EP1419314A1 - Kraftstoffeinspritzventil für brennkraftmaschinen und ein verfahren zur härtung desselben - Google Patents

Kraftstoffeinspritzventil für brennkraftmaschinen und ein verfahren zur härtung desselben

Info

Publication number
EP1419314A1
EP1419314A1 EP02748600A EP02748600A EP1419314A1 EP 1419314 A1 EP1419314 A1 EP 1419314A1 EP 02748600 A EP02748600 A EP 02748600A EP 02748600 A EP02748600 A EP 02748600A EP 1419314 A1 EP1419314 A1 EP 1419314A1
Authority
EP
European Patent Office
Prior art keywords
valve
valve body
fuel injection
internal combustion
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02748600A
Other languages
English (en)
French (fr)
Other versions
EP1419314B1 (de
Inventor
Dieter Liedtke
Alfred Hoch
Franz Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1419314A1 publication Critical patent/EP1419314A1/de
Application granted granted Critical
Publication of EP1419314B1 publication Critical patent/EP1419314B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9053Metals
    • F02M2200/9061Special treatments for modifying the properties of metals used for fuel injection apparatus, e.g. modifying mechanical or electromagnetic properties

Definitions

  • the temperature load on the fuel injection valves and thus on the needle seat in the valve body will continue to increase due to an increase in performance or an increase in braking power, particularly in commercial vehicles.
  • the case-hardened steels previously used and the hardening methods used for them are no longer sufficient for these applications.
  • the fuel injection valve according to the invention for internal combustion engines according to the preamble of claim 1 has the advantage that the valve body is dimensionally and wear-resistant up to high temperatures and is therefore suitable for use at all operating points of an internal combustion engine.
  • the valve body of the fuel injector consists of a high-alloy hot-work steel that has been hardened by a carburizing process. By combining the high-alloy hot-work steel with a suitable carburizing process, the advantages of material and hardening process add up positively.
  • a significant increase in the fatigue strength of the high-alloy steel is obtained through a reduced notch effect during use, a reduction in stock removal during the subsequent grinding work on the functional geometries and a reduction in the necessary initial hardness of the valve body and thus improved machinability and a reduction in the cavitation sensitivity in the valve body, in particular in the area of the valve seat.
  • the hot-work steel is dimensionally and wear-resistant up to a temperature of 450 ° C.
  • the fuel injection valve is suitable for use at all possible operating points of the internal combustion engine.
  • the high-alloy hot-work steel consists at least approximately of 0.4% carbon, 5% chromium, 1% molybdenum and other metallic and non-metallic elements in traces of less than 1% overall, the 100% missing iron is.
  • Such steels, such as X 40 CrMo V 51, are commercially available and can be used without further effort.
  • the carburizing process is a gas carburizing process. Carburizing eliminates the need for time-consuming post-processing.
  • the method according to the invention for hardening a valve body which is part of a fuel injection valve for internal combustion engines, has the advantage that the treatment has the necessary heat resistance for use in the combustion chamber of an internal combustion engine.
  • the valve body is carburized in a gas atmosphere that contains a hydrocarbon and then heat-treated at a temperature of about 900 ° C. in vacuo, but at most at a pressure of 100 Pa.
  • the carburizing will take place at a pressure of less than 100 kPa.
  • This vacuum carburizing process in particular results in a reduction in the formation of edge oxidations which reduce the strength.
  • a fuel injection valve is shown in longitudinal section as an example of a hardened valve body.
  • the fuel injection valve shown in FIG. 1 has a valve body 1, in which a valve needle 5 is arranged to be longitudinally displaceable in a bore 3.
  • a valve needle 5 is arranged to be longitudinally displaceable in a bore 3.
  • an essentially conical valve seat 9 is formed, in which at least one injection opening 11 is formed, which connects the bore 3 with the combustion chamber of the internal combustion engine.
  • the valve needle 5 has a guide section 15 with which it is sealingly guided in a leading section 23 of the bore 3. In the direction of the valve seat 9, the valve needle 5 tapers to form a pressure shoulder 13 and merges into a shaft section 17 with a reduced diameter.
  • an essentially conical valve sealing surface 7 is formed on the valve needle 5, which cooperates with the valve seat 9 and thus closes the at least one injection opening 11 with respect to the bore 3 when it contacts the valve seat 9.
  • a radial expansion of the bore 3 forms a pressure chamber 19 which can be filled with fuel under high pressure via an inlet channel 25.
  • the pressure chamber 19 continues to the valve seat 9 as an annular channel 21 which surrounds the shaft section 17 of the valve needle 3. In this way, the fuel flows from the inlet channel 25 through the pressure chamber 19 and the annular channel 21 to the valve seat 9 and, if the valve sealing surface 7 is lifted off the valve seat 9, through the injection openings 11 into the combustion chamber of the internal combustion engine.
  • the valve needle 5 is controlled by the ratio of the hydraulic forces on the pressure shoulder 13 and the valve sealing surface 7 on the one hand and a closing force on the other hand, which acts on the end of the valve needle 5 facing away from the combustion chamber and acts on the valve needle 5 in the direction of the valve seat 9.
  • One possible operating state of the fuel injection valve is that the closing force on the valve needle 5 remains constant, while the fuel pressure in the pressure chamber 19 and in the annular channel 21 changes due to fuel being supplied from the inlet channel 25. Due to the fuel pressure in the pressure chamber 19 and in the region of the valve seat 9, the valve needle 5 experiences a hydraulic force which is directed away from the valve seat 9.
  • this hydraulic force is greater than the closing force on the valve needle 5, it moves away from the valve seat 9 and thus lifts off from the valve seat 9 with the valve sealing surface 7. If the pressure in the pressure chamber 19 falls below a certain threshold pressure, the closing force on the valve needle 5 predominates and it moves again in the direction of the valve seat 9 until the valve sealing surface 7 closes the at least one injection opening 11 again.
  • valve needle 5 The longitudinal movement of the valve needle 5 and the relatively hard placement of the valve needle 5 on the valve seat 9 result in high forces on the valve body 1 in the region of the valve 9.
  • longitudinal movement of the valve needle 5 in the leading section 23 of the bore 3 results in friction losses between the valve needle 5 and the wall of the bore 3, which can lead to an impermissibly high wear with a soft material of the valve body 1.
  • a so-called hot working steel which belongs to the tool steels, is used for the valve body 1.
  • high-alloy hot-work steels such as X 40 steel, has proven to be particularly advantageous CrMoV 51.
  • This high-alloy hot-work steel can be exposed to working temperatures of up to 450 ° C without losing hardness and therefore wear resistance.
  • the surface of the valve body 1 must be additionally hardened.
  • carbon is introduced into the layers of the valve body 1 near the surface in a so-called carburizing process, as a result of which the surface becomes hardenable.
  • a possible carburizing process is the gas carburizing process, in which the steel is exposed to an atmosphere of hydrocarbons and chemically inert gases, such as nitrogen (2), at a temperature of 900 ° C. to 1000 ° C. The carbon diffuses into the layers of the valve body 1 near the surface, so that the carbon content increases there.
  • the hardening depths are 0.3 to 4 mm.
  • the carburizing makes the material hardenable, which is carried out by subsequent heating in a vacuum furnace.
  • the workpiece in this case the valve body 1, is heated to approximately 800 ° C., the vacuum largely prevailing in the hardening furnace, in any case a pressure of less than 100 Pa.
  • the advantage of this hardening method of the valve body 1 consists in the combination of a high-alloy hot-work steel with a gas carburizing method that works with negative pressure, that is to say at a pressure of less than 100 kPa. This adds the advantages of hot-work steel to those of the carburizing and hardening process. A significant increase in the fatigue strength of the high-alloy steel is achieved through a reduced notch effect when using the vacuum carburizing process, since edge oxidation is avoided. At the same time, there is a reduction in the stock removal during the subsequent grinding on the functional geometries, since the injection opening 11 is reworked by hydroerosive grinding. Another advantage is the reduction in the necessary initial hardness of the fuel injection valve and thus an improved machinability after the heat treatment of the valve body 1. A reduction in the cavitation sensitivity of the surfaces is also obtained, especially in the inlet bore and needle seat area of the valve body 1.
  • high-alloy hot-work steel X 40 CrMoV 51 In addition to the high-alloy hot-work steel X 40 CrMoV 51, other high-alloy hot-work steels with a carbon content of 0.3 to 0.5% can also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (1) und wenigstens einer darin ausgebildeten Einspritzöffnung (11), durch die, gesteuert durch eine Ventilnadel (5), die mit einem mit im Ventilkörper (1) ausgebildeten Ventilsitz (9) zusammenwirkt, Kraftstoff in den Brennraum der Brennkraftmaschine eingespritzt werden kann. Der Ventilkörper (1) besteht aus einem hochlegierten Warmarbeitsstahl, der durch ein Aufkohlverfahren gehärtet worden ist.

Description

Kraftstoffeinspritzventil für Brennkraftmaschinen und ein Verfahren zur Härtuncr desselben
Stand der Technik
Aus dem Stand der Technik sind verschiedene Verfahren zum Härten von Stahl bekannt. Hierdurch soll die Verschleißfestigkeit und die Beständigkeit des Werkstoffs und seine Bear- beitbarkeit beeinflusst werden. Ein Beispiel hierfür ist das sogenannte Aufkohlen, bei dem Kohlenstoff in die oberflächennahen Schichten des Werkstücks eingebracht wird. Ein diesbezügliches Verfahren wird beispielsweise in der Schrift US 4 836 864 beschrieben. Weitere Möglichkeiten sind das Nitrieren von Stählen, bei dem Stickstoff in die oberflächennahen Schichten des Werkstücks eingebracht wird. Auch bei Kraf stoffeinspritzventilen, wie sie vorzugsweise für selbstzündende Brennkraftmaschinen verwendet werden und beispielsweise in der DE 196 18 650 AI beschrieben sind, ist der Einsatz solch gehärteter und behandelter Stähle bekannt, um die Lebensdauer der Stähle zu verlängern. Im Rahmen der Weiterentwicklung der Motoren wird durch Leistungssteigerung oder Erhöhung der Bremsleistung insbesondere bei Nutzfahrzeugen die Temperaturbelastung der Kraftstoffeinspritzventi- le und damit des Nadelsitzes im Ventilkörper weiter zunehmen. Die bisher verwendeten Einsatzstähle und die dafür verwendeten Härtungsmethoden reichen für diese Anwendungen nicht mehr aus . Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzventil für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass der Ventilkörper bis zu hohen Temperaturen form- und verschleißbeständig ist und so für die Anwendung bei allen Betriebspunkten einer Brennkraftmaschine geeignet ist. Der Ventilkörper des Kraftstoff- einspritzventils besteht aus einem hochlegierten Warmar- beitsstahl, der durch ein Aufkohlverfahren gehärtet worden ist. Durch die Kombination des hochlegierten Warmarbeits- stahls mit einem geeigneten Aufkohlverfahren addieren sich die Vorteile von Material und Härtverfahren positiv. Man erhält eine deutliche Steigerung der Schwingfestigkeit des hochlegierten Stahls durch eine reduzierte Kerbwirkung beim Einsatz, eine Reduzierung der Abträge bei der anschließenden Schleifbearbeitung an den Funktionsgeometrien und eine Reduzierung der notwendigen Ausgangshärte des Ventilkörpers und damit eine verbesserte Bearbeitbarkeit sowie eine Reduzierung der Kavitationsempfindlichkeit im Ventilkörper, insbesondere im Bereich des Ventilsitzes .
In einer vorteilhaften Ausgestaltung des Gegenstandes der Erfindung ist der Warmarbeitsstahl bis zu einer Temperatur von 450 °C form- und verschleißbeständig. Hierdurch ist das Kraftstoffeinspritzventil für den einen Einsatz bei allen möglichen Betriebspunkten der Brennkraftmaschine geeignet.
In einer vorteilhaften Ausgestaltung der Erfindung besteht der hochlegierte Warmarbeitsstahl zumindest näherungsweise aus 0,4 % Kohlenstoff, 5 % Chrom, 1 % Molybdän und sonstigen metallischen und nicht metallischen Elementen in Spuren von insgesamt weniger als 1 %, wobei der zu 100 % fehlende Anteil Eisen ist. Derartige Stähle, wie z.B. X 40 CrMo V 51, sind handelsüblich und können ohne weiteren Aufwand zum Einsatz kommen.
In einer weiteren vorteilhaften Ausgestaltung ist das Aufkohlverfahren ein Gasaufkohlverfahren. Durch das Aufkohlen wird eine sonst nötige aufwendige Nachbearbeitung überflüssig.
Das erfindungsgemäße Verfahren zur Härtung eines Ventilkörpers, der Teil eines Kraftstoffeinspritzventils für Brennkraftmaschinen ist, weist den Vorteil auf, dass der Ventilkörper durch die Behandlung für den Einsatz im Brennraum einer Brennkraftmaschine die notwendige Warmfestigkeit aufweist. Hierzu wird der Ventilkörper in einer Gasatmosphäre, die einen Kohlenwasserstoff enthält, aufgekohlt und anschließend bei einer Temperatur von etwa 900 °C im Vakuum, höchstens jedoch bei einem Druck von 100 Pa, wärmebehandelt. Durch die Kombination dieser beiden Verfahrensschritte bei einem hochlegierten Warmarbeitsstahl kann eine optimale Härtung und Verschleißfestigkeit des hochlegierten Warmarbeitsstahl erreicht werden, so dass dieser auch bei Temperaturen, wie sie unter extremen Belastungen im Brennraum einer selbstzündenden Brennkraftmaschine auftreten, verwendbar bleibt.
In einer vorteilhaften Ausgestaltung des Verfahren wird das Aufkohlen bei einem Druck von weniger als 100 kPa stattfinden. Durch dieses Unterdruckaufkohlverfahren erhält man insbesondere eine Verminderung der Bildung von Randoxidationen, die festigkeitsvermindernd sind. Zeichnung
In der Zeichnung ist ein Kraftstoffeinspritzventil im Längsschnitt als Beispiel für einen gehärteten Ventilkörper dargestellt.
Beschreibung des Ausführungsbeispiels
Das in Figur 1 dargestellte Kraftstoffeinspritzventil weist einen Ventilkörper 1 auf , in dem in einer Bohrung 3 eine Ventilnadel 5 längsverschiebbar angeordnet ist. Am brenn- raumseitigen Ende der Bohrung 3 ist ein im wesentlichen konischer Ventilsitz 9 ausgebildet, in dem wenigstens eine Einspritzöffnung 11 ausgebildet ist, die die Bohrung 3 mit dem Brennraum der Brennkraftmaschine verbindet. Die Ventilnadel 5 weist einen Führungsabschnitt 15 auf, mit dem sie in einen führenden Abschnitt 23 der Bohrung 3 dichtend geführt ist. In Richtung des Ventilsitzes 9 verjüngt sich die Ventilnadel 5 unter Bildung einer Druckschulter 13 und geht in einen im Durchmesser verminderten Schaftabschnitt 17 über. An ihrem Ende ist an der Ventilnadel 5 eine im wesentlichen konische Ventildichtfläche 7 ausgebildet, die mit dem Ventilsitz 9 zusammenwirkt und so bei Anlage am Ventilsitz 9 die wenigstens eine Einspritzöffnung 11 gegenüber der Bohrung 3 verschließt.
Auf Höhe der Druckschulter 13 ist durch eine radiale Erweiterung der Bohrung 3 ein Druckraum 19 ausgebildet, der über einen Zulaufkanal 25 mit Kraftstoff unter hohem Druck befüllt werden kann. Der Druckraum 19 setzt sich dem Ventilsitz 9 zu als Ringkanal 21 fort, der den Schaftabschnitt 17 der Ventilnadel 3 umgibt. Auf diese Weise fließt der Kraftstoff aus dem Zulaufkanal 25 durch den Druckraum 19 und den Ringkanal 21 bis zum Ventilsitz 9 und, falls die Ventildichtfläche 7 vom Ventilsitz 9 abgehoben ist, durch die Ein- spritzöffnungen 11 in den Brennraum der Brennkraftmaschine. Die Ventilnadel 5 wird durch das Verhältnis der hydraulischen Kräfte auf die Druckschulter 13 und die Ventildichtfläche 7 einerseits und einer Schließkraft andererseits gesteuert, welche auf das brennraumabgewandte Ende der Ventilnadel 5 einwirkt und die Ventilnadel 5 in Richtung des Ventilsitzes 9 beaufschlagt. Ein möglicher Betriebszustand des Kraftstoffeinspritzventils ist der, dass die Schließkraft auf die Ventilnadel 5 konstant bleibt, während sich der Kraftstoffdruck im Druckraum 19 und im Ringkanal 21 durch nachgeführten Kraftstoff aus dem Zulaufkanal 25 ändert. Durch den Kraftstoffdruck im Druckraum 19 und im Bereich des Ventilsitzes 9 erfährt die Ventilnadel 5 eine hydraulische Kraft, die vom Ventilsitz 9 weggerichtet ist. Ist diese hydraulische Kraft größer als die Schließkraft auf die Ventilnadel 5, so bewegt sich diese vom Ventilsitz 9 weg und hebt somit mit der Ventildichtfläche 7 vom Ventilsitz 9 ab. Unterschreitet der Druck im Druckraum 19 einen bestimmten Schwelldruck, so überwiegt die Schließkraft auf die Ventilnadel 5 und sie bewegt sich wieder in Richtung des Ventilsitzes 9, bis die Ventildichtfläche 7 die wenigstens eine Einspritzöffnung 11 erneut verschließt.
Durch die Längsbewegung der Ventilnadel 5 und das relativ harte Aufsetzen der Ventilnadel 5 auf den Ventilsitz 9 ergeben sich im Bereich des Ventils 9 hohe Kräfte auf den Ventilkörper 1. Darüber hinaus ergibt sich durch die Längsbewegung der Ventilnadel 5 im führenden Abschnitt 23 der Bohrung 3 Reibungsverluste zwischen der Ventilnadel 5 und der Wand der Bohrung 3 , was bei einem weichen Material des Ventilkörpers 1 zu einem unzulässig hohen Verschleiß führen kann. Um die Härte und damit die Verschleißfestigkeit zu erhöhen, verwendet man für den Ventilkörper 1 einen sogenannten Warm- arbeitsstahl, der zu den Werkzeugstählen gehört. Besonders vorteilhaft hat sich die Verwendung von hochlegierten Warm- arbeitsstählen erwiesen, wie beispielsweise des Stahls X 40 CrMoV 51. Dieser hochlegierte Warmarbeitsstahl kann Arbeitstemperaturen von bis zu 450 °C ausgesetzt werden, ohne dabei an Härte und damit an Verschleißfestigkeit zu verlieren. Um jedoch die erforderlichen Qualitätsanforderungen für Kraftstoffeinspritzventile zu erreichen, muss die Oberfläche des Ventilkörpers 1 zusätzlich gehärtet werden. Hierzu wird in die oberflächennahen Schichten des Ventilkörpers 1 Kohlenstoff in einem sogenannten Aufkohlverfahren eingebracht, wodurch die Oberfläche härtbar wird. Ein mögliches Aufkohlverfahren ist das Gasaufkohlverfahren, bei dem der Stahl bei einer Temperatur von 900 °C bis 1000 °C einer Atmosphäre aus Kohlenwasserstoffen und chemisch inerten Gasen, wie beispielsweise Stickstoff ( 2), ausgesetzt wird. Dabei diffundiert der Kohlenstoff in die oberflächennahen Schichten des Ventilkörpers 1 ein, so dass dort der Kohlenstoffgehalt ansteigt. Die Einhärtungstiefen betragen hierbei 0,3 bis 4 mm. Durch das Aufkohlen wird der Werkstoff härtbar, was durch ein anschließendes Heizen im Vakuumofen durchgeführt wird. Hierbei wird das Werkstück, in diesem Fall der Ventilkörper 1, auf ca. 800 °C erwärmt, wobei in dem Härtungsofen weitgehend Vakuum herrscht, auf jeden Fall ein Druck von weniger als 100 Pa.
Der Vorteil dieses Härtungsverfahrens des Ventilkörpers 1 besteht in der Kombination eines hochlegierten Warmarbeits- stahls mit einem Gasaufkohlverfahren, das mit Unterdruck arbeitet, also bei einem Druck von weniger als 100 kPa. Hierdurch addieren sich die Vorteile des Warmarbeitsstahls mit denen des Aufkohl- und Härtverfahrens. Man erhält eine deutliche Steigerung der Schwingfestigkeit des hochlegierten Stahls durch reduzierte Kerbwirkung beim Einsatz des UnterdruckaufkohlVerfahrens , da Randoxidationen vermieden werden. Gleichzeitig erhält man eine Reduzierung der Abträge bei der anschließenden Schleifbearbeitung an den Funktionsgeometrien, da die Einspritzöffnung 11 durch hydroerosives Schleifen nachbearbeitet wird. Ein weiterer Vorteil ist die Reduzierung der notwendigen Ausgangshärte des Kraftstoffeinspritzventils und damit eine verbesserte Bearbeitbarkeit nach der Wärmebehandlung des Ventilkörpers 1. Man erhält auch eine Reduzierung der Kavitationsempfindlichkeit der Oberflächen speziell im Zulauf- bohrungs- und Nadelsitzbereich des Ventilkörpers 1.
Neben dem hochlegierten Warmarbeitsstahl X 40 CrMoV 51 können auch andere hochlegierte Warmarbeitsstähle verwendet werden, die einen Kohlenstoffgehalt von 0,3 bis 0,5 % aufweisen.

Claims

Patentansprüche
1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (1) und wenigstens einer darin ausgebildeten Einspritzöffnung (11) , durch die gesteuert durch eine Ventilnadel (5) , die mit einem im Ventilkörper (1) ausgebildeten Ventilsitz (9) zusammenwirkt, Kraftstoff in den Brennraum der Brennkra tmaschine eingespritzt werden kann, wobei der Ventilkörper (1) aus einem Stahl besteht, dadurch gekennzeichnet, dass der Stahl ein hochlegierter Warmarbeitsstahl ist, der durch ein Aufkohlverfahren gehärtet worden ist.
2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass der Warmarbeitsstahl bis zu einer Temperatur von 450 °C form- und verschleißbeständig ist.
3. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, dass der Warmarbeitsstahl zumindest näherungsweise 0,4 % Kohlenstoff, 5 % Chrom, 1 % Molybdän und sonstige metallische und nicht metallische Elemente in Spuren von insgesamt weniger als 1 % enthält, wobei der zu 100 % fehlende Anteil Eisen ist.
4. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass das Aufkohlverfahren ein Gasaufkohlverfahren ist.
5. Verfahren zur Härtung eines Ventilkörpers (1), der Teil eines Kraftstoffeinspritzventils für Brennkraftmaschinen ist und aus einem hochlegierten Warmarbeitsstahl gefertigt ist, gekennzeichnet durch folgende Verfahrensschritte: Aufkohlen des Ventilkörpers in einer Gasatmosphäre, die einen Kohlenwasserstoff enthält,
Wärmebehandlung des Ventilkörpers bei einer Temperatur von 900 bis 1000 °C bei einem Druck von weniger als
100 Pa. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Aufkohlen bei einem Druck von weniger als 100 kPa stattfindet.
EP02748600A 2001-08-11 2002-06-19 Kraftstoffeinspritzventil für brennkraftmaschinen und ein verfahren zur herstellung desselben Expired - Lifetime EP1419314B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10139620A DE10139620A1 (de) 2001-08-11 2001-08-11 Kraftstoffeinspritzventil für Brennkraftmaschinen und ein Verfahren zur Härtung desselben
DE10139620 2001-08-11
PCT/DE2002/002239 WO2003016708A1 (de) 2001-08-11 2002-06-19 Kraftstoffeinspritzventil für brennkraftmaschinen und ein verfahren zur härtung desselben

Publications (2)

Publication Number Publication Date
EP1419314A1 true EP1419314A1 (de) 2004-05-19
EP1419314B1 EP1419314B1 (de) 2007-06-06

Family

ID=7695228

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02748600A Expired - Lifetime EP1419314B1 (de) 2001-08-11 2002-06-19 Kraftstoffeinspritzventil für brennkraftmaschinen und ein verfahren zur herstellung desselben

Country Status (7)

Country Link
US (1) US7419553B2 (de)
EP (1) EP1419314B1 (de)
JP (1) JP2004538423A (de)
CN (1) CN100365268C (de)
BR (1) BR0205866B1 (de)
DE (2) DE10139620A1 (de)
WO (1) WO2003016708A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004039926B4 (de) * 2004-08-18 2016-09-22 Robert Bosch Gmbh Verfahren zur Herstellung eines temperatur- und korrosionsbeständigen Kraftstoffinjektorkörpers
GB0602742D0 (en) * 2005-06-06 2006-03-22 Delphi Tech Inc Machining method
JP4948295B2 (ja) * 2007-07-06 2012-06-06 愛三工業株式会社 燃料噴射弁
DE102012221607A1 (de) * 2012-11-27 2014-05-28 Robert Bosch Gmbh Metallischer Werkstoff
US20160348629A1 (en) * 2015-05-29 2016-12-01 Cummins Inc. Fuel injector
DE102016203261A1 (de) * 2016-02-29 2017-08-31 Robert Bosch Gmbh Verfahren zum Herstellen einer Bohrung, Bauteil und Kraftstoffinjektor
CN112222764B (zh) * 2020-08-31 2021-09-28 中国航发南方工业有限公司 燃油喷嘴的加工方法、燃油喷嘴
KR102526865B1 (ko) * 2023-02-15 2023-04-28 (주)하트만 디젤 엔진용 연료분사노즐의 제조 방법
KR102526867B1 (ko) * 2023-02-15 2023-04-28 (주)하트만 디젤 엔진용 연료분사노즐의 제조 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385739A (en) * 1965-04-13 1968-05-28 Eaton Yale & Towne Alloy steel articles and the method of making
US3567528A (en) * 1968-02-09 1971-03-02 Allegheny Ludlum Steel Method of using a carburized austenitic stainless steel
DE2451536A1 (de) * 1974-10-30 1976-05-06 Bosch Gmbh Robert Verfahren zum aufkohlen von werkstuecken aus stahl
CH632013A5 (de) * 1977-09-22 1982-09-15 Ipsen Ind Int Gmbh Verfahren zur gasaufkohlung von werkstuecken aus stahl.
JPS54125148A (en) * 1978-03-23 1979-09-28 Kawasaki Heavy Ind Ltd Welded structure of hardened steel
DE2851983B2 (de) 1978-12-01 1980-11-06 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Verfahren zum Aufkohlen von Hohlkörpern, insbesondere von Düsen
US4334552A (en) 1980-04-11 1982-06-15 Hr Textron Inc. Diverter valve
JPS60138065A (ja) 1983-12-27 1985-07-22 Chugai Ro Kogyo Kaisha Ltd ガス浸炭焼入方法およびその連続式ガス浸炭焼入設備
JPS6217364A (ja) * 1985-07-13 1987-01-26 Niigata Eng Co Ltd 内燃機関の燃料噴射ノズル
WO1987000889A1 (en) 1985-08-10 1987-02-12 Robert Bosch Gmbh Fuel injection nozzle for internal combustion engines
US5199659A (en) * 1991-04-22 1993-04-06 Shell Offshore Inc. Seismic cable retrieval apparatus and method
DE4115135C1 (de) * 1991-05-08 1992-02-27 Degussa Ag, 6000 Frankfurt, De
GB9203658D0 (en) * 1992-02-19 1992-04-08 Lucas Ind Plc Fuel injection nozzles
US5447800A (en) 1993-09-27 1995-09-05 Crucible Materials Corporation Martensitic hot work tool steel die block article and method of manufacture
DE69613822T3 (de) * 1995-03-29 2008-02-28 Jh Corp., Niwa Verfahren zur vakuumaufkohlung, verwendung einer vorrichtung zur vakuumaufkohlung und aufgekohlte stahlerzeugnisse
DE19618650B4 (de) 1996-05-09 2006-04-27 Robert Bosch Gmbh Verfahren zur Herstellung eines Kraftstoffeinspritzventils für Brennkraftmaschinen
US6053722A (en) 1998-07-28 2000-04-25 Consolidated Process Machinery, Inc. Nitrided H13-alloy cylindrical pelleting dies
DE59907093D1 (de) 1998-08-27 2003-10-30 Waertsilae Nsd Schweiz Ag Verfahren zum Herstellen einer Brennstoffeinspritzdüse und Brennstoffeinspritzdüse
JP3630076B2 (ja) * 2000-05-30 2005-03-16 株式会社デンソー 弁装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03016708A1 *

Also Published As

Publication number Publication date
EP1419314B1 (de) 2007-06-06
WO2003016708A1 (de) 2003-02-27
DE10139620A1 (de) 2003-02-27
CN1464942A (zh) 2003-12-31
US20040050456A1 (en) 2004-03-18
BR0205866B1 (pt) 2011-02-08
DE50210282D1 (de) 2007-07-19
CN100365268C (zh) 2008-01-30
BR0205866A (pt) 2003-10-21
JP2004538423A (ja) 2004-12-24
US7419553B2 (en) 2008-09-02

Similar Documents

Publication Publication Date Title
DE102005013088B4 (de) Gaswechselventil mit Korrosionsschutzschicht
EP1419314B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen und ein verfahren zur herstellung desselben
WO2010091938A1 (de) Verfahren zur herstellung einer steuerkette
WO2006018348A1 (de) Verfahren zur herstellung eines temperatur- und korrosionsbeständigen kraftstoffinjektorkörpers
US5534081A (en) Fuel injector component
WO2016005073A1 (de) Verfahren zum nitrieren eines bauteils eines kraftstoffeinspritzsystems
DE102009035288A1 (de) Materialien für Brennstoffeinspritzvorrichtungskomponenten
DE3311696A1 (de) Verfahren zur einsatzhaertung von stahlteilen
DE4205647C2 (de) Verfahren zur thermochemisch-thermischen Behandlung von Einsatzstählen
DE102004053935B4 (de) Verfahren zur Wärmebehandlung eines Bauteils aus einem durchhärtenden warmfesten Stahl und Bauteil aus einem durchhärtenden warmfesten Stahl
DE10319828A1 (de) Gesintertes Kettenrad und Verfahren zur Herstellung hierfür
DE102012202859A1 (de) Ventilsystem zur Ladungswechselsteuerung
DE102018208283A1 (de) Verfahren zum Herstellen eines metallischen Bauteils
DE2934027A1 (de) Verschleissfestes gleitstueck fuer brennkraftmaschinen
DE4327440A1 (de) Verfahren zur thermochemisch-thermischen Behandlung von Einsatzstählen, Vergütungsstählen und Wälzlagerstählen
DE10254846B4 (de) Verfahren zum Einsatzhärten von Bauteilen aus Warmarbeitsstählen mittels Unterdruckaufkohlung
DE68908985T2 (de) Werkstoff für Kolbenringe und Kolbenring.
EP0496982A1 (de) Leichtmetallstössel mit verschleissfester Armierung aus Stahl mit austenitischer Matrix
DE19618650B4 (de) Verfahren zur Herstellung eines Kraftstoffeinspritzventils für Brennkraftmaschinen
DE4418245A1 (de) Ventiltrieb für eine Brennkraftmaschine
WO2006045461A1 (de) Mechanisch belastbares stell- oder lagerbauteil aus mechanisch gehärtetem stahl
EP0806551B1 (de) Herstellungsverfahren für ein nitriertes Bimetallventil
EP1664563B1 (de) Verfahren zur herstellung von gelenkbauteilen mit verbesserter verschleissfestigkeit
DE3001503C2 (de) Verfahren zur Härtesteigerung von hochbelasteten Ventilsitzen für Verbrennungskraftmaschinen
DE102018118892A1 (de) Kettenkomponente und Verfahren zur Herstellung einer Kettenkomponente

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040311

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: FUEL INJECTION VALVE FOR INTERNAL COMBUSTION ENGINES AND A METHOD FOR MANUFACTURING SAID VALVE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50210282

Country of ref document: DE

Date of ref document: 20070719

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070831

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080307

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20180924

Year of fee payment: 5

Ref country code: GB

Payment date: 20180626

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190619

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210622

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210823

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50210282

Country of ref document: DE