EP1445494B1 - Stellelement mit Lageerkennung - Google Patents

Stellelement mit Lageerkennung Download PDF

Info

Publication number
EP1445494B1
EP1445494B1 EP20040100364 EP04100364A EP1445494B1 EP 1445494 B1 EP1445494 B1 EP 1445494B1 EP 20040100364 EP20040100364 EP 20040100364 EP 04100364 A EP04100364 A EP 04100364A EP 1445494 B1 EP1445494 B1 EP 1445494B1
Authority
EP
European Patent Office
Prior art keywords
hall sensor
actuating element
piston rod
magnet
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20040100364
Other languages
English (en)
French (fr)
Other versions
EP1445494A2 (de
EP1445494A3 (de
Inventor
Thomas Haubold
Dirk Traichel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mann and Hummel GmbH
Original Assignee
Mann and Hummel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mann and Hummel GmbH filed Critical Mann and Hummel GmbH
Publication of EP1445494A2 publication Critical patent/EP1445494A2/de
Publication of EP1445494A3 publication Critical patent/EP1445494A3/de
Application granted granted Critical
Publication of EP1445494B1 publication Critical patent/EP1445494B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • F15B15/2807Position switches, i.e. means for sensing of discrete positions only, e.g. limit switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8158With indicator, register, recorder, alarm or inspection means
    • Y10T137/8225Position or extent of motion indicator
    • Y10T137/8242Electrical

Definitions

  • the invention relates to an actuating element according to the preamble of patent claim 1.
  • Control elements for actuating actuators such as valves, rotary valves or valves are widely known in the art. For many applications, it is necessary to detect and monitor at least the end positions of a piston rod corresponding to the drive of the actuating element. It is known from EP 0 345 459 B1 to arrange an electrical switch within a pressure chamber of a pneumatic control element which can be actuated relative to the housing depending on the position of the piston rod. When the ore reaches a predetermined position through the piston rod, the switch is triggered and thus outputs an electrical signal. The switch is deliberately placed in the pressure chamber of the pneumatic actuator so as to be protected against contamination and corrosion by aggressive media. Likewise, those skilled in adjusting elements are known in which the position detection takes place on the decrease of a signal of a grinding potentiometer.
  • the object of the invention is to provide an actuator with an integrated position detection, which is simple, works with a wear-free position detection and fewer parts within a simple exchange large application spectrum is applicable.
  • Another object of the invention is to provide not only an end position detection of the actuator, but also the ability to detect the path between the end positions. This object is solved by the features of claims 1 and 10.
  • the adjusting element has a housing with a drive arranged therein and at least one means for detecting the position, wherein a piston rod movably mounted in the housing is correspondingly connected to the drive in order to exert a force effect.
  • the means for detecting the position consists of at least one stationary Hall sensor and at least one corresponding to the Hall sensor, movably arranged magnet.
  • the magnetic field emanating from the magnet generates a magnetic flux through the Hall sensor as a function of the position of the magnet relative to the Hall sensor.
  • the drive is preferably via a vacuum housing with membrane, so pneumatically realized, but can also be performed electrically, mechanically or hydraulically.
  • the design of the control element completely made of plastic, consist of a material mix between plastic and metal or purely metal.
  • the piston rod movably mounted in the housing in this case preferably has a quadrangular cross-section, but may also have a circular (oval) or polygonal cross-section without restriction. Likewise, it can be made straight or curved. It is correspondingly connected to the drive, wherein the connection can be detachable or insoluble nature and it is also possible to carry out this connection via an intermediate gearbox or gearbox or a different kind of deflection.
  • the position detection is realized in the control element according to the invention without contact via a stationary in or on the housing arranged Hall sensor with at least one corresponding thereto movable magnet.
  • Hall sensors are used to measure magnetic fields.
  • the known in the prior art Hall sensors have either an analog or a digital signal output, some are fully programmable, whereby any temperature drifts or other disturbances can be eliminated programmatically, and they can be seen in their function as contactless potentiometers.
  • Hall sensors can record translational motion sequences including their endpoints as well as rotational motion sequences including end points and angle detection; This is done by changing the magnetic field and flux when approaching or removing a magnet.
  • the piston rod is connected via at least one turntable corresponding to a shaft and thus converts a translational movement of the piston rod in a rotational movement of the shaft.
  • This is comparable z. B. with the crank mechanism of a bicycle in which an approximately translational movement of the leg with respect to the pedals in a rotational movement is converted to the chain drive.
  • the piston rod is movably connected in the housing and corresponding to the drive of the actuating element, it is possible for them to allow a certain angular offset so as to follow an approximate circular path of the connection point between the piston rod and turntable in the outer region of the turntable.
  • this implementation takes place via a kind of conversion gear and is converted by this the translational movement in a rotational movement.
  • the thus driven shaft can, for.
  • a switching flap a switching flap association or a rotary valve within a certain angular range twist.
  • other possibilities are conceivable in which a power transmission by a rotational movement is necessary.
  • the turntable may be in the form of a substantially circular voluminous disc, but here too the design possibilities are virtually unlimited.
  • the turntable can also be square or oval shape and in extreme cases even consist of only one deflection bar. The For this necessary kinematic implementations should be well known to those skilled and require no further examples.
  • the Hall sensor of the position detection is detachably arranged in the housing of the actuating element.
  • a detachable connection such as.
  • a screw, a clip connection or a pure connector and other known in the art connection types is detachably connected to the housing.
  • the Hall sensor is permanently arranged in the housing of the actuating element.
  • the Hall sensor is connected to the receiving point provided in the housing via an adhesive method or a welding method or other means known in the art for the permanent connection of two elements with the housing. Due to the permanent connection possible errors due to a change in position of the Hall sensor, z. B. be minimized by vibration and the associated distorted signal output.
  • a particular embodiment of the invention provides that at least one flux guide plate is arranged on the Hall sensor for amplifying the magnetic flux of the movably arranged magnet and this flux guide plate substantially covers the poles of the magnet in predetermined positions.
  • This flux baffle is connected to a corresponding to the Hall sensor and covers at least in a partial region, the path of the magnet movably guided in the housing in the change in position by the piston rod.
  • the shape of the flux baffle preferably resembles a U-shape, with the two legs of the U respectively covering the north and the south pole of the magnet at least one point of the magnet on its path of movement.
  • At least one magnet is arranged on the piston rod and the Hall sensor detects the translational change in position of the piston rod.
  • the at least one magnet is integrated into the piston rod, so that there is a magnetic flux that is as unhindered as possible.
  • the magnet can be integrated into recesses in the piston rod and connected to it via detachable or non-detachable connection types.
  • the magnet preferably has a cylinder or pin shape, but other shapes are conceivable and technically feasible.
  • At least one magnet is arranged on the turntable and the Hall sensor thus detects the rotational position change of the shaft.
  • the Hall sensor is arranged stationary in the housing so that it can record a change in position of the turntable and the corresponding shaft associated therewith corresponding to a change in position of the magnet by rotating the hub by the magnetic flux thereby changed.
  • the angle of rotation can be detected starting from a zero position of the driven shaft.
  • the preferred application here are rotary valves, which are connected to the shaft, or switching flaps or switching flap walls, but there are also other applications conceivable and possible, in which the position of the shaft and the rotation angle of the shaft for an evaluation of relevance.
  • the at least one magnet arranged on the turntable can be detachably or non-detachably connected to the turntable and changed by the rotary movement of the turntable Magnetic flux relative to the stationary Hall sensor.
  • the shape of the magnet has no influence on the function of the position detection.
  • the Hall sensor for detecting predetermined positions on an output for a digital signal. This makes it possible to simply z. B. to detect the end positions of the movement and spend.
  • the Hall sensor acts as a simple end position detection and replaces the known from the prior art closing contact. Depending on the signal strength and a possible programming of the Hall sensor, it is possible to realize an almost arbitrary exact end position and position detection.
  • the Hall sensor has an output for an analog signal for detecting a course of the position.
  • the output signal changes depending on the change in the magnetic flux. This change takes place as soon as the movable at least one magnet performs a relative movement to the stationary Hall sensor.
  • an evaluation logic implemented either in the Hall sensor or externally, each movement point of the piston rod or the rotary valve can be detected and output.
  • FIG. 1 shows a schematic view of an actuating element 10, designed here as a vacuum actuating element, with a vacuum port 11, which is connected to a vacuum chamber 12 with a spring 13 embedded therein.
  • the vacuum chamber is formed from a housing upper part 14, which is sealingly connected to a housing lower part 15.
  • the spring 13 is supported on the one hand in the upper housing part 14 and on the other hand on a spring support 16, which is connected to a piston rod 17 from.
  • the piston rod 17 is movably led out of this in the lower region of the housing lower part 15, and by a membrane 18, the vacuum chamber 12 is sealingly separated from the environment.
  • the diaphragm 18 and the spring support 16 are connected to each other, whereby the piston rod 17 is attracted against the spring force of the spring 13 in the direction of the upper housing part 14 upon application of a negative pressure.
  • the piston rod 17 has a through hole 19 through which a pin 20, which is rotatably mounted eccentrically in a hub 22, passes through.
  • a locking ring 21 is embedded at the end of the pin 20.
  • the hub 22 is concentrically fixedly connected to a shaft 23, wherein the shaft is mounted via a ball bearing 24. Due to the fixed connection between the hub 22 and shaft 23, a rotational force can be transmitted from the hub to the shaft, wherein in the further course of the shaft 23 z.
  • a Hall sensor 26 is fixedly arranged in the housing. This is connected via a closed cable guide 27 with a connector output 28.
  • the system of Hall sensor 26, closed cable guide 27 and plug outlet 28 is clipped in the upper region of the housing lower part 15 in a there arranged Einclipsö réelle 29 in the X direction.
  • the lower end position of the piston rod 17 is characterized in that here the magnet 25a is at the level of the stationary Hall sensor 26.
  • the upper end position of the piston rod 17 is then reached as soon as the magnet 25 b is at the level of the Hall sensor 26. Since the Hall sensor 26 reacts to a change in the magnetic field strength or the magnetic flux, it outputs a Endlagensignal when reaching the highest magnetic field strength. The highest magnetic field strength is then reached as soon as the magnet is exactly at the height of the Hall sensor.
  • the arrangement of the Hall sensor 26 and the magnets 25 a and 25 b outside the pressure chamber 12 can be a very low height of the pneumatic drive achieve, here the contactless sensing proves to be very beneficial, since this area is not necessarily completely free of contamination and is aggressive media. Should a Hall sensor with an analogue output be used in this constellation, the exact course of travel of the piston rod 17 could be output by removing the magnetic field strength between the two magnets 25a and 25b. These values can then z. B. are evaluated by an engine control unit and then in the calculation z. B. include a map with.
  • FIG. 2 shows the section A - A as a lateral plan view of the turntable 22. Components corresponding to FIG. 1 are provided with the same reference numerals.
  • the hub 22 is concentric with the shaft 23 and is rotatably connected thereto.
  • the connecting pin 20 between piston rod 17 and hub 22 is arranged eccentrically and thus causes in translational movement of the piston rod 17, a rotation of the hub 22 and thus also the associated shaft 23rd
  • FIG. 3 shows a schematic view of a variant of the adjusting element 10 according to the invention. Components corresponding to FIG. 1 are provided with the same reference numerals.
  • This pneumatic actuator 10 differs from the actuator 10 of Figure 1 in that here no conversion of the translational movement of the piston rod 17 in a rotational movement of a shaft 23 is completed. Another important difference is that here only one magnet 25 is arranged on the piston rod 17. In the case of a digital design of the Hall sensor, only the end position of the piston rod 17 can be detected by means of the Hall sensor when the actuating element 10 is subjected to negative pressure.
  • the adjusting element 10 shown in Figure 3 is located in the second end position of the piston rod 17, which is mechanically bounded by the walls of the housing lower part 15.
  • a Hall sensor 26 which has an analog output, the entire change in position of the piston rod 17 can also be detected in this arrangement. In this case, the strength of the magnetic field continuously increases until the end stop in the vacuum applied form.
  • a suitable programming and calibration of the Hall sensor 26 it is also possible to achieve a controlled travel recording in this simple form. If, due to the space available, a closed cable guide 27 attached to the housing is not possible, it is also possible in all variants to work with an open cable guide and to arrange the plug outlet 28 on another component in the vicinity of the actuating element.
  • FIG. 4 shows the schematic view of an enlargement of the Hall sensor with flux guide plates attached thereto.
  • the Figure 1 corresponding components are provided with the same reference numerals.
  • the piston rod 17 goes into the leaf level
  • the system for detecting the position is shown in section at the level of the Hall sensor 26.
  • a sensor housing 31 with plug outlet 28 is clipped into a corresponding receptacle of the housing lower part 15.
  • the Hall sensor 26 and two flux guide plates 30 are embedded. It can be seen that the flux guide plates 30 completely cover the magnets 25 embedded in the piston rod 17 in this position.
  • the magnetic flux emanating from the magnet 25 is amplified by the flux guide plates 30 up to a three-digit factor and thus increases to the same extent the sensitivity of the Hall sensor 26 to a change in the magnetic flux.
  • the resulting change in the magnetic field strength results in a different magnetic induction in the Hall sensor 26 and thus a changed output signal at the connector output 28.
  • the equipment with the Flussleitblechen 30 is optional and not mandatory for detection a changed magnetic field strength by a movement of the piston rod 17.
  • the flux guide plates 30 serve to amplify the magnetic field and thus include the possibility of using a less sensitive Hall sensor 26 with the associated cost advantages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Actuator (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Details Of Television Scanning (AREA)
  • Air Bags (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft ein Stellelement nach dem Oberbegriff des Patentanspruchs 1.
  • Stellelemente zur Betätigung von Stelleinrichtungen wie z. B. Klappen, Drehschiebern oder auch Ventilen sind im weiten Umfang im Stand der Technik bekannt. Für viele Anwendungen ist es notwendig, zumindest die Endstellungen einer mit dem Antrieb des Stellelementes korrespondierend verbundenen Kolbenstange zu detektieren und zu überwachen. Es ist aus der EP 0 345 459 B1 bekannt, innerhalb eines Druckraumes eines pneumatischen Stellelementes einen elektrischen Schalter anzuordnen, welcher abhängig von der Lage der Kolbenstange relativ zum Gehäuse betätigbar ist. Bei dem Erz reichen einer vorbestimmten Position durch die Kolbenstange wird der Schalter ausgelöst und gibt so ein elektrisches Signal aus. Der Schalter ist bewusst im Druckraum des pneumatischen Stellelementes angeordnet, um so vor Verschmutzung und Korrosion durch aggressive Medien geschützt zu sein. Ebenso sind dem Fachmann Stellelemente bekannt, bei dem die Lageerkennung über die Abnahme eines Signals eines Schleifpotentiometers erfolgt.
  • Nachteilig bei diesen Lösungen ist zum einen die Verschleißanfälligkeit dieser kontaktgesteuerten Endlagenerkennung sowie die dadurch bedingte Anfälligkeit im Hinblick auf eine verlässliche Signalausgabe. Ebenso besteht die Gefahr einer Korrosion der Kontakte oder der Schleifkontakte des Potentiometers, besonders bei dem Kontakt mit Chemikadien oder aggressiven Medien. Ein weiterer Nachteil des Schleifpotentiometers ist die auf tretende Temperaturdrift bei sich stark verändernden Temperaturen und dadurch die Unzuverlässigkeit des ausgegebenen Signales. Eine weitere Vorrichtung mit Magnetsensoren ist in DE 4201827 offenbart.
  • Die Aufgabe der Erfindung besteht daher darin, ein Stellelement mit einer integrierten Lageerkennung zu schaffen, welches einfach aufgebaut ist, mit einer verschleißfreien Lageerkennung arbeitet und durch den einfachen Austausch weniger Teile innerhalb eines großen Anwendungsspektrums anwendbar ist. Eine weitere Aufgabe der Erfindung besteht darin, nicht nur eine Endlagenerfassung des Stellelementes zu bieten, sondern auch die Möglichkeit, den Weg zwischen den Endlagen zu erfassen. Diese Aufgabe wird durch die Merkmale der Patentansprüche 1 und 10 gelöst.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Stellelement weist ein Gehäuse mit einem darin angeordneten Antrieb und wenigstens einem Mittel zur Lageerkennung auf, wobei eine im Gehäuse beweglich gelagerte Kolbenstange zur Ausübung einer Kraftwirkung mit dem Antrieb korrespondierend verbunden ist. Hierbei besteht das Mittel zur Lageerkennung aus wenigstens einem ortsfest angeordneten Hall-Sensor und wenigstens einem zum Hall-Sensor korrespondierenden, beweglich angeordneten Magneten. Das von dem Magneten ausgehende magnetische Feld erzeugt in Abhängigkeit der Position des Magneten zum Hall-Sensor einen Magnetfluss durch den Hall-Sensor. Der Antrieb ist bevorzugt über ein Unterdruckgehäuse mit Membran, also pneumatisch realisiert, kann jedoch auch elektrisch, mechanisch oder hydraulisch ausgeführt sein. Hierbei kann die Ausführung des Stellelementes vollständig aus Kunststoff, aus einem Materialmix zwischen Kunststoff und Metall oder rein aus Metall bestehen. Die im Gehäuse beweglich gelagerte Kolbenstange weist hierbei bevorzugt einen viereckigen Querschnitt auf, kann jedoch auch ohne Einschränkung einen kreisrunden (ovalen) oder mehreckigen Querschnitt aufweisen. Ebenso kann sie gerade oder auch gekrümmt ausgeführt sein. Sie ist korrespondierend mit dem Antrieb verbunden, wobei die Verbindung lösbarer oder unlösbarer Natur sein kann und es auch möglich ist, diese Verbindung über ein zwischengeschaltetes Getriebe oder Umschaltgetriebe oder eine anders geartete Umlenkung auszuführen. Die Lageerkennung wird bei dem erfindungsgemäßen Stellelement berührungslos über einen ortsfest im oder am Gehäuse angeordneten Hall-Sensor mit wenigstens einem hierzu korrespondierenden beweglichen Magneten realisiert. Das von dem Magneten erzeugte magnetische Feld erzeugt abhängig von der Lage des Magneten zum Hall-Sensor einen Magnetfluss durch den Hall-Sensor und dadurch ein geändertes Signal am Ausgang desselben. Da die ausgegebenen Hallspannung proportional zur magnetischen Induktion ist, werden Hall-Sensoren zur Messung von Magnetfeldern verwendet. Die im Stand der Technik bekannten Hall-Sensoren besitzen wahlweise einen analogen oder einen digitalen Signalausgang, sind zum Teil voll programmierbar, wodurch eventuelle Temperaturdrifts oder sonstige Störgrößen programmtechnisch eliminiert werden können, und sie können von ihrer Funktion her wie kontaktlose Potentiometer angesehen werden. Durch die Art ihrer Anbringung können Hall-Sensoren translatorische Bewegungsabläufe inklusive deren Endpunkte sowie rotatorische Bewegungsabläufe inklusive Endpunkte und Winkelerfassung aufnehmen; dieses geschieht durch die Änderung des magnetischen Feldes und Magnetflusses bei der Annäherung oder der Entfernung eines Magneten. Die Vorteile der Erfindung sind ganz klar in der berührungslosen Erfassung der Lageänderung und des damit vergrößerten Einsatzbereiches auch unter aggressiven Medien und erhöhten Temperaturschwankungen zu sehen. Durch die berührungslose Lageerkennung ist ein mechanischer Verschleiß vollständig ausgeschlossen, wodurch die Reproduzierbarkeit und die Dauerfestigkeit bzw. Störunempfindlichkeit stark erhöht werden. Weiterhin ist der technische Aufwand dieser erfinderischen Lösung geringer als im Stand der Technik, da die Lageerkennung innerhalb des Stellelementes unabhängig vom Antrieb erfolgt und so auf die verschiedensten Antriebsmöglichkeiten adaptierbar ist. Als Beispiele lassen sich so pneumatische Steller für Drehschieber oder Schaltklappen angeben, ebenso wäre ein pneumatischer Antrieb für z. B. eine Zentralverriegelung in der Automobiltechnik denkbar sowie viele weitere Lösungen, in denen ein Stellelement zur Verstellung einer Stelleinrichtung mit der Notwendigkeit einer Lageerkennung benötigt werden.
  • In einer vorteilhaften Ausgestaltung der Erfindung ist die Kolbenstange über wenigstens eine Drehscheibe korrespondierend mit einer Welle verbunden und wandelt so eine translatorische Bewegung der Kolbenstange in eine rotatorische Bewegung der Welle um. Dieses ist vergleichbar z. B. mit dem Kurbeltrieb eines Fahrrades, in dem eine annähernd translatorische Bewegung des Beines im Hinblick auf die Pedale in eine rotatorische Bewegung auf den Kettenantrieb umgewandelt wird. Dadurch, dass die Kolbenstange beweglich im Gehäuse und korrespondierend mit dem Antrieb des Stellelementes verbunden ist, ist es für sie möglich, einen gewissen Winkelversatz zuzulassen, um so einer annähernden Kreisbahn des Verbindungspunktes zwischen Kolbenstange und Drehscheibe im äußeren Bereich der Drehscheibe zu folgen. Es ist allerdings auch denkbar, dass diese Umsetzung über eine Art Umsetzungsgetriebe erfolgt und durch dieses die translatorische Bewegung in eine rotatorische Bewegung umgewandelt wird. Die so angetriebene Welle kann z. B. eine Schaltklappe, einen Schaltklappenverband oder einen Drehschieber innerhalb eines gewissen Winkelbereiches verdrehen. Es sind jedoch auch andere Möglichkeiten denkbar, in denen eine Kraftübertragung durch eine rotatorische Bewegung notwendig ist. Die Drehscheibe kann die Form einer im wesentlichen kreisrunden volumenbehafteten Scheibe sein, aber auch hier sind den Gestaltungsmöglichkeiten nahezu keine Grenzen gesetzt. So kann die Drehscheibe auch eckiger oder ovaler Form sein und im Extremfall sogar nur aus einer Umlenkstange bestehen. Die hierzu notwendigen kinematischen Umsetzungen dürften dem Fachmann wohl bekannt sein und bedürfen so keiner weiteren Beispiele.
  • Gemäß einer zweckmäßigen Ausgestaltung der Erfindung ist der Hall-Sensor der Lageerkennung lösbar in dem Gehäuse des Stellelementes angeordnet. Dieses beinhaltet, dass in dem Gehäuse korrespondierend zum Hall-Sensor Mittel vorgesehen sind, an denen der Hall-Sensor über eine lösbare Verbindung, wie z. B. eine Schraubverbindung, eine Clipsverbindung oder auch eine reine Steckverbindung sowie sonstige im Stand der Technik bekannte Verbindungsarten lösbar mit dem Gehäuse verbunden wird. Dies hat insbesondere den Vorteil einer fakultativen Möglichkeit der Verwendung des Hall-Sensors, weiterhin bietet sich die Möglichkeit über entsprechend mehrere im Gehäuse vorgesehene Aufnahmepunkte den Hall-Sensor in Abhängigkeit der Einsatzbedingung und des Einsatzzweckes an verschiedenen Punkten des Gehäuses zur Lageerkennung anzubringen.
  • In einer hierzu alternativen Ausgestaltung ist der Hall-Sensor unlösbar in dem Gehäuse des Stellelementes angeordnet. Hierzu wird der Hall-Sensor an dem dafür vorgesehenen Aufnahmepunkt im Gehäuse über ein Klebverfahren bzw. ein Schweißverfahren oder sonstige im Stand der Technik bekannte Mittel zur unlösbaren Verbindung zweier Elemente mit dem Gehäuse verbunden. Durch die unlösbare Verbindung können mögliche Fehler durch eine Lageveränderung des Hall-Sensors, z. B. durch Vibrationen und der damit verbundenen verfälschten Signalausgabe minimiert werden. Eine besondere Ausführungsform der Erfindung sieht vor, dass zur Verstärkung des Magnetflusses des beweglich angeordneten Magneten wenigstens ein Flussleitblech am Hall-Sensor angeordnet ist und dieses Flussleitblech in vorbestimmten Positionen die Pole des Magneten im wesentlichen überdeckt. Mit Hilfe dieses Flussleitbleches lässt sich der Magnetfluss bis zu einem dreistelligen Faktor verstärken, welches eine höhere Genauigkeit der Lageerkennung sowie eines höhere Unempfindlichkeit gegenüber äußeren Einflüssen, wie z. B. Verunreinigungen durch Schmutz oder Öl zur Folge hat. Dieses Flussleitblech ist zum einen korrespondierend mit dem Hall-Sensor verbunden und überdeckt zumindest in einem Teilbereich die Bahn des beweglich im Gehäuse geführten Magneten bei der Lageänderung durch die Kolbenstange. Bevorzugt gleicht dabei die Form des Flussleitbleches einer U-Form, wobei die beiden Schenkel des U jeweils den Nord und den Südpol des Magneten an wenigstens einem Punkt des Magneten auf seiner Bewegungsbahn abdekken.
  • In einer Ausgestaltung der Erfindung ist wenigstens ein Magnet an der Kolbenstange angeordnet und der Hall-Sensor erfasst die translatorische Lageänderung der Kolbenstange. Bevorzugt ist hierbei der wenigstens eine Magnet in die Kolbenstange integriert, so dass sich ein möglichst ungehinderter Magnetfluss ergibt. Der Magnet kann hierbei in Aussparungen in die Kolbenstange integriert werden und mit ihr über lösbare oder unlösbare Verbindungsarten verbunden werden. Bevorzugt weist der Magnet hierbei eine Zylinder- bzw. Stiftform auf, jedoch sind auch andere Formen denkbar und technisch realisierbar. Da der Magnet nun bei Betätigung des Antriebs und der dadurch ausgeführten Bewegung der Kolbenstange eine Relativbewegung zum ortsfest angeordneten Hall-Sensor vollführt, wird in dem Hall-Sensor durch die Änderung des Magnetflusses in Abhängigkeit von der Position des Magneten ein unterschiedliches Signal zur Identifizierung der Lageänderung bzw. auch zur Erkennung der Endlagen ausgegeben.
  • Gemäß einer weiteren Ausgestaltung der Erfindung ist wenigstens ein Magnet an der Drehscheibe angeordnet und der Hall-Sensor erfasst so die rotatorische Lageänderung der Welle. Hierbei ist der Hall-Sensor ortsfest so im Gehäuse angeordnet, dass er korrespondierend mit einer Lageänderung des Magneten durch Verdrehen der Drehscheibe durch den dadurch geänderten Magnetfluss eine Lageänderung der Drehscheibe und der korrespondierend damit verbundenen Welle aufnehmen kann. So kann auf einfache Art und Weise der Drehwinkel ausgehend von einer Nullposition der angetriebenen Welle erfasst werden. Der bevorzugte Anwendungsfall sind hierbei Drehschieber, die an die Welle angeschlossen sind, oder auch Schaltklappen oder Schaltklappenwände, es sind jedoch auch andere Anwendungsfälle denkbar und möglich, bei denen die Position der Welle und der Drehwinkel der Welle für eine Auswertung von Relevanz sind. Bei dem Einsatz eines programmierbaren Hall-Sensors besteht weiterhin die Möglichkeit eines Zweipunktabgleiches mit der Funktionsprüfung einschließlich des zu schaltenden Bauteiles. Dieses ist z. B. bei der Fertigung direkt am Bandende möglich und erhöht so in sehr hohem Maße die Zeit- und Kosteneffizienz. Auch lässt sich das Stellelement inklusive des zu schaltenden Bauteües so einfach und günstig kalibrieren, was zu einer sehr hohen Aussagegenauigkeit führt. Die vom Hall-Sensor ausgegebenen Daten können so z. B. an das Motorsteuergerät im Kfz weitergegeben werden und erfüllen so die Anforderungen an die On Bord Diagnose (OBD), die in modernen Kraftfahrzeugen zur Erfüllung der Abgasvorschriften und zur Erzielung von Redundanzen vorgeschrieben ist. Der wenigstens eine an der Drehscheibe angeordnete Magnet kann mit der Drehscheibe lösbar oder unlösbar verbunden werden und verändert durch die Drehbewegung der Drehscheibe seinen Magnetfluss relativ zum ortsfesten Hall-Sensor. Die Form des Magneten hat hierbei keinen Einfluss auf die Funktion der Lageerkennung.
  • Gemäß einer weiteren Ausgestaltung der Erfindung weist der Hall-Sensor zur Erkennung von vorbestimmten Positionen einen Ausgang für ein digitales Signal auf. Hierdurch ist es möglich, einfach z. B. die Endlagen der Bewegung zu detektieren und auszugeben. Der Hall-Sensor fungiert hierbei als einfache Endlagenerkennung und ersetzt so den aus dem Stand der Technik bekannten Schließkontakt. In Abhängigkeit von der Signalstärke und einer eventuellen Programmierung des Hall-Sensors lässt sich so eine nahezu beliebig genaue Endlage und Positionserkennung realisieren.
  • Ebenso ist es möglich, gemäß einer weiteren Ausgestaltung der Erfindung, dass der Hall-Sensor zur Erkennung eines Lageverlaufes einen Ausgang für ein analoges Signal aufweist. Hierbei verändert sich das ausgegebene Signal in Abhängigkeit zur Änderung des Magnetflusses. Diese Änderung erfolgt, sobald der bewegliche wenigstens eine Magnet eine Relativbewegung zum ortsfest angeordneten Hall-Sensor ausführt. Mit Hilfe einer entweder im Hall-Sensor implementierten oder extern vorhandenen Auswertelogik lässt sich so jeder Bewegungspunkt der Kolbenstange oder des Drehschiebers erkennen und ausgeben. Diese Möglichkeit lässt also demnach auch Rückschlüsse über die aktuelle Position zwischen den beiden Endlagen zu.
  • Diese und weitere Merkmale von bevorzugten Weiterbildungen der Erfindung gehen außer aus den Ansprüchen auch aus der Beschreibung und der Zeichnung hervor, wobei die einzelnen Merkmale jeweils für sich allein oder zu mehreren in Form von Unterkombinationen bei der Ausführungsform der Erfindung und auf anderen Gebieten verwirklicht sein und vorteilhafte sowie für sich schutzfähige Ausführungen darstellen können, für die hier Schutz beansprucht wird.
  • Zeichnung
  • Weitere Einzelheiten der Erfindung werden in der Zeichnung anhand von schematischen Ausführungsbeispielen beschrieben. Hierbei zeigen
  • Figur 1
    eine schematische Ansicht eines Stellelementes mit Lageerkennung und Kraftumleitung,
    Figur 2
    eine Schnittansicht der Kraftumleitung gemäß A - A von Figur 1,
    Figur 3
    eine schematische Ansicht eines Stellelementes mit Lageerkennung ohne Kraftumleitung,
    Figur 4
    eine schematische Ansicht der Vergrößerung der Lageerkennung.
    Beschreibung der Ausführungsbeispiele
  • Figur 1 zeigt eine schematische Ansicht eines Stellelementes 10, hier als Unterdruckstellelement ausgeführt, mit einem Unterdruckanschluss 11, welcher an einen Unterdruckraum 12 mit einer darin eingebetteten Feder 13 angeschlossen ist. Der Unterdruckraum wird gebildet aus einem Gehäuseoberteil 14, welches dichtend mit einem Gehäuseunterteil 15 verbunden ist. Die Feder 13 stützt sich einerseits im Gehäuseoberteil 14 und andererseits an einer Federauflage 16, welche mit einer Kolbenstange 17 verbunden ist, ab. Die Kolbenstange 17 wird im unteren Bereich des Gehäuseunterteils 15 beweglich aus diesem herausgeführt, und durch eine Membran 18 wird der Unterdruckraum 12 dichtend von der Umgebung getrennt. Die Membrane 18 und die Federauflage 16 sind miteinander verbunden, wodurch bei Anlegen eines Unterdruckes die Kolbenstange 17 gegen die Federkraft der Feder 13 in Richtung des Gehäuseoberteils 14 angezogen wird. An ihrem unteren Ende weist die Kolbenstange 17 eine Durchgangsbohrung 19 auf, durch die ein Zapfen 20, welcher drehbar exzentrisch in einer Drehscheibe 22 gelagert ist, durchgreift. Zur Fixierung des Zapfens 20 in der Durchgangsbohrung 19 ist am Ende des Zapfens 20 ein Sicherungsring 21 eingebettet. Die Drehscheibe 22 ist konzentrisch fest mit einer Welle 23 verbunden, wobei die Welle über ein Kugellager 24 gelagert ist. Durch die feste Verbindung zwischen Drehscheibe 22 und Welle 23 kann eine Rotationskraft von der Drehscheibe auf die Welle übertragen werden, wobei im weiteren Verlauf der Welle 23 z. B. ein Drehschieber oder ein Schaltklappenverband, welcher drehbar betätigt wird, angeschlossen werden kann. Da die Kolbenstange 17 beweglich im Gehäuseunterteil 15 gelagert ist, kann sie im unteren Bereich der Kreisbahn des an der Drehscheibe 22 befestigten Zapfens 20 folgen und so über eine translatorisch nach oben gerichtete Bewegung die Drehscheibe 22 und die damit verbundene Welle 23 zu einer rotatorischen Bewegung überführen.
  • Im oberen Bereich der Kolbenstange 17 sind zwei Magnete 25a und 25b angeordnet. Diese sind in die Kolbenstange 17 eingelassen und fest mir ihr verbunden. In der unteren Stellung der Kolbenstange 17 auf Höhe des Magneten 25a ist ortsfest im Gehäuse ein Hall-Sensor 26 angeordnet. Dieser ist über eine geschlossene Kabelführung 27 mit einem Steckerausgang 28 verbunden. Das System aus Hall-Sensor 26, geschlossener Kabelführung 27 und Steckerausgang 28 ist im oberen Bereich des Gehäuseunterteiles 15 in eine dort angeordnete Einclipsöffnung 29 in Richtung X eingeclipst. Mit diesem Aufbau des Stellelementes 10 ist es möglich, entweder über einen Hall-Sensor 26 mit digitalem Ausgang die beiden Endlagen der Kolbenstange 17 zu erfassen, oder den gesamten Wegverlauf der Kolbenstange 17 über einen Hall-Sensor 26 mit analogem Ausgangssignal aufzunehmen. Die untere Endlage der Kolbenstange 17 ist dadurch charakterisiert, dass sich hier der Magnet 25a auf Höhe des ortsfesten Hall-Sensors 26 befindet. Die obere Endlage der Kolbenstange 17 wird dann erreicht, sobald sich der Magnet 25b auf Höhe des Hall-Sensors 26 befindet. Da der Hall-Sensor 26 auf eine Änderung der Magnetfeldstärke bzw. des Magnetflusses reagiert, gibt er ein Endlagensignal bei Erreichen der höchsten Magnetfeldstärke aus. Die höchste Magnetfeldstärke wird dann erreicht, sobald sich der Magnet exakt auf Höhe des Hall-Sensors befindet. Hier ist deutlich der einfache Aufbau des erfindungsgemäßen Stellelements zu erkennen. Durch die Anordnung des Hall-Sensors 26 und der Magnete 25a und 25b außerhalb des Druckraumes 12 lässt sich eine sehr geringe Bauhöhe des pneumatischen Antriebes erzielen, wobei sich hier das berührungslose Sensieren als sehr vorteilhaft erweist, da dieser Bereich zwangsläufig nicht ganz frei von Verschmutzungen und aggressiven Medien ist. Sollte in dieser Konstellation ein Hall-Sensor mit einem analogen Ausgang eingesetzt werden, so ließe sich durch das Abnehmen der Magnetfeldstärke zwischen den beiden Magneten 25a und 25b der genaue Wegverlauf der Kolbenstange 17 ausgeben. Diese Werte können dann z. B. durch ein Motorsteuergerät ausgewertet werden und dann in die Berechnung z. B. eines Kennfeldes mit einfließen.
  • Die Figur 2 zeigt den Schnitt A - A als seitliche Draufsicht auf die Drehscheibe 22. Der Figur 1 entsprechende Bauteile sind mit gleichen Bezugszeichen versehen. In diesem Schnitt ist zu erkennen, dass sich die Drehscheibe 22 konzentrisch auf der Welle 23 befindet und mit dieser drehfest verbunden ist. Der Verbindungszapfen 20 zwischen Kolbenstange 17 und Drehscheibe 22 ist exzentrisch angeordnet und bewirkt so bei translatorischer Bewegung der Kolbenstange 17 ein Verdrehen der Drehscheibe 22 und damit auch der damit verbundenen Welle 23.
  • Die Figur 3 zeigt eine schematische Ansicht einer Variante des erfindungsgemäßen Stellelementes 10. Der Figur 1 entsprechende Bauteile sind mit den gleichen Bezugszeichen versehen. Dieses pneumatische Stellelement 10 unterscheidet sich von dem Stellelement 10 der Figur 1 dadurch, dass hier keine Umwandlung der translatorischen Bewegung der Kolbenstange 17 in eine rotatorische Bewegung einer Welle 23 vollzogen wird. Ein weiterer wichtiger Unterschied ist, dass hier auf der Kolbenstange 17 nur ein Magnet 25 angeordnet ist. Bei einer digitalen Auslegung des Hall-Sensors kann über den Hall-Sensor nur die Endlage der Kolbenstange 17 bei mit Unterdruck beaufschlagtem Stellelement 10 erfasst werden. Sobald der Magnet 25 durch Verschiebung der Kolbenstange 17 in Richtung Gehäuseoberteil 14 in Deckung mit dem Hall-Sensor 26 ist, wird das Signal zur Erreichung des Endanschlages vom Hall-Sensor ausgegeben. Das in Figur 3 gezeigte Stellelement 10 befindet sich in der zweiten Endlage der Kolbenstange 17, wobei diese mechanisch durch die Wandungen des Gehäuseunterteiles 15 begrenzt wird. Dieses ist eine einfache Variante des erfindungsgemäßen Stellelementes. Mit einem Hall-Sensor 26, welcher einen analogen Ausgang besitzt, lässt sich auch in dieser Anordnung die gesamte Lageänderung der Kolbenstange 17 erfassen. In diesem Fall steigt die Stärke des Magnetfeldes kontinuierlich bis zum Endanschlag in der mit Unterdruck beaufschlagten Form an. Durch eine geeignete Programmierung und Kalibrierung des Hall-Sensors 26 lässt sich auch in dieser einfachen Form eine kontrollierte Wegaufnahme erzielen. Sollte auf Grund der Platzverhältnisse eine am Gehäuse angebrachte geschlossene Kabelführung 27 nicht möglich sein, ist es bei allen Varianten ebenso möglich, mit einer offenen Kabelführung zu arbeiten und den Steckerausgang 28 an einem weiteren Bauteil in Nähe des Stellelementes anzuordnen.
  • Die Figur 4 zeigt die schematische Ansicht einer Vergrößerung des Hall-Sensors mit daran angebrachten Flussleitblechen. Der Figur 1 entsprechende Bauteile sind mit gleichen Bezugszeichen versehen. In dieser Figur geht die Kolbenstange 17 in die Blattebene hinein, das System zur Lageerkennung ist im Schnitt auf Höhe des Hall-Sensors 26 dargestellt. Es ist zu erkennen, dass ein Sensorgehäuse 31 mit Steckerausgang 28 in eine korrespondierende Aufnahme des Gehäuseunterteils 15 eingeclipst wird. Im Sensorgehäuse 31 sind der Hall-Sensor 26 sowie zwei Flussleitbleche 30 eingebettet. Es ist zu erkennen, dass die Flussleitbleche 30 den in der Kolbenstange 17 eingebetteten Magneten 25 in dieser Position vollständig überdecken. Der von dem Magneten 25 ausgehende magnetische Fluss wird durch die Flussleitbleche 30 bis zu einem dreistelligen Faktor verstärkt und vergrößert so im selben Maße die Empfindlichkeit des Hall-Sensors 26 auf eine Änderung des Magnetflusses. Bei einer Bewegung der Kolbenstange 17 in die Blattebene hinein oder aus ihr heraus, ergibt die dadurch resultierende Änderung der magnetischen Feldstärke eine unterschiedliche magnetische Induktion in dem Hall-Sensor 26 und damit ein geändertes Ausgangssignal am Steckerausgang 28. Die Ausstattung mit den Flussleitblechen 30 ist jedoch optional und nicht zwingend erforderlich zur Detektierung einer geänderten Magnetfeldstärke durch eine Bewegung der Kolbenstange 17. Die Flussleitbleche 30 dienen zur Verstärkung des magnetischen Feldes und beinhalten so die Möglichkeit des Einsatzes eines weniger empfindlichen Hall-Sensors 26 mit den damit verbundenen Kostenvorteilen.

Claims (8)

  1. Stellelement, insbesondere zur Betätigung von Drehschiebern, mit einem Gehäuse (14,15), einem darin angeordneten Antrieb und wenigstens einem Mittel zur Lageerkennung, wobei eine im Gehäuse (14,15) beweglich gelagerte Kolbenstange (17) zur Ausübung einer Kraftwirkung mit dem Antrieb korrespondierend verbunden ist, wobei_das Mittel zur Lageerkennung wenigstens einen ortsfesten Hall-Sensor (26) und wenigstens einen zum Hall-Sensor (26) korrespondierenden beweglichen Magneten (25) umfasst, wobei der Magnet (25) ein magnetisches Feld zur Erzeugung eines Magnetflusses erzeugt, dadurch gekennzeichnet, dass zur Verstärkung des Magnetflusses wenigstens ein Flussleitblech (30) am Hall-Sensor (26) angeordnet ist und dieses Flussleitblech (30) in vorbestimmten Positionen die Pole des Magneten (25) im wesentlichen überdeckt, wobei das oder die Flussleitbleche (30) zwei gegenübediegende Flächen aufweist, die den Magneten (25) überdecken.
  2. Stellelement nach Anspruch 1, dadurch gekennzeichnet, dass die Kolbenstange (17) über wenigstens eine Drehscheibe (22) korrespondierend mit einer Welle(23) verbunden ist und so eine translatorische Bewegung der Kolbenstange (17) in eine rotatorische Bewegung der Welle (23) umwandelt.
  3. Stellelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hall-Sensor (26) lösbar in dem Gehäuse (14,15) des Stellelementes angeordnet ist.
  4. Stellelement nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass der Hall-Sensor (26) unlösbar in dem Gehäuse (14,15) des Stellelementes angeordnet ist.
  5. Stellelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Magnet (25) an der Kolbenstange (17) angeordnet ist und der Hall-Sensor (26) die translatorische Lageänderung der Kolbenstange (17) erfasst.
  6. Stellelement nach einem der vorhergehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass wenigstens ein Magnet (25) an der Drehscheibe (22) angeordnet ist und der Hall-Sensor (26) die rotatorische Lageänderung der Welle (23) erfasst.
  7. Stellelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hall-Sensor (26) zur Erkennung von vorbestimmten Positionen einen Ausgang für ein digitales Signal aufweist.
  8. Stellelement nach einem der vorhergehenden Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Hall-Sensor (26) zur Erkennung eines Lageverlaufes einen Ausgang für ein analoges Signal aufweist.
EP20040100364 2003-02-04 2004-02-02 Stellelement mit Lageerkennung Expired - Lifetime EP1445494B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10304551 2003-02-04
DE2003104551 DE10304551A1 (de) 2003-02-04 2003-02-04 Stellelement mit Lageerkennung

Publications (3)

Publication Number Publication Date
EP1445494A2 EP1445494A2 (de) 2004-08-11
EP1445494A3 EP1445494A3 (de) 2004-09-29
EP1445494B1 true EP1445494B1 (de) 2006-06-21

Family

ID=32603151

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20040100364 Expired - Lifetime EP1445494B1 (de) 2003-02-04 2004-02-02 Stellelement mit Lageerkennung

Country Status (5)

Country Link
US (1) US7044444B2 (de)
EP (1) EP1445494B1 (de)
AT (1) ATE331144T1 (de)
DE (2) DE10304551A1 (de)
ES (1) ES2266985T3 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020105496B4 (de) 2020-03-02 2022-09-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verstellvorrichtung für ein Kraftfahrzeug
DE102020105488B4 (de) 2020-03-02 2022-11-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verstellvorrichtung für ein Kraftfahrzeug
US11825786B2 (en) 2020-12-03 2023-11-28 Haier Us Appliance Solutions, Inc. Indoor garden center with a drive assembly utilizing positional feedback
US12029177B2 (en) 2021-07-01 2024-07-09 Haier Us Appliance Solutions, Inc. System and method for detecting a tower positioning fault using a drive assembly in an indoor garden center

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070161B2 (en) * 2003-09-11 2006-07-04 Continental Hydraulics Proportional directional control valve with a magnetic positioning sensor
US7116100B1 (en) * 2005-03-21 2006-10-03 Hr Textron, Inc. Position sensing for moveable mechanical systems and associated methods and apparatus
US7265539B2 (en) * 2005-06-09 2007-09-04 Ford Motor Company Calibration of a hall effect sensor
DE102005029904A1 (de) * 2005-06-26 2007-01-04 Murrplastik Systemtechnik Gmbh Unterdruckdose
DE102005057623B3 (de) * 2005-12-02 2007-05-10 Keiper Gmbh & Co.Kg Fahrzeugsitz, insbesondere Kraftfahrzeugsitz
DE102006011156A1 (de) * 2006-03-10 2007-09-13 Robert Bosch Gmbh Stellvorrichtung
DE102006021130B3 (de) * 2006-05-04 2007-08-09 Smk Systeme Metall Kunststoff Gmbh & Co. Kg. Ladedruckregler für Abgas-Turbolader von Brennkraftmotoren für Automobile
DE102006021129B3 (de) * 2006-05-04 2007-06-28 Smk Systeme Metall Kunststoff Gmbh & Co. Kg. Ladedruckregler für Abgas-Turbolader von Brennkraftmotoren für Automobile
DE102006021127B3 (de) * 2006-05-04 2007-08-02 Smk Systeme Metall Kunststoff Gmbh & Co. Kg. Ladedruckregler für Abgas-Turbolader von Brennkraftmotoren für Automobile
US7536860B2 (en) * 2006-05-25 2009-05-26 Thermotion Corporation Thermo-magnetic actuator
DE102006025429A1 (de) * 2006-05-31 2007-12-06 Tyco Electronics Amp Gmbh Linearer magnetischer Positionsaufnehmer mit verbesserter Linearität der Ausgangskennlinie
DE102006040667B3 (de) * 2006-08-30 2008-01-10 Siemens Ag Waste-Gate-Aktuator für einen Abgasturbolader
DE102007019059B4 (de) * 2007-04-23 2013-05-08 Abb Ag Verfahren zum Betrieb eines Stellantriebs
JP2011505574A (ja) 2007-12-03 2011-02-24 シーティーエス・コーポレーション リニアポジションセンサー
DE102007062099B4 (de) * 2007-12-21 2015-07-16 Mahle International Gmbh Positionserfassungseinrichtung
WO2010068241A1 (en) * 2008-11-26 2010-06-17 Cts Corporation Linear position sensor with anti-rotation device
DE202008016636U1 (de) 2008-12-16 2009-03-05 Visiocorp Patents S.á.r.l. Memoryfunktion im Außenspiegel
IT1393598B1 (it) 2009-03-31 2012-04-27 Natali Attuatore pneumatico
DE112010004761T5 (de) * 2009-12-09 2012-11-29 Cts Corporation Antriebs- und Sensoranordnung
FR2955168B1 (fr) * 2010-01-14 2012-02-10 Mann & Hummel Gmbh Vanne de commande pour circuit de circulation de liquide
AT509627B1 (de) * 2010-03-29 2012-04-15 Ait Austrian Institute Of Technology Gmbh Vorrichtung zur erfassung der position einer stelleinheit
US20110262266A1 (en) * 2010-04-23 2011-10-27 Honeywell International Inc. Linear Actuator for a Variable-Geometry Member of a Turbocharger, and a Turbocharger Incorporating Same
IT1399781B1 (it) * 2010-04-28 2013-05-03 Metersit Srl Gruppo valvolare con dispositivo sensore per il controllo della posizione di un otturatore nella corsa operativa relativamente ad una corrispondente sede di valvola, in particolare per l'erogazione di gas attraverso un apparecchio contatore per gas.
US20130153684A1 (en) * 2010-08-25 2013-06-20 Basf Se Spray gun for expelling a fluid
US8517333B2 (en) 2010-09-02 2013-08-27 Honeywell International Inc. Fluid actuated valve with hall position sensor
US9435630B2 (en) 2010-12-08 2016-09-06 Cts Corporation Actuator and linear position sensor assembly
DE102012004078A1 (de) * 2012-03-02 2013-09-05 Illinois Tool Works Inc. Betätigungsvorrichtung
CA2872549C (en) 2012-05-25 2021-04-13 Mueller International, Llc Position indicator for valves
US9827658B2 (en) 2012-05-31 2017-11-28 Black & Decker Inc. Power tool having latched pusher assembly
US11229995B2 (en) 2012-05-31 2022-01-25 Black Decker Inc. Fastening tool nail stop
US9144929B2 (en) * 2012-08-06 2015-09-29 Synventive Molding Solutions, Inc. Apparatus and method for detecting a position of an actuator piston
US10414033B2 (en) * 2012-10-04 2019-09-17 Black & Decker Inc. Power tool hall effect mode selector switch
EP2750112A1 (de) * 2012-12-27 2014-07-02 Wincor Nixdorf International GmbH Geldkassette und Vorrichtung zur Handhabung von Wertscheinen mit mechanischer Kodierung
FI20135083A (fi) * 2013-01-29 2014-07-30 Farmcomp Oy Kosteuden mittauslaite raemuodossa olevan materiaalin kosteuden mittaamiseksi
CN204267833U (zh) * 2013-08-01 2015-04-15 通用设备和制造公司 阀标靶组件及控制阀组件
KR20160119120A (ko) * 2014-02-11 2016-10-12 보르그워너 인코퍼레이티드 내식성 공압식 액추에이터
FR3028613A1 (fr) * 2014-11-14 2016-05-20 Sc2N Sa Cible magnetique
DE102014226610B4 (de) * 2014-12-19 2024-05-29 Allegro Microsystems, LLC. Schaltvorrichtung eines Fahrzeuggetriebes
US20160330901A1 (en) * 2015-05-14 2016-11-17 Deere & Company Product distribution device with section control monitoring
JP6463511B2 (ja) 2015-05-29 2019-02-06 デーナ、オータモウティヴ、システィムズ、グループ、エルエルシー ロッキング・ギアセットのアクチュエータ・アセンブリの位置を感知するための装置
DE102015219273A1 (de) * 2015-10-06 2017-04-06 Festo Ag & Co. Kg Membraneinrichtung
US10113883B1 (en) * 2016-01-08 2018-10-30 Control Products, Inc. Hybrid sensor system and method of use
JP6715110B2 (ja) * 2016-06-30 2020-07-01 日本精機株式会社 ストロークセンサ及び鞍乗り型車両
US10909876B2 (en) 2018-02-05 2021-02-02 Envision Technologies, LLC Spray paint simulator and training aid
US20190383279A1 (en) * 2018-06-18 2019-12-19 White Knight Fluid Handling Inc. Fluid pumps and related systems and methods
JP7352971B2 (ja) * 2019-01-31 2023-09-29 株式会社フジキン バルブ装置、流量制御方法、流体制御装置、半導体製造方法、および半導体製造装置
CN110968114A (zh) * 2019-11-14 2020-04-07 浙江捷昌线性驱动科技股份有限公司 一种线性致动器
US11454334B1 (en) * 2021-04-09 2022-09-27 Dresser, Llc Accuracy of control valves using a short-stroke position converter
CN113685610B (zh) * 2021-08-24 2023-04-21 中冶京诚工程技术有限公司 阀位信号发讯器
US20240035589A1 (en) * 2022-08-01 2024-02-01 Dresser, Llc Controlling an actuator on a valve

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012843A (en) 1973-04-25 1977-03-22 Hitachi, Ltd. Concave diffraction grating and a manufacturing method thereof
US4198117A (en) 1976-12-28 1980-04-15 Nippon Electric Co., Ltd. Optical wavelength-division multiplexing and demultiplexing device
US4111524A (en) 1977-04-14 1978-09-05 Bell Telephone Laboratories, Incorporated Wavelength division multiplexer
US4153330A (en) 1977-12-01 1979-05-08 Bell Telephone Laboratories, Incorporated Single-mode wavelength division optical multiplexer
JPS6033242B2 (ja) 1978-07-10 1985-08-01 株式会社日立製作所 回折格子彫刻装置
US4246338A (en) 1979-03-02 1981-01-20 Kaplan Sam H Additive color photographic film assembly with diffraction grating
DE2945895C2 (de) * 1979-11-14 1986-06-05 Festo-Maschinenfabrik Gottlieb Stoll, 7300 Esslingen Magnetischer Stellungsgeber für hydrauliche oder pneumatische Arbeitszylinder
US4299488A (en) 1979-11-23 1981-11-10 Bell Telephone Laboratories, Incorporated Time-division multiplexed spectrometer
US4343532A (en) 1980-06-16 1982-08-10 General Dynamics, Pomona Division Dual directional wavelength demultiplexer
US4387955A (en) 1981-02-03 1983-06-14 The United States Of America As Represented By The Secretary Of The Air Force Holographic reflective grating multiplexer/demultiplexer
JPS57189010A (en) * 1981-05-15 1982-11-20 Fuji Heavy Ind Ltd Position detecting mechanism
NL8104123A (nl) 1981-09-07 1983-04-05 Philips Nv Optische multiplex- en demultiplexinrichting.
US4652080A (en) 1982-06-22 1987-03-24 Plessey Overseas Limited Optical transmission systems
US4665558A (en) * 1984-12-28 1987-05-12 Burke David W Fluid-operated, linear-rotary, robot-like, actuator
US4846552A (en) 1986-04-16 1989-07-11 The United States Of America As Represented By The Secretary Of The Air Force Method of fabricating high efficiency binary planar optical elements
JPS63122902A (ja) * 1986-11-13 1988-05-26 Ckd Controls Ltd 移動体の位置確認装置
US4926412A (en) 1988-02-22 1990-05-15 Physical Optics Corporation High channel density wavelength division multiplexer with defined diffracting means positioning
US4857726A (en) 1988-02-29 1989-08-15 Allied-Signal Inc. Method to decode relative spectral data
DE3852296T2 (de) 1988-03-18 1995-04-13 Instruments Sa Beugungsgitter und Herstellungsverfahren dafür.
JPH01306886A (ja) 1988-06-03 1989-12-11 Canon Inc 体積位相型回折格子
DE8807543U1 (de) * 1988-06-09 1988-08-04 Hella KG Hueck & Co, 4780 Lippstadt Pneumatisches Stellelement
US5007708A (en) 1988-07-26 1991-04-16 Georgia Tech Research Corporation Technique for producing antireflection grating surfaces on dielectrics, semiconductors and metals
US5477675A (en) * 1989-02-17 1995-12-26 Nartron Corporation Fluid power assist method and apparatus
US4909560A (en) * 1989-02-27 1990-03-20 Hoover Universal, Inc. Digital linear position sensor
US5085496A (en) 1989-03-31 1992-02-04 Sharp Kabushiki Kaisha Optical element and optical pickup device comprising it
US5061025A (en) 1990-04-13 1991-10-29 Eastman Kodak Company Hologon scanner with beam shaping stationary diffraction grating
DE9010114U1 (de) * 1990-07-03 1990-09-06 Festo KG, 7300 Esslingen Arbeitszylinder
US5245404A (en) 1990-10-18 1993-09-14 Physical Optics Corportion Raman sensor
US5216680A (en) 1991-07-11 1993-06-01 Board Of Regents, The University Of Texas System Optical guided-mode resonance filter
US5233405A (en) 1991-11-06 1993-08-03 Hewlett-Packard Company Optical spectrum analyzer having double-pass monochromator
DE4201827C1 (en) * 1992-01-24 1993-06-09 Robert Bosch Gmbh, 7000 Stuttgart, De Pneumatically and hydraulically driven lift-and-turn device - has groove in vertical spindle for transmission of torque from ball-race between flanges of bearing
US5269343A (en) * 1992-04-10 1993-12-14 Elkhart Brass Mfg. Co., Inc. Valve actuator
US5422745A (en) 1992-10-30 1995-06-06 The United States Of America As Represented By The Secretary Of The Navy Preparation of permanent photowritten optical diffraction gratings in irradiated glasses
US5457573A (en) 1993-03-10 1995-10-10 Matsushita Electric Industrial Co., Ltd. Diffraction element and an optical multiplexing/demultiplexing device incorporating the same
JP3119540B2 (ja) 1993-04-12 2000-12-25 松下電器産業株式会社 光タップ
EP0620647A3 (de) * 1993-04-14 1995-09-06 Namco Controls Corp Magnetisch aktivierter Näherungsschalter.
US5420719A (en) 1993-09-15 1995-05-30 Lumonics Inc. Laser beam frequency doubling system
DE4435928A1 (de) 1993-10-07 1995-04-20 Hitachi Ltd Optische Sende- und Empfangsbaugruppe und optisches Kommunikationssystem, welches diese verwendet
US5526155A (en) 1993-11-12 1996-06-11 At&T Corp. High-density optical wavelength division multiplexing
US5438491A (en) * 1993-11-19 1995-08-01 Jay Roberts Company Vehicular sun visor assembly
US5793912A (en) 1994-06-09 1998-08-11 Apa Optics, Inc. Tunable receiver for a wavelength division multiplexing optical apparatus and method
US5450510A (en) 1994-06-09 1995-09-12 Apa Optics, Inc. Wavelength division multiplexed optical modulator and multiplexing method using same
US5544268A (en) 1994-09-09 1996-08-06 Deacon Research Display panel with electrically-controlled waveguide-routing
US5835458A (en) 1994-09-09 1998-11-10 Gemfire Corporation Solid state optical data reader using an electric field for routing control
DE19500137A1 (de) * 1995-01-04 1996-07-11 Beetz Hydraulik Gmbh Druckmittelbetätigte Zylinder-Kolben-Anordnung mit einem Magnetfeldsensor
US5583683A (en) 1995-06-15 1996-12-10 Optical Corporation Of America Optical multiplexing device
FR2738432B1 (fr) 1995-09-01 1997-09-26 Hamel Andre Composant optique adapte a la surveillance d'une liaison multilongueur d'onde et multiplexeur a insertion-extraction utilisant ce composant, application aux reseaux optiques
US5907436A (en) 1995-09-29 1999-05-25 The Regents Of The University Of California Multilayer dielectric diffraction gratings
US5777763A (en) 1996-01-16 1998-07-07 Bell Communications Research, Inc. In-line optical wavelength reference and control module
US6002522A (en) 1996-06-11 1999-12-14 Kabushiki Kaisha Toshiba Optical functional element comprising photonic crystal
US5884894A (en) * 1996-08-20 1999-03-23 Valtek, Inc. Inner-loop valve spool positioning control apparatus
US5914811A (en) 1996-08-30 1999-06-22 University Of Houston Birefringent grating polarizing beam splitter
US5970190A (en) 1996-12-02 1999-10-19 Photonics Research Ontario Grating-in-etalon polarization insensitive wavelength division multiplexing devices
US5796479A (en) 1997-03-27 1998-08-18 Hewlett-Packard Company Signal monitoring apparatus for wavelength division multiplexed optical telecommunication networks
US5946128A (en) 1997-08-15 1999-08-31 The United States Of America As Represented By The Secretary Of Commerce Grating assisted acousto-optic tunable filter and method
CA2319412A1 (en) 1998-02-13 1999-08-19 Warren Timothy Boord Multiplexer and demultiplexer for single mode optical fiber communication links
US6441934B1 (en) 1998-02-13 2002-08-27 Apa Optics, Inc. Multiplexer and demultiplexer for single mode optical fiber communication links
DE19836042A1 (de) * 1998-08-10 2000-02-17 Eckehart Schulze Hydraulikventil
US6666784B1 (en) * 1999-10-06 2003-12-23 Ntn Corporation Piston rod piston detector, autotensioner and belt tension adjuster
JP2001221653A (ja) * 1999-12-01 2001-08-17 Honda Motor Co Ltd 変位検出装置
US6487019B2 (en) 2000-03-27 2002-11-26 Chromaplex, Inc. Optical diffraction grating structure with reduced polarization sensitivity
US6577786B1 (en) 2000-06-02 2003-06-10 Digital Lightwave, Inc. Device and method for optical performance monitoring in an optical communications network
DE10053995A1 (de) * 2000-10-31 2002-05-08 Continental Teves Ag & Co Ohg In einen Hauptzylinder integrierter Signalgeber mit Hall-Sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020105496B4 (de) 2020-03-02 2022-09-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verstellvorrichtung für ein Kraftfahrzeug
DE102020105488B4 (de) 2020-03-02 2022-11-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verstellvorrichtung für ein Kraftfahrzeug
US11825786B2 (en) 2020-12-03 2023-11-28 Haier Us Appliance Solutions, Inc. Indoor garden center with a drive assembly utilizing positional feedback
US12029177B2 (en) 2021-07-01 2024-07-09 Haier Us Appliance Solutions, Inc. System and method for detecting a tower positioning fault using a drive assembly in an indoor garden center

Also Published As

Publication number Publication date
US7044444B2 (en) 2006-05-16
ATE331144T1 (de) 2006-07-15
ES2266985T3 (es) 2007-03-01
US20040189284A1 (en) 2004-09-30
DE10304551A1 (de) 2004-08-12
DE502004000784D1 (de) 2006-08-03
EP1445494A2 (de) 2004-08-11
EP1445494A3 (de) 2004-09-29

Similar Documents

Publication Publication Date Title
EP1445494B1 (de) Stellelement mit Lageerkennung
EP1408305B9 (de) Vorrichtung zum Erfassen des Absolutwinkels einer Welle
EP1087884B1 (de) Elektrisch unterstützte hilfskraftlenkung für kraftfahrzeuge
DE102016121671B3 (de) Positionssensor und Stellgerät mit Positionssensor
DE102012109787B4 (de) Lenkwinkelsensor für Kraftfahrzeuge
EP2516967A2 (de) Magnetfeldsensoranordnung zur wegerfassung an beweglichen bauteilen
DE102007016133A1 (de) Messeinrichtung zur berührungslosen Erfassung eines Drehwinkels mit in einer Ausnehmung des Magneten angeordnetem magnetempfindlichen Element
DE102013114825B4 (de) Vorrichtung zur Messung eines Winkels einer Drehachse
EP1925533B1 (de) Kombinierter Lenkwinkel- und Drehmomentsensor
EP2507592B1 (de) Handgasdrehgriff mit drehwinkel-messsystem
DE102006048084A1 (de) Linearsensor
DE4109658A1 (de) Stellungsgeber
DE10108883A1 (de) Drehmoment-Meßaufnehmer
DE102005040168A1 (de) Sensoranordnung
EP1655579A1 (de) Magnetischer Winkelsensor mit Magnetquadern
DE102007024867A1 (de) Messeinrichtung zur berührungslosen Erfassung eines Drehwinkels mit radial polarisiertem Magneten
WO2006069894A1 (de) Stelleinrichtung mit magnetfeldsensor
DE10349937B4 (de) Einrichtung zur berührungslosen Erfassung von Schaltstellungen in Kraftfahrzeugschließsystemen
DE102004051779B4 (de) Positionsgeber für Drehtüren
DE102011121870B4 (de) Magnetsensoranordnung
DE19627402A1 (de) Vorrichtung zur Erfassung der Antriebskraft eines durch Muskelkraft betriebenen Geräts
WO2005124284A1 (de) Messvorrichtung zur magnetischen winkel- und/ oder wegmessung
DE102006045365A1 (de) Drehwahlschalter für Kraftfahrzeuge
WO1999024837A1 (de) Kugellager mit integriertem sensor
WO2020216389A1 (de) Messsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20041015

17Q First examination report despatched

Effective date: 20041203

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060621

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004000784

Country of ref document: DE

Date of ref document: 20060803

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060911

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061121

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2266985

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070322

BERE Be: lapsed

Owner name: MANN+HUMMEL G.M.B.H.

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070202

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070202

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061222

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110302

Year of fee payment: 8

Ref country code: DE

Payment date: 20110218

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110217

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004000784

Country of ref document: DE

Effective date: 20120901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120202

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120224

Year of fee payment: 9

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130203