EP1449912A1 - Compositions aqueuses contenant des matières actives microencapsulées - Google Patents

Compositions aqueuses contenant des matières actives microencapsulées Download PDF

Info

Publication number
EP1449912A1
EP1449912A1 EP03003177A EP03003177A EP1449912A1 EP 1449912 A1 EP1449912 A1 EP 1449912A1 EP 03003177 A EP03003177 A EP 03003177A EP 03003177 A EP03003177 A EP 03003177A EP 1449912 A1 EP1449912 A1 EP 1449912A1
Authority
EP
European Patent Office
Prior art keywords
acid
matrix
alcohol
active ingredients
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03003177A
Other languages
German (de)
English (en)
Other versions
EP1449912B1 (fr
Inventor
Nuria Dr. Bonastre Gilabert
Agustin Sanchez
Maria Dr. De Moragas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis Iberia SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Iberia SL filed Critical Cognis Iberia SL
Priority to DE50307462T priority Critical patent/DE50307462D1/de
Priority to EP03003177A priority patent/EP1449912B1/fr
Priority to AT03003177T priority patent/ATE364682T1/de
Priority to ES03003177T priority patent/ES2287367T3/es
Priority to US10/781,576 priority patent/US20040213997A1/en
Publication of EP1449912A1 publication Critical patent/EP1449912A1/fr
Application granted granted Critical
Publication of EP1449912B1 publication Critical patent/EP1449912B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • C11D3/0015Softening compositions liquid
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3715Polyesters or polycarbonates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the invention is in the field of laundry treatment agents and relates to new preparations with microencapsulated active ingredients that make it difficult to re-soiling Process for treating textiles and the use of special microencapsulated Active ingredients for laundry equipment.
  • the object of the present invention was therefore to create new aqueous preparations to provide with which textiles can be equipped so that a Re-soiling is prevented or at least made more difficult (“soil repellant effect") without that this has the disadvantages of the prior art.
  • the Active ingredients easily incorporated and the resulting aqueous preparations are stable on storage his. Another wish was still to use such active substances that over have additional positive effects in connection with the textile finish.
  • the invention relates to aqueous preparations, for example fabric softener, Liquid detergent or laundry detergent, with microencapsulated active ingredients, which are characterized by the fact that the active substances are substances which Prevent or at least complicate the re-soiling of textiles.
  • the preparations according to the invention contain the known active ingredients now contained in microencapsulated form.
  • the microcapsules additionally Dyes, for example, transparent preparations that contain the active ingredients
  • Form of clearly visible, for example blue or red colored spherical structures contain what may be desired for aesthetic reasons, because it is the consumer Presence of active excipients immediately in mind.
  • the microencapsulated active ingredients pull on the fibers; the capsules are gradually broken open mechanically and then release the active ingredient in portions.
  • the present invention uses microencapsulated active ingredients in which the shell consists entirely or at least predominantly of chitosan. Chitosan also tends to to pull on fibers. Because it has nourishing and antibacterial properties with the use of chitosan microcapsules the desired additional benefit reached.
  • ethylene terephthalate and / or polyethylene glycol terephthalate groups wherein the molar ratio of ethylene terephthalate to polyethylene glycol terephthalate is in the range of 50: 50 to 90: 10 can be.
  • the molecular weight of the linking polyethylene glycol units is in particular in the range from 750 to 5000, i.e. the degree of ethoxylation of the Polymers containing polyethylene glycol groups can be approximately 15 to 100.
  • the polymers are characterized by an average molecular weight of about 5000 to 200,000 and can have a block structure, but preferably a random structure.
  • preferred Polymers are those with molar ratios of ethylene terephthalate / polyethylene glycol terephthalate from about 65:35 to about 90:10, preferably from about 70:30 to 80:20. Also preferred are those polymers that link molecular weight polyethylene glycol units from 750 to 5000, preferably from 1000 to about 3000 and a molecular weight of the polymer from about 10,000 to about 50,000. Examples of commercially available Polymers are the products Milease® T (ICI) or Repelotex® SRP 3 (Rhône-Poulenc).
  • microcapsule describes spherical aggregates with a Understand diameters in the range of about 0.0001 to about 5 mm, the at least one contain solid or liquid core, which is enclosed by at least one continuous shell is. More precisely, they are finely dispersed with film-forming polymers liquid or solid phases, in the production of which the polymers change after emulsification and coacervation or interfacial polymerization on the material to be encased knock down.
  • Another method involves melting waxes in a matrix added (“microsponge”), which as microparticles additionally with film-forming polymers can be enveloped. Leave the microscopic capsules, also called nanocapsules drying like powder.
  • multinuclear aggregates also known as microspheres, known, the two or more cores in the continuous shell material distributed included.
  • Single-core or multi-core microcapsules can also have an additional second, third, etc. envelope.
  • the shell can be made from natural, semi-synthetic or synthetic materials. Wrapping materials are, of course, for example Gum arabic, agar-agar, agarose, maltodextrins, alginic acid or its salts, e.g.
  • Semi-synthetic wrapping materials are below other chemically modified celluloses, especially cellulose esters and ethers, e.g. cellulose acetate, Ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose and Carboxymethyl cellulose, and starch derivatives, especially starch ethers and esters.
  • synthetic Envelope materials are, for example, polymers such as polyacrylates, polyamides, polyvinyl alcohol or polyvinyl pyrrolidone.
  • microcapsules of the prior art are the following commercial products (the shell material is given in brackets): Hallcrest microcapsules (gelatin, gum arabic), Coletica Thalaspheres (maritime collagen), Lipotec millicapsules (alginic acid, agar agar), Induchem Unispheres (lactose , microcrystalline cellulose, hydroxypropylmethyl cellulose); Unicerin C30 (lactose, microcrystalline cellulose, hydroxypropylmethylcellulose), Kobo Glycospheres (modified starch, fatty acid esters, phospholipids), Softspheres (modified agar agar) and Kuhs Probiol Nanospheres (phospholipids) as well as Primaspheres and Primasponges (Chitosan, Alysol phosphates ) and Alginate ,
  • such substances are preferably considered as gel formers drawn, which show the property in aqueous solution at temperatures above of 40 ° C to form gels.
  • Typical examples are heteropolysaccharides and proteins.
  • Agaroses are preferably used as thermogelating heteropolysaccharides in question, which together in the form of the agar agar to be obtained from red algae with up to 30% by weight of non-gel-forming agaropectins.
  • the main constituent of the agaroses are linear polysaccharides from D-galactose and 3,6-anhydro-L-galactose, which are linked alternately ⁇ -1,3- and ⁇ -1,4-glycosidically.
  • the heteropolysaccharides preferably have a molecular weight in the range from 110,000 to 160,000 and are both colorless and tasteless.
  • Pectins, xanthans (also xanthan gum) and mixtures thereof can be used. Those types which are still in 1% by weight aqueous solution are also preferred Form gels that do not melt below 80 ° C and are already above of 40 ° C solidify again. From the group of thermogeling proteins the different types of gelatin are mentioned as examples.
  • Chitosans are biopolymers and belong to the group of hydrocolloids. From a chemical point of view, these are partially deacetylated chitins of different molecular weights that contain the following - idealized - monomer unit: In contrast to most hydrocolloids, which are negatively charged in the range of biological pH values, chitosans are cationic biopolymers under these conditions. The positively charged chitosans can interact with oppositely charged surfaces and are therefore used in cosmetic hair and body care products as well as pharmaceuticals Preparations used. The production of chitosans is based on chitin, preferably the shell remains of crustaceans, which are available in large quantities as cheap raw materials.
  • the chitin is used in a process that was first developed by Hackmann et al. has been described, usually first deproteinized by adding bases, demineralized by adding mineral acids and finally deacetylated by adding strong bases, it being possible for the molecular weights to be distributed over a broad spectrum.
  • Those types are preferably used which have an average molecular weight of 10,000 to 500,000 or 800,000 to 1,200,000 Daltons and / or a Brookfield viscosity (1% by weight in glycolic acid) below 5000 mPas, a degree of deacetylation in the range have from 80 to 88% and an ash content of less than 0.3% by weight.
  • the chitosans are generally used in the form of their salts, preferably as glycolates.
  • the matrix can optionally be dispersed in an oil phase before the membrane is formed.
  • Suitable oils for this purpose are, for example, Guerbet alcohols based on fatty alcohols having 6 to 18, preferably 8 to 10 carbon atoms, esters of linear C 6 -C 22 fatty acids with linear C 6 -C 22 fatty alcohols, esters of branched C 6 -C 13 carboxylic acids with linear C 6 -C 22 -fatty alcohols, such as myristyl myristate, myristyl palmitate, myristyl stearate, Myristylisostearat, myristyl, Myristylbehenat, Myristylerucat, cetyl myristate, cetyl palmitate, cetyl stearate, Cetylisostearat, cetyl oleate, cetyl behenate, Cetylerucat, Stearylmyristat, stearyl palmitate, stearyl stearate, Steary
  • esters of linear C 6 -C 22 fatty acids with branched alcohols in particular 2-ethylhexanol
  • esters of hydroxycarboxylic acids with linear or branched C 6 -C 22 fatty alcohols in particular dioctyl malates
  • esters of linear and / or branched fatty acids are also suitable polyhydric alcohols (such as propylene glycol, dimer diol or trimer triol) and / or Guerbet alcohols, triglycerides based on C 6 -C 10 fatty acids, liquid mono- / di- / triglyceride mixtures based on C 6 -C 18 fatty acids, esters of C 6 -C 22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids, especially benzoic acid, esters of C 2 -C 12 dicarboxylic acids with linear or branched alcohols with 1 to 22 carbon atoms or polyols with 2 to 10 carbon atom
  • Finsolv® TN linear or branched, symmetrical or unsymmetrical dialkyl ethers with 6 to 22 carbon atoms per alkyl group, ring opening products of epoxidized fatty acid esters with polyols, silicone oils and / or aliphatic or naphthenic Hydrocarbons, such as squalane, squalene or dialkylcyclohexanes.
  • the anionic polymers have the task of forming membranes with the chitosans. Salts of alginic acid are preferably suitable for this purpose.
  • Alginic acid is a mixture of carboxyl-containing polysaccharides with the following idealized monomer unit:
  • the average molecular weight of the alginic acids or alginates is in the Range from 150,000 to 250,000.
  • Salts of alginic acid are both theirs understand complete as well as their partial neutralization products, in particular the alkali salts and among them preferably the sodium alginate ("Algin”) and the ammonium and alkaline earth salts.
  • Mixed alginates such as e.g.
  • the invention also includes anionic chitosan derivatives for this purpose, such as. Carboxylation and especially succinylation products in question.
  • poly (meth) acrylates with average molecular weights also come in the range of 5,000 to 50,000 daltons as well as the various carboxymethyl celluloses in question.
  • anionic polymers for training the envelope membrane also anionic surfactants or low molecular weight inorganic Salts such as pyrophosphates can be used.
  • the microcapsules are usually prepared in a 1 to 10, preferably 2 to 5 % By weight aqueous solution of the gel former, preferably the agar, and heated this under reflux. At boiling point, preferably at 80 to 100 ° C, a second added aqueous solution containing the chitosan in amounts of 0.1 to 2, preferably 0.25 up to 0.5% by weight and the active compounds in amounts of 0.1 to 25 and in particular 0.25 to 10 % By weight; this mixture is called the matrix.
  • the loading of the microcapsules with active ingredients can therefore also 0.1 to 25 wt .-% based on the capsule weight be.
  • water-insoluble ones can also be used at this time to adjust the viscosity Components, for example inorganic pigments, are added, where they are usually added in the form of aqueous or aqueous / alcoholic dispersions.
  • inorganic pigments for example inorganic pigments
  • the Matrix of gelling agent, chitosan and active ingredients the matrix can optionally in an oil phase be dispersed very finely under strong shear in order to be encapsulated in the following to produce the smallest possible particles.
  • the resulting aqueous Preparations generally have a microcapsule content in the range from 1 to 10% by weight on.
  • the solution of the polymers is further Contains ingredients, such as emulsifiers or preservatives.
  • emulsifiers or preservatives After filtration microcapsules are obtained which preferably have an average diameter in the range of have about 1 mm. It is advisable to sift the capsules to get one if possible ensure even size distribution.
  • the microcapsules obtained in this way can manufacturing-related frames have any shape, but they are preferably approximate spherical.
  • the anionic polymers can also be used to prepare the Insert the matrix and encapsulate it with the chitosans.
  • an O / W emulsion is first prepared, which in addition to the oil body, water and Active ingredients contain an effective amount of emulsifier. This is used to manufacture the matrix Preparation with vigorous stirring with an appropriate amount of an aqueous anion polymer solution added.
  • Polysaccharides in particular Xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and Hydroxyethylcellulose, higher molecular weight polyethylene glycol mono- and diesters of fatty acids, Polyacrylates, polyacrylamides and the like can still be supported. Finally the microcapsules are removed from the aqueous phase, for example by decanting, Filter or centrifuge separated.
  • the preparations can usually contain microencapsulated active ingredients in amounts of 0.1 up to 10, preferably 1 to 8 and in particular 2 to 5% by weight, based on the composition.
  • the agents are aqueous solutions that are only which contain microcapsules and, if appropriate, suitable thickeners. This is for example in the case of laundry aftertreatment agents.
  • the preparations can above all be anionic, nonionic, contain cationic and / or amphoteric or zwitterionic surfactants.
  • anionic surfactants are soaps, alkylbenzenesulfonates, alkanesulfonates, Olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, Alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, hydroxy mixed ether sulfates, Monoglyceride (ether) sulfates, fatty acid amide (ether) sulfates, mono- and dialkyl sulfosuccinates, Mono- and dialkyl sulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids and their salts, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, N-
  • anionic surfactants polyglycol ether chains contain, these can be a conventional, but preferably a narrow homolog distribution exhibit.
  • Alkylbenzenesulfonates, alkylsulfates, soaps, Alkane sulfonates, olefin sulfonates, methyl ester sulfonates and mixtures thereof are used.
  • Preferred alkylbenzenesulfonates follow the formula (I) R 1 -Ph-SO 3 X in which R 1 is a branched but preferably linear alkyl radical having 10 to 18 carbon atoms, Ph is a phenyl radical and X is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • R 1 is a branched but preferably linear alkyl radical having 10 to 18 carbon atoms
  • Ph is a phenyl radical
  • X is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • dodecylbenzenesulfonates, tetradecylbenzenesulfonates, hexadecylbenzenesulfonates and their technical mixtures in the form of the sodium salts are particularly suitable
  • Alkyl and / or alkenyl sulfates which are also often referred to as fatty alcohol sulfates, are to be understood as meaning the sulfation products of primary and / or secondary alcohols, which preferably follow the formula (II) R 2 O-SO 3 X in which R 2 represents a linear or branched, aliphatic alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms and X represents an alkali metal and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • alkyl sulfates which can be used in the context of the invention are the sulfation products of capron alcohol, caprylic alcohol, capric alcohol, 2-ethylhexyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, aryl selenyl alcohol, elaidyl alcohol, Behenyl alcohol and erucyl alcohol and their technical mixtures, which are obtained by high pressure hydrogenation of technical methyl ester fractions or aldehydes from Roelen's oxosynthesis.
  • the sulfation products can preferably be used in the form of their alkali metal salts and in particular their sodium salts.
  • Alkyl sulfates based on C 16/18 tallow fatty alcohols or vegetable fatty alcohols of comparable C chain distribution in the form of their sodium salts are particularly preferred.
  • these are oxo alcohols, as are obtainable, for example, by converting carbon monoxide and hydrogen to alpha-containing olefins using the shop process.
  • Such alcohol mixtures are commercially available under the trade names Dobanol® or Neodol®. Suitable alcohol mixtures are Dobanol 91®, 23®, 25®, 45®.
  • oxo alcohols such as those obtained by the classic Enichema or Condea oxo process by adding carbon monoxide and hydrogen to olefins.
  • These alcohol mixtures are a mixture of strongly branched alcohols.
  • Such alcohol mixtures are commercially available under the trade name Lial®.
  • Suitable alcohol mixtures are Lial 91®, 111®, 123®, 125®, 145®.
  • Soaps are to be understood as meaning fatty acid salts of the formula (III) R 3 CO-OX in which R 3 CO represents a linear or branched, saturated or unsaturated acyl radical having 6 to 22 and preferably 12 to 18 carbon atoms and again X represents alkali and / or alkaline earth metal, ammonium, alkylammonium or alkanolammonium.
  • Typical examples are the sodium, potassium, magnesium, ammonium and triethanolammonium salts of caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaoleic acid, petoleic acid, linoleic acid, petoleic acid, linoleic acid, petoleic acid, linoleic acid, linoleic acid, Linolenic acid, elaeostearic acid, arachic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures.
  • coconut or palm kernel fatty acid is preferably used in the form of its sodium or potassium salts.
  • nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, Fatty acid polyglycol ester, fatty acid amide polyglycol ether, fatty amine polyglycol ether, alkoxylated triglycerides, mixed ethers or mixed formals, alk (en) yl oligoglycosides, Fatty acid-N-alkylglucamides, protein hydrolyzates (especially vegetable products based on wheat), Polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, these can be a conventional, but preferably have a narrow homolog distribution. Preferably become fatty alcohol polyglycol ethers, alkoxylated fatty acid lower alkyl esters or alkyl oligoglucosides used.
  • the preferred fatty alcohol polyglycol ethers follow the formula (IV) R 4 O (CH 2 CHR 5 O) n1 H in which R 4 represents a linear or branched alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms, R 5 represents hydrogen or methyl and n1 represents numbers from 1 to 20.
  • Typical examples are the addition products of an average of 1 to 20 and preferably 5 to 10 moles of ethylene and / or propylene oxide with capron alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, oleyl alcohol, isostyl alcohol , Petroselinyl alcohol, linolyl alcohol, linolenyl alcohol, elaeostearyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures. Addition products of 3, 5 or 7 moles of ethylene oxide onto technical coconut oil alcohols are particularly preferred.
  • Suitable alkoxylated fatty acid lower alkyl esters are surfactants of the formula (V) R 6 CO- (OCH 2 CHR 7 ) n2 OR 8 in which R 6 CO is a linear or branched, saturated and / or unsaturated acyl radical having 6 to 22 carbon atoms, R 7 is hydrogen or methyl, R 8 is a linear or branched alkyl radical having 1 to 4 carbon atoms and n2 is a number from 1 to 20 stands.
  • Typical examples are the formal insert products of on average 1 to 20 and preferably 5 to 10 moles of ethylene and / or propylene oxide in the methyl, ethyl, propyl, isopropyl, butyl and tert-butyl esters of caproic acid, caprylic acid, 2 -Ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachidic acid, gadoleic acid, behenic acid and technical grade and erucas.
  • the products are usually prepared by inserting the alkylene oxides into the carbonyl ester bond in the presence of special catalysts, such as, for example, calcined hydrotalcite. Reaction products of an average of 5 to 10 moles of ethylene oxide into the ester linkage of technical coconut fatty acid methyl esters are particularly preferred.
  • Alkyl and alkenyl oligoglycosides which are also preferred nonionic surfactants, usually follow the formula (VI), R 9 O- [G] p in which R 8 is an alkyl and / or alkenyl radical having 4 to 22 carbon atoms, G is a sugar radical having 5 or 6 carbon atoms and p is a number from 1 to 10. They can be obtained according to the relevant procedures in preparative organic chemistry.
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • Alkyl and / or alkenyl oligoglycosides with an average degree of oligomerization p of 1.1 to 3.0 are preferably used. From an application point of view, preference is given to those alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and is in particular between 1.2 and 1.4.
  • the alkyl or alkenyl radical R 9 can be derived from primary alcohols having 4 to 11, preferably 8 to 10, carbon atoms.
  • Typical examples are butanol, capronic alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, such as are obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the course of the hydrogenation of aldehydes from Roelen's oxosynthesis.
  • the alkyl or alkenyl radical R 9 can also be derived from primary alcohols having 12 to 22, preferably 12 to 14, carbon atoms. Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol and their technical mixtures, which can be obtained as described above. Alkyl oligoglucosides based on hardened C 12/14 coconut alcohol with a DP of 1 to 3 are preferred.
  • cationic surfactants are, in particular, tetraalkylammonium compounds, such as, for example, dimethyldistearylammonium chloride or hydroxyethyl hydroxycetyldimmonium chloride (Dehyquart E), or else esterquats, which are typically a constituent of finishing agents.
  • tetraalkylammonium compounds such as, for example, dimethyldistearylammonium chloride or hydroxyethyl hydroxycetyldimmonium chloride (Dehyquart E), or else esterquats, which are typically a constituent of finishing agents.
  • quaternized fatty acid triethanolamine ester salts of the formula (VII) in which R 10 CO for an acyl radical with 6 to 22 carbon atoms, R 11 and R 12 independently of one another for hydrogen or R 10 CO, R 11 for an alkyl radical with 1 to 4 carbon atoms or a (CH 2 CH 2 O) m4 H- Group, m1, m2 and m3 in total for 0 or numbers from 1 to 12, m4 for numbers from 1 to 12 and Y for halide, alkyl sulfate or alkyl phosphate.
  • R 10 CO for an acyl radical with 6 to 22 carbon atoms
  • R 11 and R 12 independently of one another for hydrogen or R 10 CO
  • R 11 for an alkyl radical with 1 to 4 carbon atoms or a (CH 2 CH 2 O) m4 H- Group
  • m1, m2 and m3 in total for 0 or numbers from 1 to 12
  • m4 for numbers from 1 to 12 and Y for hal
  • ester quats that can be used in the context of the invention are products based on caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, isostearic acid, stearic acid, oleic acid, elaidic acid, arachic acid, behenic acid and erucic acid and their technical mixtures, such as they occur, for example, in the pressure splitting of natural fats and oils.
  • Technical C 12/18 coconut fatty acids and in particular partially hardened C 16/18 tallow or palm fatty acids as well as C 16/18 fatty acid cuts rich in elaidic acid are preferably used.
  • the fatty acids and the triethanolamine can be used in a molar ratio of 1.1: 1 to 3: 1 to produce the quaternized esters.
  • an application ratio of 1.2: 1 to 2.2: 1, preferably 1.5: 1 to 1.9: 1 has proven to be particularly advantageous.
  • the preferred esterquats are technical mixtures of mono-, di- and triesters with an average degree of esterification of 1.5 to 1.9 and are derived from technical C 16/18 - tallow or palm fatty acid (iodine number 0 to 40).
  • quaternized fatty acid triethanolamine ester salts of the formula (VII) have proven to be particularly advantageous in which R 10 CO for an acyl radical having 16 to 18 carbon atoms, R 11 for R 10 CO, R 12 for hydrogen, R 13 for a methyl group, m1 , m2 and m3 stands for 0 and Y for methyl sulfate.
  • quaternized ester salts of fatty acids with diethanolalkylamines of the formula (VIII) are also suitable as esterquats.
  • R 14 CO for an acyl radical with 6 to 22 carbon atoms
  • R 15 for hydrogen or R 14 CO
  • R 16 and R 17 independently of one another for alkyl radicals with 1 to 4 carbon atoms
  • m5 and m6 in total for 0 or numbers from 1 to 12
  • Y again represents halide, alkyl sulfate or alkyl phosphate.
  • ester salts of fatty acids with 1,2-dihydroxypropyl dialkylamines of the formula (IX) should be mentioned as a further group of suitable ester quats, in which R 18 CO for an acyl radical with 6 to 22 carbon atoms, R 19 for hydrogen or R 18 CO, R 20 , R 21 and R 22 independently of one another for alkyl radicals with 1 to 4 carbon atoms, m7 and m8 in total for 0 or numbers from 1 to 12 and X again represents halide, alkyl sulfate or alkyl phosphate.
  • suitable esterquats are substances in which the ester bond is replaced by an amide bond and which preferably follow the formula (X) based on diethylene triamine in which R 23 CO represents an acyl radical having 6 to 22 carbon atoms, R 24 represents hydrogen or R 23 CO, R 25 and R 26 independently of one another represent alkyl radicals having 1 to 4 carbon atoms and Y again represents halide, alkyl sulfate or alkyl phosphate.
  • Such amide ester quats are available on the market, for example, under the Incroquat® (Croda) brand.
  • alkyl betaines examples include alkyl betaines, alkyl amido betaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines.
  • alkyl betaines are the carboxyalkylation products of secondary and in particular tertiary amines which follow the formula (XI) in which R 27 for alkyl and / or alkenyl radicals with 6 to 22 carbon atoms, R 28 for hydrogen or alkyl radicals with 1 to 4 carbon atoms, R 29 for alkyl radicals with 1 to 4 carbon atoms, q1 for numbers from 1 to 6 and Z for a Alkali and / or alkaline earth metal or ammonium.
  • Typical examples are the carboxymethylation products of hexylmethylamine, hexyldimethylamine, octyldimethylamine, decyldimethylamine, dodecylmethylamine, dodecyldimethylamine, Dodecylethylmethylamin, C 12/14 -Kokosalkyldimethylamin, myristyldimethylamine, cetyldimethylamine, stearyldimethylamine, stearyl, oleyl, C 16/18 tallow alkyl dimethyl amine and technical mixtures thereof.
  • Carboxyalkylation products of amidoamines which follow the formula (XII) are also suitable, in which R 30 CO for an aliphatic acyl radical with 6 to 22 carbon atoms and 0 or 1 to 3 double bonds, R 31 for hydrogen or alkyl radicals with 1 to 4 carbon atoms, R 32 for alkyl radicals with 1 to 4 carbon atoms, q2 for numbers from 1 to 6, q3 for numbers from 1 to 3 and Z again represents an alkali and / or alkaline earth metal or ammonium.
  • Typical examples are reaction products of fatty acids with 6 to 22 carbon atoms, namely caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, gadoleic acid and arachic acid, arachic acid and their technical mixtures, with N, N-dimethylaminoethylamine, N, N-dimethylaminopropylamine, N, N-diethylaminoethylamine and N, N-diethylaminopropylamine, which are condensed with sodium chloroacetate.
  • condensation product of C 8/18 coconut fatty acid N, N-dimethylaminopropylamide with sodium chloroacetate is preferred.
  • Imidazolinium betaines are also suitable. These substances are also known substances which can be obtained, for example, by cyclizing condensation of 1 or 2 moles of fatty acid with polyhydric amines such as, for example, aminoethylethanolamine (AEEA) or diethylene triamine.
  • AEEA aminoethylethanolamine
  • the corresponding carboxyalkylation products are mixtures of different open-chain betaines.
  • Typical examples are condensation products of the above-mentioned fatty acids with AEEA, preferably imidazolines based on lauric acid or again C 12/14 coconut fatty acid, which are subsequently betainized with sodium chloroacetate.
  • the preparations impart such a high viscosity that the microcapsules remain stably dispersed, i.e. do not sediment over time.
  • the term increased viscosity is therefore a to understand such rheology which stabilizes the microcapsules in the aqueous (surfactant) phase ensures.
  • Such viscosities are usually (determined according to Brookfield, RVT viscometer, 20 ° C, spindle 1, 10 rpm) above 100 and preferably above 500 mPas, preferably in the range from 200 to 2,000 and in particular 500 to 1,000 mPas.
  • Suitable thickeners are all the substances that make up the formulations give correspondingly high viscosity.
  • polymeric Compounds are preferably polymeric Compounds, since these are able to form a three-dimensional in the aqueous preparations To build a network in which the microcapsules are stabilized.
  • Typical examples are Aerosil types (hydrophilic silicas), polysaccharides, especially xanthan gum, Guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl and Hydroxypropyl cellulose, also higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates, (e.g.
  • Bentonites such as Bentone® Gel VS-5PC (Rheox) proven to be a mixture of cyclopentasiloxane, disteardimonium hectorite and propylene carbonate.
  • the proportion of these thickeners in the aqueous preparations can be 0.1 to 5, preferably 0.5 to 3 and in particular 1 to 2% by weight.
  • Two other objects of the present invention relate to preventing re-soiling of textiles, in which the fibers, yarns or textile fabrics are used with microencapsulated active ingredients that are selected from the group that is formed is made of polymers ("soil repellants"), the ethylene terephthalate and / or polyethylene glycol terephthalate groups have, as well as the use of microencapsulated polymers (“soil repellants”), the ethylene terephthalate and / or polyethylene glycol terephthalate groups have, for the production of laundry treatment agents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Detergent Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Cosmetics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)
EP03003177A 2003-02-18 2003-02-18 Compositions aqueuses contenant des matières actives microencapsulées Expired - Lifetime EP1449912B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE50307462T DE50307462D1 (de) 2003-02-18 2003-02-18 Wässrige Zubereitungen mit mikroverkapselten Wirkstoffen
EP03003177A EP1449912B1 (fr) 2003-02-18 2003-02-18 Compositions aqueuses contenant des matières actives microencapsulées
AT03003177T ATE364682T1 (de) 2003-02-18 2003-02-18 Wässrige zubereitungen mit mikroverkapselten wirkstoffen
ES03003177T ES2287367T3 (es) 2003-02-18 2003-02-18 Composiciones acuosas con compuestos activos microencapsulados.
US10/781,576 US20040213997A1 (en) 2003-02-18 2004-02-18 Aqueous preparations containing microencapsulated active components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03003177A EP1449912B1 (fr) 2003-02-18 2003-02-18 Compositions aqueuses contenant des matières actives microencapsulées

Publications (2)

Publication Number Publication Date
EP1449912A1 true EP1449912A1 (fr) 2004-08-25
EP1449912B1 EP1449912B1 (fr) 2007-06-13

Family

ID=32731521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03003177A Expired - Lifetime EP1449912B1 (fr) 2003-02-18 2003-02-18 Compositions aqueuses contenant des matières actives microencapsulées

Country Status (5)

Country Link
US (1) US20040213997A1 (fr)
EP (1) EP1449912B1 (fr)
AT (1) ATE364682T1 (fr)
DE (1) DE50307462D1 (fr)
ES (1) ES2287367T3 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077049A2 (fr) * 2005-01-21 2006-07-27 Henkel Kommanditgesellschaft Auf Aktien Polymeres anti-adhesifs permettant d'empecher l'adhesion de micro-organismes sur des textiles et ainsi l'odeur du linge
WO2007031490A1 (fr) * 2005-09-16 2007-03-22 Basf Se Procede d'application de revetements sur des surfaces et particules adaptees a cet effet
WO2007033785A1 (fr) * 2005-09-22 2007-03-29 Cognis Ip Management Gmbh Dispersions aqueuses de microcapsules
WO2007062761A1 (fr) * 2005-11-30 2007-06-07 Cognis Ip Management Gmbh Procede de traitement de textiles
WO2010105922A1 (fr) * 2009-03-19 2010-09-23 Unilever Plc Améliorations liées à l'administration d'une substance apportant un bénéfice
EP2773737A1 (fr) * 2011-10-06 2014-09-10 Givaudan SA Composition détergente liquide

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59912558D1 (de) * 1999-07-02 2005-10-20 Cognis Ip Man Gmbh Mikrokapseln - IV
DE602006013044D1 (de) * 2005-11-17 2010-04-29 Colgate Palmolive Co Zusammensetzungen und verfahren zur verringerung von üblem geruch
EP2135931B1 (fr) * 2008-06-16 2012-12-05 The Procter & Gamble Company Utilisation d'un polymère de libération de salissures dans des compositions de traitement des tissus
DE102014010875A1 (de) * 2014-07-25 2016-01-28 Basf Se Transparente Textilpflegemittel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001927A1 (fr) * 1999-07-02 2001-01-11 Primacare S.A. Microcapsules - i
WO2001040430A1 (fr) * 1999-12-03 2001-06-07 The Procter & Gamble Company Systeme de liberation dote d'un support poreux encapsule charge d'additifs, notamment d'additifs detergents tels que des parfums
WO2001062376A1 (fr) * 2000-02-23 2001-08-30 Henkel Kommanditgesellschaft Auf Aktien Micro- et/ou nanocapsules

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001927A1 (fr) * 1999-07-02 2001-01-11 Primacare S.A. Microcapsules - i
WO2001040430A1 (fr) * 1999-12-03 2001-06-07 The Procter & Gamble Company Systeme de liberation dote d'un support poreux encapsule charge d'additifs, notamment d'additifs detergents tels que des parfums
WO2001062376A1 (fr) * 2000-02-23 2001-08-30 Henkel Kommanditgesellschaft Auf Aktien Micro- et/ou nanocapsules

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077049A2 (fr) * 2005-01-21 2006-07-27 Henkel Kommanditgesellschaft Auf Aktien Polymeres anti-adhesifs permettant d'empecher l'adhesion de micro-organismes sur des textiles et ainsi l'odeur du linge
WO2006077049A3 (fr) * 2005-01-21 2006-10-26 Henkel Kgaa Polymeres anti-adhesifs permettant d'empecher l'adhesion de micro-organismes sur des textiles et ainsi l'odeur du linge
WO2007031490A1 (fr) * 2005-09-16 2007-03-22 Basf Se Procede d'application de revetements sur des surfaces et particules adaptees a cet effet
US7906172B2 (en) 2005-09-16 2011-03-15 Basf Aktiengesellschaft Method for coating surfaces and suitable particles therefor
WO2007033785A1 (fr) * 2005-09-22 2007-03-29 Cognis Ip Management Gmbh Dispersions aqueuses de microcapsules
WO2007062761A1 (fr) * 2005-11-30 2007-06-07 Cognis Ip Management Gmbh Procede de traitement de textiles
WO2010105922A1 (fr) * 2009-03-19 2010-09-23 Unilever Plc Améliorations liées à l'administration d'une substance apportant un bénéfice
EP2773737A1 (fr) * 2011-10-06 2014-09-10 Givaudan SA Composition détergente liquide

Also Published As

Publication number Publication date
US20040213997A1 (en) 2004-10-28
EP1449912B1 (fr) 2007-06-13
ES2287367T3 (es) 2007-12-16
ATE364682T1 (de) 2007-07-15
DE50307462D1 (de) 2007-07-26

Similar Documents

Publication Publication Date Title
EP1715834B1 (fr) Micro-emulsions
EP2368972A1 (fr) Produit de nettoyage manuel de vaisselle doux pour la peau
EP1449912B1 (fr) Compositions aqueuses contenant des matières actives microencapsulées
EP2694014A2 (fr) Produit de soin capillaire
EP3038590B1 (fr) Produit cosmétique
EP1358872B1 (fr) Utilisation d'un mélange d'actifs comprenant l'acide azelaique et l'acide glycyrrhétique dans le traitement de l'acne
WO2004069980A1 (fr) Agents de finissage pour textiles
EP1449911B1 (fr) Compositions aqueuses contenant des matières actives microencapsulées
EP1359213B1 (fr) Compositions tensioactives aqueuses
EP1358876B1 (fr) Microcapsules contenant des actifs antiacneiques
DE10213031A1 (de) Verwendung von Extrakten des Olivenbaumes in Wasch-, Spül- und Reinigungsmitteln
EP1167618A1 (fr) Agent auxiliaire pour textiles
EP1378564A1 (fr) Détergents liquides en portions
DE19651447C1 (de) Mittel für die Avivage von Textil- und Keratinfasern und Verwendung von Hydroxycarbonsäureestern zur Herstellung von Avivagemitteln
EP1382341A1 (fr) Utilisation de compositions comprenant l'acide glycyrrhetinique et peroxyde de benzoyle pour le traitement de l'acné
DE19545136C1 (de) Syndetstückseifen
DE10329685A1 (de) Mikrokapseln (XXV)
DE10037656B4 (de) Verfahren zur Herstellung aktivstoffhaltiger Kapseln durch Miniemulsionspolymerisation
DE10307389A1 (de) Anti-Aknemittel
DE102008024570A1 (de) Shampoo-Zusammensetzung mit verbesserter Pflegeleistung
EP1657299A1 (fr) Microcapsules
EP1462013A1 (fr) Microcapsules faites d'une matrice contenant de l'hydroxytyrosol et qui est recouverte
DE102004006405A1 (de) Drucklabile Mikrokapseln
DE10307388A1 (de) Glyzyrrhetinsäureester
DE10324473A1 (de) Textilausrüstungsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COGNIS IP MANAGEMENT GMBH

17Q First examination report despatched

Effective date: 20050513

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50307462

Country of ref document: DE

Date of ref document: 20070726

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070913

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070905

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2287367

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071113

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070913

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070914

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

26N No opposition filed

Effective date: 20080314

BERE Be: lapsed

Owner name: COGNIS IP MANAGEMENT G.M.B.H.

Effective date: 20080228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080218

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220222

Year of fee payment: 20

Ref country code: DE

Payment date: 20220225

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220221

Year of fee payment: 20

Ref country code: FR

Payment date: 20220224

Year of fee payment: 20

Ref country code: ES

Payment date: 20220311

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50307462

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230217

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230219