EP1444065B1 - Procede de production d'alliages intermetalliques (ingots) - Google Patents

Procede de production d'alliages intermetalliques (ingots) Download PDF

Info

Publication number
EP1444065B1
EP1444065B1 EP02783083A EP02783083A EP1444065B1 EP 1444065 B1 EP1444065 B1 EP 1444065B1 EP 02783083 A EP02783083 A EP 02783083A EP 02783083 A EP02783083 A EP 02783083A EP 1444065 B1 EP1444065 B1 EP 1444065B1
Authority
EP
European Patent Office
Prior art keywords
cold wall
crucible
melting
homogenized
ingots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02783083A
Other languages
German (de)
English (en)
Other versions
EP1444065A2 (fr
Inventor
Matthias Blum
Georg Jarczyk
Anita Chatterjee
Willy FÜRWITT
Volker GÜTHER
Helmut Clemens
Heinz Danker
Rainer Gerling
Friedhelm Sasse
Frank-Peter Schimansky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GfE Gesellschaft fuer Elektrometallurgie mbH
ALD Vacuum Technologies GmbH
GKSS Forshungszentrum Geesthacht GmbH
Original Assignee
GfE Gesellschaft fuer Elektrometallurgie mbH
ALD Vacuum Technologies GmbH
GKSS Forshungszentrum Geesthacht GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GfE Gesellschaft fuer Elektrometallurgie mbH, ALD Vacuum Technologies GmbH, GKSS Forshungszentrum Geesthacht GmbH filed Critical GfE Gesellschaft fuer Elektrometallurgie mbH
Publication of EP1444065A2 publication Critical patent/EP1444065A2/fr
Application granted granted Critical
Publication of EP1444065B1 publication Critical patent/EP1444065B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/06Melting-down metal, e.g. metal particles, in the mould
    • B22D23/10Electroslag casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals

Definitions

  • the invention relates to a novel melt metallurgical process for the cost-effective production of blocks of metallic and intermetallic alloys (ingots) with high chemical and structural homogeneity, in particular ⁇ -TiAl ingots.
  • the intermetallic alloys based on ⁇ -TiAl have made the leap from the development laboratory into industrial applications in aerospace and automotive racing in the year 2000.
  • the advantageous high-temperature properties in combination with a low weight enable their use in the aerospace industry.
  • the high temperature and corrosion resistance makes the material interesting for fast moving components in machines, eg for valves in internal combustion engines or for blades in gas turbines.
  • the properties of this material depend on the chemical and structural homogeneity of a material previously unknown in structural materials. Consequently, the production of correspondingly high-quality ingots is technically very demanding and expensive. Homogeneous ingots are required for various process routes for the production of further semi-finished products or components made of TiAl as starting material (cf. H. Clemens and H.
  • the currently used technical alloys based on ⁇ -TiAl have a multiphase structure and, in addition to the ordered tetragonal ⁇ -TiAl as the main phase, contain the ordered hexagonal ⁇ 2 -Ti 3 Al, typically in an amount of 5-15 vol.%.
  • Refractory metals as alloying elements can be used to form a metastable krz phase, which occurs either as ⁇ -phase (disordered) or as B2 phase (ordered). These alloying additives improve the oxidation resistance and creep resistance.
  • Si, B and C serve in small amounts to increase the strength of the cast structure (cf. B. Inkson and H. Clemens (1999), MRS Symp. Proc. 552, KK3.12 ; S.
  • TiAl alloys are usually produced by repeated remelting in a vacuum arc furnace (see Figure 1) as ingots (VAR-Vacuum Arc Remelting).
  • VAR-Vacuum Arc Remelting a vacuum arc furnace
  • a pressed electrode containing all alloying components melted by increasing their diameter.
  • a fundamental problem arises from occurring inhomogeneities in the alloy composition of ⁇ -TiAl ingots.
  • a comparison of the Al content in double and triple remelted ⁇ -TiAl ingot material shows that even in twice remelted ⁇ -TiAl ingot local fluctuations of the Al content of ⁇ 2 at.% Are observed (see Figure 2).
  • To set sufficient alloy homogeneity a triple remelting in the VAR system is necessary (cf. Güther, A. Otto, H.
  • Kestler and H. Clemens (1999) in Gamma Titanium Aluminides, ed. Y.-W. Kim, DM Dimiduk and MH Loretto, (TMS Warrendale, PA, USA 1999 ) 225-230 ; V. Güther, Properties, Processing and Applications of ⁇ -TiAl, Proc. 9th Ti World Conference, 08-11 Jun. 1999, St. Louis and V. Güther, H. Kestler, H. Clemens and R. Gerling, Recent Improvements in ⁇ -TiAl Ingot Metallurgy, Proc. Of the Aeromat 2000 Conference and Exhibition, (Seattle, WA, June 2000 ).
  • titanium alloy ingots include electron beam melting in the cold hearth and plasma arc cold hearth melting (PACHM). While electron beam melting (see Figure 3 above) has found industrial application only for pure unalloyed titanium, the PACHM process (see Figure 3, below) is used for the production of titanium alloys and also ⁇ -TiAl ingots. Here, the starting material is melted in the cold crucible through a plasma torch and the liquid melt fed via a torch system fired with plasma torches a likewise plasma-heated strand withdrawal. This process has hitherto led to inadequate alloy homogeneity, which can be attributed to the limits of the process (cf. W. Porter, Proceedings of 3rd Int. Symp. Structural Intermetallics, ed.
  • PACHM plasma arc cold hearth melting
  • the object of the present invention is to provide a process for the reproducible production of ⁇ -TiAl ingots of high chemical homogeneity and low porosity, which can be carried out in a simpler and cheaper manner than the VAR process described above, in which numerous melting steps are necessary to achieve the desired high homogeneity and low porosity.
  • the method should provide the opportunity to adjust the dimensions of the alloy ingots, bypassing the limitations of the VAR method described above in a technically reasonable range.
  • the process is preferably used for the production of ⁇ -TiAl based intermetallic alloy ingots, which alloys can generally be described by the following empirical formula: Ti x Al y (Cr, Mn, V) u (Zr, Cu, Nb, Ta, Mo, W, Ni) v (Si, B, C, Y) w
  • the inductive melting of the electrodes in step (iii) takes place in a high-frequency field with a frequency of preferably 70 to 300 kHz, in particular 70 to 200 kHz and preferably at temperatures of 1400 ° C to 1700 ° C, in particular 1400 ° C to 1600 ° C. to achieve uniform dripping, the electrode is rotated, with a speed of 4 rpm being preferred.
  • the lowering speed of the electrode is continuously variable from 0 to 200 mm / min.
  • the method is preferably carried out quasi-continuously in the case of inductive melting by one or more electrodes are tracked quasi-continuously, while at the same time a block is withdrawn from the cold wall induction crucible.
  • the homogenization of the melt in the cold wall induction crucible in step (iv) is preferably carried out at an overheating of 10 to 100 K, preferably from 40 to 60 K. This corresponds to temperatures of 1400 ° C to 1750 ° C, preferably 1450 ° C to 1700 ° C, depending on the alloy composition.
  • the frequency range of the coil is 4 to 20 kHz, preferably 4 to 12 kHz.
  • the cooling of the melt in the removal of the blocks in step (v) is preferably carried out with the aid of water-cooled copper segments, and the diameters of the blocks are preferably in a range of 40 to 350 mm, particularly preferably 140 to 220 mm.
  • the take-off speeds are adjustable between 5 to 10 mm / min.
  • the deduction rate must be adjusted to the drip rate (stage iii). This can be around 50 kg / h.
  • the core of the process of the invention is the continuous or quasi-continuous supply of a pre-homogenized melt of the alloy material in a cold wall induction crucible (KIT).
  • KIT cold wall induction crucible
  • the KIT loses its state of the art corresponding main function, namely the melting of material that is always charged in solid state in the KIT. It is a significant advantage of the method according to the invention that the always observed during the melting of solid, multi-phase alloys in the KIT Segregation phenomena do not occur as cause for inhomogeneities of the final material, since the material already arrives in the liquid state in the KIT.
  • Another advantage is that the frequency range of the induction coil which is advantageous for homogenizing the already molten alloy is higher than the frequency range which is advantageous for the melting of a solid alloy. Surprisingly, this significantly reduces the edge porosity of the block drawn off from the solidifying melt in the KIT and thus increases the block quality.
  • a particular advantage of the method according to the invention is that all the required dimensions of the alloy ingots can be realized by the dimensions of the cold wall induction crucibles that are freely selectable in a technically sensible framework, which is not guaranteed by the VAR technology.
  • the process is preferably carried out under vacuum or under inert gas, and non-contaminated production wastes can be recycled to the process.
  • the material loss is according to a technical embodiment of the invention still 12% compared to 35% with the conventional VAR technology.
  • the method according to the invention is a realization of local (macroscopic) variations of the main alloying elements aluminum and titanium of ⁇ 0.5 at.%; other metallic alloy components: ⁇ 0.2 at.%; Strength-increasing elements (boron, carbon, silicon): ⁇ 0.05 at.%; possible over the entire ingot.
  • Novel combinations of prior art sub-processes which are known per se and which ensure a continuous or quasi-continuous supply of liquid, pre-homogenized material into a cold-wall induction crucible for the purpose of continuous or quasi-continuous strand withdrawal from the KIT are also considered as being inventive ,
  • this relates to the combination of an inductively heated ablation device for alloy rods or alloy electrodes (inductive dripping melt) a KIT with a strand extraction device and the combination of a plasma cold wall furnace with fired gutter system, designed as a skull overflow with said KIT and said strand extraction device.
  • the inductive melting of metals is for example in the U.S. Patents 4,923,508 . 5 003 551 and 5 014 769 described.
  • the inductive melting of electrodes has also been described in connection with the production of titanium alloy powder by the so-called EIGA (Electrode Induction Melting Gas Atomization) method (see. DE-A-41 02 101 . DE-A-196 31 582 ).
  • EIGA Electrode Induction Melting Gas Atomization
  • the block deduction is also known from the prior art, in particular from the ceramic crucible.
  • the patents pertaining to this prior art relate predominantly to the block removal of non-ferrous metals (Cu, brass).
  • the patents listed above DE-A-198 52 747 and DE-A-196 50 856 however, include the block vent from the cold wall induction crucible, however, the KIT from which the block vent takes place is supplied as a solid material and not as a pre-homogenized molten material. This situation may, as described above, lead to homogeneity differences in the material withdrawn as a block.
  • the electrodes are preferably produced by pressing and / or sintering powdery or granular alloy components (cf. DE-A-196 31 582 to -584, DE-A-198 52 747 ).
  • Electrodes By means of a conventional melt metallurgical process, for example by means of the VAR technology, pressed electrodes containing all alloy constituents (Ti sponge, Al granules, master alloy granules) are melted down on diameter bars of 150 mm, for example, by enlarging the diameter. These are rods that have a low chemical homogeneity and a certain porosity. These serve as electrodes for the subsequent strand withdrawal.
  • the first technological step can be represented by two alternative ways - inductive melting or the PACHM process. Both methods have the goal of producing a pre-homogenized, molten material.
  • inductive melting the melted by a conventional method electrode using an RF coil (according to EIGA method, see DE-A-41 02 101 . DE-A-196 31 582 ) melted inductively into a KIT.
  • the system Spulel Dripping material and the shape of the coil are in close interaction.
  • According to the minimum requirements for Abschmelzraten and block diameter of the frequency range at the outer resonant circuit is 70 to 300 kHz.
  • the melting process is realized by plasma torches.
  • the plasma torches perform two functions: melting the source material and maintaining constant ambient conditions during the block draw.
  • Starting material in the form of mechanically comminuted prealloyed compacts, is successively recharged via a hydraulic ramp into the melting chamber.
  • the cold wall crucible (“cold hearth") serves as a "disposal tool” of undesirable high density (tub bottom) and low density inclusions (floating slag) of the melt and as a "reservoir” for supplying the system crucible block vent with molten material.
  • the amperage of plasma torches above the cold hearth is between 275-550 A, but may vary depending on the type and number of plasma torches used.
  • the melt is fed to the cold wall induction crucible.
  • the stirring action of the electromagnetic field further improves the homogeneity of the melt in a larger, substantially constant molten volume.
  • the residence time of the melt in the crucible is about 20 minutes to 45 minutes.
  • Skull melting in cold wall induction crucibles (KIT) has been an industrially established technique for years. In this case, a field is generated by electromagnetic induction in a water-cooled copper crucible, which is used for heating or melting of the materials. At the same time, the Lorenz forces that occur express that Melting material partially from the crucible walls and establish a circulating flow in the melt, which leads in consequence to a good mixing of the melt phase.
  • the continuous feeding of the KIT with melted material is made possible by the connected electrode magazine, which can hold several electrodes at the same time, which are then melted one after the other.
  • the recharging of mechanically comminuted prealloyed material occurs via a hydraulic ramp.
  • the Bodenskull which in its thickness and its habit depends directly on the shape of the induction field, provides the starting point for a possible production of semi-finished products. Namely, when the soil is lowered during the process, the system reacts in such a way that a new state of equilibrium is formed and thus a new layer grows on the old soil skip.
  • the cooling of the melt during the removal of the blocks is preferably carried out with the aid of water-cooled Cu segments.
  • the block discharge from the KIT produces a chemically homogeneous and largely pore-free ingot.
  • the diameter of the KIT is freely selectable in large areas, so that a variable choice exists in Ingot diameter.
  • the take-off speeds may preferably be in a range of 0 to 50 mm / min.
  • the products produced according to the invention can be used for various purposes. First and foremost, semifinished products are produced from them in a first forming step (extrusion), which are used for further processing in the forming route (forging, rolling). Ingots of high structural and chemical quality are required for the production of ⁇ -TiAl-based components via the forming route.
  • the components are, for example, valves and turbine blades, which have an excellent property profile and must withstand the highest requirements.
  • the products of the invention can also serve as Remelter stocks for the production of cast blanks on the investment casting or centrifugal casting.
  • Remelter sticks are needed as starting material for the investment casting and centrifugal casting route.
  • the chemical and structural quality is not in the foreground, because the material - in contrast to the ingots - is melted again. Therefore, in the method according to the invention, the stage (ii) can be dispensed with and the pressed electrodes can be directly inductively melted or premixed compacts can be melted by the PACHM method.
  • the investment casting route is used to produce components with a sophisticated design and complex requirement profiles. An example of this is the already commercialized turbocharger based on ⁇ -TiAl.
  • Centrifugal casting is an inexpensive process for the production of mass components (eg valves) with a simple design and requirement profiles.
  • the production of Remelter stocks via the process according to the invention leads to products which are significantly more homogeneous than the corresponding products of the prior art, and can be produced by the block deduction in any cylindrical dimension, while in the previously used method on the dimensions the existing mold was instructed.
  • the method according to the invention it is possible to freely choose the diameter and the length of the Remelter stocks and thus to be able to immediately consider each customer request in a simple manner.
  • the example illustrates the preparation of a continuous ingot of a ⁇ -TiAl alloy with the composition Ti -46.5Al -4 (Cr, Nb, Ta, B) (reported in at .-%) with a diameter of 180 mm and a length of 2,600 mm.
  • the first step is the production of 4 single VAR-melted electrodes with a diameter of 150 mm and a length of 1,000 mm from pressing electrodes, all alloying components in the form of Ti sponge, Al granules and suitable master alloys for Cr, Nb, Ta and B included.
  • the not yet homogeneous rods serve as electrodes for the production of pre-homogenized, molten material via the inductive melting in an RF coil.
  • the electrodes are cone-shaped at the base, wherein the angle of employment is about 45 °.
  • an electrode is fed from the magazine, which holds all four electrodes, to the likewise cone-shaped HF melting-off coil and is inductively melted into a cold-wall induction crucible.
  • the melt is formed on the entire surface of the cone and converges at the apex of the cone to a melt stream in which the material is pre-homogenized.
  • the melt passes, by gravity, into the cold wall induction crucible located below the Abschmelzspule.
  • the frequency at the outer ring of the Abschmelzspule is 80.6 kHz.
  • the pre-homogenized molten material falls into a cold wall induction crucible with a bottom peel-off tray.
  • the diameter of the crucible is 180 mm.
  • the melt solidifies in the lower part of the crucible and is drawn off continuously downwards.
  • the cooling of the melt when removing the blocks is done with water-cooled copper segments.
  • the take-off speed is approx. 1 mm / min.
  • the average residence time of the melt for homogenization in the cold wall induction crucible is about 20 minutes, which corresponds to a bath height of about 160 mm.
  • the bath temperature is 1580 ° C and the frequency surrounding that of the crucible. Induction coil is applied, is 12 kHz.
  • the second electrode is moved to the required position and heated to melting, whereby the strand withdrawal is interrupted during this time. Thereafter, the process continues as described until all 4 electrodes of the magazine have melted.
  • the process can be carried out both under vacuum and under protective gas.
  • the resulting block has a diameter of about 180 mm and a total length of 2,600 mm and is characterized by a very good chemical and structural homogeneity.
  • the local variations for aluminum and titanium are less than ⁇ 0.5 at.%, Those of Cr, Nb and Ta less than ⁇ 0.2 at.% And those for B less than ⁇ 0.05 at.%.
  • Embodiment 2 differs in the manner of producing the molten material and the supply into the KIT of Embodiment 1.
  • the process is performed under He shielding gas.
  • An alternative to inductive melting offers the PACHM process (plasma arc cold hearth melting).
  • the starting material in the form of simply VAR-melted electrodes according to Example 1 by means of a He plasma torch (150kW) in a water-cooled copper crucible melted and continued via a water-cooled channel also fired with a He plasma torch (150 kW).
  • the current of the plasma torch above the cold hearth is about 500 A.
  • the liquid alloy melt flows in the material's own skull to an overflow above the KIT, from where it flows continuously into the KIT.
  • the starting material is continuously recharged via a hydraulically controlled ramp.
  • the cold crucible performs two main functions: in addition to a reservoir for pre-homogenised, molten material, it also serves as a depository for unwanted high-density and ceramic inclusions.
  • the specified technical data in the examples are not intended to limit the invention in any way.
  • the number, type and performance of the plasma torch, the material for the cold crucible, power and frequency ranges of the induction coil, diameter of the KIT, bath levels of the melts in the KIT and feed and withdrawal speeds can be varied within the scope of the prior art, without the invention is impaired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Continuous Casting (AREA)

Claims (11)

  1. Procédé de production de lingots d'alliages métalliques et intermétalliques par coulée continue ou quasi continue à partir d'un creuset à induction à paroi froide, en particulier pour la production de lingots d'alliages métalliques et intermétalliques ayant une homogénéité élevée et une faible porosité avec un diamètre réglable à volonté, caractérisé en ce qu'il est basé sur la séquence suivante :
    (i) production d'électrodes par mélange et compression habituels des matières de base sélectionnées,
    (ii) au moins une refusion unique des électrodes obtenues au cours de l'étape (i) à l'aide d'un procédé métallurgique de fusion courant,
    (iii) formation d'une matière pré-homogénéisée fondue à partir de la matière d'électrode obtenue au cours de l'étape (ii) par fusion dans un four à plasma avec creuset froid ou par fusion par induction dans une bobine de haute fréquence,
    (iv) homogénéisation de la matière pré-homogénéisée fondue obtenue au cours de l'étape (iii) dans un creuset à induction à paroi froide en amenant cette matière d'alliage à l'état fondu et pré-homogénéisé en continu ou quasiment en continu au creuset à induction à paroi froide, et
    (v) extraction de la coulée solidifiée par refroidissement de l'étape (iv) hors du creuset à induction à paroi froide sous forme de lingots avec des diamètres et des longueurs librement ajustables.
  2. Procédé selon la revendication 1, caractérisé en ce que des lingots d'alliages intermétalliques à base de γ-TiAl sont produits.
  3. Procédé selon la revendication 1 et 2, caractérisé en ce que l'on peut décrire les alliages à l'aide de la formule brute suivante :

            TixAly(Cr,Mn,V)u(Zr,Cu,Nb,Ta,Mo,W,Ni)v(Si,B,C,Y)w

    les concentrations des composants d'alliages se trouvant dans les limites suivantes (indiquées en % at.) :
    x = 100-y-u-v-w
    y = 40 à 48, de préférence 44 à 48
    u = 0,5 à 5
    v = 0,1 à 10 et
    w = 0,05 à 1.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le processus de fusion pour la formation de la matière pré-homogénéisée fondue est réalisé dans un champ de haute fréquence dans la plage de 70 à 300 kHz.
  5. Procédé selon les revendications 1 à 4,
    caractérisé en ce que la température de la matière pré-homogénéisée fondue est comprise entre 1400°C et 1600°C.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les électrodes utilisées pour la fabrication de la matière pré-homogénéisée fondue à l'aide d'une bobine d'induction pendant l'étape (iii) tournent, de préférence à une vitesse comprise entre 2 et 6 tours par minute.
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le processus est réalisé quasiment en continu du fait que, dans le cas de la fusion par induction, une ou plusieurs électrodes se suivent quasiment en continu pendant qu'un lingot est extrait du creuset à induction à paroi froide.
  8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'homogénéisation dans le creuset à induction à paroi froide au cours de l'étape (iv) est réalisée à une température de 1400°C à 1700°C.
  9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'homogénéisation dans le creuset à induction à paroi froide au cours de l'étape (iv) est réalisée dans une plage de fréquence de 4 à 20 kHz.
  10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le refroidissement de la coulée lors de l'extraction des lingots au cours de l'étape (v) est réalisé à l'aide de segments de cuivre refroidis à l'eau.
  11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que le diamètre des lingots extraits au cours de l'étape (v) se trouve dans la plage entre 40 et 350 mm.
EP02783083A 2001-11-16 2002-11-13 Procede de production d'alliages intermetalliques (ingots) Expired - Lifetime EP1444065B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10156336A DE10156336A1 (de) 2001-11-16 2001-11-16 Verfahren zur Herstellung von Legierungs-Ingots
DE10156336 2001-11-16
PCT/EP2002/012668 WO2003041896A2 (fr) 2001-11-16 2002-11-13 Procede de production d'alliages intermetalliques (ingots)

Publications (2)

Publication Number Publication Date
EP1444065A2 EP1444065A2 (fr) 2004-08-11
EP1444065B1 true EP1444065B1 (fr) 2008-01-09

Family

ID=7705996

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02783083A Expired - Lifetime EP1444065B1 (fr) 2001-11-16 2002-11-13 Procede de production d'alliages intermetalliques (ingots)

Country Status (6)

Country Link
US (1) US20060230876A1 (fr)
EP (1) EP1444065B1 (fr)
JP (1) JP4243192B2 (fr)
AU (1) AU2002346837A1 (fr)
DE (2) DE10156336A1 (fr)
WO (1) WO2003041896A2 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10329530A1 (de) * 2003-06-30 2005-02-03 Access Materials&Processes Gieß- und Erstarrungsverfahren für Bauteile aus intermetallischen Legierungen
US20110308760A1 (en) * 2009-02-09 2011-12-22 Hisamune Tanaka Apparatus for production of metallic slab using electron beam, and process for production of metallic slab using the apparatus
FR2944983B1 (fr) * 2009-04-30 2011-07-15 Cefival Procede et installation de fabrication de produits allonges en titane
DE102009050603B3 (de) * 2009-10-24 2011-04-14 Gfe Metalle Und Materialien Gmbh Verfahren zur Herstellung einer β-γ-TiAl-Basislegierung
JP5620684B2 (ja) * 2010-01-29 2014-11-05 株式会社神戸製鋼所 消耗電極式真空アーク溶解方法及びその装置
CN101831576B (zh) * 2010-06-21 2011-09-28 中南大学 一种Ti-Al-Cr-Mo合金及其板材的制备方法
JP5639548B2 (ja) * 2011-08-22 2014-12-10 株式会社神戸製鋼所 チタン鋳塊の製造方法
JP5878398B2 (ja) * 2012-03-06 2016-03-08 株式会社神戸製鋼所 チタン溶解装置
JP5918572B2 (ja) * 2012-03-06 2016-05-18 株式会社神戸製鋼所 チタン鋳塊およびチタン合金鋳塊の連続鋳造装置および連続鋳造方法
JP5848695B2 (ja) * 2012-12-28 2016-01-27 株式会社神戸製鋼所 チタン鋳塊の製造方法
DE102013020458A1 (de) 2013-12-06 2015-06-11 Hanseatische Waren Handelsgesellschaft Mbh & Co. Kg Vorrichtung und Verfahren zur Herstellung von endkonturnahen TiAl-Bauteilen
JP6234841B2 (ja) * 2014-02-24 2017-11-22 株式会社神戸製鋼所 チタンまたはチタン合金からなる鋳塊の連続鋳造装置
FR3033508B1 (fr) * 2015-03-12 2018-11-09 Safran Aircraft Engines Procede de fabrication de pieces de turbomachine, ebauche et piece finale
CN105033216B (zh) * 2015-08-26 2017-03-29 东北大学 一种厚板坯连铸过程结晶器喂钢带工艺参数的确定方法
CN108251693B (zh) * 2018-03-06 2020-09-22 中国航发北京航空材料研究院 一种高强高塑性三相TiAl合金及其制备方法
CN112746176B (zh) * 2020-12-29 2024-03-22 常州中钢精密锻材有限公司 控制esr铸锭中微量元素分布的方法及其应用
EP4450184A1 (fr) * 2021-12-30 2024-10-23 Dong-a Special Metal Co.,Ltd Appareil de fabrication de lingot de titane et procédé de fabrication de lingot de titane l'utilisant
CN115537589B (zh) * 2022-03-28 2024-01-19 洛阳双瑞精铸钛业有限公司 一种用于钛合金铸锭的eb炉与var炉双联熔炼方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3527628A1 (de) * 1985-08-01 1987-02-05 Leybold Heraeus Gmbh & Co Kg Verfahren und vorrichtung zum einschmelzen und umschmelzen von partikelfoermigen metallen zu straengen, insbesondere zu brammen
FR2646858B1 (fr) * 1989-05-11 1992-07-03 Snecma Procede de refusion de materiaux metalliques avec decantation inclusionnaire
JP3000109B2 (ja) * 1990-09-20 2000-01-17 株式会社住友シチックス尼崎 高純度シリコン鋳塊の製造方法
DE4102101C2 (de) * 1991-01-25 2003-12-18 Ald Vacuum Techn Ag Einrichtung zum Herstellen von Pulvern aus Metallen
US5370839A (en) * 1991-07-05 1994-12-06 Nippon Steel Corporation Tial-based intermetallic compound alloys having superplasticity
DE19607098C2 (de) * 1996-02-24 1999-06-17 Ald Vacuum Techn Gmbh Verfahren und Vorrichtung zum gerichteten Erstarren einer Schmelze aus Silizium zu einem Block in einem bodenlosen metallischen Kaltwandtiegel
DE19631582A1 (de) * 1996-08-05 1998-02-12 Geesthacht Gkss Forschung Verfahren zur Herstellung eines Erzeugnisses aus Legierungspulvern
US6019812A (en) * 1996-10-22 2000-02-01 Teledyne Industries, Inc. Subatmospheric plasma cold hearth melting process
DE19650856B4 (de) * 1996-12-07 2005-10-20 Ald Vacuum Techn Ag Vorrichtung und Verfahren zur Herstellung von gerichtet erstarrten Stranggußblöcken
US5823243A (en) * 1996-12-31 1998-10-20 General Electric Company Low-porosity gamma titanium aluminide cast articles and their preparation
FR2766497B1 (fr) * 1997-07-25 2001-05-11 Cogema Elaboration et tirage en continu, en creusets froids inductifs, de metaux ou d'alliages
US5972282A (en) * 1997-08-04 1999-10-26 Oregon Metallurgical Corporation Straight hearth furnace for titanium refining
DE19852747A1 (de) * 1998-11-16 2000-05-18 Ald Vacuum Techn Ag Verfahren zum Einschmelzen und Umschmelzen von Materialien zum Herstellen von homogenen Metallegierungen
US6144690A (en) * 1999-03-18 2000-11-07 Kabushiki Kaishi Kobe Seiko Sho Melting method using cold crucible induction melting apparatus
DE10024343A1 (de) * 2000-05-17 2001-11-22 Gfe Met & Mat Gmbh Bauteil auf Basis von gamma-TiAl-Legierungen mit Bereichen mit gradiertem Gefüge
US6561259B2 (en) * 2000-12-27 2003-05-13 Rmi Titanium Company Method of melting titanium and other metals and alloys by plasma arc or electron beam
US20050012252A1 (en) * 2003-07-14 2005-01-20 Kuang-O Yu Cold hearth and skull for refining metals which seal together to prevent overflow of molten metal therebetween

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AU2002346837A1 (en) 2003-05-26
DE50211532D1 (de) 2008-02-21
WO2003041896A3 (fr) 2004-06-10
JP4243192B2 (ja) 2009-03-25
JP2005508758A (ja) 2005-04-07
US20060230876A1 (en) 2006-10-19
DE10156336A1 (de) 2003-06-05
WO2003041896A2 (fr) 2003-05-22
EP1444065A2 (fr) 2004-08-11

Similar Documents

Publication Publication Date Title
EP1444065B1 (fr) Procede de production d'alliages intermetalliques (ingots)
DE69931141T2 (de) Schmelzverfahren in einer Induktion-Kalt-Schmelz-Tiegelanlage
US11603583B2 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
DE102009050603B3 (de) Verfahren zur Herstellung einer β-γ-TiAl-Basislegierung
DE2528843C2 (fr)
DE60024142T2 (de) Giesssystem und giessverfahren für hochreinen und feinkörnigen metallguss
EP3089838A2 (fr) Procédé et installation de production de lingots de grande longueur et de forte section
EP0479757B1 (fr) Procédé et dispositif pour la fabrication d'alliages à base de titane-aluminium
DE3246470C1 (de) Stranggiessverfahren fuer Metalle
DE69002059T2 (de) Induktivschmelzspinnen von reaktiven metallegierungen.
WO2018009359A1 (fr) Rubans et poudres à base d'alliages d'aluminium haute résistance résistants à la corrosion
DE69520779T2 (de) Verfahren zur Herstellung von einer aktiven metallenthaltenden Kupferlegierung
DE69202728T2 (de) Metallische spritzung mittels mehrerer düsen.
DE69704200T2 (de) Weiterverarbeitung durch elektroschlackeumschmelzen gereinigter metalle
DE1558507A1 (de) Neue Nickel-Legierung und Verfahren zu ihrer Herstellung
DE68915496T2 (de) Vorrichtung zur Herstellung von Metallpulver.
DE60036646T2 (de) Giesssysteme und verfahren mit hilfskühlung der flüssigen oberfläche der giesskörper
DE69330035T2 (de) Eisenmetallgusswerkstoffe, insbesondere für walzrollen
DE4207694A1 (de) Vorrichtung fuer die herstellung von metallen und metall-legierungen hoher reinheit
AT409233B (de) Verfahren und anordnung zum herstellen von gusskörpern aus metallen
EP0786531B1 (fr) Procédé et dispositif pour la refusion de métaux sous forme de barres
DE3421488A1 (de) Verfahren zum herstellen von legierungspulver und vorrichtung zur durchfuehrung des verfahrens
DE19504359C1 (de) Verfahren zum Herstellen von Legierungen in einem induktiv beheizten Kaltwandtiegel
DE20012066U1 (de) Anlage zur Gewinnung von verkaufsfertigen Barren aus einer Legierung
DE2250710A1 (de) Verfahren zum erzeugen grosser stahlbloecke unter verwendung des abschmelzens einer elektrode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040403

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GERLING, RAINER

Inventor name: CLEMENS, HELMUT

Inventor name: DANKER, HEINZ

Inventor name: SCHIMANSKY, FRANK-PETER

Inventor name: BLUM, MATTHIAS

Inventor name: GUETHER, VOLKER

Inventor name: FUERWITT, WILLY

Inventor name: JARCZYK, GEORG

Inventor name: SASSE, FRIEDHELM

Inventor name: CHATTERJEE, ANITA

17Q First examination report despatched

Effective date: 20060824

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080122

REF Corresponds to:

Ref document number: 50211532

Country of ref document: DE

Date of ref document: 20080221

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081010

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161124

Year of fee payment: 15

Ref country code: FR

Payment date: 20161124

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161124

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170123

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50211532

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171113

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171113