gun with the programming system is preferred to block the delivery of projectiles if, as a result of the programming calculations, a break-up location would result that would be within a safety field around the gun.
  • the safety field is essentially dependent on the projectiles or their field of action.
  • Guns for firing projectiles in serial fire and with the new programming system are preferably designed so that a series or firing burst is initiated by a shooter and continues until interrupted by the shooter.
  • the gun can also be designed so that the set values are deleted at the end of a series or a burst of fire.
  • Mission-specific quantities are a combat distance or a length distance x Z of a target Z, a length distance x Q of a separation location Q and an optimal length distance x Q * of an optimal separation location Q * of a gun 12, further tz, ie the fuze run time, which starts with the ignition of the projectile G and at the end of the decomposition of the projectile G takes place at Zertownsorten Q. With x and y respectively running coordinates are designated.
  • Further influencing variables are a previously known or standard muzzle velocity v 0 (0) of the projectiles G and an actual muzzle velocity v 0 (eff) of the projectiles G.
  • the previously known or predetermined muzzle velocity v 0 (0) It is stated that the decomposition takes place at a time t, which can be calculated from various factors.
  • the effective muzzle velocity v 0 (eff) generally deviates from the previously known muzzle velocity v 0 (0) and must therefore be measured.
  • the effective muzzle velocity v 0 (eff) is taken into account.
  • the decomposition of the projectiles G takes place on the basis of a signal to be transmitted after a flight duration t. If the actual muzzle velocity v 0 (eff) is calculated in the final calculation, then the signal to be transmitted to the projectiles G, which determines the time of flight until disassembly, must be changed such that the decomposition or detonation after the flight duration t + ⁇ t takes place; ⁇ t is a timing error and can take positive or negative values; ⁇ t should be as low as possible.
  • the elevation ⁇ of the weapon barrel 13 of the barrel weapon 12 is set before the launch of the projectile G; it follows from the solution of the known basic ballistic equation with which the duration of flight is determined.
  • Fig. 1 shows the gun 12 with a gun barrel 13 and a target Z to be combated at a distance x z from the gun 12.
  • the projectiles G, with which the target Z is to combat move in response to the set elevation ⁇ of the gun barrel 13 different projectile trajectories g or g *.
  • the appropriate elevation ⁇ * is that at which the projectile G on the optimal projectile trajectory * moved g, so that the projectile G at its decomposition in the length distance x Q * of the gun 12 and at an optimum height y * over the target Z is located.
  • Optimal programming has the result that the projectile G detonates at this optimum height y * at an optimal decomposition location Q *.
  • the decomposition of a projectile G produces fragments that move away from the decomposition site on all sides with relative fragment velocity.
  • the absolute velocity of the fragments is composed of the fragment velocity and the projectile velocity.
  • the target Z is optimally located approximately in the middle of an area in which the plane of the target Z and the splinter space in which the splinters of the projectiles G detonate at Q * intersect.
  • Fig. 2 the behavior of projectiles G acting in the same ballistic manner is shown, which are fired at the same elevation ⁇ and with the same programming; the calculations for programming take into account only the previously known muzzle velocity v 0 (0), a correction to take account of the actual muzzle velocity v 0 (eff) does not take place.
  • a series can include well over three projectiles.
  • the precalculation gives a time of flight t until detonation; This precalculation takes place on the basis of the previously known muzzle velocity v 0 (0).
  • the decomposition sites Q of the projectiles G are then theoretically in the optimum height y * over the target to be controlled Z and at a distance x Q * from the gun 12, in the present case the Zerkettes Q is slightly less far from the gun 12 than that Target Z, which is located at a distance x z of the barrel weapon 12.
  • the actual muzzle velocity v 0 (eff) of at least one of the projectiles G is measured.
  • the final calculation or calculation correction takes place and the projectiles are programmed on the basis of the results of the final calculation.
  • the trajectories g on which the projectiles G move are equal to wwie in Fig. 3 That is, the same as when the programming is performed only on the basis of the precalculation without consideration of the actual muzzle velocity v 0 (eff).
  • the final computation for the programming is done so that the decomposition sites Q of all projectiles G in the optimal height y * of the optimal decomposition place Q * are above the target Z, as shown in Fig. 4 is shown.
  • the gun 12 is equipped with a programming system.
  • Conventional guns for example infantry weapons such as grenade launchers or machine guns, can possibly be retrofitted by the new programming system, so that a combat value increase can be achieved.
  • the programming system includes v 0 measuring means 14, calculating means 16 and transmitting means 18 for transmitting calculated data from the calculating means 16 to the projectiles G, including a transfer unit on the gun 12.
  • the v 0 measuring means 14 are generally in the area of the mouth the gun barrel 13, before or after the mouth cross-section arranged.
  • the transmission means 16 are designed and arranged such that the transmission of the data to the projectiles G takes place, for example, before the projectiles G are launched between a projectile store and the end of the weapon barrel 13.
  • the final computation according to the new method results in the projectiles G being programmed to detonate at the optimum height y * above the target Z, but not all the projectiles G are at the optimal longitudinal distance x Q * of detonate the tube weapon.
  • This problem arose earlier in the control of area targets, and as a solution there was proposed shooting in a so-called pearl necklace mode. This is to be understood as meaning that the same projectiles are fired on and in themselves.
  • These projectiles follow, apart from the usual indoor and outdoor end-ballistic scattering, in principle the same trajectories, which of course only coincide locally if azimuth and elevation are not changed.
  • pearl necklace mode By coordinating the flight times of the projectiles to the cadence of the gun, it can even be achieved on request that a large number of projectiles detonate at the same time; especially during nocturnal shooting then offers a viewer a picture that can be compared with a chain occupied at intervals with beads chain; From this, the term pearl necklace mode was derived. It should be noted, however, that shooting in pearl necklace mode does not necessarily mean that the projectiles detonate at the same time.
  • guns in the sense of the invention are often used to combat area targets or targets that are not precisely detectable or moving within a space used. In order to achieve hits, the entire surface must be covered with shots. This could be achieved in point shot mode, ie with a multiplicity of equally programmed projectiles, by swiveling the barrel in both azimuth and elevation while delivering a series.
  • the weapon tubes of infantry weapons are usually directed with muscle power and can be easily changed during the delivery of a series of projectiles in azimuth.
  • An area can thus be covered in fire in the point shot mode by pivoting the gun barrel in the azimuth, with longitudinal scattering can help to cover the area over a certain, but limited length with fire. In this way, surfaces which, seen in the weft direction, have not too large dimensions can be covered with fire in a satisfactory manner.
  • surfaces are to be covered with fire, which, seen in the weft direction, have relatively large dimensions.
  • Such surfaces can be covered with fire in the above-described point-shot mode, that is to say with the delivery of projectiles with the same programming, with or without computational correction to take account of the actual muzzle velocity, but not in their entire length.
  • the passable surface consists only of an obliquely located in front of the weapon terrain strip in which the detonation of successively missile projectiles gradually approaching the weapon ,
  • the projectiles are programmed so that the detonation of the individual projectiles change step by step, not only in one direction, that is, with always shortening decomposition times, but alternately, by each a first group of projectiles in a series with shortening decomposition times is programmed, a second group is programmed with lengthening decomposition times, and this continues by programming each group inversely as the previous group.
  • the classification of the projectiles into groups is fictitious and serves only the descriptive description of the new procedure.
  • the projectiles of the different groups differ, as already mentioned, not in their structure but only in their programming.
  • the projectiles are programmed so that the flight times of the projectiles of the first group continuously decrease and increase the duration of the projectiles of the second group continuously.
  • the number of projectiles in each group may be predetermined or determined on a case-by-case or deployment by mission basis.
  • a group whose projectiles detonate with decreasing distance from the weapon is, in principle, terminated when the predetermined number of projectiles has been fired.
  • a barrier is provided to terminate a group before the detonation of a projectile falls below a safe distance from the weapon.
  • the second group of projectiles generally follow other groups, with the projectiles of each successive group being reversely programmed.
  • each group is determined by the programming, if necessary also by the maintenance of the safety distance, it is advantageous if the end of the entire burst does not occur after a certain period or after a certain number of projectiles have been fired, but if the shooter determine the end of the firing burst itself. This avoids being surprised by the sudden end of the burst during firing.
  • the programming can be expanded so that a reprogramming of approaching detonation locations to detonation locations that are approaching is coupled to a pivoting of the weapon barrel by a specific minimum angle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Claims (13)

  1. Procédé pour programmer la détonation de projectiles (G), qui sont prévus, pour combattre une cible (Z), pour être lancés d'un canon (13) d'une arme (12) le long d'une trajectoire de forte courbure (g, g*) et pour exploser en un lieu de détonation (Q*) aux environs de la cible (Z),
    - une mesure de distance étant effectuée pour déterminer l'éloignement (xz) de la cible (Z) de l'arme (12),
    - le canon (13) étant ajusté à une élévation appropriée (λ),
    - en tenant compte d'une vitesse de sortie connue préalablement (v0(0)) des projectiles (G) et de l'éloignement (xz) de la cible (Z) de l'arme (12), et
    - en respectant une hauteur optimale (y*) du lieu de détonation (Q*) au-dessus de la cible (Z),
    - une vitesse de sortie effective (v0(eff)) d'un projectile (G) étant déterminée,
    - un calcul étant effectué pour la programmation
    - en tenant compte de la vitesse de sortie effective (v0(eff)) et
    - en respectant la hauteur optimale (y*) du lieu de détonation (Q*) au-dessus de la cible (Z), et
    - la programmation étant transmise au projectile (G) respectif.
  2. Procédé selon la revendication 1, dans lequel, pour le calcul de la programmation des projectiles (G),
    - on effectue un calcul préalable en tenant compte de la vitesse de sortie connue préalablement (v0(0)) et
    - on effectue un calcul final en tenant compte de la vitesse de sortie effective (v0(eff)).
  3. Procédé selon l'une quelconque des revendications 1 à 2, dans lequel les projectiles (G) ont un angle de chute par rapport à l'horizontale qui dépasse une plage de 5°.
  4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel les trajectoires de vol (g, g*) des projectiles (G) se situent dans le groupe angulaire inférieur.
  5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel les projectiles (G) sont tirés séparément ou en série.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les projectiles (G) sont programmés en respectant la hauteur optimale (y*) du lieu de détonation (Q*) de telle sorte que les lieux d'explosion des projectiles individuels (G) varient pas à pas, mais qu'une hauteur optimale (y*) des lieux de détonation (Q*) soit respectée.
  7. Procédé selon la revendication 6, caractérisé en ce que cette modification s'effectue non seulement dans un sens mais aussi en alternance, en programmant à chaque fois un premier groupe de projectiles (G) d'une série avec des temps de détonation se raccourcissant suivi d'un deuxième groupe avec des temps de détonation se prolongeant, etc., de sorte que chaque groupe soit ainsi programmé de manière inverse du groupe précédent.
  8. Procédé selon la revendication 6 ou 7, caractérisé en ce que la programmation est configurée de telle sorte qu'une reprogrammation de lieux d'explosion se rapprochant à des lieux d'explosion s'éloignant, soit accouplée à un pivotement du canon (13) de l'arme (12) suivant un certain angle minimal.
  9. Arme (12) comprenant un canon (13) pour tirer des projectiles (G) le long de trajectoires de forte courbure (g, g*), et comprenant un système de programmation (14, 16, 18) pour programmer les projectiles (G) de telle sorte qu'ils explosent en vol en un lieu de détonation (Q*), afin de combattre une cible (Z), qui est éloignée de l'arme (12) d'un éloignement (xz), ce système de programmation présentant :
    - des moyens de mesure v0 (14) pour déterminer la vitesse de sortie effective (v0(eff)) des projectiles (G),
    - des moyens de calcul (16) pour calculer la programmation des projectiles (G),
    - en tenant compte d'une vitesse de sortie connue préalablement (v0(0)) des projectiles (G) et de l'éloignement (xz) de la cible (Z) de l'arme (12), et
    - en respectant une hauteur optimale (y*) du lieu de détonation (Q*) au-dessus de la cible (Z), et
    - en tenant compte de la vitesse de sortie mesurée (v0(eff)) des projectiles (G), et
    - des moyens de transfert (18) pour transférer la programmation aux projectiles (G).
  10. Arme (12) avec un système de programmation (14, 16, 18) selon la revendication 9, dans laquelle les moyens de calcul (16) sont réalisés de manière à :
    - effectuer un calcul préalable en tenant compte de la vitesse de sortie connue préalablement (v0(0)),
    - effectuer un calcul final en tenant compte de la vitesse de sortie effective (v0(eff)), et dans laquelle
    - les moyens de calcul (16) sont associés à des moyens de mémoire afin de mémoriser le résultat du calcul préalable jusqu'au calcul de correction.
  11. Arme (12) avec un système de programmation (14, 16, 18) selon l'une quelconque des revendications 9 à 10, dans laquelle les projectiles (G) sont réalisés et peuvent être tirés de telle sorte que leur angle de chute par rapport à l'horizontale dépasse une plage de 5°.
  12. Arme (12) avec un système de programmation (14, 16, 18) selon l'une quelconque des revendications 9 à 11, dans laquelle les projectiles (G) peuvent être tirés suivant des trajectoires (g, g*) qui se situent dans le groupe angulaire inférieur.
  13. Arme (12) avec un système de programmation (14, 16, 18) selon l'une quelconque des revendications 9 à 12, dans laquelle l'arme (12) est réalisée de telle sorte qu'elle tire les projectiles (G) séparément ou en séries.
EP03028938A 2003-02-26 2003-12-17 Méthode pour programmer la détonation d'un projectile et canon équipé d'un système de programmation Expired - Lifetime EP1452825B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2982003 2003-02-26
CH2982003 2003-02-26

Publications (2)

Publication Number Publication Date
EP1452825A1 EP1452825A1 (fr) 2004-09-01
EP1452825B1 true EP1452825B1 (fr) 2008-04-09

Family

ID=32739311

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03028938A Expired - Lifetime EP1452825B1 (fr) 2003-02-26 2003-12-17 Méthode pour programmer la détonation d'un projectile et canon équipé d'un système de programmation

Country Status (7)

Country Link
US (1) US7044045B2 (fr)
EP (1) EP1452825B1 (fr)
AT (1) ATE391893T1 (fr)
CA (1) CA2456897C (fr)
DE (1) DE50309574D1 (fr)
ES (1) ES2301750T3 (fr)
SG (1) SG127710A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009016147A1 (de) 2009-04-03 2010-10-07 Rheinmetall Soldier Electronics Gmbh Zerlegendes Geschoss
DE102013007229A1 (de) 2013-04-26 2014-10-30 Rheinmetall Waffe Munition Gmbh Verfahren zum Betrieb eines Waffensystems

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7121210B2 (en) * 2003-02-18 2006-10-17 Kdi Precision Products, Inc. Accuracy fuze for airburst cargo delivery projectiles
US7533612B1 (en) * 2004-09-23 2009-05-19 The United States Of America As Represented By The Secretary Of The Army Projectile height of burst determination method and system
DE102005024179A1 (de) * 2005-05-23 2006-11-30 Oerlikon Contraves Ag Verfahren und Vorrichtung zur Tempierung und/oder Korrektur des Zündzeitpunktes eines Geschosses
DE102007025258A1 (de) 2007-05-30 2008-12-04 Rheinmetall Waffe Munition Gmbh Gefechtskopf
DE102009011447B9 (de) * 2009-03-03 2012-08-16 Diehl Bgt Defence Gmbh & Co. Kg Verfahren zum Zünden eines Gefechtskopfs einer Granate und Fahrzeug
KR101498195B1 (ko) 2012-12-28 2015-03-05 주식회사 한화 탄속 측정 장치 및 방법
US11933585B2 (en) 2013-03-27 2024-03-19 Nostromo Holdings, Llc Method and apparatus for improving the aim of a weapon station, firing a point-detonating or an air-burst projectile
US10514234B2 (en) * 2013-03-27 2019-12-24 Nostromo Holdings, Llc Method and apparatus for improving the aim of a weapon station, firing a point-detonating or an air-burst projectile
SE2200100A1 (en) * 2022-09-09 2024-03-10 Bae Systems Bofors Ab Fragmentation analysis method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267776A (en) * 1979-06-29 1981-05-19 Motorola, Inc. Muzzle velocity compensating apparatus and method for a remote set fuze
EP0769673B1 (fr) * 1995-09-28 2002-03-20 Oerlikon Contraves Pyrotec AG Procédé et dispositif pour la programmation des fusées à temps de projectiles
NO311953B1 (no) 1996-04-19 2002-02-18 Contraves Ag Fremgangsmåte og innretning for å bestemme et programmerbart prosjektils oppdelingstidspunkt
NO311954B1 (no) * 1996-04-19 2002-02-18 Contraves Ag Fremgangsmåte for å bestemme et programmerbart prosjektils oppdelingstidspunkt
FR2761767B1 (fr) * 1997-04-03 1999-05-14 Giat Ind Sa Procede de programmation en vol d'un instant de declenchement d'un element de projectile, conduite de tir et fusee mettant en oeuvre un tel procede
US5894102A (en) 1997-12-31 1999-04-13 Aai Corporation Self-correcting inductive fuze setter
IL146322A0 (en) * 1999-05-05 2002-07-25 Law Enforcement Technologies I Non-lethal ballistic

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WILHELM R.: "ZUKUNFTSVISION DAS HECKLER & KOCH OICW", SOLDAT UND TECHNIK, vol. 44, no. 11, November 2001 (2001-11-01), REPORT-VERLAG, FRANKFURT AM MAIN, DE, pages 34 - 39, XP001110399 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009016147A1 (de) 2009-04-03 2010-10-07 Rheinmetall Soldier Electronics Gmbh Zerlegendes Geschoss
DE102013007229A1 (de) 2013-04-26 2014-10-30 Rheinmetall Waffe Munition Gmbh Verfahren zum Betrieb eines Waffensystems
WO2014173679A1 (fr) 2013-04-26 2014-10-30 Rheinmetall Waffe Munition Gmbh Procédé d'exploitation d'un système d'arme

Also Published As

Publication number Publication date
ES2301750T3 (es) 2008-07-01
CA2456897A1 (fr) 2004-08-26
US20050126380A1 (en) 2005-06-16
ATE391893T1 (de) 2008-04-15
US7044045B2 (en) 2006-05-16
DE50309574D1 (de) 2008-05-21
CA2456897C (fr) 2010-08-10
EP1452825A1 (fr) 2004-09-01
SG127710A1 (en) 2006-12-29

Similar Documents

Publication Publication Date Title
DE3430998C2 (fr)
WO2008098562A1 (fr) Procédé et dispositif de protection contre des éléments de munition d'attaque volants
EP1452825B1 (fr) Méthode pour programmer la détonation d'un projectile et canon équipé d'un système de programmation
WO2008098561A1 (fr) Procédé et dispositif de déclenchement à distance d'un projectile
EP3601938B1 (fr) Projectile, en particulier dans le domaine des moyens calibres
CH664009A5 (de) Panzerbrechendes geschoss.
EP0547391A1 (fr) Procédé pour élever la probabilité de succès pour une défence anti-aérienne utilisant des projectiles à dispersion télé-commandée
DE3531596C2 (de) Verfahren zum Bekämpfen eines Zieles mit einem Geschütz
DE2452586C3 (de) Verfahren und Vorrichtung zur Festlegung der Dauer des Flugweges eines Geschosses
EP0411073A1 (fr) Procede et dispositif d'amelioration de la precision du tir
DE2813840A1 (de) Vorrichtung zum wegschleudern eines wurfkoerpers
DE1553994A1 (de) Kurzstreckengeschuetz fuer nicht gelenkte Geschosse
DE3605579C1 (en) Missile for attacking targets underneath the flight path (trajectory) of the missile
EP3314201B1 (fr) Grenade explosive fumigène
DE2322505A1 (de) Toedliche ausdehnbare patrone
DE69925368T2 (de) Methode und Vorrichtung zur Korrektur der Flugbahn eines rotationsstabilisierten Geschosses
DE3233045A1 (de) Uebungsgeschoss
WO2017060109A1 (fr) Projectile capable de s'auto-consumer
DE19845611A1 (de) Verfahren zur Flugbahnkorrektur von Flugkörpern
WO2017060119A1 (fr) Projectile à portée réduite
DE102007054382A1 (de) De-Letalisierbare Munition
DE1578077C2 (de) Gefechtskopf fuer ein Panzerabwehrgeschoss
DE2500089A1 (de) Lenkflugkoerperwaffensystem zur bekaempfung vorzugsweise stark gepanzerter ziele
EP1612504A1 (fr) Tête militaire pour munition d'artillerie
EP2989408B1 (fr) Procédé d'exploitation d'un système d'arme

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040805

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RWM SCHWEIZ AG

17Q First examination report despatched

Effective date: 20050727

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50309574

Country of ref document: DE

Date of ref document: 20080521

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OK PAT AG PATENTE MARKEN LIZENZEN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2301750

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080709

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080909

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

ET Fr: translation filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: EERR

Free format text: CORRECTION DE BOPI 09/05 - BREVETS EUROPEENS DONT LA TRADUCTION N A PAS ETE REMISE A L INPI. IL Y A LIEU DE SUPPRIMER : LA MENTION DE LA NON-REMISE. LA REMISE DE LA TRADUCTION EST PUBLIEE DANS LE PRESENT BOPI.

26N No opposition filed

Effective date: 20090112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

BERE Be: lapsed

Owner name: RWM SCHWEIZ A.G.

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081010

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50309574

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50309574

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: RWM SCHWEIZ AG, CH

Free format text: FORMER OWNER: RWM SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50309574

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50309574

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50309574

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20221222

Year of fee payment: 20

Ref country code: GB

Payment date: 20221222

Year of fee payment: 20

Ref country code: FR

Payment date: 20221222

Year of fee payment: 20

Ref country code: DE

Payment date: 20220620

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230224

Year of fee payment: 20

Ref country code: CH

Payment date: 20230103

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221228

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50309574

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20231216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231218

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231216

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231218