EP1434694B1 - Dispositif de traitement d'une bande, methode de production d'un produit de pliage dans une presse a bobine et une presse a bobine - Google Patents

Dispositif de traitement d'une bande, methode de production d'un produit de pliage dans une presse a bobine et une presse a bobine Download PDF

Info

Publication number
EP1434694B1
EP1434694B1 EP02776750A EP02776750A EP1434694B1 EP 1434694 B1 EP1434694 B1 EP 1434694B1 EP 02776750 A EP02776750 A EP 02776750A EP 02776750 A EP02776750 A EP 02776750A EP 1434694 B1 EP1434694 B1 EP 1434694B1
Authority
EP
European Patent Office
Prior art keywords
web
printing
formers
cylinder
webs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02776750A
Other languages
German (de)
English (en)
Other versions
EP1434694A1 (fr
Inventor
Burkard Otto Herbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koenig and Bauer AG
Original Assignee
Koenig and Bauer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10235391A external-priority patent/DE10235391A1/de
Application filed by Koenig and Bauer AG filed Critical Koenig and Bauer AG
Publication of EP1434694A1 publication Critical patent/EP1434694A1/fr
Application granted granted Critical
Publication of EP1434694B1 publication Critical patent/EP1434694B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/032Controlling transverse register of web
    • B65H23/035Controlling transverse register of web by guide bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H45/00Folding thin material
    • B65H45/12Folding articles or webs with application of pressure to define or form crease lines
    • B65H45/28Folding in combination with cutting

Definitions

  • the invention relates to a device for processing a web, to a method for producing a folded product in a web-fed rotary printing press, and to a web-fed rotary printing press according to the preamble of claim 1 or claims 6 and 8.
  • the DE 25 28 008 A1 shows a printing machine for a direct printing method with form cylinders, which can be equipped in the axial direction with six and in the circumferential direction with two printing plates, and counterpressure cylinders, which are assignable in the axial direction three and in the circumferential direction with a pressure felt. Both the pressure plates arranged next to one another and the pressure felts arranged next to one another are offset relative to each other in the circumferential direction.
  • the DE 25 10 057 A1 discloses a printing machine with direct printing method, wherein the cooperating with a counter-pressure cylinder form cylinder carries six on its width and on its circumference two printing plates.
  • JP 56-021860 A is a printing unit with form, transfer and impression cylinder known, each of the three cylinders is driven by its own drive motor.
  • the printing units are designed as bridge printing units, wherein the transfer cylinders are covered with blanket sleeves.
  • the WO 01/70608 A1 discloses a turner bar assembly, wherein two substantially part-wide turning bars are each arranged displaceably on a carrier transversely to the direction of the incoming partial web.
  • a register roller is arranged, whose longitudinal axis extends substantially parallel to the side frame and which is also displaceable along a rail in a direction transverse to the direction of the incoming partial web.
  • EP 10 72 551 A2 is a folding structure with two vertically offset groups of formers known. Above each of the groups of formers is a harp, ie a group of collection, acceptance or Harfenwalzen arranged over which the respective partial webs of the associated group of formers are fed.
  • a harp ie a group of collection, acceptance or Harfenwalzen arranged over which the respective partial webs of the associated group of formers are fed.
  • a folding structure is known, according to which cut, transversely offset to each other part webs are fed to different formers.
  • the horizontally juxtaposed former are z. T. vertically offset from each other.
  • the DE 44 19 217 A1 shows a superstructure of a web-fed rotary printing press with a Turning device, wherein partial webs are offset by half a partial web width to guide them one above the other and fed to a common former.
  • the invention has for its object to provide a device for processing a web, a method for producing a folded product in a web-fed rotary printing press and a web-fed rotary printing press.
  • the number of reelstands (investment), the frequency of reel changes (production safety) and the set-up time when webs are drawn in (cycle times) can be reduced compared to a double-width press for the same product thickness.
  • the printing units are designed as nine-cylinder satellite printing units, which on the one hand has a high precision in the color register and on the other hand a low-vibration construction result. Vibrations are also reduced by the advantageous arrangement, design and attachment of elevators on the cylinders.
  • openings on the lateral surfaces in the circumferential direction are minimized.
  • the openings may be arranged alternately offset in the circumferential direction, that acts at least on a section length always a closed lateral surface with the forming or satellite cylinder together.
  • bales are provided on its entire effective length axially passing channels, but openings exist to the lateral surface only in the said sections.
  • openings exist to the lateral surface only in the said sections.
  • a superstructure of the printing press has at least one longitudinal cutting device with at least five knives spaced apart from one another transversely to the direction of travel of the paper.
  • each printing tower (or eight printing locations) is provided with two register devices movable transversely to the direction of travel of the paper to compensate for paths of the partial webs. These can be structurally connected in each case with a part-web-wide turning devices. Also subsequent, only partial webs associated guide elements are z. B. executed essentially only partial web width substantially. These designs allow a low-vibration, and thus tailor-made transport of the web. By inertia long, strong, caused only by the sub-web (s) guide elements caused web tension fluctuations (for example, load changes, change in printing speed) can be effectively reduced.
  • sub-webs from one of a funnel group associated harp of the other funnel group can be acted upon and vice versa.
  • only one of two stacked formers is a so-called. Harp, d. H. several i. d. R. non-driven Auflaufwalzen (also collectors or take-off rolls called) to pre-allocate.
  • On the other formers then tracks from the common harp can be transferred.
  • the two vertically stacked formers can be supplied from the same escape of superimposed sub-webs strands of variable thickness or partial web number.
  • the partial web is displaceable or offset only by an odd multiple of half the partial web width. So it can be z. B. avoid with little effort to print very narrow webs or provide additional printing units.
  • the transversely movable to the web execution at least one of the turning bars allows a high variability.
  • the mechanically independent of the printing units drive rollers of the hopper structure and / or the folding apparatus is particularly advantageous in terms of a good registration and a variable operation.
  • the web-fed rotary printing press shown by way of example has a left and a right section, each having at least two printing towers 01.
  • the printing towers 01 have printing units 02, which z. B. at least three times wide, ie for the printing of six axially juxtaposed newspaper pages executed.
  • the printing units 02 are designed as satellite printing units 02.
  • the advantageous embodiment of the printing units 02 as nine-cylinder satellite printing units 02 ensures a very good Passerhaltmaschine or a low fan-out.
  • the printing units 02 can also be used as ten-cylinder satellite printing units 02 or, if appropriate, also as printing units that can be operated in rubber-against-rubber printing, such as, for. B. be executed a plurality of bridge printing units or a H-printing unit 02.
  • the printing units 02 are webs 03 supplied by rollers, not shown, in particular using reel changers.
  • a superstructure 04 Downstream of the printing towers 01 or printing units 02 continuous web 03, here above the printing towers 01, a superstructure 04 is provided for each section, in which the web 03 or webs 03 cut on longitudinal cutting devices 06, sub-webs by means of turning devices 07 possibly offset and / or crashed, by means of in Fig. 1 only indicated register devices 08 are aligned in the longitudinal register to each other and can be performed one above the other.
  • the superstructure 04 has at least one so-called harp 09 with a number of superimposed arranged, the webs 03 and partial webs 03a; 03b; 03c leading harp or caster rollers.
  • the harp 09 determines the funnel inlet of the superimposed tracks 03. About this harp 09, the tracks 03 undergo a change in direction and are subsequently summarized either as a strand or as multiple strands and fed to at least one folding structure 11.
  • the printing unit 02 has several, in the example four, printing units 13, by means of which ink can be applied to the web 03 by an inking unit 14 via at least one cylinder 16 designed as a forme cylinder 16 ( Fig. 2 ).
  • the printing unit 13 is designed as offset printing unit 13 for the wet offset and has in addition to the inking unit 14, a dampening unit 20 and another cylinder 17 designed as a transfer cylinder 17.
  • the transfer cylinder 17 forms a pressure point with an abutment-forming impression cylinder 18.
  • the printing cylinder 18 is designed as a satellite cylinder 18 which forms further pressure points with further transfer cylinders 17 further printing units 13 in the print-on position.
  • the printing cylinder 18 could also be designed as a transfer cylinder 18 in the formation of the printing units as a double printing unit in the rubber counter-rubber pressure.
  • the same parts are given the same reference numerals, as far as they are not necessary for differentiation. However, a difference in the spatial position may exist and, in the case of the assignment of the same reference numbers, is generally disregarded.
  • the inking unit 14 has, in an advantageous embodiment, an ink fountain 15 extending over six print pages. In another embodiment, three each color about two pages wide ink boxes 15 are arranged side by side in the axial direction.
  • the dampening unit 20 is designed in an advantageous embodiment as administratwalziges spray dampening 20.
  • the form cylinder 16 has in a first embodiment z. B. a circumference between 850 and 1,000 mm, in particular from 900 to 940 mm.
  • the scope is z. B. for receiving two stationary printed pages, z.
  • the printing plates 19 are mounted in the circumferential direction on the forme cylinder 16 and in the in Fig. 3 shown embodiment as each in the axial direction with a printed side stocked single pressure plate individually interchangeable.
  • the length L16 of the usable bale of the forme cylinder 16 is in the first embodiment z. B. 1,850 to 2,400 mm, in particular 1,900 to 2,300 mm and is in the axial direction for receiving z. B. at least six juxtaposed standing printed pages, especially newspaper pages in broadsheet format, measured (see Fig. 3 Sections A to F). Among other things, it depends on the nature of the product to be produced, whether in each case only one pressure side or several pressure sides in the axial direction are arranged side by side on a printing plate 19. In an advantageous broader variant of the first embodiment, the length L16 of the usable bale is between 2,000 and 2,400 mm.
  • the forme cylinder 16 has z. B. a circumference between 980 and 1300 mm, in particular from 1000 to 1200 mm.
  • the length L16 of the usable bale is in this case z. B. 1,950 to 2,400 mm, in particular 2,000 to 2,400 mm.
  • the occupancy corresponds to the o. G. Execution.
  • the transfer cylinder 17 also has a circumference in the first embodiment z. B. between 850 and 1,000 mm, in particular from 900 to 940 mm.
  • the length L17 of the usable bale of the transfer cylinder 17 is in the first embodiment z. B. 1,850 to 2,400 mm, in particular 1,900 to 2,300 mm and is in the longitudinal direction of each other z. B. with three elevators 21, z. B. blankets 21, occupied (sections AB to EF). They extend in the circumferential direction substantially to the full extent.
  • the length L17 of the usable bale is also between 2,000 and 2,400 mm.
  • the transfer cylinder has 17 z. B. a circumference between 980 and 1300 mm, in particular from 1000 to 1200 mm.
  • the length L17 of the usable bale is in this case z. B. 1,950 to 2,400 mm, in particular 2,000 to 2,400 mm.
  • the occupancy of elevators 21 corresponds to the first embodiment.
  • Diameter of bales of cylinders 16; 17 are in the first o. G. Execution z. B. from 270 to 320 mm, in particular from about 285 to 300 mm. In the second o. G. Execution is the diameter of bales of the cylinder 16; 17 z. B. from about 310 to 410 mm, in particular from 320 to about 380 mm. A ratio of a length of the usable bale of the cylinders 16; 17 to the diameter should be 5.8 to 8.8, z. B. at 6.3 to 8.0, in a wide version, especially at 6.5 to 8.0.
  • length L16; L17 of the usable bale here is to be understood that width or length of the bale, which for receiving elevators 19; 21 is suitable. This corresponds approximately to a maximum possible web width of a web to be printed 03. Based on an entire length of the bale of the cylinder 16; 17 would be L16 to this length; L17 of the usable bale nor the width of any existing Schmitzringen, possibly existing grooves and / or possibly existing lateral surface areas added, which z. B. for the operation of clamping and / or clamping devices must be accessible.
  • the satellite cylinder 18 also substantially the dimensions and ratios of at least the associated transfer cylinder 17 substantially.
  • Elevators 19; 21 are like in Fig. 4 shown schematically z. B. designed as flexible plates, wherein the designed as a blanket 21 elevator 21 as a so-called.
  • a plate-shaped printing plate 19 and a support plate 23 for a rubber blanket is usually made of a flexible, but otherwise dimensionally stable material, for. B.
  • a leading end 24 is, for example, at an acute angle ⁇ of 40 ° to 50 °, in particular 45 °, and a trailing end 26 at an angle ⁇ of 80 ° to 100 °, in particular 90 °, folded.
  • the length I of the elevator 21 corresponds approximately to the circumference of this cylinder 17th Basically, the folded ends 24; 26 of the elevators 19; 21 each in a on the circumference of the respective cylinder 16; 17 longitudinally axially parallel, slot-shaped opening can be inserted, wherein the ends 24; 26, for example, be held by their shape, friction or deformation. However, they can also be fixed by means of spring force, by pressure medium or an effective during operation centrifugal force operable means.
  • the slot-shaped openings for in axial Direction of juxtaposed printing plates 19 on the forme cylinder 16 are in an advantageous embodiment in each case in alignment, z. B.
  • Fig. 5a and b shows in a perspective view of an example of an advantageous embodiment of the forme cylinder 16.
  • two channels 27 are provided, both channels 27 extend continuously in the axial direction of the cylinder 16 at least over the entire length of the six sections A to F in the bale ( Fig. 5b ). They are in the circumferential direction of the cylinder 16 z. B. offset by 180 ° to each other.
  • a slot width s16 of the opening 28 on the forme cylinder 16 in the circumferential direction is less than 5 mm and is preferably in the range of 1 mm to 3 mm (FIG.
  • the folded ends 24; 26 of the printing plate 19 are now each in one of the circumferentially axially parallel openings 28 can be inserted and are, at least the trailing end 26, fixed by a arranged in the channel 27 holding device 29, 31.
  • the holding device 29, 31 here has at least one clamping piece 29 and a spring element 31 ( Fig. 5c ).
  • the not shown right angle beveled trailing suspension legs 26 (see Fig. 4 ) preferably abuts against a wall of the opening 28 which is essentially complementary to the fold and is pressed there by the clamping piece 29 by a force exerted by the spring element 31 on the clamping piece 29.
  • the acute angle beveled leading suspension leg 24, not shown, (see Fig. 4 ) preferably arrives a wall of the opening 28 which is substantially complementary to the fold and which forms a hooking edge or nose at an acute angle ⁇ 'of 40 ° to 50 °, in particular 45 °, with the jacket surface 30.
  • an adjusting means 32 is provided in the channel 27, which counteracts the force exerted by the spring element 31 on the clamping piece 29 in its operation force and the clamping piece 29 pivots away from the wall or the end 26.
  • each channel 27 not only a clamping piece 29, but over the length of the sections A to F axially adjacent a plurality of clamping pieces 29 in the manner of segments each having at least one spring element 31 is arranged (in Fig. 5a from the cylinder 16 "pulled out” shown).
  • each section A to F more, z. B. six, such clamping pieces 29 according to Fig. 5c arranged, wherein in the middle between the clamping elements 29 of each section A to F, here between the third and the fourth clamping element 29 of each section A to F, in each case a registration stone 35 exhibiting Passerelement 33 (FIGS. Fig. 5d ) is arranged.
  • index block 35 can also be in an unillustrated development each axially guided in a vacant cavity of the channel 27 and the Passerides 33 actuator, for. B. a motor-driven threaded spindle, be axially movable.
  • the actuating means 32 is designed in the illustrated embodiment such that when actuated the holding device (s) 29, 31, ie all the clamping pieces 29, are simultaneously closed or loosened over the length of the sections A to F.
  • the adjusting means 32 is as in Fig. 5a from the cylinder 16 "pulled out” represented as at least over the length of the sections A to F reaching, axially extending in the channel 27 and actuated by pressure reversibly deformable hollow body 32, z. B. as a hose 32, executed.
  • This hose 32 is according to Fig. 5c with the clamping pieces 29 such acting together in the channel 27 arranged that he counteracts the self-locking the holding device closing spring elements 31 when actuated.
  • Fig. 6a and b shows in a perspective view an example of an advantageous embodiment of the transfer cylinder 17.
  • the cylinder 17 are two channels 36; 37 provided, wherein both channels 36; 37 continuously in the axial direction of the cylinder 17 at least over the entire length of the six sections A to F and three sections AB; CD; EF, in bale stretch ( Fig. 6b ). They are in the circumferential direction of the cylinder 17 z. B. offset by 180 ° to each other.
  • Two of the three openings 38; 39 are in communication with the same channel 36 and are aligned with each other in the axial direction, but spaced from each other on the lateral surface 40.
  • Axial between the two openings 38; 39 is a the shape of the remaining lateral surface 40 füretzender, interpretedr undisturbed section U without opening.
  • the two aligned, z. B. with the same channel 36 communicating openings 38; 39 are preferably the face-side openings 38; 39, wherein the third opening 41 extends axially at least over the central gate CD and offset by 180 ° to the other openings 38; 39 is arranged.
  • a slot width s17 of the uncovered opening 38; 39; 41 on the transfer cylinder 17 in the circumferential direction is less than 5 mm in each case and is preferably in the range of 1 mm to 3 mm ( Fig. 6c ).
  • radially extending holes 42 may be provided, which is closed or closed in the operating state of the cylinder 17 by means of a plug, not shown ( Fig.
  • the stopper has an outer surface which is the otherwise cylindrical contour of the Cylinder 17 continues in the mounted state in the region of the bore 42.
  • the openings 38 In the circumferential direction of the cylinder 17 in a section perpendicular to the axis of rotation in an advantageous embodiment only one of the openings 38; 39; 41 or one of the shortened by the plug opening 38; 39; 41 arranged one behind the other. In this section, the openings 38 thus overlap; 39; 41 or shortened by the plug opening 38; 39; 41 not.
  • the folded ends 24; 26 of the blanket 21 are now each in one of the circumferentially axially parallel openings 38; 39; 41 inserted and are, at least the trailing end 26, respectively by at least one in the channel 36; 37 arranged holding device 43, 44 fixable.
  • the two ends 24; 26 of the same blanket 21 through the same opening 38; 39; 41 in the same channel 36; 37 led.
  • the holding device 43, 44 has here in each case at least one clamping piece 43 and a spring element 44 (FIG. Fig. 6c ).
  • the not shown right angle beveled trailing suspension legs 26 (see Fig. 4 ) preferably arrives at a wall of the opening 38 that is substantially complementary to the fold; 39; 41 to the system and is pressed there by the clamping piece 43 by a force exerted by the spring element 44 on the clamping piece 43 force.
  • the acute angle beveled leading suspension leg 24, not shown, (see Fig.
  • each channel 36; 37 not only a clamping piece 43, but are over the length of the sections AB; CD; EF axially next to each other a plurality of clamping pieces 43 as individual segments, each with at least one spring element 44 arranged (in Fig. 6a from the cylinder 17 "pulled out” shown).
  • sections AB; CD; EF of the respective channel 36; 37 which have no opening to the lateral surface 40, instead of the holding device 43, 44 or the holding devices 43, 44 at least one filling element 49 (FIG. Fig.
  • this filling elements 49 as individual segments in the relevant, no opening having section AB; CD; EF of the channel 36; 37 arranged. Centered between the retainers 43, 44 of each section AB; CD; EF, ie in the region between the sections A and B or E and F, here between the fifth and sixth clamping element 43, can also each have a filling element 49 (FIG. Fig. 6d ) can be arranged.
  • the filling element 49 has substantially the cross section of the channel 36; 37 imitated cross-section and at least one axially continuous opening 51, through which a means for the actuating means 46; 47; 48 is feasible.
  • the adjusting means 46; 47; 48 is designed in the illustrated embodiment such that when actuated the holding means 43, 44 of a section AB; CD; EF, ie all clamping pieces 43 of a section AB; CD; EF, simultaneously closed or solved.
  • the adjusting means 46; 47; 48 is in Fig. 6a from the cylinder 17 "pulled out" shown.
  • an adjusting means 46 extends at the front side; 47 over at least the corresponding length of the section AB; EF.
  • the middle opening 41 associated adjusting means 48 also extends over at least the corresponding length of the associated portion CD.
  • the adjusting means 46; 47; 48 are each as axially in the channel 36; 37 extending and pressure-actuated reversibly deformable hollow body 46; 47; 48, z. B. as a hose 46; 47; 48, executed.
  • This hose 46; 47; 48 is according to Fig. 6c with the clamping pieces 43 so cooperating in the channel 36; 37 arranged to counteract the self-locking the holding device 43, 44 closing spring elements 44 when actuated.
  • channels 36; 37 these can also not be carried out continuously over the entire length.
  • the channels 36; 37 in the area of each section AB; CD; EF one channel 36 each; 37, possibly provided with a corresponding holding device, wherein the channel 37 of the central elevator 21 is offset from the two outer by 180 °.
  • Fig. 6e indicated only schematically.
  • 17 advantageous embodiment is at least two cylinders 16; 17, in particular two forme cylinders 16, at least one of the printing towers 01 each have a device 52 for pressing an elevator 19; 21 to a cylinder 16; 17, in particular a printing plate 19 to the forme cylinder 16, (hereinafter Andrückvorraum 52) assigned. This is z.
  • a corresponding pressing device 52 has one or more pressing elements 53; 54, z. B. strips, plungers or rolling elements 53; 54, which, which and / or to one or more elevators 19; 21 is either adjustable or are. As a result, a controlled and guided pulling or clamping and / or detachment or removal of the elevator 19; 21 allows.
  • an end 24; 26 of the elevator 19; 21 in the corresponding channel 27; 36; 37 and the opening 28; 38; 39; 41 to move in or a dissolved end 24; 26 and the partially released elevator 19; 21 down in a desired position.
  • the pressing device 52 extends along the cylinder 16; 17 at least in the entire range of sections A to F, ie in the effective for printing area of the bale.
  • the pressing device 52 has sections A to F (in the case of six elevators 19 arranged next to each other) or section AB; CD; EF (in three juxtaposed elevators 21) at least a first pressure element 53, z. B. rolling element 53, on.
  • it has sections A to F and section AB respectively; CD; EF in a circumferential direction of the cylinder 16; 17 spaced from this first rolling element 53 second pressing element 54, z. B. rolling element 54, on.
  • Fig. 7 in the case of the forme cylinder 16, only central portions B, C and D and the rolling elements 53 associated with these portions B, C and D are; 54 is shown.
  • Each section A to F or AB to EF is a first rolling element 53 or a group of axially adjacent to each other first rolling elements 53 and z.
  • B. a second rolling element 54 or a group of axially juxtaposed second rolling elements 54 are arranged.
  • each section A to F or AB to EF is a first rolling element 53 and a group of three second Rolling elements 54 shown.
  • the arrangement of groups of at least two independently movable rolling elements 53 is advantageous with regard to the risk of possible tilting and possibly faulty axial alignment. 54.
  • a single rolling element 53; 54 for a section A to F and AB to EF for example, as in the longitudinal direction almost over the length of the section A to F and AB to EF extending roller 53; 54 executed, a rolling element 53; 54 of a group, however, z. B. only as the highest a fraction of the length of the section A to F and AB to EF having roller 53; 54th
  • the axially juxtaposed rolling elements 53; 54 and, if provided, the circumferentially successively arranged rolling elements 53; 54 are in principle independently movable on, for example, a traverse 56 (or more traverses 56) arranged.
  • the single first rolling element 53 or the group of first rolling elements 53 of each section A to F or AB to EF and, if provided, the single second rolling element 54 or the group of second rolling elements 54 of each section A to F and AB to EF are independent of each other by their own adjusting means 57; 58 actuated.
  • These adjusting means 57; 58 are, for example, as reactable with pressure medium reversibly deformable hollow body 57; 58, in particular as a hose 57; 58 executed.
  • first and / or second rolling elements 53 which concern this section A to F or AB to EF, will also be arranged; 54 to the respective elevator 19; 21 hired.
  • first and second rolling elements 53; 54 presses when rolling the cylinder 16; 17 with the rolling elements 53; 54, the second rolling element 54, the trailing bent end 26 of the elevator 19; 21 in rolling into the opening 28; 38; 39; 41.
  • Is or only first rolling elements 53 are provided, it is pushed in through them.
  • the rolling elements 53 remain; 54 stationary, while the cylinder 16; 17 is rotated in a direction of production P.
  • all rolling elements 53; 54 of the respective section A to F and AB to EF from the cylinder 16; 17 or its elevator 19; 21 turned off.
  • unclamping a lift 19; 21 is to distinguish whether one or more other elevators 19; 21 on the cylinder 16; 17 should remain.
  • the elevator 19 to be released; 21 associated rolling element 53; 54 may remain parked or be.
  • the holding means for the sections A to F or AB to EF is opened.
  • the trailing end 26 of the elevator 19 to be solved; 21 is by the residual stress from the channel 27; 36; 37, while the lifts to be left 19; 21 through the rolling elements 53; 54 are held down.
  • the holding means is closed again. Does the pressing device 52 each have first and second rolling elements 53; 54, the elevators to be left 19; 21 advantageously held down by at least the second rolling elements 54.
  • first at least the second rolling element 54 is turned off, so that the end 26 of the channel 27; 36; 37 can escape, and the first rolling element 53 employed, so that the already partially dissolved elevator 19; 21 still on the cylinder 16; 17 is managed and held.
  • the cylinder 16; 17, preferably counter to the direction of production P are rotated until the leading end 24 of the channel 27; 36; 37 removed, and the elevator 19; 21 can be removed.
  • the cylinder 16; 17; 18 of the printing unit 02 driven so that the printing units 13 of the printing unit 02 are rotatably driven in each case at least by one of the other printing units 13 mechanically independent drive motor 61.
  • the satellite cylinder or cylinders 18 are likewise rotationally drivable by a drive motor 61, mechanically independently of the associated printing units 13.
  • the drive motors 61 are preferably as with respect to their angular position controlled electric motors 61, z. B. as asynchronous motors, synchronous motors or DC motors. In an advantageous embodiment is between the drive motor 61 and the driven cylinder 16; 17; 18 or cylinder pair 16, 17; 18, 18 at least one gear 62, in particular at least one reduction gear 62 (such as pinion, attachment and / or planetary gear) arranged.
  • the individual drives contribute to high flexibility and to avoid vibrations in the mechanical drive system, and thus also to high quality in the product.
  • FIGS. 8 to 10 have only the components of the right half of the figure corresponding reference numerals, since the left side corresponds to the right mirror image.
  • Fig. 8 all nine cylinders have 16; 17; 18 each have their own drive motor 61, which in each case z. B. via a gear 62 on the cylinder 16; 17; 18 drives.
  • the inking unit 14 shown above has, in addition to other, unspecified rollers on two distribution cylinders 63 which are rotationally driven together by means of a separate drive motor 64.
  • the two distribution cylinders 63 are axially movable and driven by an unillustrated drive means for generating an axial stroke.
  • the inking unit 14 shown below has only one distribution cylinder 63.
  • the dampening unit 20 shown above has, in addition to other, not designated rolls on two distribution cylinders 66 which are rotationally driven together by means of a separate drive motor 67.
  • the two distribution cylinders 66 are axially movable and driven by an unillustrated drive means for generating an axial stroke.
  • the dampening unit 20 shown below has only one distribution cylinder 66.
  • the two cylinders 16; 17 each printing unit 13 in the execution to Fig. 9 each driven by a common drive motor 61 on the transfer cylinder 17.
  • the drive can be axial, z. B. via a gear 62, done or via a on a drive wheel of the transfer cylinder 17 driving pinion. From the drive wheel of the transfer cylinder 17 can then be driven off to a drive wheel of the forme cylinder 16.
  • the drive connection 68 (shown as a connecting line) can be made as a gear connection or via belt and is executed encapsulated in development.
  • For the drive of the color and possibly dampening unit 14; 20 via their own drive motors 64; 67 or a cylinder 16; 17; 18 is basically the too Fig. 8 applied.
  • the drive motor 61 drives via a pinion 71 on a rotationally rigidly connected to the forme cylinder 16 drive wheel 72, which in turn drives on a torsionally rigidly connected to the transfer cylinder 17 drive wheel 73.
  • the drive wheel 73 is either widened or it is a second drive 74 connected to the transfer cylinder 17.
  • the widened or additional drive wheel 73; 74 drives via a rotatably mounted on a pin 76 of the forme cylinder 16 drive wheel 77 on a drive wheel 78 of the inking and / or dampening unit 14; 20.
  • the drive wheels 72; 73; 74; 77; 78 are preferably designed as gears.
  • the forme cylinder 16 is axially displaceable in an axially displaceable manner by, for example, ⁇ ⁇ L
  • at least the pinion 71 and the drive wheels 72 to 74 are made straight toothed.
  • drive motor 61 and the gear 62 of pinion 71 and Drive wheel 72 may additionally be a dashed lines indicated, encapsulated auxiliary gear 62 'may be arranged.
  • the drive to the forme cylinder 16 can also take place axially on the journal 76, wherein, if appropriate, an axial movement of the forme cylinder 16 takes place via an unillustrated, axial relative movement between the forme cylinder 16 and the drive motor 61 receiving coupling.
  • the satellite cylinder 18 is also driven in this illustration via a pinion 71 on an associated drive wheel 79, in particular gear 79.
  • Each driven by an independent drive motor 61 drive train is in an advantageous embodiment, at least for themselves, possibly encapsulated in even smaller units (stiched in Fig. 11 shown).
  • the described embodiments of the printing unit 02 and the printing units 13 and their cylinders 16; 17; 18 and the drive allows a low-vibration, accurate printing high quality with a low on the achievable product strength technical and spatial complexity.
  • Longitudinal cutting device 06 and the draw roller 81 may also be carried out separately from each other, but preferably with the longitudinal cutting device 06 as a divulgal another roller acts together.
  • the web 03 for example, in several, z. B. three, partial web widths 03a; 03b; 03c, short part tracks 03a; 03b; 03c (symbolized by center lines, lines 03a, 03c merely indicated), longitudinally cut before these partial webs 03a; 03b; 03c subsequent guide elements, for.
  • rolls of registering devices 08 turning bars of turning devices 07, run-on rollers for the funnel inlet or draw rolls are supplied.
  • Fig. 12 shows in a perspective oblique view, a first embodiment of at least a portion of the superstructure 04.
  • the partial web 03b shown as turned from the center to the outside part web 03b.
  • a second of the partial webs 03a; 03c could also be turned into another flight, for example, by means of a second such turning device 07.
  • a second turning device can, for. B. above or below the first turning device 07 lie.
  • the turning device 07 has, as a guide element 82, as usual, two parallel or crossed turning bars 82, which with the transport direction of the incoming part web 03a; 03b; 03c form an angle of about 45 ° or 135 °, and by means of which an incoming web 03a; 03b; 03c is laterally displaceable and / or can be staggered.
  • the turning bars 82 advantageously have a length L82, the projection of which on the transverse extent of the incoming partial web 03a; 03b; 03c insignificantly larger, z. B. 0% to 20% greater than the width of the incoming partial web 03a; 03b; 03c, ie the length L82 is approximately 1.4 to 1.7 times the partial web width.
  • the turning bars 82 are each mounted individually on carriers 83, which transverse to the direction of the incoming part of web 03a; 03b; 03c can be moved on at least one guide 84.
  • the now “short” turning bars 82 can now bring depending on the requirements of the desired web guide in the required position. Under certain circumstances, both turning bars 82 may be mounted on such a carrier 83.
  • the register device 08 has, as a guide element 86, at least one roller 86 which can be moved parallel to the running direction.
  • the roller 86 or a plurality of rollers 86 of the register device 08 advantageously have a length L86 which is insignificantly larger, e.g. 0% to 20% larger than the width of the incoming partial web 03a; 03b; 03c is.
  • At least the length L86 is less than or equal to twice the width of a two-side-width partial web 03a; 03b; 03c.
  • the register device 08 is transverse to the direction of the incoming partial web 03a; 03b; 03c stored on at least one guide 87 movable. The now narrow register device 08 or its short rollers 86 can now be brought to the required position from the desired web guide as required.
  • Harp 09 ( Fig. 1 ) is supplied.
  • For straight from running webs 03 or partial webs 03a; 03b; 03c is in the superstructure 04 upstream of the harp roller 89, for example one over the full web width b03 reaching, movable in the transport direction register roller 91 and a guide roller 92 is arranged.
  • the "short" harp roller 88 is realized as a section 88 of a harp roller 89 which is divided in this embodiment but extends over a total of six printing pages wide web 03.
  • the sections 88 are rotatably supported independently of each other here.
  • FIG. 93 may also, as in FIG Fig. 13 shown, as individually arranged on a frame harp roller 93 executed. This can then either fixed to the frame, or on a support 94 on a guide 96 transversely to the direction of the incoming part of the web 03a; 03b; 03c be arranged variable in location.
  • the required register device 08 at least one of the course of the partial web 03a; 03b; 03c determining guide elements, such. B. the turning device 07 or a turning bar 82 or the harp 09 or a "short" harp roller 93, are assigned.
  • Fig. 13 is the "short" register device 08 z. B. the “short” harp roller 93 and along with this on the guide 96 transversely to the direction of the incoming part of the web 03b; 03c adjustable.
  • Fig. 14 is the "short" register device 08 z. B. associated with one of the "short” turning bars 82 and together with this on the guide 84 transversely to the direction of the incoming part web 03b locally variable.
  • this arrangement is shown here for crossed turning bars 82, but on parallel turning bars 82 from Fig. 11 apply.
  • the crossed or mutually orthogonal turning bars 82 is at least one (here two) guide roller 97 with perpendicular to the axis of rotation of the roller 81 extending axis of rotation.
  • the guides 84; 96 ( FIGS. 13 and 14 ) of the aforementioned embodiments can be realized in many different ways.
  • the guides 84; 96 be designed as spindles with at least sections threaded, which rotatably mounted on both sides and z. B. are rotatably driven by a drive, not shown.
  • the carriers 83; 94 can in the manner of sliding blocks in rigid guides 84; 96, z. B. on profiles, be performed.
  • a drive of the carrier 83; 94 also via a drivable spindle or otherwise done.
  • transversely adjustable turning bar 82 By means of the transversely adjustable turning bar 82 are variable transfers or offset of partial webs 03a; 03b; 03c over one or two partial web widths (not the subject of the invention) (or Velfache half a partial web width) away possible.
  • the printed partial webs 03a; 03b; 03c in the flight of one of several, here three, transverse to the direction of juxtaposition of the former 101; 102; 103 ( Fig. 15 ) of the folder assembly 11.
  • the transfer takes place, for example, to meet the requirement for different strengths of individual strands or ultimately intermediate or end products, at the same time effective printing with as full as possible Rail widths should be made.
  • the superstructure 04 advantageously has at least (n * (m / 2 - 1)) turning devices 07.
  • n * (m / 2 - 1) the number of turning devices 07 per section of advantage.
  • a printing press with z. B. two sections of three printing towers 01 and a total of six provided for the two-sided four-color four printing pages wide webs 03; 03 '; 03 "are arranged at least three turning devices 07 per section.
  • a printing machine with z. B two sections of two printing towers 01 and a total of four provided for the two-sided four-color printing six printed pages wide webs 03; 03 '; For example, four turning devices 07 per section are arranged in this printing press In this printing press with two sections or a total of four printing towers 01 (four webs 03, 03 '), a product with a total thickness of 96 pages can be produced in the collective operation.
  • an operating mode is provided, wherein a partial web 03a; 03b; 03c is offset by an odd multiple of half the partial web width b03a and / or funnel width (ie by a factor of 0.5, 1.5, 2.5) ( Fig. 15 ).
  • This can be done by means of long over the entire width of the printing press or the width b03 of the entire web 03 reaching turning bars (not shown), but also advantageously by means of the above-described portable "short" turning bars 82.
  • the turning bars 82 are then, for example, as in Fig.
  • the partial track 03a offset by an odd multiple of half the funnel width b101 or partial track width b03a; 03b; 03c thus runs "between" the formers 101; 102; 103.
  • the part track 03a offset by an odd multiple of half the part track width b03a; 03b; 03c is in front of the former 101; 102; 103 in a between the two aligned folding hoppers 101; 102; 103 longitudinal flight cut and runs on the folding structure 11 and the harp 09, ie undivided and / or split harp roller 89 and / or "short" harp roller 93 to ( Fig. 16 ).
  • Fig. 16 is a schematic section of the Fig. 15 with exemplary differently executed harp rollers 89; 93, wherein, for example, the partial web 03c has been offset from its original position (shown unfilled) by one and a half partial web widths b03a. It can, for example, if they are provided with a further longitudinal cutting device 104 in front of the formers 101; 102; 103 is cut (then in each case one printed page or newspaper page wide), each half in each case with the partial webs 03a and 03b on each of a former 101; 102 are led. The two (intermediate) products then have z. B.
  • the forme cylinder 16 is in the circumferential direction with two printing plates 19 different printed pages A1, A2 to F1, F2 (or A1 ', A2' to F1 ', F2' occupied for the second web 03 ') and done in the folding apparatus 12 a cross-cutting and collecting, so are on the strands 109 and 111 respectively two different booklets each with 10 printed pages, and on the strand 112 two different booklets each with 4 printed pages generated.
  • a total product has z. B. 48 pages.
  • the harp rollers 89; 93 in particular if they are executed undivided over the full length, can be rotationally driven in a development on its own, not shown drive motors. These are then z. B. with respect to their speed, u. U. also their location, run controllable and are to take over current setpoints with the machine control or an electronic master axis in combination.
  • the folding structure 11 has at least two stacking rollers 101, 106 arranged one above the other; 102, 107; 103, 108, whose planes of symmetry S in each case in a common flight of a printing machine passing straight through Partial web 03a; 03b; 03c lie.
  • the planes of symmetry S of the two stacked formers 101, 106 fall; 102, 107; 103, 108 substantially together with a median plane M of a two printed pages wide, straight running, only deflected in the vertical direction partial web 3a; 3b; 3c (3a ', 3b', 3c ', 3a ", 3b", 3c ", 3a"', 3b “', 3c”', etc.).
  • the partial webs 3a; 3b; 3c etc. are in Fig. 17 from one below (to Fig. 18 ) explained reason partially drawn and shown in dotted line to another part.
  • Fig. 17 For the six printing pages wide printing press are according to Fig. 17 two vertically staggered groups of three formers 101, 102, 103 and 106, 107, 108 respectively. For four printing-wide presses, this can be two each, eight-sided wide printing presses each four funnels side by side. In each case an upper and a lower former 101, 106; 102, 107; 103, 108 are aligned in pairs in the above-mentioned manner to one another and to a respective center plane M.
  • the three formers 101; 102; 103 and 106, respectively; 107; 108 of a group are transverse to the direction of the partial webs 03a; 03b; 03c offset from one another next to each other and arranged in an advantageous embodiment substantially at a same height. However, they may also be vertically offset from each other and / or have different vertical dimensions, but then z. B. in the horizontal plane at least partially overlap.
  • the folding structure 11 Seen in the web running direction, the folding structure 11 at least in front of one of the superimposed groups of formers 101; 102; 103 and 106, respectively; 107; 108 the funnel inlet of the webs 03; 03 '; or partial webs 03a; 03b; 03c defining harp 09, ie a group of several parallel, offset in the radial direction casserole or Harfenwalzen 89; 93, over which different tracks 03; 03 'or partial webs 03a; 03b; 03c; or 03a '; 03b '; 03c 'etc. are transferred from the superstructure 04 in the folding structure 11. Following the harp rollers 89; 93 they become a strand 109; 111; 112 or multiple strands 109; 111; 112 summarized.
  • the harp rollers 89; 93 of a harp 09 are mutually vertically and / or horizontally offset and preferably stored as a unit in a common frame. In principle, for each of the vertically offset groups of formers 101; 102; 103 and 106, respectively; 107; 108 such a harp 09 may be provided.
  • the harp 09 advantageously comprises at least (n * m / 2) harp rollers 88; 89; 93, whose axes of rotation z. B. are substantially in a common plane, and which are preferably stored in a common frame.
  • two tracks 03; 03 '(or two printing towers 01) are at least six harp rollers 88; 89; 93 per harp 09 of advantage.
  • harp rollers 88, 89, 93 are arranged per harp 09.
  • a product with a total thickness of 72 pages can then be produced in the collecting operation.
  • a printing machine with z. B. two sections of two printing towers 01 and a total of four provided for the two-sided four-color printing six printed pages wide webs 03; 03 '; 03 "are at least six Harp rollers 88; 89; 93 per harp 09 arranged a section. These six harp rollers 88; 89; 93 per section, so here twelve, in two structurally separate harps 09 z. B. on a common folding structure 11 or two Falz admittedten 11, but also in a structurally common harp 09 z. B. be arranged in two alignments.
  • this printing machine with two sections or a total of four printing towers 01 four tracks 03, 03 '
  • a product with a total thickness of 96 pages can then be produced in the collective operation.
  • a printing press with z. B. two sections of two printing towers 01 and a total of four provided for the two-sided four-color printing six printed pages wide webs 03; 03 '; 03 ", at least six harp rollers 88, 89, 93 are arranged per harp 09 of a section
  • These six harp rollers 88, 89, 93 per section, here twelve, can be arranged in two structurally separate harps 09, eg over a common folding structure 11 or two folding structures 11, but also in a structurally common harp 09 eg in two alignments be
  • this printing press with two sections or a total of four printing towers 01 (four tracks 03, 03 ') is then in the collecting a product with a Total thickness of 96 pages can be generated.
  • the number of harp rollers required is 89; 93 according to the configuration of the two sections. If the folding structure 11 is arranged between these two sections, then either all the harp rollers 89; 93 in an escape or to save height the harp rollers 89; 93 of each section each arranged in alignment and the alignment with each other in the radial direction offset horizontally.
  • the harp rollers 89; 93 of the two escapes are here z. B. again arranged in a common frame.
  • Fig. 18 is at least one of the partial webs 03a; 03b, 03c, etc., which are in front of the upper former 101; 102; 103 arranged common harp 09 passes through, on the lower former 106; 107; 108 feasible or guided.
  • the partial webs 03a; 03b; 03c etc. are more or less of the partial webs 03a; 03b; 03c etc. on the upper and lower former 101; 102; 103 and 106, respectively; 107; 108 to convict.
  • different strands 109; 111; 112; 113; 114; 116 on the respective lower and upper former 101; 102; 103 and 106, respectively; 107; 108 will be given.
  • Fig. 17 the dashed in Fig. 17 partial webs shown as strand 113; 114; 116 on the respective lower former 106; 107; 108, and the solid on the respective top Former 101; 102; 103 led.
  • This is, depending on where the "separation" in superimposed partial webs 03a; 03b; 03c etc. from the common harp 09 is a flexible production of different strong intermediates (booklets, books) or end products possible with reduced effort.
  • Fig. 18 is a second escape from harp rollers 89; 93 shown by dashed lines, by means of which, as described above, for example, partial webs 03a; 03b; 03c etc. can be recorded from another section.
  • the aforementioned folding structure 11 with only one harp 09 for two superposed formers 101; 102; 103; 106; 107; 108 is also suitable for other printing machines with different cylinder widths and cylinder circumferences. Such, from two stacked formers 101; 102; 103; 106; 107; 108 and a common harp 09 existing Falzoberbau 11 may also be arranged on a third former with its own harp 09.
  • the described folding structure 11 with a plurality of vertically offset formers 101; 102; 103; 106; 107; 108 assigned harp 09 is also on three superposed formers 101; 102; 103; 106; 107; 108 well applicable.
  • Outside pages, for example, of an outer book can thus be assigned to a specific web guide and / or a specific printing tower / printing unit.
  • the formers 101; 102; 103; 106; 107; 108 in each case upstream Weg 117 and funnel inlet rollers 118 have in an advantageous embodiment as well as provided in the folding structure 11 draw rollers 121 ( Fig. 19 ) each have their own drive motors 119.
  • Fig. 19 is the draw roller 117 for the lower group of the formers 106; 107; 108 not visible.
  • the respective drive motor 119 of the draw rollers 121 is in Fig. 19 merely represented by filling of the relevant draw roller 121.
  • Each of the formers 101; 102; 103; 106; 107; 108, at least one such driven draw roller 121 is arranged downstream in an advantageous embodiment, which with pressure rollers or a pressure roller on the strand 109; 111; 112; 113; 114; 116 cooperates.
  • the folding structure 11 preferably has non-driven guide rollers 122, via which the one printing side wide strands 109; 111; 112; 113; 114; 116 can be performed.
  • the folder 12 at least one own, of the printing units 02 mechanically independent drive motor 120. While the drive motors 119 of the tractor inlet rollers 117; 118; 121 of the folding structure 11 and / or driven tension rollers 81 of the superstructure 04 need only be designed to be regulated with respect to a speed (with respect to an angular position), the drive motor 120 is executed on the folding unit 12 in an advantageous embodiment with respect to its angular position adjustable or regulated.
  • the mechanically independently driven printing units 02 and the folding apparatus 12 (or their drive motors 61, 120) to specify an angular position with respect to a virtual electronic master axis.
  • for. B. determines the angular position of the folder 12 (or its drive motor 120) and based on this, the relative angular position of the printing units 02 and 13 printing units specified for this.
  • the z. B. only with respect to their speed controlled drive motors 80; 119 of the driven rollers 81; 117; 118 receive their speed specification, for example, from the machine control.

Landscapes

  • Folding Of Thin Sheet-Like Materials, Special Discharging Devices, And Others (AREA)
  • Rotary Presses (AREA)
  • Unwinding Webs (AREA)
  • Discharge By Other Means (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Claims (16)

  1. Dispositif de traitement d'une bande (03 ; 03' ; 03a ; 03b ; 03c) avec un dispositif de retournement (07), présentant au moins deux barres de retournement (82), espacées les une des autres de manière qu'une bande (03 ; 03' ; 03a ; 03b ; 03c), enlaçant celles-ci, soit décalées de la valeur d'un multiple impair de sa demi largeur de bande (b03 ; b03a), et avec une structure de pliage (11), caractérisé en ce que la structure de pliage (11) présente deux entonnoirs de pliage (101 ; 102 ; 103 ; 106 ; 107 ; 108), disposés l'un à côté de l'autre transversalement à la direction de défilement de la bande (03 ; 03' ; 03a ; 03b ; 03c), dans le chemin de défilement de la bande (03 ; 03' ; 03a ; 03b ; 03c), entre le dispositif de retournement (07) et les deux entonnoirs de pliage (101 ; 102 ; 103 ; 106 ; 107 ; 108), au moins un dispositif de découpage longitudinal (104) est prévu, pour diviser la bande (03 ; 03' ; 03a ; 03b ; 03c) en direction longitudinale, le dispositif de découpage longitudinal (104) étant disposé de manière qu'il divise la bande (03 ; 03' ; 03a ; 03b ; 03c) en deux bandes partielles (03c1 ; 03c2) en un alignement situé sensiblement entre les deux entonnoirs de pliage (101 ; 102 ; 103 ; 106 ; 107 ; 108) disposés l'un à côté de l'autre, et les deux entonnoirs de pliage (101 ; 102 ; 103 ; 106 ; 107 ; 108) disposés l'un à côté de l'autre étant disposés de manière que des moitiés voisines des deux entonnoirs de pliage (101 ; 102 ; 103 ; 106 ; 107 ; 108) soient alignées avec les deux bandes partielles (03c1 ; 03c2) produites par découpage longitudinal de la bande (03 ; 03' ; 03a ; 03b ; 03c) décalée.
  2. Dispositif selon la revendication 1, caractérisé en ce que les deux barres de retournement (82) sont disposées de manière que la barre de retournement (82) enlacée en premier par la bande (03 ; 03' ; 03a ; 03b ; 03c) soit alignée, au moins sur une largeur totale d'un entonnoir de pliage (101 ; 102 ; 103 ; 106 ; 107 ; 108) subséquent, et que la deuxième barre de retournement (82) soit alignée, au moins avec les deux moitiés voisines des deux entonnoirs de pliage (101 ; 102 ; 103 ; 106 ; 107 ; 108) disposés l'un à côté de l'autre.
  3. Dispositif selon la revendication 1, caractérisé en ce qu'au moins l'une des barres de retournement (82) est disposée de manière déplaçable, transversalement à la direction de défilement de la bande (03 ; 03' ; 03a ; 03b ; 03c) entrant.
  4. Dispositif selon la revendication 1, caractérisé en ce qu'au moins l'une des barres de retournement (82) présente une longueur (L82) de valeur telle que sa projection soit plus petite ou égale à une largeur (b03 ; b03a) doublée d'une bande (03 ; 03' ; 03a ; 03b ; 03c) entrante, large de deux pages d'impression.
  5. Dispositif selon la revendication 1, caractérisé en ce qu'en amont du dispositif de retournement (07) est disposé un autre dispositif de découpage longitudinal (06), au moyen duquel la bande (03 ; 03' ; 03a ; 03b ; 03c) à décaler de la valeur du multiple impair de sa demi largeur de bande (b03 ; b03a), est susceptible d'être découpée longitudinalement en tant que bande partielle (03a ; 03b ; 03c), à partir d'une bande (03 ; 03') plus large.
  6. Procédé de fabrication d'un produit plié ou d'un produit intermédiaire dans une machine à imprimer rotative à bobines, où
    - une bande (03 ; 03' ; 03a ; 03b ; 03c) d'une largeur de deux pages est d'abord décalée de la valeur du multiple impair de sa demi largeur de bande (b03 ; b03a),
    - la bande (03 ; 03' ; 03a ; 03b ; 03c), décalée de la valeur du multiple impair de sa demi largeur de bande (b03 ; b03a), est découpée longitudinalement en deux bandes partielles (03c1 ; 03c2) de la largeur d'une page d'impression, en un alignement situé sensiblement entre deux entonnoirs de pliage (101 ; 102 ; 103 ; 106 ; 107 ; 108) disposés l'un à côté de l'autre en aval, transversalement à la direction de défilement de la bande,
    - et les deux bandes partielles (03c1 ; 03c2) de la largeur d'une page d'impression sont guidées sur des moitiés voisines, alignées avec les bandes partielles, des deux entonnoirs de pliage (101 ; 102 ; 103 ; 106 ; 107 ; 108) disposés l'un à côté de l'autre.
  7. Procédé selon la revendication 6, caractérisé en ce que, au moyen des entonnoirs de pliage (101 ; 102 ; 103 ; 106 ; 107 ; 108), sont fabriqués des produits ou produits intermédiaires pliés longitudinalement, présentant chacun au moins une bande partielle (03c1 ; 03c2), de la largeur d'une page d'impression, d'une bande (03 ; 03' ; 03a ; 03b ; 03c) entrante, anciennement large de deux pages d'impression.
  8. Machine à imprimer rotative à bobines avec un dispositif de traitement d'une bande (03 ; 03' ; 03a ; 03b ; 03c) selon une ou plusieurs des revendications 1 à 5.
  9. Machine à imprimer rotative à bobines selon la revendication 8, caractérisée en ce qu'elle présente au moins une section comprenant au moins une unité d'impression (02), ainsi que le dispositif de traitement de la bande (03 ; 03' ; 03a ; 03b ; 03c), avec une structure de pliage (11) installée en aval.
  10. Machine à imprimer rotative à bobines selon la revendication 9, caractérisée en ce que l'unité d'impression (02) est réalisée pour l'impression de chaque fois quatre pages d'impression, disposées axialement les unes à côté des autres.
  11. Machine à imprimer rotative à bobines selon la revendication 9, caractérisée en ce que l'unité d'impression (02) est réalisée pour l'impression de chaque fois six pages d'impression, disposées axialement les unes à côté des autres.
  12. Machine à imprimer rotative à bobines selon la revendication 9, caractérisée en ce que la structure de pliage (11) présente au moins un premier groupe de trois entonnoirs de pliage (101 ; 102 ; 103, respectivement 106 ; 107 ; 108) disposés les uns à côté des autres.
  13. Machine à imprimer rotative à bobines selon la revendication 9, caractérisée en ce que l'unité d'impression (02), au moins un rouleau (117 ; 18) de la structure de pliage (11) disposée en aval, ainsi qu'un appareil de pliage (12) disposé en aval, sont chacun entraînés mécaniquement, indépendamment les uns des autres, par des moteurs d'entraînement (61 ; 119 ; 120).
  14. Machine à imprimer rotative à bobines selon la revendication 9, caractérisée en ce que l'unité d'impression (02) est réalisée sous forme d'unité d'impression satellite à neuf cylindres (02).
  15. Machine à imprimer rotative à bobines selon la revendication 9, caractérisée en ce que l'unité d'impression (02) est réalisée sous forme d'unité d'impression satellite à dix cylindres (02).
  16. Machine à imprimer rotative à bobines selon la revendication 9, caractérisée en ce que l'unité d'impression (02) est réalisée sous forme d'unité d'impression en H (02) comprenant chaque fois quatre groupes d'impression (13) coopérant par paires.
EP02776750A 2001-10-05 2002-09-30 Dispositif de traitement d'une bande, methode de production d'un produit de pliage dans une presse a bobine et une presse a bobine Expired - Lifetime EP1434694B1 (fr)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
DE10149068 2001-10-05
DE10149068 2001-10-05
DE10149997 2001-10-11
DE10149997 2001-10-11
DE10202033 2002-01-18
DE10202033 2002-01-18
DE10230316 2002-07-05
DE10230316 2002-07-05
DE10235391 2002-08-02
DE10235391A DE10235391A1 (de) 2002-08-02 2002-08-02 Vorrichtung zum Führen einer Bahn und Bearbeitungsmaschine mit der Vorrichtung
PCT/DE2002/003693 WO2003031181A1 (fr) 2001-10-05 2002-09-30 Dispositif de traitement d'une bande, element de pliage d'une presse rotative a imprimer et presse rotative a imprimer

Publications (2)

Publication Number Publication Date
EP1434694A1 EP1434694A1 (fr) 2004-07-07
EP1434694B1 true EP1434694B1 (fr) 2009-12-23

Family

ID=27512429

Family Applications (2)

Application Number Title Priority Date Filing Date
EP02776751A Withdrawn EP1448394A1 (fr) 2001-10-05 2002-09-30 Structure de pliage d'une presse rotative a imprimer et presse rotative a imprimer
EP02776750A Expired - Lifetime EP1434694B1 (fr) 2001-10-05 2002-09-30 Dispositif de traitement d'une bande, methode de production d'un produit de pliage dans une presse a bobine et une presse a bobine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP02776751A Withdrawn EP1448394A1 (fr) 2001-10-05 2002-09-30 Structure de pliage d'une presse rotative a imprimer et presse rotative a imprimer

Country Status (5)

Country Link
US (2) US6899026B2 (fr)
EP (2) EP1448394A1 (fr)
AT (1) ATE452758T1 (fr)
DE (1) DE50214126D1 (fr)
WO (2) WO2003031182A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50311139D1 (de) * 2002-12-18 2009-03-12 Koenig & Bauer Ag Strangmischvorrichtung und ein Verfahren zum Mischen von Strängen
US20070068408A1 (en) * 2003-04-23 2007-03-29 Christmann Klaus L Rotary roller printing press
US7032518B2 (en) * 2003-08-07 2006-04-25 Scheffer, Inc. Method and system for managing tension and maintaining registration between multiple webs in a web finishing system
EP1704108A1 (fr) * 2004-01-16 2006-09-27 König & Bauer AG Appareil de pliage d'une presse a papier en bobine
EP1708945B1 (fr) * 2004-01-31 2012-07-04 Koenig & Bauer AG Presse comprenant au moins un element d'impression pour imprimer en offset une bande de matiere a imprimer avec une longueur de decoupe variable et une plieuse
DE102004005890B4 (de) * 2004-02-05 2007-04-05 Man Roland Druckmaschinen Ag Vorrichtung mit zwei übereinander angeordneten Trichtern zum Falzen einer Bahn
EP1761384A1 (fr) * 2004-06-23 2007-03-14 Koenig & Bauer Aktiengesellschaft Machine rotative d´impression avec une barre de retournement
DE102004040150A1 (de) * 2004-08-19 2006-02-23 Man Roland Druckmaschinen Ag Druckeinheit sowie Farbwerk
DE102004041666A1 (de) * 2004-08-27 2006-03-09 Maschinenfabrik Wifag Längsfalzvorrichtung mit unterschiedlich breiten Falztrichtern
DE102004051263A1 (de) * 2004-10-21 2006-04-27 Man Roland Druckmaschinen Ag Druckmaschinenanordnung
EP1888337A1 (fr) * 2005-04-19 2008-02-20 Koenig & Bauer AG Installation de machines a imprimer
EP1871602B1 (fr) * 2005-04-19 2013-10-02 Koenig & Bauer Aktiengesellschaft Machine d'impression
CN101213080B (zh) 2005-08-18 2010-05-19 柯尼格及包尔公开股份有限公司 印刷机设备
EP1915257B1 (fr) 2005-08-18 2013-08-28 Koenig & Bauer AG Installation de machines d'impression
DE102005042438A1 (de) * 2005-09-07 2007-03-08 Man Roland Druckmaschinen Ag Vorrichtung zum Zusammenführen mehrerer Bedruckstoffbahnen
DE102005042351A1 (de) * 2005-09-07 2007-05-03 Man Roland Druckmaschinen Ag Vorrichtung zur Bearbeitung bahnförmigen Materials
EP1960199A1 (fr) * 2005-12-15 2008-08-27 König & Bauer AG Installation de machines d'imprimerie
WO2007071460A1 (fr) 2005-12-15 2007-06-28 Koenig & Bauer Aktiengesellschaft Systeme d'imprimeuses
ES2316099T3 (es) 2005-12-15 2009-04-01 KOENIG & BAUER AKTIENGESELLSCHAFT Instalacion de impresora.
DE102006010602A1 (de) * 2006-03-06 2007-09-20 Maschinenfabrik Wifag Falzvorrichtung mit auf unterschiedlichen Höhen angeordneten Falzapparaten
DE102007012945A1 (de) * 2007-03-14 2008-09-18 Man Roland Druckmaschinen Ag Falzeinheit einer Rollendruckmaschine
US8210103B2 (en) * 2008-05-23 2012-07-03 Goss International Americas, Inc. Apparatus and method for supplying ribbons to a former
DE102008032621A1 (de) * 2008-05-27 2009-12-03 Manroland Ag Vorrichtung zur Herstellung längsgefalzter Produkte
DE102009000454B4 (de) * 2009-01-28 2018-10-31 Windmöller & Hölscher Kg Vorrichtung und Verfahren zur Herstellung von Säcken aus schlauchförmigem Material

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942782A (en) 1974-03-15 1976-03-09 Rockwell International Corporation Compensating former fold
US3948504A (en) * 1974-03-18 1976-04-06 Motter Printing Press Co. Method and apparatus for forming and collating printed signatures
GB1476707A (en) 1974-06-28 1977-06-16 Rockwell International Corp Printing plate arrangement
DE2846191C3 (de) * 1978-10-24 1981-08-13 Koenig & Bauer AG, 8700 Würzburg Falzapparat für Rollenrotationsdruckmaschinen
JPS5621860A (en) 1979-07-30 1981-02-28 Ryobi Ltd Cylinder driving device of offset printing machine
DE3602894A1 (de) 1986-01-31 1987-08-06 Roland Man Druckmasch Schnittregister-kompensationsvorrichtung
US4671501A (en) 1986-06-23 1987-06-09 Kabushiki Kaisha Tokyo Kikai Seisakusho Turning-bar-less folding machine of W-width rotary press
DE3919403C1 (en) 1989-06-14 1990-09-13 Erhardt + Leimer Gmbh, 8900 Augsburg, De Continuous strip guide frame - has rollers at entry and exit of frame, sepd. by further location frame
DE4030863A1 (de) * 1990-09-29 1992-04-09 Roland Man Druckmasch Rollenrotationsdruckmaschine fuer buecher- und kalenderdruck
DE9116419U1 (de) 1991-08-30 1992-10-08 Koenig & Bauer AG, 8700 Würzburg Papierbahnführung in Rollenrotationsdruckmaschinen
DE4204254C2 (de) * 1992-02-13 1995-03-16 Koenig & Bauer Ag Einrichtung zum Längsfalzen mehrerer gleichbreiter Papierbahnen in einer Rollenrotationsdruckmaschine
DE4214394C2 (de) * 1992-04-30 1998-08-20 Asea Brown Boveri Antriebsvorrichtung für eine längswellenlose Rotationsdruckmaschine
DE4344362C2 (de) * 1993-12-24 1998-02-26 Koenig & Bauer Albert Ag Vorrichtung zum Herstellen von Falzprodukten
DE4419217A1 (de) * 1994-06-01 1995-12-07 Roland Man Druckmasch Doppeltrichterfalzapparat
DE19516443A1 (de) * 1995-05-04 1996-11-07 Wifag Maschf Einzeln angetriebener Falzapparat für eine Rotationsdruckmaschine
DE19516445A1 (de) * 1995-05-04 1996-11-07 Wifag Maschf Rotationsdruckmaschine mit frei aufstellbarem Falzapparat
EP0859732B1 (fr) 1995-11-08 2000-02-09 Koenig & Bauer Aktiengesellschaft Dispositif pour realiser des produits de pliage
DE59605687D1 (de) * 1995-11-08 2000-09-07 Koenig & Bauer Ag Verfahren und vorrichtung zur herstellung von mehrlagigen zeitungsprodukten mit tabloidteil
DE19803809A1 (de) * 1998-01-31 1999-08-05 Roland Man Druckmasch Offsetdruckwerk
JP3030852B1 (ja) * 1998-12-25 2000-04-10 株式会社東京機械製作所 複数の見開き面を有する1セクション多ペ―ジ印刷物を作成可能な輪転機
US6152034A (en) * 1999-07-26 2000-11-28 Heidelberger Druckmaschinen, Ag Former board arrangement in a web-fed rotary newspaper printing press
US6422552B1 (en) 1999-07-26 2002-07-23 Heidelberger Druckmaschinen Ag Movable folders and former board arrangement
ATE272555T1 (de) 2000-03-22 2004-08-15 Koenig & Bauer Ag Einrichtung zum umlenken einer materialbahn
US6733431B2 (en) * 2001-09-19 2004-05-11 Heidelberger Druckmaschinen Ag Device and method for folding newspapers with flexible inserting position
US6522552B1 (en) * 2001-11-16 2003-02-18 Power Quotient International Co., Ltd. Wireless memory card reader

Also Published As

Publication number Publication date
US6892635B2 (en) 2005-05-17
DE50214126D1 (de) 2010-02-04
WO2003031182A1 (fr) 2003-04-17
US20040244616A1 (en) 2004-12-09
ATE452758T1 (de) 2010-01-15
US6899026B2 (en) 2005-05-31
US20040244614A1 (en) 2004-12-09
EP1448394A1 (fr) 2004-08-25
WO2003031181A1 (fr) 2003-04-17
EP1434694A1 (fr) 2004-07-07

Similar Documents

Publication Publication Date Title
EP1438190B1 (fr) Unite d'impression et presse rotative a imprimer
EP1434694B1 (fr) Dispositif de traitement d'une bande, methode de production d'un produit de pliage dans une presse a bobine et une presse a bobine
EP1612044B1 (fr) Machine d'impression rotative
EP1556217B1 (fr) Presse a imprimer
DE10318477A1 (de) Rollenrotationsdruckmaschine
DE10262338B4 (de) Rollenrotationsdruckmaschine mit einer mindestens zweit Drucktürme aufweisenden Sektion
DE10321989A1 (de) Druckmaschine
DE102004002984A1 (de) Druckmaschine, Betriebsweise der Druckmaschine sowie Druckprodukte
DE102004043417A1 (de) Druckmaschine
DE202004021116U1 (de) Druckmaschinen sowie Druckprodukte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20090721

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: DEVICE FOR PROCESSING A WEB, METHOD FOR PRODUCING A FOLDED PRODUCT IN A WEB-FED PRESS AND A WEB-FED PRESS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50214126

Country of ref document: DE

Date of ref document: 20100204

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100323

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100423

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100930

Year of fee payment: 9

BERE Be: lapsed

Owner name: KOENIG & BAUER A.G.

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110922

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110927

Year of fee payment: 10

Ref country code: GB

Payment date: 20110920

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214126

Country of ref document: DE

Effective date: 20120403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001