EP2516967A2 - Magnetfeldsensoranordnung zur wegerfassung an beweglichen bauteilen - Google Patents

Magnetfeldsensoranordnung zur wegerfassung an beweglichen bauteilen

Info

Publication number
EP2516967A2
EP2516967A2 EP10768240A EP10768240A EP2516967A2 EP 2516967 A2 EP2516967 A2 EP 2516967A2 EP 10768240 A EP10768240 A EP 10768240A EP 10768240 A EP10768240 A EP 10768240A EP 2516967 A2 EP2516967 A2 EP 2516967A2
Authority
EP
European Patent Office
Prior art keywords
magnetic field
field sensor
magnet
sensor arrangement
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10768240A
Other languages
English (en)
French (fr)
Inventor
Wolfgang Welsch
Michael Kleinknecht
Mathias Kimmerle
Klaus Walter
Juergen Kissner
Joerg Siedentopf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2516967A2 publication Critical patent/EP2516967A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/2291Linear or rotary variable differential transformers (LVDTs/RVDTs) having a single primary coil and two secondary coils

Definitions

  • the invention relates to a magnetic field sensor arrangement for path detection on rotationally and / or linearly moved components, in which spatial components of a magnetic field change over the path to be detected and can be detected accordingly, according to the features of claim 1. that for example in speed and position sensors, as z.
  • a rotational movement or position change is detected by a rotation or the change in position corresponding change in a magnetic field.
  • magnetic sensors known per se are generally used, which depending on the application and field of application can be Hall sensors, AMR sensors, GMR sensors, TMR sensors or, in general, XMR sensors.
  • the invention is therefore based on a magnetic field sensor arrangement for detecting the position of moving components, in which spatial components of the magnetic field of a magnetic component or magnet system on the moving component change in their direction over the path to be detected on the magnetic component and thereby the relative position A sensor can be detected accordingly.
  • the magnetic field of the magnetic component is at a predetermined angle between the axial direction and radial alignment with the direction of movement of the moving component is aligned.
  • the angular range of the detectable magnetic field directions can be up to 200 ° in the course of the path detection.
  • a magnetized component on an actuating element for. B. in vehicle braking systems, be mounted that at least in a further axis in addition to a linear direction to be detected, usually rotatable or in any other degree of freedom moves.
  • the invention is also suitable for cramped installation situations in a motor vehicle and, on the other hand, can also be used outside of vehicle brake systems in a wide variety of applications.
  • sensors with an XMR effect or Hall sensors are used, each detecting the changing in the course of the linear movement or a movement in other degrees of freedom direction of the magnetic field.
  • the angle to the linear direction of movement of the component moved in rotation is advantageously in the range of 45 ° in a preferred exemplary embodiment.
  • the magnetic circuit has at least one magnetization direction which is different from the axis of the movement direction but is not perpendicular to the axis of the movement direction. Due to this so-called oblique direction of the magnetic field, a magnetic field is generated on the sensor, which has a relatively wide measuring range with regard to the detectable directional differences of the field lines.
  • the magnetic field directions of these magnets may also differ from one another.
  • this magnetic circuit is rotationally symmetrical and is thus rotatable about the axis of the direction of movement, but without causing a change in the direction of the magnetic field on the scanning sensor during the rotation.
  • the magnetic circuit for the magnetic field sensor according to the invention thus preferably also consists of at least one magnet which is rotatable about the axis of the linear direction of motion and generates a magnetic field which continuously and monotonously changes the magnetic field direction over the linear path to be measured.
  • the magnet system can be shorter than the measuring path.
  • a relatively short magnetic field sensor with a likewise relatively short magnet system can be realized, but a relatively long measuring path (magnetic field sensor and magnet system are shorter than the measuring path) for applications with limited space can be achieved. Nevertheless, the magnetic circuit described here produces a maximum detectable change in the magnetic field orientation over the measuring path.
  • the invention can be implemented with a flexible magnet system with regard to the number of magnets, the magnetization directions (individually or in combination) and permits use in different installation spaces, in different applications and with different measurement paths. Short description of the drawing
  • FIG. 1 shows a schematic representation of a so-called oblique magnetization of two individual magnets and a sensor scanning the magnetic field direction.
  • Figure 2 is a schematic representation of a so-called oblique magnetization of a single magnet and a magnetic field scanning sensor.
  • FIG. 3 shows an exemplary embodiment of an arrangement for measuring pedal travel in a motor vehicle with a magnetic field sensor arrangement according to the invention.
  • FIG. 4 shows a detailed view of a ring magnet of the magnetic field sensor arrangement according to FIG. 3.
  • a magnetic circuit shown schematically in FIG. 1 to explain the invention consists of two individual magnets 1 and 2 whose magnetic field lines 3 and 4, which are inclined here in the preferred direction, are shown schematically.
  • the magnetic field lines 3 or 4 intersect a magnetic-field-sensitive sensor 5 (here a field line 3 in the case shown), wherein it can be seen that the direction of the respective field lines 3 or 4 depends on which relative position the sensor 5 is on the linear path 6 of the magnetic circuit is currently located. If one now uses a sensor 5, for example an XMR sensor or a Hall sensor, whose output signal is currently dependent on the direction of the intersecting magnetic field lines 3 or 4, a relative position determination between the magnetic circuit with the magnets 1, 2 is with this basic arrangement and the sensor 5 possible.
  • FIG. 2 shows a further possibility of such a position determination with a single magnet 7 which is magnetized obliquely in the preferred direction and whose magnetic Field lines 8 here in the same way as in the figure 1 depending on the direction of the cutting magnetic field lines 8 allow a relative position determination between the magnet 7 and the sensor 5.
  • FIG. 3 shows an exemplary embodiment of a magnetic field sensor arrangement according to the invention, for example for the detection of pedal travel in a vehicle brake system, in which a sensor housing 10 accommodates a magnetic-field-sensitive sensor corresponding to the sensor 5 according to the previously described figures.
  • the magnetic circuit here has two ring magnets 11 and 12, which are rotatably movable on a rotational axis 13 and along the axis of rotation 13 linearly.
  • FIG. 4 shows, as a more detailed exemplary embodiment, the ring magnet 11 (or corresponding to FIG. 12), which is magnetized here in the preferred direction 14 at an angle, for example at 45 ° to the rotation axis 13 according to FIG.

Abstract

Es wird eine Magnetfeldsensoranordnung zur Wegerfassung an bewegten Bauteilen vorgeschlagen, bei der räumliche Komponenten des magnetischen Feldes eines Magnetsystems am bewegten Bauteil sich in ihrer Richtung über dem zu erfassenden Weg (6) ändern und dadurch deren Position gegenüber einem ortsfesten Sensor (5) entsprechend detektierbar ist. An dem linear und in einem weiteren Freiheitsgrad beweglichen Bauteil befindet sich mindestens ein Magnet (3,4;7;11,12;14) als Bestandteil des Magnetsystems oder ein sonstiges magnetisches Bauteil, dessen äußerem Umfang in einem vorgegebenen Abstand gegenüberliegend mindestens ein ortsfester magnetfeldrichtungsempfindlicher Sensor (5) zugeordnet ist, wobei die Vorzugsrichtung des Magnetfeldes des Magneten (3,4;7;11,12;14) in einem vorgegebenen Winkel zum Weg (6) zwischen null und kleiner 90° des bewegten Bauteils ausgerichtet ist.

Description

Beschreibung
Magnetfeldsensoranordnung zur Wegerfassung an beweglichen Bauteilen
Stand der Technik
Die Erfindung betrifft eine Magnetfeldsensoranordnung zur Wegerfassung an rotatorisch und/oder linear bewegten Bauteilen, bei der räumliche Komponenten eines magnetischen Feldes sich über dem zu erfassenden Weg ändern und entsprechend detek- tierbar sind, nach den gattungsgemäßen Merkmalen des Anspruchs 1. Es ist allgemein bekannt, dass zum Beispiel bei Drehzahl- und Positionssensoren, wie sie z. B. zur Steuerung von Motoren oder auch in Getriebe- oder Fahrdynamiksteuerungen bei Kraftfahrzeugen eingesetzt werden, eine Drehbewegung oder Positionsänderung durch eine der Drehung oder der Positionsänderung entsprechenden Veränderung eines magnetischen Feldes erfasst wird. Hierbei werden dann in der Regel an sich bekannte Magnetsensoren eingesetzt, die je nach Anwendung und Einsatzbereich Hallsensoren, AMR-Sensoren, GMR-Sensoren, TMR-Sensoren oder allgemein XMR- Sensoren sein können.
Es ist beispielsweise aus der EP 0 0997 706 Bl bekannt, dass zur Erfassung einer linearen Position zwischen einem magnetischen Körper und einem im Hinblick auf die Magnetisierungsrichtung magnetfeldempfindlichen Sensor, der magnetische Körper im Verlauf des zu erfassenden Weges so ausgebildet ist, dass dieser über seine Länge verteilt Magnetfeldlinien in einem variierenden Winkel zur Bewegungsrichtung aufweist. Somit kann die Position, in der sich der Sensor gegenüber dem magnetischen Körper befindet, aufgrund der jeweiligen Magnetfeldrichtung bestimmt werden. Aus der DE 199 37 206 C2 ist weiterhin bekannt, dass ein relativ zu magnetfeldempfindlichen Sensoren bewegbarerer Maßstab eine Vielzahl von einzelnen Magneten aufweist, deren Nord- und Südpole längs des Maßstabes unterschiedlich ausgerichtet sind. Es sind bisher solche Sensoranordnungen für relativ lange Messwegerfassung gebräuchlich, wobei entweder der Sensor länger ist, als der Messweg mit aufeinanderfolgenden Messelementen entlang des Messwegs oder der Messweg ist gegenüber dem Sensor relativ lang. In beiden Fällen ergeben sich oft Probleme bei der Integration in beengte Bauräume, wie es beim Einbau in Kraftfahrzeugen, zum Beispiel bei einem Pedalweggeber beim Brems- oder Gaspedal oft der Fall ist.
Offenbarung der Erfindung
Es kann somit als eine Aufgabe der Erfindung angesehen werden, eine räumlich opti- mierte Integration einer Gebereinheit zur Wegerfassung in verschiedenen Betätigungseinrichtungen zu ermöglichen. Die Erfindung geht daher von einer Magnetfeldsensoranordnung zur Wegerfassung von bewegten Bauteilen aus, bei der räumliche Komponenten des magnetischen Feldes eines magnetischen Bauteils oder Magnetsystems am bewegten Bauteil sich in ihrer Richtung über dem zu erfassenden Weg am magne- tischen Bauteil ändern und dadurch die relative Position zu einem Sensor entsprechend detektierbar ist. Erfindungsgemäß befindet sich an dem im wesentlichen linear- oder auch drehbeweglichen Bauteil mindestens ein Magnet oder magnetisches Bauteil, dessem äußerem Umfang in einem vorgegebenen Abstand gegenüberliegend mindestens ein ortsfester magnetfeldempfindlicher Sensor zugeordnet ist, wobei das Magnet- feld des magnetischen Bauteils in einem vorgegebenen Winkel zwischen axialer und radialer Ausrichtung zur Bewegungsrichtung des bewegten Bauteils ausgerichtet ist. Der Winkelbereich der detektierbaren Magnetfeld richtungen kann hierbei im Verlauf der Wegerfassung bis zu 200° betragen.
Beispielsweise kann bei einer Verwendung der erfindungsgemäßen Magnetfeldsen- soranordnung bei einer Pedal wegerfassung in einem Kraftfahrzeug ein magnetisiertes Bauteil auf einem Betätigungselement, z. B. bei Fahrzeugbremssystemen, montiert sein, dass sich mindestens in einer weiteren Achse zusätzlich zu einer zu detektieren- den linearen Richtung, meist drehbeweglich oder in einem sonstigen Freiheitsgrad, bewegt. Damit ist die Erfindung auch für beengte Einbausituationen in einem Kraftfahr- zeug geeignet und andererseits aber auch bei vielfältigen Applikationen auch außerhalb von Fahrzeugbremssystemen einsetzbar.
In vorteilhafter Weise werden zur Messung der räumlichen Komponenten des magnetischen Feldes als Magnetfeldsensoren Sensoren mit Ausnutzung eines XMR -Effekts oder Hallsensoren eingesetzt, die jeweils die sich im Verlauf der linearen Bewegung oder einer Bewegung in sonstigen Freiheitsgraden sich ändernde Richtung des Magnetfeldes detektieren.
Bei der erfindungsgemäßen Magnetfeldsensoranordnung liegt der Winkel zur linearen Bewegungsrichtung des rotatorisch bewegten Bauteils bei einem bevorzugten Ausführungsbeispiel in vorteilhafter Weise im Bereich von 45°. Damit weist der Magnetkreis mindestens eine Magnetisierungsrichtung auf, die zur Achse der Bewegungsrichtung unterschiedlich ist, aber nicht senkrecht zur Achse der Bewegungsrichtung steht. Durch diese sogenannte schräge Richtung des Magnetfeldes wird am Sensor ein Ma- gnetfeld generiert, das einen relativ weiten Messbereich hinsichtlich der detektierbaren Richtungsunterschiede der Feldlinien aufweist. Bei Verwendung von mindestens zwei Magneten können die Magnetfeldrichtungen dieser Magneten jedoch auch noch voneinander abweichen.
Weist das bewegte Bauteil einen Ringmagneten auf, so ist dieser Magnetkreis rotati- onssym metrisch ausgeführt und ist damit um die Achse der Bewegungsrichtung drehbar, aber ohne eine Änderung der Magnetfeldrichtung am abtastenden Sensor bei der Drehung herbeizuführen.
Der Magnetkreis für den erfindungemäßen Magnetfeldsensor besteht somit vorzugsweise auch aus mindestens einem um die Achse der linearen Bewegungsrichtung drehbeweglichen Magneten, der ein Magnetfeld generiert, das die Magnetfeldrichtung über den zu messenden linearen Weg kontinuierlich und monoton stetig verändert. Insbesondere bei langen Messwegen kann somit das Magnetsystem kürzer sein als der Messweg.
Mit der Erfindung ist ein relativ kurzer Magnetfeldsensor mit einem ebenfalls relativ kurzem Magnetsystem realisierbar, wobei jedoch ein relativ langer Messweg (Magnetfeldsensor und Magnetsystem sind kürzer als der Messweg) für Applikationen mit beengtem Bauraum erreichbar ist. Trotzdem erzeugt der hier beschriebene Magnetkreis eine größtmögliche detektierbare Änderung der Magnetfeldorientierung über den Messweg. Die Erfindung ist mit einem flexibles Magnetsystem hinsichtlich der Anzahl der Magneten, der Magnetisierungsrichtungen (einzeln oder in Kombination) realisierbar und erlaubt einen Einsatz in unterschiedlichen Bauräumen, bei unterschiedlichen Applikationen und mit unterschiedlichen Messwegen. Kurze Beschreibung der Zeichnung
Ausführungsbeispiele der Erfindung werden im Folgenden anhand der Figuren der Zeichnung näher beschrieben. Es zeigen:
Figur 1 eine schematische Darstellung einer sogenannten Schrägmagnetisierung von zwei Einzelmagneten und einem die Magnetfeldrichtung abtastenden Sensor.
Figur 2 eine schematische Darstellung einer sogenannten Schrägmagnetisierung eines Einzelmagneten und einem die Magnetfeldrichtung abtastenden Sensor.
Figur 3 ein Ausführungsbeispiel einer Anordnung zur Pedalwegmessung bei einem Kraftfahrzeug mit einer erfindungsgemäßen Magnetfeldsensoranordnung.
Figur 4 eine detaillierte Ansicht eines Ringmagneten der Magnetfeldsensoranordnung nach der Figur 3.
Ausführungsformen der Erfindung
Ein in Figur 1 zur Erläuterung der Erfindung schematisch dargestellter Magnetkreis besteht aus zwei einzelnen Magneten 1 und 2, deren hier in der Vorzugsrichtung schräg verlaufendende magnetische Feldlinien 3 und 4 schematisch gezeigt sind. Die magnetischen Feldlinien 3 oder 4 schneiden einen magnetfeldempfindlichen Sensor 5 (hier im gezeigten Fall eine Feldlinie 3), wobei erkennbar ist, dass die Richtung der jeweiligen Feldlinien 3 oder 4 davon abhängig ist, in welcher relativen Position sich der Sensor 5 auf der linearen Wegstrecke 6 des Magnetkreises gerade befindet. Verwendet man nun einen Sensor 5, zum Beispiel einen XMR-Sensor oder einen Hallsensor, dessen Ausgangssignal gerade von der Richtung der schneidenden Magnetfeldlinien 3 oder 4 abhängig ist, so ist mit dieser prinzipiellen Anordnung eine relative Positionsbestimmung zwischen dem Magnetkreis mit den Magneten 1,2 und dem Sensor 5 möglich.
Figur 2 zeigt eine weitere Möglichkeit einer solchen Positionsbestimmung mit einem in der Vorzugsrichtung schräg magnetisierten Einzelmagneten 7, dessen magnetische Feldlinien 8 hier in gleicher Weise, wie bei der Figur 1 abhängig von der Richtung der schneidenden Magnetfeldlinien 8 eine relative Positionsbestimmung zwischen dem Magneten 7 und dem Sensor 5 ermöglichen.
In Figur 3 ist ein Ausführungsbeispiel einer erfindungsgemäßen Magnetfeldsensoran- Ordnung gezeigt, zum Beispiel für die Pedalwegerfassung in einem Fahrzeugbremssystem, bei der in einem Sensorgehäuse 10 ein magnetfeldempfindlicher Sensor entsprechend dem Sensor 5 nach den vorhergehend beschriebenen Figuren, untergebracht ist. Der Magnetkreis weist hier zwei Ringmagneten 11 und 12 auf, die auf einer Drehachse 13 drehbeweglich und längs der Drehachse 13 linear bewegbar sind.
Figur 4 zeigt als detaillierteres Ausführungsbeispiel den Ringmagneten 11 (oder entsprechend 12), der hier in der Vorzugsrichtung 14 schräg, zum Beispiel in 45° zur Drehachse 13 nach der Figur 3, magnetisiert ist.

Claims

Ansprüche
Magnetfeldsensoranordnung zur Wegerfassung an bewegten Bauteilen, bei der räumliche Komponenten des magnetischen Feldes eines Magnetsystems am bewegten Bauteil sich in ihrer Richtung über dem zu erfassenden Weg (6) ändern und dadurch deren Position gegenüber einem ortsfesten Sensor (5) entsprechend detektierbar ist, dadurch gekennzeichnet, dass an dem linear und in einem weiteren Freiheitsgrad beweglichen Bauteil sich mindestens ein Magnet (3,4;7;11,12;14) als Bestandteil des Magnetsystems oder ein sonstiges magnetisches Bauteil befindet, dessen äußerem Umfang in einem vorgegebenen Abstand gegenüberliegend mindestens ein ortsfester magnetfeldrichtungsempfindlicher Sensor (5) zugeordnet ist, wobei die Vorzugsrichtung des Magnetfeldes des Magneten (3,4;7;11,12;14) in einem vorgegebenen Winkel zum Weg (6) zwischen null und kleiner 90° des bewegten Bauteils ausgerichtet ist.
Magnetfeldsensoranordnung nach Anspruch 1, dadurch gekennzeichnet, dass der weitere Freiheitsgrad eine Drehbewegung um eine Drehachse (13) des beweglichen Bauteils umfasst.
Magnetfeldsensoranordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der vorgegebene Winkel der Vorzugsrichtung des Magnetfeldes des Magneten (3,4;7;11,12;14) 45° beträgt.
Magnetfeldsensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Messung der räumlichen Komponenten des magnetischen Feldes der mindestens eine Magnetfeldsensor ein Sensor (5) mit Auswertung eines XMR- Effekts oder ein Hallsensor ist.
Magnetfeldsensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Mehrzahl von hinsichtlich ihrer Magnetisierung auch unterschiedlich ausgerichteter einzelner Magnete am Umfang des bewegten Bauteils angeordnet sind.
6. Magnetfeldsensoranordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass am bewegten Bauteil mindestens ein Ringmagnet (11,12) angeordnet ist, der im Verlauf seines Umfangs eine Magnetfeld richtung auf- weist, deren Vorzugsrichtung in einem vorgegebenen Winkel zum Weg (6) zwischen null und kleiner 90° des bewegten Bauteils ausgerichtet ist.
7. Verwendung einer Magnetfeldsensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Magnetfeldsensoranordnung bei einer Pedalwegerfassung in einem Kraftfahrzeug angewendet wird.
EP10768240A 2009-12-21 2010-10-22 Magnetfeldsensoranordnung zur wegerfassung an beweglichen bauteilen Withdrawn EP2516967A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910055104 DE102009055104A1 (de) 2009-12-21 2009-12-21 Magnetfeldsensoranordnung zur Wegerfassung an beweglichen Bauteilen
PCT/EP2010/065925 WO2011085833A2 (de) 2009-12-21 2010-10-22 Magnetfeldsensoranordnung zur wegerfassung an beweglichen bauteilen

Publications (1)

Publication Number Publication Date
EP2516967A2 true EP2516967A2 (de) 2012-10-31

Family

ID=44149001

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10768240A Withdrawn EP2516967A2 (de) 2009-12-21 2010-10-22 Magnetfeldsensoranordnung zur wegerfassung an beweglichen bauteilen

Country Status (5)

Country Link
EP (1) EP2516967A2 (de)
JP (1) JP5606550B2 (de)
CN (2) CN102686980B (de)
DE (1) DE102009055104A1 (de)
WO (1) WO2011085833A2 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009055104A1 (de) * 2009-12-21 2011-06-22 Robert Bosch GmbH, 70469 Magnetfeldsensoranordnung zur Wegerfassung an beweglichen Bauteilen
US9448087B2 (en) * 2011-10-10 2016-09-20 Methode Electronics, Inc. Contactless magnetic linear position sensor
DE102012214916A1 (de) 2012-08-22 2014-03-20 Robert Bosch Gmbh Sensoranordnung zur Erfassung von Drehwinkeln an einem drehbewegten Bauteil
DE102012220139A1 (de) 2012-11-06 2014-05-08 Robert Bosch Gmbh Magnetische Messanordnung und korrespondierende Sensoranordnung zur Bewegungserfassung eines bewegten Bauteils
KR101801536B1 (ko) * 2013-05-13 2017-11-27 주식회사 만도 페달 스트로크 센서의 설치구조
JP5946796B2 (ja) * 2013-05-29 2016-07-06 ファナック株式会社 回転機械の回転を検出する回転検出器、および回転検出器を備えるシステム
CN104667427B (zh) * 2013-11-29 2019-02-01 上海联影医疗科技有限公司 多叶光栅的叶片位置监测装置、多叶光栅、放疗设备
DE102014205566A1 (de) * 2014-03-26 2015-10-01 Robert Bosch Gmbh Sensoranordnung zur Wegerfassung an einem bewegten Bauteil
CN105526852B (zh) * 2014-09-30 2019-07-12 泰科电子(上海)有限公司 空挡倒挡位置感测传感器和系统
CN105270559A (zh) * 2014-10-22 2016-01-27 天津比沃科技有限公司 电动自行车变速机构的检测机构及电动自行车的变速方法
DE102014116115A1 (de) 2014-11-05 2016-05-12 Pierburg Gmbh Magnet-basiertes Messsystem zur Erfassung einer Bewegung und/oder Winkelposition eines Bauelements
DE102015205390A1 (de) 2015-03-25 2016-09-29 Robert Bosch Gmbh Sensoranordnung zur Drehzahlerfassung eines rotierenden Bauteils
CN105852872B (zh) * 2016-03-25 2019-09-20 京东方科技集团股份有限公司 一种应用于关节处的传感器装置及假肢系统
CN107966982B (zh) * 2016-10-18 2021-02-09 苏州宝时得电动工具有限公司 碰撞触发装置以及割草机
DE102017222674A1 (de) * 2016-12-29 2018-07-05 Robert Bosch Gmbh Wegsensor
DE102017202365A1 (de) * 2017-02-15 2018-08-16 Robert Bosch Gmbh Sensoreinrichtung
DE102017206025A1 (de) * 2017-04-07 2018-10-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Magnetische Anordnung zur Erfassung von Relativbewegungen oder Relativpositionen
EP3428582B1 (de) * 2017-07-11 2020-03-04 Sick Ag Sensor
DE102017222063A1 (de) * 2017-12-06 2019-06-06 Dr. Johannes Heidenhain Gmbh Induktive Positionsmesseinrichtung
DE102018220639A1 (de) * 2018-11-29 2020-06-04 TE Connectivity Sensors Germany GmbH Vorrichtung zur Messung einer Position eines entlang einer Bewegungsrichtung linear beweglichen Objekts, insbesondere Bremspedalsensor
DE102019112572A1 (de) * 2019-05-14 2020-11-19 HELLA GmbH & Co. KGaA Vorrichtung und Verfahren zur kontaktlosen Bestimmung einer Position eines Pedals
CN111163372A (zh) * 2019-12-28 2020-05-15 Oppo广东移动通信有限公司 网络设备
CN113587793B (zh) * 2020-04-30 2023-11-07 财团法人金属工业研究发展中心 扣件成型机的测量系统
CN112880539A (zh) * 2021-01-19 2021-06-01 天津中科华誉科技有限公司 一种非接触式位置检测装置
JP7444143B2 (ja) 2021-07-20 2024-03-06 Tdk株式会社 磁気センサ装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258006A (ja) * 1993-03-02 1994-09-16 Seiko Epson Corp 変位センサ
US6559638B1 (en) * 1998-06-22 2003-05-06 Koninklijke Philips Electronics N.V. Magnetic positioning detector using field direction as primary detecting means
DE19849613A1 (de) 1998-10-28 2000-05-04 Philips Corp Intellectual Pty Anordnung zur Messung einer relativen linearen Position
DE19937206C2 (de) 1999-06-11 2003-05-08 Siemens Ag Positionsbestimmungseinrichtung sowie Verwendung einer Positionsbestimmungseinrichtung und Verfahren zum Herstellen eines Maßstabes für eine solche Einrichtung
EP1074818A3 (de) * 1999-08-06 2001-10-31 Siemens Aktiengesellschaft Positionsbestimmungseinrichtung
JP2001280908A (ja) * 2000-03-29 2001-10-10 Sony Precision Technology Inc 位置検出装置
US6577123B2 (en) * 2001-06-04 2003-06-10 Delphi Technologies, Inc. Linear position sensor assembly
US7166996B2 (en) * 2003-02-14 2007-01-23 Bei Sensors And Systems Company, Inc. Position sensor utilizing a linear hall-effect sensor
DE102004063539A1 (de) * 2004-03-11 2005-09-29 Robert Bosch Gmbh Magnetsensoranordnung
DE102004011809A1 (de) * 2004-03-11 2005-09-29 Robert Bosch Gmbh Magnetsensoranordnung
DE102004057909A1 (de) * 2004-11-30 2006-06-01 Bourns, Inc., Riverside Linearer Positionssensor
US8299782B2 (en) * 2005-04-19 2012-10-30 Panasonic Corporation Position sensor, optical head device, head moving mechanism, information recording and reproduction device and position control system
JP4787601B2 (ja) * 2005-11-08 2011-10-05 株式会社東海理化電機製作所 位置検出装置
FR2894023B1 (fr) * 2005-11-29 2008-02-22 Electricfil Automotive Soc Par Capteur magnetique de position pour un mobile ayant une course lineaire limitee
JP4831813B2 (ja) * 2006-01-30 2011-12-07 株式会社村上開明堂 位置検出装置および自動車用ミラーの鏡面角度検出装置
EP2137499B1 (de) * 2006-12-21 2017-03-15 Micro-Epsilon Messtechnik GmbH & Co. KG Verfahren und sensoranordnung zum bestimmen der position und/oder positionsänderung eines messobjekts relativ zu einem sensor
DE102009055104A1 (de) * 2009-12-21 2011-06-22 Robert Bosch GmbH, 70469 Magnetfeldsensoranordnung zur Wegerfassung an beweglichen Bauteilen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011085833A2 *

Also Published As

Publication number Publication date
CN102686980A (zh) 2012-09-19
DE102009055104A1 (de) 2011-06-22
JP2013515234A (ja) 2013-05-02
CN102686980B (zh) 2016-06-15
JP5606550B2 (ja) 2014-10-15
WO2011085833A2 (de) 2011-07-21
CN105509775A (zh) 2016-04-20
WO2011085833A3 (de) 2011-09-15
CN105509775B (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
EP2516967A2 (de) Magnetfeldsensoranordnung zur wegerfassung an beweglichen bauteilen
EP2888559B1 (de) Sensoranordnung zur erfassung von drehwinkeln an einem drehbewegten bauteil
EP1656268A1 (de) Kugelgelenk mit schwenkwinkelsensor
EP2748053B1 (de) Kombinierter lenkmoment-lenkwinkelsensor
DE102013205901B4 (de) Schaltvorrichtung eines Fahrzeuggangräderwechselgetriebes
DE102017222676A1 (de) Wegsensor
DE102012220139A1 (de) Magnetische Messanordnung und korrespondierende Sensoranordnung zur Bewegungserfassung eines bewegten Bauteils
WO2013186001A1 (de) Magnetgeberring einer rotorlagesensorik eines elektrisch kommutierten elektromotors
WO2015144377A1 (de) Sensoranordnung zur wegerfassung an einem bewegten bauteil
EP2764340B1 (de) Sensoranordnung
WO2008141860A1 (de) Vorrichtung zur berührungslosen erfassung von linear- oder rotationsbewegungen
EP2101157A2 (de) Magnetischer Drehwinkelsensor
EP2524193B1 (de) Redundante anordnung zur bestimmung der winkellage eines drehbar gelagerten tells
EP1131605B1 (de) Messvorrichtung zur berührunglosen erfassung eines drehwinkels
DE102012221327A1 (de) Sensorvorrichtung zur Bestimmung mindestens einer Rotationseigenschaft eines rotierenden Elements
DE102013205071B4 (de) Schaltvorrichtung für ein Zahnräderwechselgetriebe eines Kraftfahrzeugs und Linearwälzlager mit einer Schaltvorrichtung
DE10228663A1 (de) Anordnung zum Bestimmen der Lage eines Körpers
DE102014116115A1 (de) Magnet-basiertes Messsystem zur Erfassung einer Bewegung und/oder Winkelposition eines Bauelements
DE102005040168A1 (de) Sensoranordnung
DE102018106438A1 (de) Sensoranordnung mit einem Multipolencoder sowie Rotationslager mit einer solchen Sensoranordnung
EP3583388A1 (de) Sensoreinrichtung
EP1867956B1 (de) Vergrösserung des Wirkabstandes bei magnetischen Sensoren mittels eines Stützfeldes
DE102007052978A1 (de) Anordnung zur Erfassung eines Drehwinkels
DE102011121870B4 (de) Magnetsensoranordnung
DE102017211996A1 (de) Sensoreinheit und Anordnung zur Erfassung der Position eines Bauteils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120723

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150624

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151105