EP1421376A2 - Bionalytische erkennungsoberfläche mit optimierter dichte der erkennungselemente - Google Patents

Bionalytische erkennungsoberfläche mit optimierter dichte der erkennungselemente

Info

Publication number
EP1421376A2
EP1421376A2 EP02797619A EP02797619A EP1421376A2 EP 1421376 A2 EP1421376 A2 EP 1421376A2 EP 02797619 A EP02797619 A EP 02797619A EP 02797619 A EP02797619 A EP 02797619A EP 1421376 A2 EP1421376 A2 EP 1421376A2
Authority
EP
European Patent Office
Prior art keywords
detection surface
detection
analytes
surface according
binding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02797619A
Other languages
English (en)
French (fr)
Inventor
Michael Pawlak
Gert L. Duveneck
Ning-Ping Huang
Susan Margaret De Paul
Marcus Textor
Rolf Hofer
Eveline SCHÜRMANN-MADER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Zeptosens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeptosens AG filed Critical Zeptosens AG
Publication of EP1421376A2 publication Critical patent/EP1421376A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic

Definitions

  • the invention relates to a detection surface on a support with an optimal (in terms of area) binding capacity for the detection and binding of one or more analytes from one or more samples brought into contact with this surface, characterized in that a) said detection surface is a mixture of specific ones biological or biochemical or synthetic recognition elements for the recognition and binding of said analytes with components which are “neutral” with respect to these analytes, ie components that do not bind these analytes, and b) said specific recognition elements, based on the entire recognition surface or any partial area thereof, less than a complete one Take monolayer.
  • the invention also relates to a method for the qualitative and / or quantitative detection of one or more analytes in one or more samples, characterized in that said samples and optionally further reagents are brought into contact with a detection surface according to the invention and from the binding of the analyte or further to Analyte detection of used detection substances resulting changes in optical or electronic signals can be measured.
  • recognition elements which are biological, biochemical or synthetic
  • the solid support can be both a macroscopic type with a surface area of square millimeters to square centimeters and also a microscopic type, for example in the form of so-called beads, ie approximately spherical particles with typical diameters in the micrometer range.
  • the surface of such a solid Carrier with recognition elements immobilized thereon will hereinafter be referred to as a "recognition surface”.
  • the present invention solves the problem of already providing a detection surface with a maximum binding capacity and at the same time minimizing the extent of unwanted non-specific binding to the surface.
  • the mixture of specific recognition elements and components which are “neutral” with respect to the analytes, that is to say components which do not bind these analytes, furthermore has a promoting effect on the binding ability of said specific recognition elements by denaturing said recognition elements on the surface of the support (which impair or even cancel the binding ability)
  • this mixture promotes a uniform distribution of the detection elements within the detection surface, for example by preventing the detection elements from accumulating in clusters after application in liquid solution and evaporation of the solution.
  • the first object of the invention is a detection surface with an optimal (in terms of area) binding capacity for the detection and binding of one or more analytes from one or more samples brought into contact with this surface, characterized in that a) said detection surface is a mixture of specific biological or biochemical or synthetic recognition elements for recognizing and binding said analytes with components which are “neutral” with respect to these analytes, ie components which do not bind these analytes, and b) said specific recognition elements, based on the entire recognition surface or any partial area thereof, less than a complete monolayer , take in. Said specific recognition elements, based on the entire recognition surface or any partial area thereof, preferably form one tenth to one half of a complete monolayer. In addition, it is preferred that said specific recognition elements and components which are “neutral” to the analytes, based on the entire recognition surface or any partial area thereof, together form at least two thirds of a complete monolayer.
  • a second object of the invention is accordingly a structured detection surface with an optimal (in terms of area) binding capacity for the detection and binding of one or more analytes from one or more samples brought into contact with this surface, characterized in that a) said detection surface in discrete , spatially separated measuring ranges, a mixture of specific biological or biochemical or synthetic recognition elements for the recognition and binding of said analytes with components which are “neutral” with respect to these analytes, ie, those analytes that do not bind, and b) said specific recognition elements, based on the area of the discrete ones Take up measuring ranges less than a complete monolayer.
  • said specific recognition elements based on the entire recognition surface or any partial area thereof, form a tenth to a half of a complete monolayer.
  • spatially separated measuring areas are to be defined by the area, the biological or biochemical or synthetic detection elements immobilized there for the detection of an analyte from a liquid sample and those with the detection elements mixed, "neutral" molecules compared to said analytes.
  • These surfaces can have any geometry, for example the shape of points, circles, rectangles, triangles, ellipses or lines. It is possible that in a two-dimensional arrangement up to 1,000 000 measuring ranges are arranged, whereby a single measuring range can take up an area of 10 "4 mm 2 - 10 mm 2 .
  • the density of the measurement areas can be more than 10, preferably more than 100, particularly preferably more than 1000 measurement areas per square centimeter.
  • a detection surface according to the invention is usually generated on a solid support.
  • the application and subsequent adhesion can take place through electrostatic interaction or, more generally, through physical adsorption.
  • the orientation of the recognition elements is then generally statistical.
  • this adhesion-promoting layer is transparent at least at one excitation wavelength.
  • the thickness of such an optional adhesion-promoting layer is preferably less than 200 nm, but particularly preferably less than 20 nm.
  • the optional adhesion-promoting layer can, for example, be a chemical compound from the groups of silanes, functionalized silanes, epoxides, functionalized, charged or polar polymers and "self-organized passive or functionalized monolayers or multilayers ".
  • discrete (spatially separated) measurement areas are generated by spatially selective application of biological or biochemical or synthetic detection elements on a surface of a carrier or on an adhesion-promoting layer additionally applied to a carrier surface, preferably using an or several methods from the group of processes involving "inkjet spotting", mechanical spotting using a pen, pen or capillary, "micro contact printing”, fluidic contacting of the measuring areas with the biological or biochemical or synthetic recognition elements by their supply in parallel or crossed microchannels, under the influence of pressure differences or electrical or electromagnetic potentials as well as photochemical or photolithographic immobilization processes.
  • the biological or biochemical or synthetic recognition elements can be selected from the group consisting of proteins, for example mono- or polyclonal antibodies and antibody fragments, peptides, enzymes, aptamers, synthetic peptide structures, glycopeptides, oligosaccharides, lectins, antigens for antibodies (e.g. Biotin for streptavidin), with additional binding sites functionalized proteins ("tag proteins", such as "histidine tag proteins") and their complex formation partners.
  • Another group of compounds, which are also preferred as recognition elements include nucleic acids (for example DNA, RNA, oligonucleotides) and nucleic acid analogs (for example PNA) and their derivatives with artificial bases.
  • a third preferred group of compounds as recognition elements comprises soluble, membrane-bound proteins isolated from a membrane, such as, for example, receptors and their ligands.
  • Said “neutral” components, which do not bind the analyte or analytes, can also be selected from the groups consisting of albumin, in particular bovine serum albumin or human serum albumin, casein, nonspecific, polyclonal or monoclonal, foreign species or empirically unspecific antibodies for the analyte (s) to be detected (especially for immunoassays), detergents - such as Tween 20 -, fragmented natural or synthetic DNA that does not hybridize with polynucleotides to be analyzed, such as an extract of herring or salmon sperm (especially for polynucleotide hybridization assays), or also uncharged but hydrophilic polymers , such as polyethylene glycols or dextrans.
  • WO 00/65352 describes coatings with graft copolymers (“graft copolymers”) with a polyionic main chain, for example binding to a support (electrostatically) and “non-interactive” (adsorption-resistant) side chains, for coating bioanalytical sensor platforms or Implants for medical applications.
  • graft copolymers with a polyionic main chain, for example binding to a support (electrostatically) and “non-interactive” (adsorption-resistant) side chains, for coating bioanalytical sensor platforms or Implants for medical applications.
  • a preferred embodiment of a detection surface according to the invention is characterized in that the detection elements are bound to the free end or near the free end of a fully or partially functionalized, "non-interactive" (adsorption-resistant, uncharged) polymer, said non-interactive "(adsorption-resistant, uncharged) ) Polymer is bound as a side chain to a charged, polyionic polymer as the main chain and forms together with this a polyionic, multifunctional co-polymer.
  • a large group of embodiments of a detection surface according to the invention is characterized in that the polyionic polymer main chain is cationically (positively) charged at approximately neutral pH.
  • the polyionic polymer main chain is cationically (positively) charged at approximately neutral pH.
  • it can be selected from the group of polymers which comprises amino acids with a positive charge at approximately neutral pH, polysaccharides, polyamines, polymers of quaternary amines and charged synthetic polymers.
  • the cationic polymer main chain can also comprise one or more molecular groups from the group consisting of lsysine, histidine, arginine, chitosan, partially deacetylated chitin, amine-containing derivatives of neutral polysaccharides, polyaminostyrene, Polyamine acrylates, polyamine methacrylates, polyethyleneimines, polyaminoethylenes, polyaminostyrenes and their N-alkyl derivatives.
  • polyionic polymer main chain is anionically (negatively) charged at approximately neutral pH.
  • the cationic main chain can be selected from the group of polymers comprising amino acids with attached groups with negative charge at approximately neutral pH, polysaccharides and charged synthetic polymers with negatively charged groups.
  • the cationic polymer main chain can comprise one or more molecular groups from the group which comprises polyaspartic acid, polyglutamic acid, alginic acid or their derivatives, pectin, hyaluronic acid, heparin, heparin sulfate, chondroitin sulfate, dermatan sulfate, dextran sulfate, polymethyl methacrylic acid, oxidized cellulose, carboxymic acid, carboxymic acid, maloxymic acid, carboxymethyl acid, maloxymic acid, carboxymethyl acid, maloxic acid, carboxymethyl acid.
  • non-interactive (uncharged) polymer as the side chain can be selected from the group comprising poly (alkylene glycols), poly (alkylene oxides), neutral water-soluble polysaccharides, polyvinyl alcohols, poly-N-vinylpyrrolidones, phosphorylcholine derivatives, non-cationic poly ( meth) acrylates and their combinations.
  • the biological or biochemical or synthetic recognition elements are bound to the “non-interactive” side chain at its free end or close to its free end via reactive groups: it is particularly preferred that said reactive groups are selected from the group comprising hydroxy (-OH), carboxy (-COOH), ester (-COOR), thiols (-SH), N-hydroxysuccinimide, maleimidyl, quinone, vinyl sulfone, nitrilotriacetic acid ("nitrilotriacetic acid", NTA) and combinations thereof.
  • reactive groups are selected from the group comprising hydroxy (-OH), carboxy (-COOH), ester (-COOR), thiols (-SH), N-hydroxysuccinimide, maleimidyl, quinone, vinyl sulfone, nitrilotriacetic acid ("nitrilotriacetic acid", NTA) and combinations thereof.
  • a detection surface according to the invention is applied to an essentially optically transparent carrier.
  • essentially optically transparent is to be understood to mean that a layer characterized thereby is at least 95% transparent, at least at the wavelength of a light irradiated by an external light source, for its optical path perpendicular to said layer, provided that the layer is not reflective
  • “essentially optically transparent” is understood to mean that the sum of transmitted, reflected and optionally coupled into a layer and guided therein is at least 95% of the incident light at the point of incidence of the incident light.
  • excitation light an excitation light emitted by a carrier in the direction of the detection surface and from the opposite side, if appropriate by a medium radiated above the detection surface in the direction of the detection surface.
  • This excitation light can be used, for example, for excitation luminescence, or specific fluorescence or phosphorescence.
  • the essentially optically transparent carrier comprises a material from the group comprising moldable, sprayable or millable plastics, metals, metal oxides, silicates, such as, for. B. glass, quartz or ceramics.
  • a possible embodiment is characterized in that the detection surface according to the invention is applied to an adhesion-promoting layer applied to the essentially optically transparent carrier, which is also essentially optically transparent.
  • a special embodiment is characterized in that recesses for the production of sample containers are structured in the surface of said carrier.
  • This Recesses typically have a depth of 20 ⁇ m to 500 ⁇ m, preferably from 50 ⁇ m to 300 ⁇ m.
  • the essentially optically transparent carrier comprises a continuous optical waveguide or divided into individual waveguiding regions. It is particularly advantageous if the optical waveguide is an optical layer waveguide with a first, essentially optically transparent layer (a) facing the detection surface on a second, essentially optically transparent layer (b) with a lower refractive index than layer (a).
  • said optical layer waveguide is substantially planar.
  • Suitable planar optical layer waveguides and their modifications are, for example, in patent applications WO 95/33197, WO 95/33198, WO 96/35940, WO 98/09156, WO 99/40415, PCT / EP 00/04869 and PCT / EP 01 / 00605. The content of these patent applications is therefore fully introduced as part of this description.
  • this layer is in optical contact with one or more optical coupling elements from the group consisting of prism couplers, evanescent couplers with matched optical waveguides with overlapping evanescent fields, End face couplers are formed with focusing lenses, preferably cylindrical lenses, arranged in front of one end face of the wave-guiding layer, and grating couplers.
  • optical coupling elements from the group consisting of prism couplers, evanescent couplers with matched optical waveguides with overlapping evanescent fields, End face couplers are formed with focusing lenses, preferably cylindrical lenses, arranged in front of one end face of the wave-guiding layer, and grating couplers.
  • the excitation light is coupled into the optically transparent layer (a) with the aid of one or more grating structures (c) which are pronounced in the optically transparent layer (a).
  • Another component of the invention is a method for the qualitative and / or quantitative detection of one or more analytes in one or more samples, characterized in that said samples and optionally other reagents are brought into contact with a detection surface according to the invention according to one of the aforementioned embodiments and from the Binding of the analyte or other changes in optical or electronic signals resulting from the detection substances used to detect the analyte can be measured.
  • the invention also relates to a method for the qualitative and / or quantitative detection of one or more analytes in one or more samples, characterized in that said samples and optionally further reagents are brought into contact with and out of a structured detection surface according to one of the above-mentioned embodiments the binding of the analyte or other changes in the detection substances used for the detection of analytes resulting from optical or electronic signals emanating from the discrete measuring ranges are measured in a spatially resolved manner
  • the one or more samples are preincubated with a mixture of the various detection reagents for determining the analytes to be detected in said samples and these mixtures are then brought into contact with a detection surface according to the invention in a single addition step.
  • the detection of the one or more analytes is based on the determination of the change in one or more luminescences.
  • the excitation light from one or more light sources can be radiated in an incident light excitation arrangement. It can also be irradiated in a transmission light excitation arrangement.
  • a method is preferred which is characterized in that the detection surface, optionally mediated via an adhesion-promoting layer, is arranged on an optical waveguide, which is preferably essentially planar, that the one or more samples are brought into contact with the one or more analytes to be detected therein and optionally further detection reagents sequentially or after mixing with said samples in a single step with said detection surface and that the excitation light from one or more light sources in the optical waveguide, analogously is coupled in as described above for the optical layer waveguide.
  • Characteristic of a special embodiment of the method according to the invention is that the detection of the one or more analytes on a detection surface above a grating structure (c) or (c ') formed in the layer (a) of an optical layer waveguide on the basis of the result of the binding of the analyte and / or further detection reagents, on the immobilized biological or biochemical or synthetic recognition elements, resulting changes in the resonance conditions for coupling an excitation light into the layer (a) of a carrier designed as a layer waveguide or for coupling out light carried in the layer (a).
  • a variant of the method according to the invention is particularly preferred, which is characterized in that said optical waveguide is designed as an optical layer waveguide with a first optically transparent layer (a) on a second optically transparent layer (b) with a lower refractive index than layer (a), that excitation light continues to be coupled into the optically transparent layer (a) with the aid of one or more grating structures which are pronounced in the optically transparent layer (a) and is guided as a guided wave to the measuring areas (d) thereon, and that the evanescence continues Field of said guided wave generated luminescence of luminescent molecules is detected with one or more detectors and the concentration of one or more analytes is determined from the intensity of these luminescence signals.
  • (1) the isotropically emitted luminescence or (2) coupled into the optically transparent layer (a) and coupled out via a grating structure (c) or (c ') coupled luminescence or luminescence of both components (1) and (2) can be measured simultaneously , It is part of the method according to the invention that a luminescent dye or luminescent nanoparticle is used as the luminescent label to generate the luminescence, which can be excited and emitted at a wavelength between 300 nm and 1100 nm.
  • the luminescence label be bound to the analyte or in a competitive assay to an analog of the analyte or in a multi-stage assay to one of the binding partners of the immobilized biological or biochemical or synthetic recognition elements or to the biological or biochemical or synthetic recognition elements.
  • Another embodiment of the method is characterized in that a second or even further luminescence label with the same or different excitation wavelength as the first luminescence label and the same or different emission wavelength is used.
  • the second or even more luminescent label can be excited at the same wavelength as the first luminescent dye, but emit at other wavelengths.
  • a variant of the method consists in that charge or optical energy transfer from a first luminescent dye serving as donor to a second luminescent dye serving as acceptor is used to detect the analyte.
  • Another embodiment of the method is characterized in that, in addition to the determination of one or more luminescences, changes in the effective refractive index on the measurement areas are determined.
  • a further development of the method is characterized in that the one or more luminescences and / or determinations of light signals are carried out polarization-selectively at the excitation wavelength. It is preferred that the one or more luminescences are measured with a different polarization than that of the excitation light.
  • Part of the invention is a method according to one of the aforementioned embodiments for the simultaneous or sequential, quantitative or qualitative determination of one or more analytes from the group of proteins, such as antibodies or antigens, receptors or ligands, chelators, with additional binding sites functionalized proteins ("Tag Proteins ", such as” histidine tag proteins ") and their complex formation partners, oligonucleotides, DNA or RNA strands, DNA or RNA analogs, enzymes, enzyme factors or inhibitors, lectins and carbohydrates.
  • samples to be examined are, for example, naturally occurring body fluids such as blood, serum, plasma, lymph or urine or tissue fluids or egg yolk.
  • sample to be examined is an optically cloudy liquid, surface water, a soil or plant extract, a bio- or synthesis process broth.
  • samples to be examined are prepared from biological tissue parts or cell cultures.
  • the invention furthermore relates to the use of a method according to the invention for quantitative or qualitative analyzes for determining chemical, biochemical or biological analytes in screening methods in pharmaceutical research, combinatorial chemistry, clinical and preclinical development, for real-time binding studies and for determining kinetic parameters in affinity screening and in research, on qualitative and quantitative analyte determinations, in particular for DNA and RNA analysis and the determination of genomic or proteomic differences in the genome, such as single nucleotide polymorphisms, for measuring protein-DNA interactions, for determining control mechanisms for the m-RNA expression and for protein (bio) synthesis, for the preparation of toxicity studies and for the determination of expression profiles, in particular for the determination of biological and chemical marker substances such as mRNA, proteins, peptides or low-molecular organic (messenger) substances, as well as for the detection of antibodies , Antigens, pathogens or bacteria in pharmaceutical product research and development, human and veterinary diagnostics, agrochemical product research and development, symptomatic and presymptomatic plant diagnostic
  • Poly (L-lysine) hydrobromide (molecular weight approx. 20 kDa), streptavidin from Streptomyces avidinii (molecular weight approx. 60 kDa), protein avidin (molecular weight approx. 66 kDa), biotinylated goat anti-rabbit (ie bound to biotin) Immunoglobulin (anti-R-IgG biotin, molecular weight approx. 150 kDa) and biotinylated bovine serum albumin (BSA biotin, molecular weight approx. 66 kDa) were obtained from Sigma-Aldrich (Buchs, Switzerland).
  • N-hydroxysuccinimidyl ester of methoxy-poly (ethylene glycol) propionic acid (MeO-PEG-SPA, molecular weight 2 kDa) and the ⁇ -biotin- ⁇ -N-hydroxysuccinimidyl ester of poly (ethylene glycol) carbonate (biotin-PEG-CO 2 -NHS , Molecular weight 3.4 kDa) were obtained from Shearwater Polymers Inc. (Huntsville, USA).
  • Rabbit immunoglobulin (anti-human albumin) R-IgG, molecular weight approx. 150 kDa
  • rabbit anti-BSA rabbit anti-bovine serum albumin
  • a thin-film waveguide designed as a grating coupler (TiO-SiO 2 solgel as a waveguiding layer on a glass substrate, period of the coupling grating in the waveguiding layer: 417 nm) (micro vacuum Ltd., Budapest, Hungary) with a sputtered thereon, 12 nm thin Nb 2 O 5 layer.
  • these supports, with Nb 2 O 5 as the top layer were sonicated in 0.1 M HC1 for 10 minutes, thoroughly rinsed with ultrapure water, blown dry with nitrogen and subsequently with oxygen plasma in a PDC plasma cleaner / sterilizer for 2 hours -32G (Harrick, Ossining, USA).
  • Figure 1 shows schematically the synthesis of PLL-g-PEG.
  • N-Hydroxy-succinimidyl esters of both biotinylated and non-biotinylated poly (ethylene glycol) (“PEG”) are reacted with poly (L-lysine) ("PLL”) in a stoichiometric ratio to produce the desired product.
  • PEG polyethylene glycol
  • PLL poly (L-lysine)
  • PLL-g-PEG derivatives includes the molecular weights of the polymer partial chains of the copolymers, the grafting ratio and the percentage of biotinylated PEGs. Accordingly, “PLL (20) -g / " 5.57-PEG (2) / PEG-Biotin (3.4) 30%” a polymer formed from a main chain made of poly (L-lysine) with a molecular weight of 20 kDa and side chains, 70% consisting of poly (ethylene glycol) with a molecular weight of 2 kDa and 30% of biotinylated poly (ethylene glycol) with a molecular weight of 3.4 kDa.
  • the grafting ratio of 3.5 means that on average two out of every seven lysine groups (lysine units) are biotinylated or non-biotinylated PEG chains are bound. Since all of the polymers mentioned in this example are produced from similar precursors as an alternative to "PLL-g-PEG / PEG-Biotin30%", the abbreviation "PPB30" should also be used. Abbreviations are used for other percentages of biotinylated PLL-g-PEGs.
  • PLL-HBr Poly (L-lysine) hydrobromide
  • STBB sodium tetraborate buffer
  • PLL-HBr Poly (L-lysine) hydrobromide
  • STBB sodium tetraborate buffer
  • the solution is stirred and then filtered (0.22 ⁇ m Durapore membrane, sterile Millex GV, Sigma-Aldrich, Buchs, Switzerland) and filled into a sterile culture tube.
  • MeO-PEG-SPA powder is then added in a suitable amount according to the stoichiometric ratio while stirring the solution evenly.
  • the solution is transferred to a dialysis tube (Spectr / Por dialysis tube, molecular weight limitation (cut-off) 6-8 kDa, Sochochim, Lausanne, Switzerland). Dialysis is carried out for 24 hours in one liter of phosphate buffered saline ("PBS", 10 mM, pH 7.0), followed by 24 hours of further dialysis in one liter of deionized water. The product is then kept at a temperature of -50 ° for 48 hours C and a pressure of 0.2 mbar freeze-dried.
  • PBS phosphate buffered saline
  • Biotinylated PLL-g-PEG is synthesized in a manner similar to that previously described.
  • Biotin-PEG-CO 2 -NHS powder is slowly added in an appropriate amount according to the stoichiometric ratio to the filtered solution of PLL-HBr solution and stirred for one hour.
  • MeO-PEG-SPA is then added in an amount appropriate to the stoichiometric ratio, and the resulting solution is stirred for a further five hours.
  • the further steps of dialysis and product recovery are the same as described above.
  • the grafting ratio and the percentage of biotin in the biotinylated PEG derivatives are estimated using 1H-NMR.
  • the lyophilized polymers are dissolved in D 2 O and the spectra recorded with a 300 MHz NMR spectrometer. The values determined from this are summarized in Table 1.
  • Table 1 Grafting ratio and percentage of biotin in biotinylated PEG derivatives, determined using 1H-NMR.
  • the mass of adsorbed polymer on the Nb 2 ⁇ 5 surfaces is determined on the basis of the difference in the coupling conditions for light coupling into a grating coupler sensor before and after application of the respective polymer layers.
  • the principle of operation of a grating coupler sensor is described, for example, in US Pat. No. 4952056.
  • a grid coupler structure (BIOS I, ASI AG, Zurich, Switzerland) was used as the measuring instrument.
  • a carrier pretreated according to section 2 of this example is equilibrated in HEPES-1 buffer (10 mM HEPES, pH 7.4) for at least five hours before an experiment, then inserted into the lattice coupler measuring instrument and there in HEPES-1 for another hour - Buffer equilibrated until a stable baseline, ie a stable resonance angle for coupling the excitation light into the highly refractive waveguiding layer using the coupling grating has been achieved.
  • the polymer-coated supports are sequentially under continuous flow (flow rate: 1 ml / h) with solutions of streptavidin (100 ⁇ g / ml), anti-R-IgG-biotin (100 ⁇ g / ml) and finally R-IgG (200 ⁇ g / ml) incubated.
  • streptavidin 100 ⁇ g / ml
  • anti-R-IgG-biotin 100 ⁇ g / ml
  • R-IgG 200 ⁇ g / ml
  • BSA biotin 100 ⁇ g / ml
  • anti-BSA rabbit anti-bovine serum albumin
  • anti-BSA 200 ⁇ g / ml
  • anti-BSA rabbit anti-bovine serum albumin
  • a thin-film waveguide (TiO 2 -SiO 2 sol gel as a waveguiding layer on a glass substrate, period of the coupling grating in the waveguiding layer: 417 nm) with a 12 nm thin Nb 2 O 5 layer applied thereon serves as a carrier.
  • Nb 2 O 5 -coated surfaces It is believed that the strong adsorption of polymers, which include PLL as an essential component, on Nb 2 O 5 -coated surfaces is based primarily on electrostatic interaction between this metal oxide surface and the polymer as a multi-charged adsorbate.
  • the aim of applying a mixture of PLL-g-PEG and PLL-g-PEG / PEG-Biotin is to achieve an optimal binding capacity of the polymer-coated surface by adjusting the mixing ratio and at the same time to minimize non-specific binding.
  • Biotin, bound as a recognition element in the polymer PLL-g-PEG / PEG-biotin serves as a specific recognition element for molecules such as, for example, avidin or streptavidin, to which "biotinylated" molecules (ie with Biotin-linked molecules), such as anti-RIgG-biotin, can be bound, which in turn can serve as recognition elements for an analyte (in this example, R-IgG).
  • the mass of adsorbed polymer on the Nb 2 ⁇ 5 surfaces is determined on the basis of the difference in the coupling conditions for light coupling into the lattice coupler before and after application of the respective polymer layers. From this, values of 167 +/- 8 ng / cm 2 adsorbed polymer for pure PLL-g-PEG and 213 +/- 13 ng / cm 2 for pure PPB20 are determined. Taking into account the molecular weights and the grafting ratio determined by means of NMR, the surface concentrations of the adsorbed polymers are determined for each mixing ratio used. Within the experimental accuracy there is a uniform value of 2.5 +/- 0.1 pmol / cm 2 , which leads to the conclusion is that the mixing ratio of the polymers on the surface is the same as before in solution.
  • the ratio of bound streptavidin to surface-immobilized biotin is 1: 6.5.
  • the relatively high excess of biotin sub-molecules as immobilized recognition elements compared to bound streptavidin, which was added in an excess, which should lead to the saturation of all available binding sites in terms of quantity, can be explained by the fact that a part of the biotin molecule is not accessible on the surface, but rather could be hidden in the PEG sublayer.
  • one streptavidin molecule could also bind to two or more biotin molecules.
  • Figure 2 shows the amount of anti-R-IgG biotin bound as a function of the concentration of surface bound biotin.
  • the amount of bound anti-R-IgG biotin also initially increases.
  • a surface concentration (density) of approx. 11.2 pmol / cm 2 of biotin bound via PEG / biotin corresponding to a concentration of 1.68 pmol cm bound streptavidin (or x% of a complete monolayer)
  • a maximum of the amount of bound anti-R -IgG-biotin reached about 0.43 pmol / cm.
  • the amount of bound anti-R-IgG biotin decreases again.
  • the decrease in the binding capacity for anti-R-IgG biotin can be explained by steric hindrance of the available binding sites on streptavidin. It should also be taken into account that the anti-R-IgG-biotin molecule with a size similar to that of anti-R-IgG (from 14.3 nm x 5.9 nm x 13.1 nm (HD Kratzin, W. Plam, M. Stangel, WE Schmidt, J. Friedrich, N. Hilschmann, Biol. Chem. HS 370 (1989) 263 - 272)) occupy an approximately 2.5 times larger footprint than streptavidin if one has a "foot print" of size 14.3 nm x 5.9 nm.
  • the smaller protein BSA-biotin (molecular weight approx. 150,000) is used instead of anti-R-IgG-biotin (molecular weight approx. 150,000). 50,000), followed by the delivery of the anti-BSA antibody in the subsequent step.
  • the “chip” previously brought into contact with anti-R-IgG-biotin is brought into contact with R-IgG as analyte, followed by rinsing with buffer.
  • R-IgG the binding behavior for R-IgG very closely follows the trend of the binding curve of anti-R-IgG-biotin, as described above for the binding of anti-R-IgG-biotin.

Abstract

Die Erfindung betrifft eine Erkennungsoberfläche auf einem Träger mit einer optimalen (auf die Fläche bezogenen) Bindungskapazität zur Erkennung und Bindung eines oder mehrerer Analyten aus einer oder mehreren mit dieser Oberfläche in Kontakt gebrachten Proben, dadurch gekennzeichnet, dass a) besagte Erkennungsoberfläche eine Mischung von spezifischen biologischen oder biochemischen oder synthetischen Erkennungselementen zur Erkennung und Bindung besagter Analyten mit gegenüber diesen Analyten 'neutralen', d.h. diese Analyten nicht bindenden Komponenten, umfasst und b) besagte spezifische Erkennungselemente, bezogen auf die ganze Erkennungsoberfläche oder eine beliebige Teilfläche davon, weniger als eine vollständige Monoschicht, einnehmen. Die Erfindung betrifft auch ein Verfahren zum qualitativen und/oder quantitativen Nachweis eines oder mehrerer Analyten in einer oder mehreren Proben, dadurch gekennzeichnet, dass besagte Proben und gegebenenfalls weitere Reagentien mit einer erfindungsgemässen Erkennungsoberfläche in Kontakt gebracht werden und aus der Bindung des Analyten oder weiterer zum Analytnachweis eingesetzter Nachweissubstanzen resultierende Änderungen von optischen oder elektronischen Signalen gemessen werden.

Description

Bioanalytische Erkennungsoberfläche mit optimierter Dichte der Erkennungselemente
Die Erfindung betrifft eine Erkennungsoberfläche auf einem Träger mit einer optimalen (auf die Fläche bezogenen) Bindungskapazität zur Erkennung und Bindung eines oder mehrerer Analyten aus einer oder mehreren mit dieser Oberfläche in Kontakt gebrachten Proben, dadurch gekennzeichnet, dass a) besagte Erkennungsoberfläche eine Mischung von spezifischen biologischen oder biochemischen oder synthetischen Erkennungselementen zur Erkennung und Bindung besagter Analyten mit gegenüber diesen Analyten „neutralen", d.h. diese Analyten nicht bindenden Komponenten, umfasst und b) besagte spezifische Erkennungselemente, bezogen auf die ganze Erkennungsoberfläche oder eine beliebige Teilfläche davon, weniger als eine vollständige Monoschicht einnehmen.
Die Erfindung betrifft auch ein Verfahren zum qualitativen und / oder quantitativen Nachweis eines oder mehrerer Analyten in einer oder mehreren Proben, dadurch gekennzeichnet, dass besagte Proben und gegebenenfalls weitere Reagentien mit einer erfindungsgemässen Erkennungsoberfläche in Kontakt gebracht werden und aus der Bindung des Analyten oder weiterer zum Analytnachweis eingesetzter Nachweissubstanzen resultierende Änderungen von optischen oder elektronischen Signalen gemessen werden.
Zum Nachweis eines oder mehrerer Analyten aus einer Probe mit einem komplexen Gemisch einer Vielzahl von Stoffen sind Verfahren verbreitet, in denen ein oder mehrere sogenannte Erkennungselemente, welche biologischer, biochemischer oder synthetischer Art sind, auf einem festen Träger immobilisiert werden, bevor sie dann in immobilisierter Form mit besagter Probe in Kontakt gebracht werden und die darin enthaltenen Analyten an die für sie spezifischen Erkennungselemente binden. Dabei kann der feste Träger sowohl makroskopischer Art mit einer Oberfläche von Quadratmillimetern bis Quadratzentimetern, als auch mikroskopischer Art, beispielsweise in Form von sogenannten Beads, d.h. annähernd kugelförmigen Partikeln mit typischen Durchmessern im Mikrometerbereich, sein. Die Oberfläche eines solchen festen Trägers mit darauf immobilisierten Erkennungselementen soll nachfolgend als eine „Erkennungsoberfläche" bezeichnet werden.
Gegenüber Verfahren, in denen die Analyten und ihre Erkennungselemente als Reaktions- oder Bindungspartner in homogener flüssiger Lösung zusammenkommen, bieten diese an einen festen Träger gebundenen Verfahren eine Vielzahl von Vorteilen, beispielsweise einer leichteren Trennung oder Unterscheidung von gebundenen Analytmolekülen von dem Rest der Probe. Erkauft werden diese Vorteile mit einer Einschränkung der diffusiven Durchmischung zwischen Analytmolekülen und Erkennungselementen.
Für die Herstellung von Erkennungsoberflächen zur hocheffizienten und hochselektiven Bindung eines oder mehrerer in einer Probe nachzuweisender Analyten ist die Beschaffenheit dieser Oberflächen von grosser Bedeutung. Zur Erreichung möglichst tiefer Nachweisgrenzen ist es erwünscht, auf kleinem Raum möglichst viele Erkennungselemente derart zu immobilisieren, dass in dem späteren Nachweisverfahren dann möglichst viele Analytmoleküle einer Sorte gebunden werden können. Zugleich ist es erwünscht, bei der Immobilisierung die Reaktivität und biologische oder biochemische Funktionalität der Erkennungselemente in möglichst hohem Masse zu erhalten, d.h. jegliche Denaturierungserscheinungen infolge der Immobilisierung zu minimieren. Ein weiteres Ziel ist es, unspezifische Bindung oder Adsorption von Analytmolekülen, welche in vielen Fällen limitierend auf die erreichbaren Nachweisgrenzen einwirkt, weitestgehend zu verhindern.
In der WO 84/01031 und in den US-Patenten Nr. 5,807,755, 5,837,551 und 5,432,099 wird die Immobilisierung für den Analyten spezifischer Erkennungselemente in Form kleiner "Spots" mit teilweise deutlich unter 1 mm2 Fläche auf festen Trägern vorgeschlagen. Hierfür wird als Vorteil postuliert, durch Bindung eines nur kleinen Teils vorhandener Analytmoleküle eine nur von der Inkubationszeit abhängige, aber - in Abwesenheit eines kontinuierlichen Flusses - vom absoluten Probenvolumen im wesentlichen unabhängige Konzentrationsbestimmung des Analyten vornehmen zu können. Zugleich ist für eine derartige Anordnung zu erwarten, dass in diesen Spots eine grössere Dichte gebundener Analytmoleküle erreicht wird, als wenn sich diese auf eine vollständig mit Erkennungselementen bedeckte Fläche verteilen würden. Auch hier kann jedoch, ebenso wie im Falle einer grossflächigen Immobilisierung von Erkennunsgelementen auf einer makroskopischen Oberfläche, eine hohe Dichte der immobilisierten Erkennungselemente in den damit erzeugten Messbereichen limitierend auf die maximale Anzahl von Analytmolekülen wirken, welche an die Oberfläche gebunden werden können. Ein wesentlicher Grund für eine solche Einschränkung der Bindungskapazität kann dabei sterische Hinderung sein.
Die vorliegende Erfindung löst die Aufgabenstellung, eine Erkennungsoberfläche mit einer maximalen Bindungskapazität bereitszustellen, und zugleich das Ausmass ungewollter unspezifischer Bindung an die Oberfläche zu minimieren. Die Mischung aus spezifischen Erkennungselementen und gegenüber den Analyten „neutralen", d.h. diese Analyten nicht bindenden Komponenten wirkt sich ausserdem dadurch fördernd auf die Bindungsfähigkeit besagter spezifischer Erkennungselemente aus, indem eine (die Bindungsfähigkeit beeinträchtigende oder sogar aufhebende) Denaturierung besagter Erkennungselemente auf der Oberfläche des Trägers verhindert oder erschwert wird. Ausserdem wirkt sich diese Mischung fördernd auf eine gleichmässige Verteilung der Erkennungselemente innerhalb der Erkennungsoberfläche aus, indem sie beispielsweise eine Anhäufung der Erkennungselemente in Clustern, nach Aufbringung in flüssiger Lösung und Verdampfen der Lösung, verhindert.
Erster Gegenstand der Erfindung ist eine Erkennungsoberfläche mit einer optimalen (auf die Fläche bezogenen) Bindungskapazität zur Erkennung und Bindung eines oder mehrerer Analyten aus einer oder mehreren mit dieser Oberfläche in Kontakt gebrachten Proben, dadurch gekennzeichnet, dass a) besagte Erkennungsoberfläche eine Mischung von spezifischen biologischen oder biochemischen oder synthetischen Erkennungselementen zur Erkennung und Bindung besagter Analyten mit gegenüber diesen Analyten „neutralen", d.h. diese Analyten nicht bindenden Komponenten, umfasst und b) besagte spezifische Erkennungselemente, bezogen auf die ganze Erkennungsoberfläche oder eine beliebige Teilfläche davon, weniger als eine vollständige Monoschicht, einnehmen. Vorzugsweise bilden besagte spezifische Erkennungselemente, bezogen auf die ganze Erkennungsoberfläche oder eine beliebige Teilfläche davon, ein Zehntel bis die Hälfte einer vollständigen Monoschicht. Ausserdem wird bevorzugt, dass besagte spezifische Erkennungselemente und gegenüber den Analyten „neutralen" Komponenten, bezogen auf die ganze Erkennungsoberfläche oder eine beliebige Teilfläche davon, zusammen mindestens zwei Drittel einer vollständigen Monoschicht bilden.
Für eine Vielzahl von Anwendungen ist es erwünscht, nicht nur einen einzelnen Analyten, sondern eine Vielzahl von Analyten gleichzeitig zu bestimmen. Ein zweiter Gegenstand der Erfindung ist entsprechend eine strukturierte Erkennungsoberfläche mit einer optimalen (auf die Fläche bezogenen) Bindungskapazität zur Erkennung und Bindung eines oder mehrerer Analyten aus einer oder mehreren mit dieser Oberfläche in Kontakt gebrachten Proben, dadurch gekennzeichnet, dass a) besagte Erkennungsoberfläche in diskreten, räumlich getrennten Messbereichen, eine Mischung von spezifischen biologischen oder biochemischen oder synthetischen Erkennungselementen zur Erkennung und Bindung besagter Analyten mit gegenüber diesen Analyten „neutralen", d.h. diese Analyten nicht bindenden Komponenten, umfasst und b) besagte spezifische Erkennungselemente, bezogen auf die Fläche der diskreten Messbereiche, weniger als eine vollständige Monoschicht, einnehmen.
Auch für diese Variante wird bevorzugt, dass besagte spezifische Erkennungselemente, bezogen auf die ganze Erkennungsoberfläche oder eine beliebige Teilfläche davon, ein Zehntel bis die Hälfte einer vollständigen Monoschicht bilden. Ausserdem wird auch für eine erfindungsgemässe strukturierte Erkennungsoberfläche bevorzugt, dass dass besagte spezifische Erkennungselemente und gegenüber den Analyten „neutralen" Komponenten, bezogen auf die ganze Erkennungsoberfläche oder eine beliebige Teilfläche davon, zusammen mindestens zwei Drittel einer vollständigen Monoschicht bilden.
Im Sinne der vorliegenden Erfindung sollen räumlich getrennte Messbereiche, als Bestandteil einer erfindungsgemässen Erkennungsoberfläche, durch die Fläche definiert werden, die dort immobilisierte biologische oder biochemische oder synthetische Erkennungselemente zur Erkennung eines Analyten aus einer flüssigen Probe und die mit den Erkennungselementen gemischten, gegenüber besagten Analyten „neutralen" Moleküle einnehmen. Diese Flächen können dabei eine beliebige Geometrie, beispielsweise die Form von Punkten, Kreisen, Rechtecken, Dreiecken, Ellipsen oder Linien, haben. Es ist möglich, dass in einer zweidimensionalen Anordnung bis zu 1 000 000 Messbereiche angeordnet sind, wobei ein einzelner Messbereich eine Fläche von 10"4 mm2 - 10 mm2 einnehmen kann. Typischerweise kann die Dichte der Messbereiche mehr als 10, bevorzugt mehr als 100, besonders bevorzugt mehr als 1000 Messbereiche pro Quadratzentimeter betragen.
Üblicherweise wird eine erfindungsgemässe Erkennungsoberfläche auf einem festen Träger erzeugt. Es gibt eine Vielzahl von Verfahren zur Aufbringung der Erkennungselemente auf einer Trägeroberfläche und verschiedene Arten der Wechselwirkung dieser Erkennungselemente mit der sie tragenden Oberfläche, welche deren Immobilisierung gewährleisten. Beispielsweise kann die Aufbringung und nachfolgende Haftung durch elektrostatische Wechselwirkung oder allgemeiner durch physikalische Adsorption erfolgen. Die Orientierung der Erkennungselemente ist dann im allgemeinen statistisch. Ausserdem besteht die Gefahr, dass bei Zugabe der den Analyten enthaltenden Probe und gegebenenfalls sequentiell weiterer Reagentien zu der Erkennungsoberfläche ein Teil der Erkennungselemente fortgespült wird. Daher kann es von Vorteil sein, wenn zur Immobilisierung biologischer oder biochemischer oder synthetischer Erkennungselemente eine Haftvermittlungsschicht auf der Trägeroberfläche aufgebracht ist. Für viele Anwendungen, beispielsweise im Falle eines Analytnachweises basierend auf optischen Verfahren, ist es von Vorteil, wenn diese Haftvermittlungsschicht mindestens bei einer Anregungswellenlänge transparent ist. Vorzugsweise beträgt die Dicke einer solchen optionalen Haftvermittlungsschicht weniger als 200 nm, jedoch besonders bevorzugt weniger als 20 nm. Die optionale Haftvermittlungsschicht kann beispielsweise eine chemische Verbindung aus den Gruppen von Silanen, funktionalisierten Silanen, Epoxiden, funktionalisierten, geladenen oder polaren Polymeren und "selbstorganisierten passiven oder funktionalisierten Mono- oder Mehrfachschichten" umfassen.
Es wird bevorzugt, dass diskrete (räumlich getrennte) Messbereiche, als Bestandteil dieser Erkennungsoberfläche, durch räumlich selektive Aufbringung von biologischen oder biochemischen oder synthetischen Erkennungselementen auf einer Oberfläche eines Trägers oder auf einer zusätzlich auf einer Trägeroberfläche aufgebrachten Haftvermittlungsschicht erzeugt werden, vorzugsweise unter Verwendung eines oder mehrerer Verfahren aus der Gruppe von Verfahren, die von "InkJet spotting", mechanischem Spotting mittels Stift, Feder oder Kapillare, „Micro contact printing", fluidischer Kontaktierung der Messbereiche mit den biologischen oder biochemischen oder synthetischen Erkennungselementen durch deren Zufuhr in parallelen oder gekreuzten Mikrokanälen, unter Einwirkung von Druckunterschieden oder elektrischen oder elektromagnetischen Potentialen sowie photochemischen oder photolithographischen Immobilisierungsverfahren gebildet wird.
Weiterhin ist von Vorteil, wenn Bereiche zwischen den räumlich getrennten Messbereichen zur Minimierung unspezifischer Bindung von Analyten oder deren Nachweissubstanzen "passiviert werden", d.h. dass zwischen den räumlich getrennten Messbereichen gegenüber dem Analyten oder gegenüber einer seiner Nachweissubstanzen "chemisch neutrale" Verbindungen aufgebracht sind, vorzugsweise beispielsweise bestehend aus den Gruppen, die von Albuminen, insbesondere Rinderserumalbumin oder Humanserumalbumin, Casein, unspezifischen, polyklonalen oder monoklonalen, artfremden oder empirisch für den oder die nachzuweisenden Analyten unspezifischen Antikörpern (insbesondere für Immunoassays), Detergentien - wie beispielsweise Tween 20 -, nicht mit zu analysierenden Polynukleotiden hybridisierender, fragmentierter natürlicher oder synthetischer DNA, wie beispielsweise ein Extrakt von Heringsoder Lachssperma (insbesondere für Polynukleotid-Hybridisierungsassays), oder auch ungeladenen, aber hydrophilen Polymeren, wie beispielsweise Polyethylenglycolen oder Dextranen, gebildet werden.
Die biologischen oder biochemischen oder synthetischen Erkennungselemente können ausgewählt sein aus der Gruppe, die von Proteinen, beispielsweise mono- oder polyklonalen Antikörpern und Antikörperfragmenten, Peptiden, Enzymen, Aptameren, synthetischen Peptidstrukturen, Glycopeptiden, Oligosacchariden, Lektinen, Antigenen für Antikörper (z. B. Biotin für Streptavidin), mit zusätzlichen Bindungsstellen funktionalisierten Proteinen („Tag- Proteinen", wie beispielsweise „Histidin-Tag-Proteinen") und deren Komplexbildungspartnern gebildet wird. Eine andere Gruppe von Verbindungen, welche als Erkennungselemente ebenfalls bevorzugt werden, umfasst Nukleinsäuren (beispielsweise DNA, RNA, Oligonukleotide) und Nukleinsäureanaloga (z. B. PNA) sowie deren Derivate mit künstlichen Basen. Eine dritte bevorzugte Gruppe von Verbindungen als Erkennungselemente umfasst lösliche, membrangebundene und aus einer Membran isolierte Proteine, wie beispielsweise Rezeptoren und deren Liganden. Auch besagte „neutrale", den oder die Analyten nicht bindenden Komponenten, können ausgewählt sein aus den Gruppen, die von Albuminen, insbesondere Rinderserumalbumin oder Humanserumalbumin, Casein, unspezifischen, polyklonalen oder monoklonalen, artfremden oder empirisch für den oder die nachzuweisenden Analyten unspezifischen Antikörpern (insbesondere für Immunoassays), Detergentien - wie beispielsweise Tween 20 -, nicht mit zu analysierenden Polynukleotiden hybridisierender, fragmentierter natürlicher oder synthetischer DNA, wie beispielsweise ein Extrakt von Herings- oder Lachssperma (insbesondere für Polynukleotid-Hybridisierungsassays), oder auch ungeladenen, aber hydrophilen Polymeren, wie beispielsweise Polyethylenglycolen oder Dextranen, gebildet werden.
In der WO 00/65352 werden Beschichtungen mit Pfropf-Copolymeren („graft copolymers") mit einer polyionischen, z. B. an einen Träger (elektrostatisch) bindenden Hauptkette und „nicht interaktiven" (adsorptionresistenten) Seitenketten, zur Beschichtung von bioanalytischen Sensorplattformen oder Implantaten für medizinische Anwendungen, beschrieben.
Eine bevorzugte Ausführungsform einer erfindungsgemässen Erkennungsoberfläche ist dadurch gekennzeichnet, dass die Erkennungselemente an das freie Ende oder nahe dem freien Ende eines ganz oder teilweise funktionalisierten, „nicht interaktiven" (adsorptionsresistente, ungeladenen) Polymeren gebunden sind, wobei besagtes nicht interaktive" (adsorptionsresistente, ungeladene) Polymer als Seitenkette an ein geladenes, polyionisches Polymer als Hauptkette gebunden ist und mit diesem zusammen ein polyionisches, multifunktionales Co-Polymer bildet.
Eine grosse Gruppe von Ausführungsformen einer erfindungsgemässen Erkennungsoberfläche ist dabei dadurch gekennzeichnet, dass die polyionische Polymerenhauptkette bei annähernd neutralem pH kationisch (positiv) geladen ist. Sie kann beispielsweise ausgewählt sein aus der Gruppe von Polymeren, welche Aminosäuren mit positiver Ladung bei annähernd neutralem pH, Polysaccharide, Polyamine, Polymere von quarternären Aminen und geladene synthetische Polymere umfasst. Die kationische Polymerenhauptkette kann auch ein oder mehr Molekulargruppen aus der Gruppe umfassen, welche Lsysin, Histidin, Arginin, Chitosan, partiell deacetyliertes Chitin, Amin-haltige Derivate neutraler Polysaccharide, Polyaminostyrol, Polyaminacrylate, Polyaminmethhacrylate, Polyethylenimine, Polyaminoethylene, Polyaminostyrole und deren N-Alkyl-Derivate umfasst.
Weitere geeignete molekulare Gruppen als Bestandteil einer polyionischen Hauptkette sind in der WO 00/65352 beschrieben, welche hier vollumfänglich als Bestandteil dieser Beschreibung eingeführt wird.
Kennzeichen einer anderen grossen Gruppe von Ausführungsformen ist, dass die polyionische Polymerenhauptkette bei annähernd neutralem pH anionisch (negativ) geladen ist. Innerhalb dieser Gruppe kann die kationische Hauptkette ausgewählt sein aus der Gruppe von Polymeren umfassend Aminosäuren mit daran geknüpften Gruppen mit negativer Ladung bei annähend neutralem pH, Polysaccharide und geladene synthetische Polymere mit negativ geladenen Gruppen.
Die kationische Polymerenhauptkette kann ein oder mehr Molekülgruppen aus der Gruppe umfassen, welche Polyasparaginsäure, Polyglutaminsäure, Alginsäure oder deren Derivate, Pektin, Hyaluronsäure, Heparin, Heparinsulfat, Chondroitinsulfat, Dermatansulfat, Dextransulfat, Polymethylmethacrylsäure, oxidierte Zellulose, Carboxymethylierte Zellulose, Maleinsäure und Fumarsäure umfasst.
Der „nicht interaktive" (ungeladene) Polymer" als Seitenkette kann ausgewählt sein aus der Gruppe umfassend Poly(alkylenglycole), Poly(alkylenoxide), neutrale wasserlösliche Polysaccharide, Polyvinylalkohole, Poly-N-Vinylpyrrolidone, Phosphorylcholin-Derivate, nicht- kationische Poly(meth)acrylate und deren Kombinationen.
Es wird bevorzugt, dass die biologischen oder biochemischen oder synthetischen Erkennungselemente an die „nicht interaktive" Seitenkette an deren freiem Ende oder nahe zu deren freiem Ende über reaktive Gruppen gebunden sind: Besonders bevorzugt wird, dass besagte reaktive Gruppen ausgewählt sind aus der Gruppe umfassend Hydroxy (-OH), Carboxy (-COOH), Ester (-COOR), Thiole (-SH), N-Hydroxysuccinimid, Maleimidyl, Chinon, Vinylsulfon, Nitrilotriacetische Säure („nitrilo triacetic acid", NTA) und deren Kombinationen. Eine Vielzahl weiterer geeigneter Polymeren und bevorzugter Ausführungsformen sind in der WO 00/65352 zusätzlich beschrieben.
Allgemein wird bevorzugt, dass eine erfindungsgemässe Erkennungsoberfläche aufgebracht ist auf einem im wesentlichen optisch transparenten Träger.
Unter der Bezeichnung „im wesentlichen optisch transparent" soll verstanden werden, dass eine hiermit charakterisierte Schicht zumindest bei der Wellenlänge eines von einer äusseren Lichtquelle eingestrahlten Lichts für dessen optischen Weg senkrecht zu besagter Schicht zu mindestens 95 % transparent ist, sofern die Schicht nicht reflektierend ist. Im Falle von teilreflektierenden Schichten wird unter „im wesentlichen optisch transparent" verstanden, dass die Summe von transmittiertem, reflektiertem und gegebenenfalls in eine Schicht eingekoppeltem und darin geleitetem Licht am Ort des Auftreffens des eingestrahlten Lichts mindestens 95 % des eingestrahlten Lichts beträgt.
Ein von einer äusseren Lichtquelle in Richtung der Erkennungsoberfläche, d. h. sowohl durch einen Träger in Richtung der Erkennungsoberfläche als auch von der entgegengesetzten Seite, gegebenenfalls durch ein über der Erkennungsoberfläche befindliches Medium in Richtung der Erkennungsoberfläche eingestrahltes Licht, soll gemäss der vorliegenden Erfindung allgemein als ein „Anregungslicht" bezeichnet werden. Dieses Anregungslicht kann beispielsweise der Anregung einer Lumineszenz, oder spezifischer Fluoreszenz oder Phosphoreszenz, dienen.
Es wird bevorzugt, dass der im wesentlichen optisch transparente Träger ein Material umfasst aus der Gruppe umfassend form-, spritz- oder fräsbare Kunststoffe, Metalle, Metalloxide, Silikate, wie z. B. Glas, Quarz oder Keramiken.
Eine mögliche Ausführungsform ist dadurch gekennzeichnet, dass die erfindungsgemässe Erkennungsoberfläche auf einer auf dem im wesentlichen optisch transparenten Träger aufgetragenen Haftvermittlungsschicht aufgebracht ist, welche ebenfalls im wesentlichen optisch transparent ist.
Eine spezielle Ausführungsform ist dadurch gekennzeichnet, dass in der Oberfläche besagten Trägers Ausnehmungen zur Erzeugung von Probenbehältnissen strukturiert sind. Diese Ausnehmungen haben typischerweise eine Tiefe von 20 μm bis 500 μm, bevorzugt von 50 μm bis 300 μm.
Bevorzugt wird, dass der im wesentlichen optisch transparente Träger einen durchgehenden oder in einzelne wellenleitende Bereiche aufgeteilten optischen Wellenleiter umfasst. Besonders vorteilhaft ist, wenn der optische Wellenleiter ein optischer Schichtwellenleiter ist mit einer, der Erkennungsoberfläche zugewandten, ersten im wesentlichen optisch transparenten Schicht (a) auf einer zweiten, im wesentlichen optisch transparenten Schicht (b) mit niedrigerem Brechungsindex als Schicht (a).
Es wird bevorzugt, dass besagter optischer Schichtwellenleiter im wesentlichen planar ist. Als Träger geeignete planare optische Schichtwellenleiter und deren Abwandlungen sind beispielsweise in den Patentanmeldungen WO 95/33197, WO 95/33198, WO 96/35940, WO 98/09156, WO 99/40415, PCT/EP 00/04869 und PCT/EP 01/00605 beschrieben. Der Inhalt dieser Patentanmeldungen wird daher vollumfänglich als Bestandteil dieser Beschreibung eingeführt.
Es wird bevorzugt, dass, zur Einkopplung von Anregungslicht in die optisch transparente Schicht (a), diese Schicht in optischem Kontakt zu einem oder mehreren optischen Einkoppelelementen aus der Gruppe steht, die von Prismenkopplem, evaneszenten Kopplern mit zusammengebrachten optischen Wellenleitern mit überlappenden evaneszenten Feldern, Stirnflächenkopplern mit vor einer Stirnseite der wellenleitenden Schicht angeordneten fokussierenden Linsen, vorzugsweise Zylinderlinsen, und Gitterkopplern gebildet wird.
Vorteilhaft ist, wenn die Einkopplung von Anregungslicht in die optisch transparente Schicht (a) mithilfe von einer oder mehreren Gitterstrukturen (c) erfolgt, die in der optisch transparenten Schicht (a) ausgeprägt sind.
Charakteristisch für eine weitere Variante ist, dass die Auskopplung von in der optisch transparenten Schicht (a) geführtem Licht mithilfe von einer oder mehreren Gitterstrukturen (c') erfolgt, die in der optisch transparenten Schicht (a) ausgeprägt sind und gleiche oder unterschiedliche Periode und Gittertiefe wie Gitterstrukturen (c) haben. Weiterer Bestandteil der Erfindung ist ein Verfahren zum qualitativen und / oder quantitativen Nachweis eines oder mehrerer Analyten in einer oder mehreren Proben, dadurch gekennzeichnet, dass besagte Proben und gegebenenfalls weitere Reagentien mit einer erfindungsgemässen Erkennungsoberfläche nach einem der vorgenannten Ausführungsformen in Kontakt gebracht werden und aus der Bindung des Analyten oder weiterer zum Analytnachweis eingesetzter Nachweissubstanzen resultierende Änderungen von optischen oder elektronischen Signalen gemessen werden.
Gegenstand der Erfindung ist auch ein Verfahren zum qualitativen und / oder quantitativen Nachweis eines oder mehrerer Analyten in einer oder mehreren Proben, dadurch gekennzeichnet, dass besagte Proben und gegebenenfalls weitere Reagentien mit einer erfindungsgemässen strukturierten Erkennungsoberfläche nach einer der genannten Ausführungsformen in Kontakt gebracht werden und aus der Bindung des Analyten oder weiterer zum Analytnachweis eingesetzter Nachweissubstanzen resultierende Änderungen von, von den diskreten Messbereichen ausgehenden, optischen oder elektronischen Signalen ortsaufgelöst gemessen werden
Dabei wird bevorzugt, die eine oder mehreren Proben mit einer Mischung aus den verschiedenen Nachweisreagentien zur Bestimmung der in besagten Proben nachzuweisenden Analyten vorinkubiert werden und diese Mischungen dann jeweils in einem einzigen Zugabeschritt mit einer erfindungsgemässen Erkennungsoberfläche in Kontakt gebracht werden.
Ausserdem wird bevorzugt, dass der Nachweis des einen oder mehrerer Analyten auf der Bestimmung der Änderung einer oder mehrerer Lumineszenzen beruht.
Das Anregungslicht von einer oder mehreren Lichtquellen kann in einer Auflichtanregungsanordnung eingestrahlt werden. Es kann auch in einer Transmissionslichtanregungsanordnung eingestrahlt werden.
Bevorzugt wird ein Verfahren, welches dadurch gekennzeichnet ist, dass die Erkennungsoberfläche, gegebenenfalls vermittelt über eine Haftvermittlungsschicht, auf einem optischen Wellenleiter angeordnet ist, welcher vorzugsweise im wesentlichen planar ist, dass die eine oder mehrere Proben mit dem einen oder den mehreren darin nachzuweisenden Analyten und gegebenenfalls weitere Nachweisreagentien sequentiell oder nach Mischung mit besagten Proben in einem einzigen Schritt mit besagter Erkennungsoberfläche in Kontakt gebracht werden und dass das Anregungslicht von einer oder mehreren Lichtquellen in den optischen Wellenleiter, analog wie vorangehend für den optischen Schichtwellenleiter beschrieben, eingekoppelt wird.
Kennzeichen einer speziellen Ausführungsform des erfindungsgemässen Verfahrens ist, dass der Nachweis des einen oder mehrerer Analyten auf einer Erkennungsoberfläche über einer in der Schicht (a) eines optischen Schichtwellenleiters ausgeprägten Gitterstruktur (c) oder (c') anhand der aus der Bindung des Analyten und / oder weiterer Nachweisreagentien, an deren immobilisierte biologischer oder biochemische oder synthetische Erkennungselemente, resultierenden Änderungen der Resonanzbedingungen zur Einkopplung eines Anregungslichts in die Schicht (a) eines als Schichtwellenleiter ausgebildeten Trägers oder zur Auskopplung von in der Schicht (a) geführten Lichts erfolgt.
Besonders bevorzugt wird eine Variante des erfindungsgemässen Verfahrens, welche dadurch gekennzeichnet ist, dass besagter optischer Wellenleiter als optischer Schichtwellenleiter ausgebildet ist mit einer ersten optisch transparenten Schicht (a) auf einer zweiten optisch transparenten Schicht (b) mit niedrigerem Brechungsindex als Schicht (a), dass weiterhin Anregungslicht mithilfe einer oder mehrerer Gitterstrukturen, welche in der optisch transparenten Schicht (a) ausgeprägt sind, in die optisch transparente Schicht (a) eingekoppelt und zu darauf befindlichen Messbereichen (d) als geführte Welle geleitet wird, und dass weiterhin die im evaneszenten Feld besagter geführter Welle erzeugte Lumineszenz von lumineszenzfähigen Molekülen mit einem oder mehreren Detektoren erfasst und die Konzentration eines oder mehrerer Analyten aus der Intensität dieser Lumineszenzsignale bestimmt wird.
Dabei können (1) die isotrop abgestrahlte Lumineszenz oder (2) in die optisch transparente Schicht (a) eingekoppelte und über eine Gitterstruktur (c) oder (c') ausgekoppelte Lumineszenz oder Lumineszenzen beider Anteile (1) und (2) gleichzeitig gemessen werden. Bestandteil des erfindungsgemässen Verfahrens ist, dass zur Erzeugung der Lumineszenz ein Lumineszenzfarbstoff oder lumineszentes Nanopartikel als Lumineszenzlabel verwendet wird, das bei einer Wellenlänge zwischen 300 nm und 1100 nm angeregt werden kann und emittiert.
Es wird bevorzugt, dass das Lumineszenzlabel an den Analyten oder in einem kompetitiven Assay an einen Analogen des Analyten oder in einem mehrstufigen Assay an einen der Bindungspartner der immobilisierten biologischen oder biochemischen oder synthetischen Erkennungselemente oder an die biologischen oder biochemischen oder synthetischen Erkennungselemente gebunden ist.
Eine andere Ausführungsform des Verfahrens ist dadurch gekennzeichnet, dass ein zweites oder noch weitere Lumineszenzlabel mit gleicher oder unterschiedlicher Anregungswellenlänge wie das erste Lumineszenzlabel und gleicher oder unterschiedlicher Emissionswellenlänge verwendet werden.
Dabei wird bevorzugt, dass das zweite oder noch weitere Lumineszenzlabel bei der gleichen Wellenlänge wie der erste Lumineszenzfarbstoff angeregt werden kann, aber bei anderen Wellenlängen emittieren.
Insbesondere ist von Vorteil, wenn die Anregungsspektren und Emissionsspektren der eingesetzten Lumineszenzfarbstoffe nur wenig oder gar nicht überlappen.
Eine Variante des Verfahrens besteht darin, dass zum Nachweis des Analyten Ladungs- oder optischer Energietransfer von einem als Donor dienenden ersten Lumineszenzfarbstoff zu einem als Akzeptor dienenden zweiten Lumineszenzfarbstoff verwendet wird.
Eine andere Ausführungsform des Verfahrens ist dadurch gekennzeichnet, dass neben der Bestimmung einer oder mehrerer Lumineszenzen Änderungen des effektiven Brechungsindex auf den Messbereichen bestimmt werden.
Eine Weiterentwicklung des Verfahrens ist dadurch gekennzeichnet, dass die einen oder mehreren Lumineszenzen und / oder Bestimmungen von Lichtsignalen bei der Anregungswellenlänge polarisationsselektiv vorgenommen werden. Es wird bevorzugt, dass die einen oder mehreren Lumineszenzen bei einer anderen Polarisation als der des Anregungslichts gemessen werden.
Bestandteil der Erfindung ist ein Verfahren nach einer der vorgenannten Ausführungsformen zur gleichzeitigen oder sequentiellen, quantitativen oder qualitativen Bestimmung eines oder mehrerer Analyten aus der Gruppe von Proteinen, wie beispielsweise Antikörpern oder Antigenen, Rezeptoren oder Liganden, Chelatoren, mit zusätzlichen Bindungsstellen funktionalisierten Proteinen („Tag-Proteinen", wie beispielsweise „Histidin-Tag-Proteinen") und deren Komplexbildungspartnern, Oligonukleotiden, DNA- oder RNA-Strängen, DNA- oder RNA-Analoga, Enzymen, Enymcofaktoren oder Inhibitoren, Lektinen und Kohlehydraten.
Mögliche Ausführungsformen des Verfahren sind dadurch gekennzeichnet, dass die zu untersuchenden Proben beispielsweise natürlich vorkommende Körperflüssigkeiten wie Blut, Serum, Plasma, Lymphe oder Urin oder Gewebeflüssigkeiten oder Eigelb sind.
Andere Ausführungsformen sind dadurch gekennzeichnet, dass die zu untersuchende Probe eine optisch trübe Flüssigkeit, Oberflächenwasser, ein Boden- oder Pflanzenextrakt, eine Bio- oder Syntheseprozessbrühe ist.
Es ist auch möglich, dass die zu untersuchenden Proben aus biologischen Gewebeteilen oder Zellkulturen präpariert sind.
Weiterer Gegenstand der Erfindung ist die Verwendung eines erfindungsgemässen Verfahrens zu quantitativen oder qualitativen Analysen zur Bestimmung chemischer, biochemischer oder biologischer Analyten in Screeningverfahren in der Pharmaforschung, der Kombinatorischen Chemie, der Klinischen und Präklinischen Entwicklung, zu Echtzeitbindungsstudien und zur Bestimmung kinetischer Parameter im Affinitätsscreening und in der Forschung, zu qualitativen und quantitativen Analytbestimmungen, insbesondere für die DNA- und RNA-Analytik und die Bestimmung von genomischen oder proteomischen Unterschieden im Genom, wie beispielsweise Einzelnukleotid-Polymorphismen, zur Messung von Protein-DNA- wechselwirkungen, zur Bestimmung von Steuerungsmechanismen für die m-RNA-Expression und für die Protein(bio)synthese, für die Erstellung von Toxizitätsstudien sowie für die Bestimmung von Expressionsprofilen, insbesondere zur Bestimmung von biologischen und chemischen Markerstoffen, wie mRNA, Proteinen, Peptiden oder niedermolekularen organischen (Boten-)Stoffen, sowie zum Nachweis von Antikörpern, Antigenen, Pathogenen oder Bakterien in der pharmazeutischen Protduktforschung und -entwicklung, der Human- und Veterinärdiagnostik, der Agrochemischen Produktforschung und -entwicklung, der symptomatischen und präsymptomatischen Pflanzendiagnostik, zur Patientenstratifikation in der pharmazeutischehn Produktentwicklung und für die therapeutische Medikamentenauswahl, zum Nachweis von Pathogenen, Schadstoffen und Erregern, insbesondere von Salmonellen, Prionen, Viren und Bakterien, insbesondere in der Lebensmittel- und Umweltanalytik.
Beispiel:
1. Materialien
Poly(L-Lysin)hydrobromid (Molekulargewicht ca. 20 kDa), Streptavidin von Streptomyces avidinii (Molekulargewicht ca. 60 kDa), Avidin aus Eiweiss (Molekulargewicht ca. 66 kDa), biotinyliertes (d.h. an Biotin gebundenes) Ziegen-anti-Kaninchen Immunoglobulin (anti-R-IgG- Biotin, Molekulargewicht ca. 150 kDa) und biotinyliertes Rinderserum- Albumin (BSA-Biotin, Molekulargewicht ca. 66 kDa) wurden bezogen von Sigma-Aldrich (Buchs, Schweiz). Die N- Hydroxysuccinimidylester von Methoxy-Poly(ethylenglycol)-Propionsäure (MeO-PEG-SPA, Molekulargewicht 2 kDa) und der α-Biotin-ω-N-Hydroxysuccinimidylester von Poly(ethylenglycol)carbonat (Biotin-PEG-CO2-NHS, Molekulargewicht 3.4 kDa) wurden bezogen von Shearwater Polymers Inc. (Huntsville, USA). Kaninchen-Immunoglobulin (antihuman- Albumin) (R-IgG, Molekulargewicht ca. 150 kDa) und Kaninchen-anti-Rinderserum- Albumin (anti-BSA, Molekulargewicht ca. 150 kDa) wurden bezogen von.DAKO (Glostrup, Dänemark). Alle genannten Antikörper-Reagentien waren polyklonal. Kontrollserum N (human) wurde bezogen von Hoffmann-La Röche (Basel, Schweiz). 4-(2-hydroxyethyl)piperazin-l- ethan-sulfonsäure (HEPES) und andere Chemikalien zur Herstellung von Puffern wurden bezogen von Fluka (Buchs, Schweiz).
Alle wässrigen Lösungen wurden mit ultrareinem Wasser (18 MΩcm) aus einem „EasyPure Reverse Osmosis System" (Barnstead Thermolyne, Dubuque, USA) hergestellt.
2. Träger
Als Träger dient ein als Gitterkoppler ausgebildeter Dünnschichtwellenleiter (TiO -SiO2-Solgel als wellenleitender Schicht auf einem Glassubstrat, Periode des Koppelgitters in der wellenleitenden Schicht: 417 nm) (Mikrovakuum Ltd., Budapest, Ungarn) mit einer darauf durch Sputtern aufgebrachten, 12 nm dünnen Nb2O5-Schicht. Vor ihrem ersten Gebrauch wurden diese Träger, mit Nb2O5 als oberster Schicht, 10 Minuten in 0.1 M HC1 beschallt, gründlich gespült mit ultrareinem Wasser, mit Stickstoff trockengeblasen und nachfolgend 2 Stunden lang mit Sauerstoff-Plasma in einem Plasmareiniger / -sterilisator PDC-32G (Harrick, Ossining, USA) behandelt. 3. Synthese von PLL-g-PEG und dessen Derivaten
Die Synthese von PLL-g-PEG wurde von Sawhney und Hubbell beschrieben (A. S. Sawhney, J. A. Hubbell, Biomaterials 13 (1992) 863 - 870). Das für die der vorliegenden Anmeldung zugrundeliegenden Untersuchungen benutzte Verfahren basiert auf einer Vorschrift, welche von Elbert und Hubbell entwickelt wurde (D. L. Elbert, J. A. Hubbell, J. Biomed. Mater. Res. 42 (1998) 55 - 65). Gemäss WO 00/65352 hat sich für PEG-Teilketten mit Molekulargewicht 2 kDa ein Pfropf- Verhältnis („grafting ratio") zwischen g = 3 und g = 5 als ein Optimum zur Immobilisierung einer möglichst hohen Menge von Polymeren auf negativ geladenen Metalloxid-Oberflächen bei gleichzeitiger Gewährleistung einer minimalen unspezifischen Bindung (Adsorption) von Proteinen auf den mit diesem Polymeren beschichteten Metalloxid- Oberflächen erwiesen. Für die in diesem Beispiel beschriebenen Experimente wird ein Verhältnis von g = 3.5 verwendet. Dabei wird der prozentuale Anteil der PEG-Ketten mit daran gebundenem Biotin („biotinyliertem PLL-g-PEG") variiert.
Figur 1 zeigt schematisch die Synthese von PLL-g-PEG. N-Hydroxy-succinimidylester von sowohl biotinyliertem als auch nicht biotinyliertem Poly(ethylenglycol) („PEG") werden mit poly(L-Lysin) („PLL") in stöchiometrischem Verhältnis zur Reaktion gebracht zur Herstellung des erwünschten Produkts. Die Details zu dieser Synthese sind nachfolgend unter 3.1 und 3.2 beschrieben. Für die biotinylierten PEG-Ketten wird eine grössere Kettenlänge als für Methoxy- PEG gewählt zur Gewährleistung einer guten Zugänglichkeit des polymergebundenen Biotins.
In der nachfolgend gewählten Nomenklatur für die Bezeichnung der verschiedenen PLL-g-PEG- Derivate sind die Molekulargewichte der Polymerenteilketten der Co-Polymeren, das Pfropfverhältnis („grafting ratio") sowie der prozentuale Anteil biotinylierten PEGs umfasst. Entsprechend beschreibt „PLL(20)-g/"5.57-PEG(2)/PEG-Biotin(3.4)30%" ein Polymeres, gebildet von einer Hauptkette aus Poly(L-Lysin) mit Molekulargewicht 20 kDa sowie Seitenketten, zu 70 % bestehend aus Poly(ethylenglycol) mit Molekulargewicht 2 kDa und 30 % aus biotinyliertem Poly(ethylenglycol) mit Molekulargewicht 3.4 kDa. Das Pfropfverhältnis („grafting ratio") von 3.5 bedeutet, dass im Durchschnitt an jeweils zwei von sieben Lysin- Gruppen (Lysin-Einheiten) biotinylierte oder nicht biotinylierte PEG-Ketten gebunden sind. Da alle in diesem Beispiel genannten Polymeren aus gleichartigen Vorprodukten hergestellt wurden, soll alternativ zu „PLL-g-PEG/PEG-Biotin30%" auch die Abkürzung „PPB30" verwendet werden. Für andere prozentuale Anteile biotinylierten PLL-g-PEGs werden entsprechende Abkürzungen verwendet.
3.1 Synthese von PLL(20)-g/3.57-PEG(2)
Poly(L-Lysin)-Hydrobromid („PLL-HBr") wird gelöst in 25 ml Natrium-Tetraboratpuffer (sodium tetraborate buffer, „STBB", 50 mM, pH 8.5) pro Gramm PLL-HBr. Die Lösung wird gerührt und anschliessend gefiltert (0.22 μm Durapore-Membran, sterile Millex GV, Sigma- Aldrich, Buchs, Schweiz) und in ein steriles Kultur-Röhrchen (culture tube) gefüllt. Unter gleichmässigem Rühren der Lösung wird dann MeO-PEG-SPA-Pulver in gemäss dem stöchiometrischen Verhältnis geeigneter Menge hinzugefügt. Nach weiteren sechs Stunden Rührens der Lösung bei Raumtemperatur wird die Lösung umgefüllt in ein Dialyse-Röhrchen (Spectr/Por Dialyse-Röhrchen, Molekulargewichts-Beschränkung („cut-off ') 6 - 8 kDa, Sochochim, Lausanne, Schweiz). Die Dialyse wird 24 Stunden lang in einem Liter phosphatgepufferter Salzlösung („PBS", 10 mM, pH 7.0) durchgeführt, gefolgt von 24 Stunden weiterer Dialyse in einem Liter deionisierten Wassers. Das Produkt wird dann 48 Stunden lang bei einer Temperatur von -50°C und einem Druck von 0.2 mbar gefriergetrocknet.
3.2 Synthese von biotinylierten PLL-g-PEG
Biotinyliertes PLL-g-PEG wird in ähnlicher Weise wie vorangehend beschrieben synthetisiert. Biotin-PEG-CO2-NHS-Pulver wird in gemäss dem stöchiometrischen Verhältnis geeigneter Menge langsam zu der gefilterten Lösung von PLL-HBr-Lösung hinzugegeben und eine Stunde lang gerührt. Anschliessend wird MeO-PEG-SPA in gemäss dem stöchiometrischen Verhältnis geeigneter Menge hinzugegeben, und die entstehende Lösung wird weitere fünf Stunden lang gerührt. Die weiteren Schritte der Dialyse und der Produktgewinnung sind gleichartig wie vorangehend beschrieben. 3.3 Bestimmung des Pfropf- Verhältnisses (grafting ratio) und des prozentualen Biotin- Anteils
Die Abschätzung des Pfropf- Verhältnisses (grafting ratio) und des prozentualen Biotin-Anteils in den biotinylierten PEG-Derivaten erfolgt mithilfe von 1H-NMR. Die lyophilisierten Polymeren werden in D2O gelöst und die Spektren mit einem 300 MHz NMR-Spektrometer aufgenommen. Die daraus bestimmten Werte sind in Tabelle 1 zusammengestellt.
Tabelle 1: Pfropf -Verhältnisse (grafting ratio) und prozentualer Biotin- An teil in biotinylierten PEG-Derivaten, bestimmt mithilfe von 1H-NMR.
4. Bestimmung der Menge oberflächenadsorbierter Moleküle mithilfe eines Gitterkoppler- Sensors als Träger
Die Masse adsorbierten Polymers auf den Nb2θ5-Oberflächen wird anhand des Unterschiedes der Koppelbedingungen für Lichteinkopplung in einen Gitterkoppler-Sensor vor und nach Aufbringung der jeweiligen Polymerenschichten bestimmt. Das Arbeitsprinzip eines Gitterkoppler-Sensors ist beispielsweise in der US -Patentschrift Nr. 4952056 beschrieben. Als Messinstrument wurde ein Gitterkoppler-Aufbau (BIOS I, ASI AG, Zürich, Schweiz) verwendet.
Die Werte der Masse oberflächenadsorbierten Materials werden bestimmt aufgrund der Gleichung von Feijter (J. J. Ramsden, J. Stat. Phys. 73 (1993) 853 - 877). Mithilfe eines Raleigh-Interferometers wurde ein inkrementeller Wert von dn/dc = 0.158 cm3/g für die Adsorption der Polymeren auf einer Oberfläche bestimmt und für die weiteren Rechnungen zugrunde gelegt. Für die Proteinadsorption auf einer Oberfläche wurde ein Wert von dn/dc = 0.182 cm3/g vorausgesetzt (J. J. Ramsden, D. J. Roush, D. S. Grill, R. Kurrat, R. C. Willson, J. Am. Chem. Soc. 117 (1995) 8511 - 8516).
5. Beschichtung der Nb2θs-Oberflächen mit Polymeren
Ein gemäss Abschnitt 2. dieses Beispiels vorbehandelter Träger wird in HEPES-1 -Puffer (10 mM HEPES, pH 7.4) vor einem Experiment mindestens fünf Stunden lang equilibriert, dann in das Gitterkoppler-Messinstrument eingesetzt und dort eine weitere Stunde lang in HEPES-1- Puffer equilibriert, bis eine stabile Basislinie, d.h. ein stabiler Resonanzwinkel zur Einkopplung des Anregungslichts in die hochbrechende wellenleitende Schicht mithilfe des Koppelgitters, erreicht ist.
Lösungen von PLL-g-PEG (15 μM) und PLL-g-PEG/PEG-Biotin in HEPES -1 -Puffer werden durch 0.22 μm Durapore-Membranen gefiltert und unmittelbar vor Gebrauch gemischt. Die Beschichtung der Nb2O5-Oberflächen erfolgt in situ im Gitterkoppler- Aufbau, indem die Metalloxid-Oberfläche des Trägers mit der Lösung der Polymerenmischung in Kontakt gebracht wird. Dieses erfolgt 30 Minuten lang unter konstantem Fluss bei einer Flussrate von 1 ml/h. Der dabei beschichtete Träger wird anschliessend 30 Minuten lang mit HEPES -1 -Puffer gespült.
6. Durchführung der Protein-Bindungsassays 6.1. Standard-Assay-Protokoll
Für die meisten nachfolgend beschriebenen Experimente werden die Polymer-beschichteten Träger sequentiell unter kontinuierlichem Fluss (Flussrate: 1 ml/h) mit Lösungen von Streptavidin (100 μg/ml), anti-R-IgG-Biotin (100 μg/ml) und schliesslich R-IgG (200 μg/ml) inkubiert. Jeder dieser Inkubationsschritte hat eine Dauer von 15 Minuten, was bei den gewählten Konzentrationen ausreichend ist zur Absättigung aller verfügbaren Bindungsstellen. Anschliessend folgt jeweils ein 30-minütiger Wasch-Schritt mit dem jeweiligen Puffer zur Entfernung nicht gebundener, zuvor zugeführter Moleküle. Es wurden jeweils HEPES- Pufferlösungen verwendet. 6.2. Spezielle Assay-Protokolle
Für weiter nachfolgend beschriebene Untersuchungen des Einflusses der Streptavidin- Oberflächendichten auf das Bindungsverhalten erfolgen gleichartige Verfahrensschritte wie unter 6.1. beschrieben, mit der Ausnahme, dass eine Streptavidin-Konzentration von nur 2.5 μg/ml eingesetzt wird und die Inkubationszeit 45 Minuten beträgt.
Für Untersuchungen der Abhängigkeit der optimalen Oberflächendichte der Erkennungselemente von der Grosse der aus einer zugeführten Probe zu bindenden Moleküle werden BSA-Biotin (100 μg/ml) und Kaninchen-anti-Rinderserum- Albumin („anti-BSA", 200 μg/ml) anstelle von anti-R-IgG-Biotin und R-IgG verwendet.
7. Aufbringung von Polymeren mit teilweise daran gebundenen Erkennungselementen auf einen Träger
Als Träger dient ein als Gitterkoppler ausgebildeter Dünnschichtwellenleiter (TiO2-SiO2-Solgel als wellenleitender Schicht auf einem Glassubstrat, Periode des Koppelgitters in der wellenleitenden Schicht: 417 nm) mit einer darauf aufgebrachten, 12 nm dünnen Nb2O5-Schicht. Bei einem eingestellten pH von 7.4 einer nachfolgend aufgebrachten Lösung ist die Oberfläche von Nb2O5 negativ geladen (isoelektrischer Punkt IEP = 3.6), während PLL-Hauptketten von PLL-g-PEG und PLL-g-PEG/PEG-Biotin stark positiv geladen sind. Es wird angenommen, dass die starke Adsorption von Polymeren, welche PLL als wesentlichen Bestandteil umfassen, auf Nb2O5-beschichteten Oberflächen vor allem auf elektrostatischer Wechselwirkung zwischen dieser Metalloxid-Oberfläche und dem Polymeren als mehrfach geladenem Adsorbat beruht.
Ziel der Aufbringung einer Mischung aus PLL-g-PEG und PLL-g-PEG/PEG-Biotin ist es, eine durch Einstellung des Mischungsverhältnisses eine optimale Bindungskapazität der polymerbeschichteten Oberfläche zu erreichen und zugleich unspezifische Bindung zu minimieren. Biotin, gebunden als Erkennungselement in dem Polymeren PLL-g-PEG/PEG- Biotin, dient als spezifisches Erkennungselement für Moleküle wie beispielsweise Avidin oder Streptavidin, an welche in einem weiteren Bindungsschritt „biotinylierte" Moleküle (d.h. mit Biotin verknüpfte Moleküle), wie beispielsweise anti-RIgG-Biotin, gebunden werden können, welche ihrerseits als Erkennungselemente für einen Analyten (in diesem Beispiel R-IgG) dienen können.
Infolge der Aufbringung dieser Polymerenmischung mit PLL-g-PEG/PEG-Biotin auf der Nb2θ5-Oberfläche sind die Biotin-Bindungsstellen von nichtbindenden PEG-Ketten umgeben, so dass die Proteinadsorption vermindert wird. Derartige Eigenschaften sind in einer Reihe von Patentschriften (z. B. in den US-Patenten Nr. 5820882, 5232984, 5380536, 6231892, 5462990, 5627233 und 5849839) beschrieben. In der WO 00/65352 sind auch Polymere dieser Art mit daran gebundenen Biotin-Molekülen beschrieben. Es ergibt sich aus diesen Schriften jedoch keinerlei Hinweis darauf, dass - wie gemäss der vorliegenden Erfindung - die Bindungskapazität optimiert werden kann mittels Einstellung des Anteils gebundenen Biotins. Diese Optimierung der Bindungskapazität wird erfindungsgemäss, in diesem Beispiels mittels Einstellung des Anteilverhältnisses zwischen PLL-g-PEG und PLL-g-PEG/PEG-Biotin, eingestellt.
Die Masse adsorbierten Polymers auf den Nb2θ5-Oberflächen wird anhand des Unterschiedes der Koppelbedingungen für Lichteinkopplung in den Gitterkoppler vor und nach Aufbringung der jeweiligen Polymerenschichten bestimmt. Hieraus werden Werte von 167 +/- 8 ng/cm2 adsorbierten Polymers für reines PLL-g-PEG und 213 +/- 13 ng/cm2 für reines PPB20 bestimmt. Unter Berücksichtigung der Molekulargewichte und der mittels NMR bestimmten Pfropfverhältnisse („grafting ratio") werden die Oberflächenkonzentrationen der adsorbierten Polymeren für jedes eingesetzte Mischungsverhältnis bestimmt. Innerhalb der experimentellen Genauigkeit ergibt sich ein einheitlicher Wert von 2.5 +/- 0.1 pmol/cm2, woraus geschlossen wird, dass das Mischungsverhältnis der Polymeren auf der Oberfläche das gleiche ist wie zuvor in Lösung.
8. Bindung von Streptavidin an die Erkennungsoberfläche
Unter Zufuhr einer Lösug von Streptavidin (100 μg/ml) zu Oberflächen mit unterschiedlichen Mischungsverhältnissen (PLL-g-PEG : PPB20), unter kontinuierlichem Fluss, wird ein Sättigungssignal für die Bindung von Streptavidin an die mit biotinylierten Polymeren beschichtete Oberfläche innerhalb von 15 Minuten erreicht. Nach einem Wasch-Schritt mit HEPES -1 -Puffer wird für die Oberflächen mit den verschiedenen Polymeren- Mischungsverhältnissen jeweils die Menge gebundenen Streptavidins bestimmt. Die Menge oberflächengebundenen Biotins wird bestimmt aus NMR-Messungen und dem Mischungsverhältnis der Polymeren in Lösung.
In dieser Messreihe mit unterschiedlichen Mischungsverhältnissen oberflächenimmobilisierter Polymere steigt der Anteil gebundenen Streptavidins kontinuierlich mit dem Anteil von PPB20 (siehe Fig. 2). Auf der reinen PLL-g-PEG-Oberfläche wird keinerlei Bindung oder Adsorption beobachtet, während 2.77 pmol/cm2 Streptavidin an eine reine PPB20-Oberfläche (entsprechend 19.2 pmol/cm2 Biotin) gebunden werden. Aus der zweidimensionalen Kristallstruktur von Streptavidin kann geschlossen werden, dass ein einzelnes Streptavidinmolekül eine Grosse von etwas 5.5 nm x 4.5 nm hat (S. A. Darst, M. Ahlers, P. H. Meiler, E. W. Kubalek, R. Blankenburg, H. O. Ribi, H. Ringsdorf, R. D. Kornberg, Biophys. J. 59 (1991) 387 - 396). Demzufolge ist für eine dicht gepackte Streptavidin-Monoschicht eine Oberflächendichte von 6.71 pmol/cm zu erwarten. Folglich entsprechen die unter den Bedingungen des Versuchs zu Fig. 2 an die Oberfläche gebundenen Oberflächendichten von Streptavidin zwischen 0 % und 41 % einer dicht gepackten Monoschicht.
Für alle in dieser Reihe eingesetzten Polymeren-Mischungsverhältnisse beträgt das Verhältnis von gebundenem Streptavidin zu Oberflächen-immobilisiertem Biotin 1 : 6.5. Der relativ hohe Überschuss von Biotin-Teilmolekülen als immobilisierten Erkennungselementen gegenüber gebundenem Streptavidin, welches in einem Überschuss zugeführt wurde, der mengenmässig zur Absättigung aller verfügbaren Bindungsstellen führen müsste, kann dadurch erklärt werden, dass ein Teil der Biotinmolekül an der Oberfläche nicht zugänglich sein, sondern in der PEG- Teilschicht verborgen sein könnte. Andererseits könnte es auch zu einer Bindung von jeweils einem Streptavidin-Molekül an zwei oder mehr Biotin-Moleküle gekommen sein.
Im Falle einer Oberfläche, auf welcher reines PPB50 immobilisiert wird (entsprechend 42 pmol/cm Biotin auf der Oberfläche) werden etwa 6.65 pmol/cm Streptavidin gebunden, was in etwa der Menge einer Monoschicht entspricht. In diesem Fall beträgt das Verhältnis von gebundenem Streptavidin zu immobilisiertem Biotin also etwa 1 : 5. Im nächsten Schritt wird biotinyliertes Anti-Kaninchen-Immunoglobulin (anti-R-IgG-Biotin) an die vorangehend mit Streptavidin modifizierte Oberfläche gebunden (an die verbleibenden Bindungsstellen für Biotin an Streptavidin). Anschliessend erfolgt ein Wasch-Schritt mit HEPES-1-Puffer.
Fig. 2 zeigt die Menge gebundenen anti-R-IgG-Biotin als Funktion der Konzentration zuerst oberflächengebundenen Biotins. Mit steigender Biotin-Oberflächenkonzentration, d. h. zugleich steigender Konzentration bzw. Oberflächendichte gebundenen Streptavidins, steigt zunächst auch die Menge gebundenen anti-R-IgG-Biotins an. Bei einer Oberflächenkonzentration (- dichte) von ca. 11.2 pmol/cm2 über PEG/Biotin gebundenen Biotins, entsprechend einer Konzentration von 1.68 pmol cm gebundenen Streptavidins (oder x % einer vollständigen Monoschicht), wird ein Maximum der Menge von gebundenem anti-R-IgG-Biotin in Höhe von etwa 0.43 pmol/cm erreicht. Bei einem weiteren Anstieg der Dichte oberflächenimmobilisierten PEG-Biotins und damit des daran gebundenen Streptavidins sinkt die Menge gebundenen anti- R-IgG-Biotin wieder ab.
Die Abnahme der Bindungskapazität für anti-R-IgG-Biotin kann erklärt werden durch sterische Behinderung der verfügbaren Bindungsstellen an Streptavidin. Dabei ist auch zu berücksichtigen, dass das anti-R-IgG-Biotin-Molekül mit einer Grosse ähnlich derer von anti-R- IgG (von 14.3 nm x 5.9 nm x 13.1 nm (H. D. Kratzin, W. Plam, M. Stangel, W. E. Schmidt, J. Friedrich, N. Hilschmann, Biol. Chem. HS 370 (1989) 263 - 272)) eine etwa 2.5 fach grössere Grundfläche als Streptavidin einnimmt, wenn man einen „Fussabdruck" („foot print") der Grosse 14.3 nm x 5.9 nm annimmt.
Zur Prüfung der Hypothese einer Abnahme der Bindungskapazität aufgrund sterischer Hinderung bei einer hohen Dichte relativ grosser oberflächengebundener Erkennungselemente wird in einem weiteren Experiment anstelle von anti-R-IgG-Biotin (Molekulargewicht ca. 150 000) das kleinere Protein BSA-Biotin (Molekulargewicht ca. 50 000) zugeführt, gefolgt von der Zufuhr des Antikörpers anti-BSA im nachfolgenden Schritt.
In Fig. 3 sind die Ergebnisse für die sequentielle Adsorption bzw. Bindung von Streptavidin, BSA-Biotin und anti-BSA an die mit gemischten Polymerschichten bedeckte Trägeroberfläche dargestellt: Die Menge gebundenen BSA-Biotins steigt kontinuierlich mit der Menge Oberflächen-immobilisierten Biotins an, und zwar deutlich über den Wert hinaus, bei dem für das Streptavidin- / anti-E-IgG-Biotin-System das Maximum erreicht wurde. Bis zu Oberflächenkonzentrationen von 2.77 pmol/cm2 Streptavidin wird kein Maximalwert des gebundenen BSA-Biotins (ca. 0.7 pmol/cm2 bei 2.77 pmol/cm2 Streptavidin bzw. 11.6 pmol/cm2 Oberflächengebundenen PEG/Biotins) erreicht.
In einem weiteren Experiment wird reines PPB50 auf der Trägeroberfläche immobilisiert. Bei den weiteren entsprechenden Assay-Schritten binden 6.65 pmol/cm2 Streptavidin an die Oberfläche, aber nur noch 0.12 pmol/cm2 BSA-Biotin, woraus geschlossen werden kann, dass für dieses kleinere Molekül die Immobilisierungsdichte der Erkennungselemente ebenfalls einen Optimalimalwert hat, dieser aber verschoben ist verschoben ist zu höheren Werten oberflächengebundenen Streptavidins (zwischen 2.77 pmol/cm2 und 6.65 pmol/cm2).
In einem letzten Assay-Schritt wird der zuvor mit anti-R-IgG-Biotin in Kontakt gebrachte „Chip" mit R-IgG als Analyt in Kontakt gebracht, gefolgt von Spülen mit Puffer. Wie aus Fig. 4 ersichtlich, folgt das Bindungsverhalten für R-IgG sehr genau dem Trend der Bindungskurve von anti-R-IgG-Biotin, wie er vorangehend für die Bindung von anti-R-IgG-Biotin beschrieben wurde.

Claims

Patentansprüche
1. Erkennungsoberfläche mit einer optimalen (auf die Fläche bezogenen) Bindungskapazität zur Erkennung und Bindung eines oder mehrerer Analyten aus einer oder mehreren mit dieser Oberfläche in Kontakt gebrachten Proben, dadurch gekennzeichnet, dass a) besagte Erkennungsoberfläche eine Mischung von spezifischen biologischen oder biochemischen oder synthetischen Erkennungselementen zur Erkennung und Bindung besagter Analyten mit gegenüber diesen Analyten „neutralen", d.h. diese Analyten nicht bindenden Komponenten, umfasst und b) besagte spezifische Erkennungselemente, bezogen auf die ganze Erkennungsoberfläche oder eine beliebige Teilfläche davon, weniger als eine vollständige Monoschicht, einnehmen.
2. Erkennungsoberfläche nach Anspruch 1, dadurch gekennzeichnet, dass besagte spezifische Erkennungselemente, bezogen auf die ganze Erkennungsoberfläche oder eine beliebige Teilfläche davon, ein Zehntel bis die Hälfte einer vollständigen Monoschicht bilden.
3. Erkennungsoberfläche nach einem der Ansprüche 1 - 2, dadurch gekennzeichnet, dass besagte spezifische Erkennungselemente und gegenüber den Analyten „neutralen" Komponenten, bezogen auf die ganze Erkennungsoberfläche oder eine beliebige Teilfläche davon, zusammen mindestens zwei Drittel einer vollständigen Monoschicht bilden.
4. Strukturierte Erkennungsoberfläche mit einer optimalen (auf die Fläche bezogenen) Bindungskapazität zur Erkennung und Bindung eines oder mehrerer Analyten aus einer oder mehreren mit dieser Oberfläche in Kontakt gebrachten Proben, dadurch gekennzeichnet, dass a) besagte Erkennungsoberfläche in diskreten, räumlich getrennten Messbereichen, eine Mischung von spezifischen biologischen oder biochemischen oder synthetischen Erkennungselementen zur Erkennung und Bindung besagter Analyten mit gegenüber diesen Analyten „neutralen", d.h. diese Analyten nicht bindenden Komponenten, umfasst und b) besagte spezifische Erkennungselemente, bezogen auf die Fläche der diskreten Messbereiche, weniger als eine vollständige Monoschicht, einnehmen.
5. Strukturierte Erkennungsoberfläche nach Anspruch 4, dadurch gekennzeichnet, dass besagte spezifische Erkennungselemente, bezogen auf die ganze Erkennungsoberfläche oder eine beliebige Teilfläche davon, ein Zehntel bis die Hälfte einer vollständigen Monoschicht bilden.
6. Strukturierte Erkennungsoberfläche nach einem der Ansprüche 4 - 5, dadurch gekennzeichnet, dass besagte spezifische Erkennungselemente und gegenüber den Analyten „neutralen" Komponenten, bezogen auf die ganze Erkennungsoberfläche oder eine beliebige Teilfläche davon, zusammen mindestens zwei Drittel einer vollständigen Monoschicht bilden.
7. Strukturierte Erkennungsoberfläche nach einem der Ansprüche 4 - 6, dadurch gekennzeichnet, dass in einer 2-dimensionalen Anordnung bis zu 1 000 000 Messbereiche angeordnet sind und ein einzelner Messbereich eine Fläche von 10"4 mm2 - 10 mm2 einnimmt
8. Strukturierte Erkennungsoberfläche nach einem der Ansprüche 4 - 7, dadurch gekennzeichnet, dass die Messbereiche in einer Dichte von mehr als 10, bevorzugt mehr als 100, besonders bevorzugt mehr als 1000 Messbereichen pro Quadratzentimeter angeordnet sind.
9. Strukturierte Erkennungsoberfläche nach einem der Ansprüche 4 - 8, dadurch gekennzeichnet, dass diskrete (räumlich getrennte) Messbereiche, als Bestandteil dieser Erkennungsoberfläche, durch räumlich selektive Aufbringung von biologischen oder biochemischen oder synthetischen Erkennungselementen auf einer Oberfläche eines Trägers oder auf einer zusätzlich auf einer Trägeroberfläche aufgebrachten Haftvermittlungsschicht erzeugt werden, vorzugsweise unter Verwendung eines oder mehrerer Verfahren aus der Gruppe von Verfahren, die von "InkJet spotting", mechanischem Spotting mittels Stift, Feder oder Kapillare, „Micro contact printing", fluidischer Kontaktierung der Messbereiche mit den biologischen oder biochemischen oder synthetischen Erkennungselementen durch deren Zufuhr in parallelen oder gekreuzten Mikrokanälen, unter Einwirkung von Druckunterschieden oder elektrischen oder elektromagnetischen Potentialen sowie photochemischen oder photolithographischen Immobilisierungsverfahren gebildet wird.
10. Strukturierte Erkennungsoberfläche nach einem der Ansprüche 4 - 9, dadurch gekennzeichnet, dass Bereiche zwischen den räumlich getrennten Messbereichen zur Minimierung unspezifischer Bindung von Analyten oder deren Nachweissubstanzen "passiviert werden", d.h. dass zwischen den räumlich getrennten Messbereichen gegenüber dem Analyten oder gegenüber einer seiner Nachweissubstanzen "chemisch neutrale" Verbindungen aufgebracht sind, vorzugsweise beispielsweise bestehend aus den Gruppen, die von Albuminen, insbesondere Rinderserumalbumin oder Humanserumalbumin, Casein, unspezifischen, polyklonalen oder monoklonalen, artfremden oder empirisch für den oder die nachzuweisenden Analyten unspezifischen Antikörpern (insbesondere für Immunoassays), Detergentien - wie beispielsweise Tween 20 -, nicht mit zu analysierenden Polynukleotiden hybridisierender, fragmentierter natürlicher oder synthetischer DNA, wie beispielsweise ein Extrakt von Heringsoder Lachssperma (insbesondere für Polynukleotid-Hybridisierungsassays), oder auch ungeladenen, aber hydrophilen Polymeren, wie beispielsweise Polyethylenglycolen oder Dextranen, gebildet werden.
11. Erkennungsoberfläche nach einem der Ansprüche 1 - 10, dadurch gekennzeichnet, dass besagte biologische oder biochemische oder synthetische Erkennungselemente ausgewählt sind aus der Gruppe, die von Proteinen, beispielsweise mono- oder polyklonalen Antikörpern und Antikörperfragmenten, Peptiden, Enzymen, Aptameren, synthetischen Peptidstrukturen, Glycopeptiden, Oligosacchariden, Lektinen, Antigenen für Antikörper (z. B. Biotin für Streptavidin), mit zusätzlichen Bindungsstellen funktionalisierten Proteinen („Tag-Proteinen", wie beispielsweise „Histidin-Tag-Proteinen")" und deren Komplexbildungspartnern gebildet wird.
12. Erkennungsoberfläche nach einem der Ansprüche 1 - 10, dadurch gekennzeichnet, dass besagte biologische oder biochemische oder synthetische Erkennungselemente ausgewählt sind aus der Gruppe, die von Nukleinsäuren (beispielsweise DNA, RNA, Oligonukleotiden) und Nukleinsäureanalogen (z. B. PNA) sowie deren Derivaten mit künstlichen Basen gebildet wird.
13. Erkennungsoberfläche nach einem der Ansprüche 1 - 10, dadurch gekennzeichnet, dass besagte biologische oder biochemische oder synthetische Erkennungselemente ausgewählt sind aus der Gruppe, die von löslichen, membrangebundenen und aus einer Membran isolierten Proteinen, wie beispielsweise Rezeptoren und deren Liganden, gebildet wird.
14. Erkennungsoberfläche nach einem der Ansprüche 1 - 13, dadurch gekennzeichnet, dass besagte „neutrale", den oder die Analyten nicht bindenden Komponenten ausgewählt sind aus den Gruppen, die von Albuminen, insbesondere Rinderserumalbumin oder Humanserumalbumin, Casein, unspezifischen, polyklonalen oder monoklonalen, artfremden oder empirisch für den oder die nachzuweisenden Analyten unspezifischen Antikörpern (insbesondere für Immunoassays), Detergentien - wie beispielsweise Tween 20 -, nicht mit zu analysierenden Polynukleotiden hybridisierender, fragmentierter natürlicher oder synthetischer DNA, wie beispielsweise ein Extrakt von Herings- oder Lachssperma (insbesondere für Polynukleotid-Hybridisierungsassays), oder auch ungeladenen, aber hydrophilen Polymeren, wie beispielsweise Polyethylenglycolen oder Dextranen, gebildet werden.
15. Erkennungsoberfläche nach einem der Ansprüche 1 - 13, dadurch gekennzeichnet, dass besagte Erkennungselemente an das freie Ende oder nahe dem freien Ende eines ganz oder teilweise funktionalisierten, „nicht interaktiven" Polymeren gebunden sind, wobei besagtes „nicht interaktives" Polymer als Seitenkette an ein geladenes, polyionisches Polymer als Hauptkette gebunden ist und mit diesem zusammen ein polyionisches, multifunktionales Co- Polymer bildet.
16. Erkennungsoberfläche nach Anspruch 15, dadurch gekennzeichnet, dass die polyionische Polymerenhauptkette bei annähernd neutralem pH kationisch (positiv) geladen ist.
17. Erkennungsoberfläche nach Anspruch 16, dadurch gekennzeichnet, dass die kationische Hauptkette ausgewählt aus der Gruppe von Polymeren umfassend Aminosäuren mit positiver Ladung bei annähernd neutralem pH, Polysaccharide, Polyamine, Polymere von quarternären Aminen und geladene synthetische Polymere.
18. Erkennungsoberfläche nach Anspruch 17, dadurch gekennzeichnet, dass die kationische Polymerenhauptkette ein oder mehr Molekülgruppen aus der Gruppe umfasst, welche Lsysin, Histidin, Arginin, Chitosan, partiell deacetyliertes Chitin, Amin-haltige Derivate neutraler Polysaccharide, Polyaminostyrol, Polyaminacrylate, Polyaminmethhacrylate, Polyethylenimine, Polyaminoethylene, Polyaminostyrole und deren N-Alkyl-Derivate umfasst.
19. Erkennungsoberfläche nach Anspruch 15, dadurch gekennzeichnet, dass die polyionische Polymerenhauptkette bei annähernd neutralem pH anionisch (negativ) geladen ist.
20. Erkennungsoberfläche nach Anspruch 19, dadurch gekennzeichnet, dass die kationische Hauptkette ausgewählt aus der Gruppe von Polymeren umfassend Aminosäuren mit daran geknüpften Gruppen mit negativer Ladung bei annähend neutralem pH, Polyscacharide und geladene synthetische Polymere mit negativ geladenen Gruppen.
21. Erkennungsoberfläche nach Anspruch 20, dadurch gekennzeichnet, dass die kationische Polymerenhauptkette ein oder mehr Molekülgruppen aus der Gruppe umfasst, welche Polyasparaginsäure, Polyglutaminsäure, Alginsäure oder deren Derivate, Pektin, Hyaluronsäure, Heparin, Heparinsulfat, Chondroitinsulfat, Dermatansulfat, Dextransulfat, Polymethylmethacrylsäure, oxidierte Zellulose, Carboxymethylierte Zellulose, Maleinsäure und Fumarsäure umfasst.
22. Erkennungsoberfläche nach einem der Ansprüche 15 - 21, dadurch gekennzeichnet, dass der „nicht interaktive" Polymer als Seitenkette ausgewählt ist aus der Gruppe umfassend Poly(alkylenglycole), Poly(alkylenoxide), neutrale wasserlösliche Polysaccharide, Polyvinylalkohole, Poly-N-Vinylpyrrolidonn, Phosphorylcholin-Derivate, nicht-kationischen Poly(meth)acrylate und deren Kombinationen.
23. Erkennungsoberfläche nach einem der Ansprüche 15 - 21, dadurch gekennzeichnet, dass die biologischen oder biochemischen oder synthetischen Erkennungselemente an die „nicht interaktive" Seitenkette an deren freiem Ende oder nahe zu deren freiem Ende über reaktive Gruppen gebunden sind.
24. Erkennungsoberfläche nach Anspruch 23, dadurch gekennzeichnet, dass besagte reaktive Gruppen ausgewählt sind aus der Gruppe umfassend Hydroxy (-OH), Carboxy (-COOH), Ester (-COOR), Thiole (-SH), N-Hydroxysuccinimid, Maleimidyl, Chinon, Vinylsulfon, Nitrilotriacetische Säure („nitrilo triacetic acid", NTA) und deren Kombinationen.
25. Erkennungsoberfläche nach einem der Ansprüche 1 - 24, dadurch gekennzeichnet, dass diese aufgebracht ist auf einem im wesentlichen optisch transparenten Träger.
26. Erkennungsoberfläche nach Anspruch 25, dadurch gekennzeichnet, dass der im wesentlichen optisch transparente Träger ein Material umfasst aus der Gruppe umfassend form-, spritz- oder fräsbare Kunststoffe, Metalle, Metalloxide, Silikate, wie z. B. Glas, Quarz oder Keramiken.
27. Erkennungsoberfläche nach einem der Ansprüche 25 - 26, dadurch gekennzeichnet, dass diese auf einer auf dem im wesentlichen optisch transparenten Träger aufgetragenen Haftvermittlungsschicht aufgebracht ist, welche ebenfalls im wesentlichen optisch transparent ist.
28. Erkennungsoberfläche nach Anspruch 27, dadurch gekennzeichnet, dass die Haftvermittlungsschicht eine Stärke von weniger als 200 nm, bevorzugt von weniger als 20 nm, hat.
29. Erkennungsoberfläche nach einem der Ansprüche 27 - 28, dadurch gekennzeichnet, dass die Haftvermittlungsschicht eine chemische Verbindung aus der Gruppe Silane, funktionalisierte Silane, Epoxide, funktionalisierte, geladene oder polare Polymere und "selbstorganisierte passive oder funktionalisierte Mono- oder Mehrfachschichten" umfasst.
30. Erkennungsoberfläche nach einem der Ansprüche 25 - 29, dadurch gekennzeichnet, dass in der Oberfläche besagten Trägers Ausnehmungen zur Erzeugung von Probenbehältnissen strukturiert sind.
31. Erkennungsoberfläche nach Anspruch 30, dadurch gekennzeichnet, dass besagte Ausnehmungen eine Tiefe von 20 μm bis 500 μm, besonders bevorzugt von 50 μm bis 300 μm, haben.
32. Erkennungsoberfläche nach einem der Ansprüche 25 - 31, dadurch gekennzeichnet, dass der im wesentlichen optisch transparente Träger einen durchgehenden oder in einzelne wellenleitende Bereiche aufgeteilten optischen Wellenleiter umfasst.
33. Erkennungsoberfläche nach Anspruch 32, dadurch gekennzeichnet, dass der optische Wellenleiter ein optischer Schichtwellenleiter ist mit einer, der Erkennungsoberfläche zugewandten, ersten im wesentlichen optisch transparenten Schicht (a) auf einer zweiten, im wesentlichen optisch transparenten Schicht (b) mit niedrigerem Brechungsindex als Schicht (a).
34. Erkennungsoberfläche nach Anspruch 33, dadurch gekennzeichnet, dass besagter optischer Schichtwellenleiter im wesentlichen planar ist.
35. Erkennungsoberfläche nach einem der Ansprüche 32 - 34, dadurch gekennzeichnet, dass, zur Einkopplung von Anregungslicht in die optisch transparente Schicht (a), diese Schicht in optischem Kontakt zu einem oder mehreren optischen Einkoppelelementen aus der Gruppe steht, die von Prismenkopplem, evaneszenten Kopplem mit zusammengebrachten optischen Wellenleitern mit überlappenden evaneszenten Feldern, Stirnflächenkopplern mit vor einer Stirnseite der wellenleitenden Schicht angeordneten fokussierenden Linsen, vorzugsweise Zylinderlinsen, und Gitterkopplem gebildet wird.
36. Erkennungsoberfläche nach Anspruch 35, dadurch gekennzeichnet, dass die Einkopplung von Anregungslicht in die optisch transparente Schicht (a) mithilfe von einer oder mehreren Gitterstrukturen (c) erfolgt, die in der optisch transparenten Schicht (a) ausgeprägt sind.
37. Erkennungsoberfläche nach Anspruch 35, dadurch gekennzeichnet, dass die Auskopplung von in der optisch transparenten Schicht (a) geführtem Licht mithilfe von einer oder mehreren Gitterstrukturen (c') erfolgt, die in der optisch transparenten Schicht (a) ausgeprägt sind und gleiche oder unterschiedliche Periode und Gittertiefe wie Gitterstrukturen (c) haben.
38. Verfahren zum qualitativen und / oder quantitativen Nachweis eines oder mehrerer Analyten in einer oder mehreren Proben, dadurch gekennzeichnet, dass besagte Proben und gegebenenfalls weitere Reagentien mit einer Erkennungsoberfläche nach einem der Ansprüche 1 - 37 in Kontakt gebracht werden und aus der Bindung des Analyten oder weiterer zum Analytnachweis eingesetzter Nachweissubstanzen resultierende Änderungen von optischen oder elektronischen Signalen gemessen werden.
39. Verfahren zum qualitativen und / oder quantitativen Nachweis eines oder mehrerer Analyten in einer oder mehreren Proben, dadurch gekennzeichnet, dass besagte Proben und gegebenenfalls weitere Reagentien mit einer strukturierten Erkennungsoberfläche nach einem der Ansprüche 4 - 37 in Kontakt gebracht werden und aus der Bindung des Analyten oder weiterer zum Analytnachweis eingesetzter Nachweissubstanzen resultierende Änderungen von, von den diskreten Messbereichen ausgehenden, optischen oder elektronischen Signalen ortsaufgelöst gemessen werden.
40. Verfahren nach einem der Ansprüche 38 - 39, dadurch gekennzeichnet, dass die eine oder mehreren Proben mit einer Mischung aus den verschiedenen Nachweisreagentien zur Bestimmung der in besagten Proben nachzuweisenden Analyten vorinkubiert werden und diese Mischungen dann jeweils in einem einzigen Zugabeschritt mit einer Erkennungsoberfläche nach einem der Ansprüche 1 - 37 in Kontakt gebracht werden.
41. Verfahren nach einem der Ansprüche 38 - 40, dadurch gekennzeichnet, dass der Nachweis des einen oder mehrerer Analyten auf der Bestimmung der Änderung einer oder mehrerer Lumineszenzen beruht.
42. Verfahren nach einem der Ansprüche 38 - 41, dadurch gekennzeichnet, dass das Anregungslicht von einer oder mehreren Lichtquellen in einer Auflichtanregungsanordnung eingestrahlt wird.
43. Verfahren nach einem der Ansprüche 38 - 41, dadurch gekennzeichnet, dass das Anregungslicht von einer oder mehreren Lichtquellen in einer Transmissionslichtanregungsanordnung eingestrahlt wird.
44. Verfahren nach einem der Ansprüche 38 - 41, dadurch gekennzeichnet, dass die Erkennungsoberfläche, gegebenenfalls vermittelt über eine Haftvermittlungsschicht, auf einem optischen Wellenleiter angeordnet ist, welcher vorzugsweise im wesentlichen planar ist, dass die eine oder mehrere Proben mit dem einen oder den mehreren darin nachzuweisenden Analyten und gegebenenfalls weitere Nachweisreagentien sequentiell oder nach Mischung mit besagten Proben in einem einzigen Schritt mit besagter Erkennungsoberfläche in Kontakt gebracht werden und dass das Anregungslicht von einer oder mehreren Lichtquellen in den optischen Wellenleiter eingekoppelt wird mithilfe eines oder mehrerer optischer Koppelelemente aus der Gruppe, die von Prismenkopplem, evaneszenten Kopplem mit zusammengebrachten optischen Wellenleitern mit überlappenden evaneszenten Feldern, Stirnflächenkopplern mit vor einer Stirnseite der wellenleitenden Schicht angeordneten fokussierenden Linsen, vorzugsweise Zylinderlinsen, und Gitterkopplem gebildet wird.
45. Verfahren nach Anspruch 44, dadurch gekennzeichnet, dass der Nachweis des einen oder mehrerer Analyten auf einer Erkennungsoberfläche über einer in der Schicht (a) eines optischen Schichtwellenleiters ausgeprägten Gitterstruktur (c) oder (c') anhand der aus der Bindung des Analyten und / oder weiterer Nachweisreagentien, an deren immobilisierte biologischer oder biochemische oder synthetische Erkennungselemente, resultierenden Änderungen der Resonanzbedingungen zur Einkopplung eines Anregungslichts in die Schicht (a) eines als Schichtwellenleiter ausgebildeten Trägers oder zur Auskopplung von in der Schicht (a) geführten Lichts erfolgt.
46. Verfahren nach Anspruch 44, dadurch gekennzeichnet, dass besagter optischer Wellenleiter als optischer Schichtwellenleiter ausgebildet ist mit einer ersten optisch transparenten Schicht (a) auf einer zweiten optisch transparenten Schicht (b) mit niedrigerem Brechungsindex als Schicht (a), dass weiterhin Anregungslicht mithilfe einer oder mehrerer Gitterstrukturen, welche in der optisch transparenten Schicht (a) ausgeprägt sind, in die optisch transparente Schicht (a) eingekoppelt und zu darauf befindlichen Messbereichen (d) als geführte Welle geleitet wird, und dass weiterhin die im evaneszenten Feld besagter geführter Welle erzeugte Lumineszenz von lumineszenzfähigen Molekülen mit einem oder mehreren Detektoren erfasst und die Konzentration eines oder mehrerer Analyten aus der Intensität dieser Lumineszenzsignale bestimmt wird.
47. Verfahren nach Anspruch 46, dadurch gekennzeichnet, dass (1) die isotrop abgestrahlte Lumineszenz oder (2) in die optisch transparente Schicht (a) eingekoppelte und über eine Gitterstruktur (c) oder (c') ausgekoppelte Lumineszenz oder Lumineszenzen beider Anteile (1) und (2) gleichzeitig gemessen werden.
48. Verfahren nach einem der Ansprüche 46 - 47, dadurch gekennzeichnet, dass zur Erzeugung der Lumineszenz ein Lumineszenzfarbstoff oder lumineszentes Nanopartikel als Lumineszenzlabel verwendet wird, das bei einer Wellenlänge zwischen 300 nm und 1100 nm angeregt werden kann und emittiert.
49. Verfahren nach Anspruch 48, dadurch gekennzeichnet, dass das Lumineszenzlabel an den Analyten oder in einem kompetitiven Assay an einen Analogen des Analyten oder in einem mehrstufigen Assay an einen der Bindungspartner der immobilisierten biologischen oder biochemischen oder synthetischen Erkennungselementen oder an die biologischen oder biochemischen oder synthetischen Erkennungselemente gebunden ist.
50. Verfahren nach einem der Ansprüche 48 - 49, dadurch gekennzeichnet, dass ein zweites oder noch weitere Lumineszenzlabel mit gleicher oder unterschiedlicher Anregungswellenlänge wie das erste Lumineszenzlabel und gleicher oder unterschiedlicher Emissionswellenlänge verwendet werden.
51. Verfahren nach Anspruch 50, dadurch gekennzeichnet, dass das zweite oder noch weitere Lumineszenzlabel bei der gleichen Wellenlänge wie der erste Lumineszenz-farbstoff angeregt werden kann, aber bei anderen Wellenlängen emittieren.
52. Verfahren nach Anspruch 51, dadurch gekennzeichnet, dass die Anregungsspektren und Emissionsspektren der eingesetzten Lumineszenzfarbstoffe nur wenig oder gar nicht überlappen.
53. Verfahren nach Anspruch 52, dadurch gekennzeichnet, dass zum Nachweis des Analyten Ladungs- oder optischer Energietransfer von einem als Donor dienenden ersten Lumineszenzfarbstoff zu einem als Akzeptor dienenden zweiten Lumineszenzfarbstoff verwendet wird.
54. Verfahren nach einem der Ansprüche 46 - 53, dadurch gekennzeichnet, dass neben der Bestimmung einer oder mehrerer Lumineszenzen Änderungen des effektiven Brechungsindex auf den Messbereichen bestimmt werden.
55. Verfahren nach einem der Ansprüche 46 - 54, dadurch gekennzeichnet, dass die einen oder mehreren Lumineszenzen und / oder Bestimmungen von Lichtsignalen bei der Anregungswellenlänge polarisationsselektiv vorgenommen werden.
56. Verfahren nach einem der Ansprüche 46 - 55, dadurch gekennzeichnet, dass die einen oder mehreren Lumineszenzen bei einer anderen Polarisation als der des Anregungslichts gemessen werden.
57. Verfahren nach einem der Ansprüche 38 - 56 zur gleichzeitigen oder sequentiellen, quantitativen oder qualitativen Bestimmung eines oder mehrerer Analyten aus der Gruppe von Proteinen, wie beispielsweise Antikörpern oder Antigenen, Rezeptoren oder Liganden, Chelatoren, mit zusätzlichen Bindungsstellen funktionalisierten Proteinen („Tag-Proteinen", wie beispielsweise „Histidin-Tag-Proteinen") und deren Komplexbildungspartnern, Oligonukleotiden, DNA- oder RNA-Strängen, DNA- oder RNA-Analoga, Enzymen, Enzymcofaktoren oder Inhibitoren, Lektinen und Kohlehydraten.
58. Verfahren nach einem der Ansprüche 38 - 57, dadurch gekennzeichnet, dass die zu untersuchenden Proben wässrige Lösungen, insbsondere Pufferlösungen oder natürlich vorkommende Körperflüssigkeiten wie Blut, Serum, Plasma, Lymphe oder Urin oder Gewebeflüssigkeiten oder Eigelb sind.
59. Verfahren nach einem der Ansprüche 38 -57, dadurch gekennzeichnet, dass die zu untersuchende Probe eine optisch trübe Flüssigkeit, Oberflächenwasser, ein Boden- oder Pflanzenextrakt, eine Bio- oder Syntheseprozessbrühe ist.
60. Verfahren nach einem der Ansprüche 38 -57, dadurch gekennzeichnet, dass die zu untersuchenden Proben aus biologischen Gewebeteilen oder Zellkulturen präpariert sind.
61. Verwendung einer Erkennungsoberfläche nach einem der Ansprüche 1 - 37 oder eines Verfahrens nach einem der Ansprüche 38 - 60 zu quantitativen oder qualitativen Analysen zur Bestimmung chemischer, biochemischer oder biologischer Analyten in Screeningverfahren in der Pharmaforschung, der Kombinatorischen Chemie, der Klinischen und Präklinischen Entwicklung, zu Echtzeitbindungsstudien und zur Bestimmung kinetischer Parameter im Affinitätsscreening und in der Forschung, zu qualitativen und quantitativen Analytbestimmungen, insbesondere für die DNA- und RNA-Analytik und die Bestimmung von genomischen oder proteomischen Unterschieden im Genom, wie beispielsweise Einzelnukleotid-Polymorphismen, zur Messung von Protein-DNA-wechselwirkungen, zur Bestimmung von Steuerungsmechanismen für die m-RNA-Expression und für die Protein(bio)synthese, für die Erstellung von Toxizitätsstudien sowie für die Bestimmung von Expressionsprofilen, insbesondere zur Bestimmung von biologischen und chemischen Markerstoffen, wie mRNA, Proteinen, Peptiden oder niedermolekularen organischen (Boten-)Stoffen, sowie zum Nachweis von Antikörpern, Antigenen, Pathogenen oder Bakterien in der pharmazeutischen Produktforschung und -entwicklung, der Human- und Veterinärdiagnostik, der Agrochemischen Produktforschung und -entwicklung, der symptomatischen und präsymptomatischen Pflanzendiagnostik, zur Patientenstratifikation in der pharmazeutischehn Produktentwicklung und für die therapeutische Medikamentenauswahl, zum Nachweis von Pathogenen, Schadstoffen und Erregem, insbesondere von Salmonellen, Prionen, Viren und Bakterien, insbesondere in der Lebensmittel- und Umweltanalytik.
EP02797619A 2001-08-27 2002-08-24 Bionalytische erkennungsoberfläche mit optimierter dichte der erkennungselemente Withdrawn EP1421376A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH15852001 2001-08-27
CH158501 2001-08-27
PCT/EP2002/009489 WO2003021253A2 (de) 2001-08-27 2002-08-24 Bionalytische erkennungsoberfläche mit optimierter dichte der erkennungselemente

Publications (1)

Publication Number Publication Date
EP1421376A2 true EP1421376A2 (de) 2004-05-26

Family

ID=4565568

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02797619A Withdrawn EP1421376A2 (de) 2001-08-27 2002-08-24 Bionalytische erkennungsoberfläche mit optimierter dichte der erkennungselemente

Country Status (4)

Country Link
US (1) US20040253596A1 (de)
EP (1) EP1421376A2 (de)
AU (1) AU2002361223A1 (de)
WO (1) WO2003021253A2 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8372614B2 (en) * 2005-02-07 2013-02-12 The United States Of America, As Represented By The Secretary Of Agriculture Ethanol production from solid citrus processing waste
JP5528710B2 (ja) 2006-02-28 2014-06-25 オリガシス コーポレイション アクリロイルオキシエチルホスホリルコリン含有ポリマー抱合体及びその製法
US9423397B2 (en) 2006-03-10 2016-08-23 Indx Lifecare, Inc. Waveguide-based detection system with scanning light source
US9976192B2 (en) 2006-03-10 2018-05-22 Ldip, Llc Waveguide-based detection system with scanning light source
US9528939B2 (en) 2006-03-10 2016-12-27 Indx Lifecare, Inc. Waveguide-based optical scanning systems
US8288157B2 (en) 2007-09-12 2012-10-16 Plc Diagnostics, Inc. Waveguide-based optical scanning systems
GB2461026B (en) 2008-06-16 2011-03-09 Plc Diagnostics Inc System and method for nucleic acids sequencing by phased synthesis
EP2425286B1 (de) 2009-04-29 2020-06-24 Ldip, Llc Auf wellenleitern basierendes detektionssystem mit abtastlichtquelle
US8765432B2 (en) 2009-12-18 2014-07-01 Oligasis, Llc Targeted drug phosphorylcholine polymer conjugates
EP3760639A1 (de) 2013-09-08 2021-01-06 Kodiak Sciences Inc. Zwitterionische polymerkonjugate
US10018566B2 (en) 2014-02-28 2018-07-10 Ldip, Llc Partially encapsulated waveguide based sensing chips, systems and methods of use
US9840553B2 (en) 2014-06-28 2017-12-12 Kodiak Sciences Inc. Dual PDGF/VEGF antagonists
KR20210013299A (ko) 2014-10-17 2021-02-03 코디악 사이언시스 인코포레이티드 부티릴콜린에스테라제 양성이온성 중합체 컨쥬게이트
WO2016138427A1 (en) 2015-02-27 2016-09-01 Indx Lifecare, Inc. Waveguide-based detection system with scanning light source
RU2744860C2 (ru) 2015-12-30 2021-03-16 Кодиак Сайенсиз Инк. Антитела и их конъюгаты
CA3157509A1 (en) 2019-10-10 2021-04-15 Kodiak Sciences Inc. Methods of treating an eye disorder

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8803000D0 (en) * 1988-02-10 1988-03-09 Ekins Roger Philip Determination of ambient concentrations of several analytes
US5807755A (en) * 1987-08-06 1998-09-15 Multilyte Limited Determination of ambient concentrations of several analytes
US4952056A (en) * 1988-05-17 1990-08-28 Entwicklungsgemeinschaft Asi Method of determining the autocollimation angle of a grating coupler
US5380536A (en) * 1990-10-15 1995-01-10 The Board Of Regents, The University Of Texas System Biocompatible microcapsules
US5232984A (en) * 1990-10-15 1993-08-03 The Board Of The Regents The University Of Texas Biocompatible microcapsules
GB9326450D0 (en) * 1993-12-24 1994-02-23 Multilyte Ltd Binding assay
US5514501A (en) * 1994-06-07 1996-05-07 The United States Of America As Represented By The Secretary Of Commerce Process for UV-photopatterning of thiolate monolayers self-assembled on gold, silver and other substrates
US5620850A (en) * 1994-09-26 1997-04-15 President And Fellows Of Harvard College Molecular recognition at surfaces derivatized with self-assembled monolayers
US5942397A (en) * 1996-12-11 1999-08-24 Tarlov; Michael J. Surface immobilization of biopolymers
ATE334226T1 (de) * 1999-01-25 2006-08-15 Micronas Holding Gmbh Immobilisierung von molekülen auf oberflächen über polymerbürsten
DE60041255D1 (de) * 1999-04-28 2009-02-12 Eidgenoess Tech Hochschule Polyionische beschichtungen für analytische und sensor-vorrichtungen
WO2000075644A1 (de) * 1999-06-05 2000-12-14 Zeptosens Ag Sensorplatform und verfahren zur multianalytbestimmung
DE10013993A1 (de) * 2000-03-22 2001-10-25 Ruediger Benters Verfahren zur Erzeugung von aktivierten Sensoroberflächen zur hocheffizienten kovalenten Immobilisierung bioorganischer Makromoleküle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03021253A3 *

Also Published As

Publication number Publication date
AU2002361223A1 (en) 2003-03-18
WO2003021253A2 (de) 2003-03-13
WO2003021253A3 (de) 2003-11-20
US20040253596A1 (en) 2004-12-16

Similar Documents

Publication Publication Date Title
WO2003021253A2 (de) Bionalytische erkennungsoberfläche mit optimierter dichte der erkennungselemente
DE10164309A1 (de) Verbesserte strukturiert-funktionale Bindematrices für Biomoleküle
WO2006072306A1 (de) Dreidimensionale nano- und mikrostrukturierte träger
EP0849595B1 (de) Synthetische Partikel als Agglutinationsreagenzien
WO2004023143A2 (de) Analytische plattform und nachweisverfahren
DE60225593T2 (de) Immobilisierung von bindungsstoffen
WO2003096018A2 (de) Kit zur assay-entwicklung und für serien-analysen
WO2004023142A1 (de) Analytische plattform und nachweisverfahren mit den in einer probe nachzuweisenden analyten als immobilisierten spezifischen bindungspartnern
EP1366088A1 (de) Phosphorhaltige polymere für optischen signalwandler
DE69637317T2 (de) Molekulare ausrichtung von makromolekuelen mit hilfe eines fluessigkeitsmeniskus auf einer hochspezifischen oberflaeche
EP1963441B1 (de) Polyelektrolyt mono- und multischichten für optische signalwandler
EP0730739B1 (de) Verfahren zur beschichtung von oberflächen mit biomolekülen und anderen rezeptormolekülen
DE60214118T2 (de) Verfahren zum Nachweis eines Analyten
Hofer Surface modification for optical biosensor applications
EP1627078A1 (de) Verfahren zur kovalenten immobilisierung von sonden-biomolekülen an organischen oberflächen
WO1989009406A1 (en) Process for immobilizing or depositing molecules or substances on a support
JP2010175327A (ja) 金属ナノ粒子複合体およびその製造方法、バイオチップおよびその製造方法
DE602004004753T2 (de) Photolinker-makromoleküle, mit den linkern modifizierte metallische substrate und liganden sowie verfahren zur herstellung davon
EP1421217A2 (de) Oberfläche zur immobilisierung von nukleinsäuren
DE102006003603A1 (de) Vernetzbare multifunktionelle Träger für (niedermolekulare) Liganden und deren Anwendung in der Analytik sowie Verfahren zu deren Herstellung und Vernetzung
DE602004011198T2 (de) Immobilisierungsverfahren und kit dafür
WO2007090511A1 (de) Polyelektrolyt mono- und multischichten für optische signalwandler
EP2487490A1 (de) Heterogener Bindungsassay mit verbesserter optischer Auswertbarkeit oder poröse Festphase für Bindungsassays mit verbesserter optischer Auswertbarkeit
EP1071951B1 (de) Modifizierte oberfläche für die durchführung oder den nachweis von affinitätsreaktionen
DE10217597B4 (de) Verfahren und Vorrichtung zur elektrochemischen Immobilisierung von Biomolekülen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040224

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUERMANN-MADER, EVELINE

Inventor name: HOFER, ROLF

Inventor name: TEXTOR, MARCUS

Inventor name: DE PAUL, SUSAN, MARGARET

Inventor name: HUANG, NING-PING

Inventor name: DUVENECK, GERT, L.

Inventor name: PAWLAK, MICHAEL

19U Interruption of proceedings before grant

Effective date: 20041103

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20060703

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER TECHNOLOGY SERVICES GMBH

17Q First examination report despatched

Effective date: 20080604

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081015