EP1405899B1 - Détergents solides - Google Patents

Détergents solides Download PDF

Info

Publication number
EP1405899B1
EP1405899B1 EP02022092A EP02022092A EP1405899B1 EP 1405899 B1 EP1405899 B1 EP 1405899B1 EP 02022092 A EP02022092 A EP 02022092A EP 02022092 A EP02022092 A EP 02022092A EP 1405899 B1 EP1405899 B1 EP 1405899B1
Authority
EP
European Patent Office
Prior art keywords
acid
detergents
fatty
carbon atoms
contain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02022092A
Other languages
German (de)
English (en)
Other versions
EP1405899A1 (fr
Inventor
Joaquim Dr. Bigorra Llosas
Luis Saborit
Agustin Sanchez
Nuria Dr. Bonastre Gilabert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis IP Management GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis IP Management GmbH filed Critical Cognis IP Management GmbH
Priority to ES02022092T priority Critical patent/ES2309129T3/es
Priority to DE50212446T priority patent/DE50212446D1/de
Priority to AT02022092T priority patent/ATE399840T1/de
Priority to EP02022092A priority patent/EP1405899B1/fr
Publication of EP1405899A1 publication Critical patent/EP1405899A1/fr
Application granted granted Critical
Publication of EP1405899B1 publication Critical patent/EP1405899B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/65Mixtures of anionic with cationic compounds
    • C11D1/652Mixtures of anionic compounds with carboxylic amides or alkylol amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/40Monoamines or polyamines; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/528Carboxylic amides (R1-CO-NR2R3), where at least one of the chains R1, R2 or R3 is interrupted by a functional group, e.g. a -NH-, -NR-, -CO-, or -CON- group

Definitions

  • the invention is in the field of detergents and relates to novel solid detergents with simultaneously cleansing and softening properties containing selected anionic and pseudo cationic surfactants.
  • the object of the present invention has been to provide new type 2-in-1 "2-in-1" laundry detergents which have the least tendency for salt formation and at the same time have excellent cleaning and scavenging properties.
  • the mixtures should allow the possibility of preparing solid preparations in the simplest possible way.
  • Fatty alcohol sulfates are known anionic surfactants which are industrially produced by sulfation and subsequent neutralization of the corresponding fatty alcohols. Usually, they follow the formula (II) R 4 OSO 3 X (II) in the R 4 for linear or branched alkyl and / or alkenyl radicals having 12 to 22, preferably 12 to 14 or 12 to 18 carbon atoms and X for alkali, alkaline earth, ammonium, alkylammonium, alkanolammonium or glucammonium, preferably for alkali and especially for sodium stands.
  • Typical examples are the sodium, ammonium or triethanolammonium salts of lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linolyl alcohol, linolenyl alcohol, elaeostearyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures.
  • Particularly preferred is the use of sulfates based on coconut fatty alcohols having predominantly 12 to 14 or 12 to 18 carbon atoms in the alkyl radical.
  • Fatty amines and fatty acid amido compounds are also known oleochemical base chemicals, which are obtained by amination of fatty alcohols or by condensation of fatty acids with amino compounds.
  • Typical examples of fatty amines are laurylamine, isotridecylamine, myristylamine, cetylamine, palmoleylamine, stearylamine, isostearylamine, oleylamine, elaidylamine, petroselinylamine, linolylamine, linolenylamine, elaeostearylamine, arachylamine, gadoleylamine, behenylamine, erucylamine and brassidylamine, and technical mixtures thereof.
  • Typical examples of fatty acid amido compounds are the condensation products of C 6 -C 22 - and preferably C 16 -C 18 fatty acids with ethylene or propylene diamine, ethanol or propanolamine and aminoethylethanolamine or aminoethylethylenediamine.
  • "tallow amide” is used, which is a condensation product of tallow fatty acid with aminoethyl ethanolamine.
  • organic carboxylic acids especially glycolic acid, salts are obtained whose compatibility with fatty alcohol sulfates is further improved, without thereby reducing the A-vivage of the mixtures.
  • the solid detergents which in the simplest case consist of the two components (a) and (b), may contain these in a weight ratio of 25:75 to 75: 5 and preferably 40:60 to 60:40.
  • the proportion of the mixtures of (a) and (b) in the final preparations may be from 10 to 100, preferably from 15 to 50, and in particular from 20 to 30,% by weight.
  • the fact that the funds are fixed does not necessarily require them to be anhydrous at the same time.
  • the presence of small amounts of water usually between 0.5 and 5, preferably 1 to 2 wt .-% can be tolerated, as long as it does not cause the mechanical properties of the preparations, which are usually used as powder, granules, tablets or the like, thereby adversely affected.
  • compositions of the invention may further comprise typical auxiliaries and additives, such as, for example, further anionic, nonionic, cationic, amphoteric or zwitterionic surfactants, builders, co-builders, oil and fat dissolving agents, bleaches, bleach activators, grayness inhibitors, enzymes, enzyme stabilizers, optical agents Brighteners, polymers, defoamers, disintegrants, fragrances, inorganic salts and the like, as they are explained in more detail below.
  • auxiliaries and additives such as, for example, further anionic, nonionic, cationic, amphoteric or zwitterionic surfactants, builders, co-builders, oil and fat dissolving agents, bleaches, bleach activators, grayness inhibitors, enzymes, enzyme stabilizers, optical agents Brighteners, polymers, defoamers, disintegrants, fragrances, inorganic salts and the like, as they are explained in more detail below.
  • anionic surfactants are soaps, alkylbenzenesulfonates, alkanesulfonates, olefinsulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, oxoalcohol sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, hydroxy mixed ether sulfates, monoglyceride (ether) sulfates, fatty acid amide (ether) sulfates, mono- and dialkyl sulfosuccinates, mono and dialkyl sulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids and their salts, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, N
  • anionic surfactants contain polyglycol ether chains, these may have a conventional, but preferably a narrow homolog distribution. Preference is given to using alkylbenzenesulfonates, alkyl sulfates, soaps, alkanesulfonates, olefinsulfonates, methyl ester sulfonates and mixtures thereof.
  • nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol ethers, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers, alk (en) yloligoglycosides, fatty acid N-alkylglucamides, protein hydrolysates (especially wheat-based vegetable products), polyol fatty acid esters, sugar esters, sorbitan esters , Polysorbates and amine oxides. If the nonionic surfactants contain polyglycol ether chains, these may have a conventional, but preferably a narrow homolog distribution.
  • fatty alcohol polyglycol ethers, alkoxylated fatty acid lower alkyl esters or alkyl oligoglucosides are used.
  • the solid detergents according to the invention may further comprise additional inorganic and organic builders, for example in amounts of from 10 to 50 and preferably from 15 to 35% by weight, based on the compositions, of which inorganic builders are mainly zeolites, crystalline layered silicates, amorphous silicates and so forth permissible - also phosphates, such as Tripolyphosphate be used.
  • additional inorganic and organic builders for example in amounts of from 10 to 50 and preferably from 15 to 35% by weight, based on the compositions, of which inorganic builders are mainly zeolites, crystalline layered silicates, amorphous silicates and so forth permissible - also phosphates, such as Tripolyphosphate be used.
  • the amount of co-builder is to be counted towards the preferred amounts of phosphates.
  • the finely crystalline, synthetic and bound water-containing zeolite frequently used as detergent builder is preferably zeolite A and / or P.
  • zeolite P for example, zeolite MAP (R) (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are particularly preferred.
  • zeolite X and mixtures of A, X and / or P are particularly preferred.
  • zeolite X and mixtures of A, X and / or P are particularly preferred.
  • zeolite X and mixtures of A, X and / or P as well as Y.
  • zeolite X co-crystallized sodium / potassium aluminum silicate of zeolite A and zeolite X, which (as VEGOBOND AX ® commercial product of Condea Augusta SpA) is commercially available.
  • the zeolite can be used as a spray-dried powder or else as und
  • the zeolite may contain minor additions of nonionic surfactants as stabilizers, for example 1 to 3 wt .-%, based on zeolite, of ethoxylated C 12 -C 18 fatty alcohols having 2 to 5 ethylene oxide groups , C 12 -C 14 fatty alcohols having 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution, measuring method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • Suitable substitutes or sub-substituents for phosphates and zeolites are crystalline, layered sodium silicates of the general formula NaMSi x O 2x + 1 ⁇ yH 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 is up to 20 and preferred Values for x are 2, 3 or 4.
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium and x assumes the values 2 or 3. In particular, both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O are preferred. Its usability is not limited to any particular composition or structural formula.
  • smectites in particular bentonites, are preferred here.
  • small amounts of iron may be incorporated in the crystal lattice of the layered silicates according to the above formulas.
  • the phyllosilicates may contain hydrogen, alkali, alkaline earth metal ions, in particular Na + and Ca 2+ , due to their ion-exchanging properties.
  • the amount of water of hydration is usually in the range of 8 to 20 wt .-% and is dependent on the swelling state or on the type of processing.
  • phyllosilicates are used, which are largely free of calcium ions and strong coloring iron ions due to an alkali treatment.
  • the preferred builder substances also include amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2, 6, which are delay-delayed and have secondary washing properties.
  • the dissolution delay compared to conventional amorphous sodium silicates may have been caused in various ways, for example by surface treatment, compounding, compaction / densification or by overdrying.
  • the term "amorphous” is also understood to mean "X-ray amorphous”.
  • the silicates do not give sharp X-ray reflections typical of crystalline substances, but at most one or more maxima of the scattered X-rays which are several angstroms in width of the diffraction angle.
  • the silicate particles provide blurred or even sharp diffraction maxima in electron diffraction experiments.
  • densified / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates are especially preferred.
  • phosphates as builders are possible, unless such use should not be avoided for environmental reasons.
  • Particularly suitable are the sodium salts of orthophosphates, pyrophosphates and in particular tripolyphosphates.
  • Their content is generally not more than 25 wt .-%, preferably not more than 20 wt .-%, each based on the finished agent.
  • tripolyphosphates even in small amounts up to a maximum of 10% by weight, based on the finished composition, in combination with other builder substances lead to a synergistic improvement in the secondary washing power.
  • Useful organic builders which are suitable as co-builders are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is for ecological reasons not to complain about, as well as mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof. The acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • an acidifying component typically also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures of these may be mentioned here.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes. Preference is given to hydrolysis products having average molecular weights in the range from 400 to 500,000.
  • DE dextrose equivalent
  • oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Suitable co-builders are oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate. Glycerol disuccinates and glycerol trisuccinates are also particularly preferred in this context. Suitable amounts are in zeolith City City and / or silicate-containing formulations at 3 to 15 wt .-%.
  • Other useful organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those having a relative molecular weight of 800 to 150,000 (based on acid and measured in each case against polystyrenesulfonic acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their molecular weight relative to free acids is generally from 5,000 to 200,000, preferably from 10,000 to 120,000 and in particular from 50,000 to 100,000 (in each case measured against polystyrene sulfonic acid).
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution, with 20 to 55% by weight aqueous solutions being preferred.
  • Granular polymers are usually added later to one or more basic granules. Also particularly preferred are biodegradable polymers of more than two different monomer units.
  • polymeric aminodicarboxylic acids are also mention their salts or their precursors. Particular preference is given to polyaspartic acids or their salts and derivatives.
  • polyacetals which are prepared by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • compositions may also contain components that positively affect oil and grease washability from fabrics.
  • the preferred oil and fat dissolving components include, for example, nonionic cellulose ethers such as methylcellulose and methylhydroxypropylcellulose with a proportion of methoxyl groups of 15 to 30 wt .-% and hydroxypropoxyl groups of 1 to 15 wt .-%, each based on the nonionic Cellulose ethers, as well as known from the prior art polymers of phthalic acid and / or terephthalic acid or derivatives thereof, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionic and / or nonionic modified derivatives thereof. Particularly preferred of these are the sulfonated derivatives of phthalic and terephthalic acid polymers.
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Other useful bleaching agents are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • the content of the bleaching agents is preferably from 5 to 35% by weight and in particular up to 30% by weight, it being advantageous to use perborate monohydrate or percarbonate.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate, 2,5-diacetoxy- 2,5-dihydrofuran, enol ester
  • Such bleach activators are contained in the customary amount range, preferably in amounts of from 1% by weight to 10% by weight, in particular from 2% by weight to 8% by weight, based on the total agent.
  • sulfone imines and / or bleach-enhancing transition metal salts or transition metal complexes can also be present as so-called bleach catalysts.
  • Suitable transition metal compounds include in particular manganese, iron, cobalt, ruthenium or molybdenum-salene complexes and their N-analogues, manganese, iron, cobalt, ruthenium or molybdenum carbonyl complexes, manganese, iron, , Cobalt, ruthenium, molybdenum, titanium, vanadium and copper complexes with nitrogen-containing tripod ligands, as well as cobalt, iron, copper and ruthenium amine complexes.
  • Bleach-enhancing transition metal complexes in particular having the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, are used in customary amounts, preferably in an amount of up to 1% by weight, in particular 0.0025% by weight. % to 0.25 wt .-% and particularly preferably from 0.01 wt .-% to 0.1 wt .-%, each based on the total agent used.
  • Suitable enzymes are, in particular, those from the class of the hydrolases, such as the proteases, esterases, lipases or lipolytic enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases carry in the laundry to remove stains, such as protein, fat or starchy Stains, and graying at. Cellulases and other glycosyl hydrolases can contribute to color retention and increase the softness of the fabric by removing pilling and microfibrils. It is also possible to use oxidoreductases for bleaching or inhibiting color transfer.
  • subtilisin-type proteases and in particular proteases derived from Bacillus lentus are used.
  • enzyme mixtures for example from protease and amylase or protease and lipase or lipolytic enzymes or protease and cellulase or from cellulase and lipase or lipolytic enzymes or from protease, amylase and lipase or lipolytic enzymes or protease, lipase or lipolytic enzymes and cellulase, but in particular protease and / or lipase-containing mixtures or mixtures with lipolytic enzymes of particular interest.
  • lipolytic enzymes are the known cutinases. Peroxidases or O-xidases have proven to be suitable in some cases.
  • Suitable amylases include in particular ⁇ -amylases, iso-amylases, pullulanases and pectinases.
  • As cellulases are preferably cellobiohydrolases, endoglucanases and ⁇ -glucosidases, which are also called cellobiases, or mixtures thereof used. Since the different cellulase types differ by their CMCase and avicelase activities, targeted mixtures of the cellulases can be used to set the desired activities.
  • the enzymes may be adsorbed to carriers and / or embedded in encapsulants to protect against premature degradation.
  • the proportion of enzymes, enzyme mixtures or enzyme granules may be, for example, about 0.1 to 5 wt .-%, preferably 0.1 to about 2 wt .-%.
  • the agents may contain other enzyme stabilizers.
  • enzyme stabilizers For example, 0.5 to 1 wt .-% sodium formate can be used.
  • proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • calcium salts magnesium salts also serve as stabilizers.
  • boron compounds for example boric acid, boron oxide, borax and other alkali metal borates, such as the salts of orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ) and pyroboric acid (tetraboric acid H 2 B 4 O 7 ).
  • Grayness inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being rebuilt.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose.
  • soluble starch preparations and other than the above-mentioned starch products can be used, e.g. degraded starch, aldehyde levels, etc. Also polyvinylpyrrolidone is useful.
  • cellulose ethers such as carboxymethylcellulose (sodium salt), methylcellulose, hydroxyalkylcellulose and mixed ethers, such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof, and polyvinylpyrrolidone, for example, in amounts of from 0.1 to 5% by weight, based on the compositions, used.
  • the agents may contain as optical brighteners derivatives of Diaminostilbendisulfonklare or their alkali metal salts.
  • Suitable salts are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulphonic acid or compounds of similar construction which are used in place of the morpholino Group a Diethanolaminooeuvre, a methylamino group, an anilino group or a 2-Methoxyethylaminoxx carry.
  • brighteners of the substituted diphenylstyrene type may be present, for example the alkali metal salts of 4,4'-bis (2-sulfostyryl) -diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) -diphenyl, or (4-chlorostyryl) -4 '- (2-sulfostyryl). Mixtures of the aforementioned brightener can be used.
  • Uniformly white granules are obtained when the means except the usual brighteners in conventional amounts, for example between 0.1 and 0.5 wt .-%, preferably between 0.1 and 0.3 wt .-%, even small amounts, for example 10 -6 to 10 -3 wt .-%, preferably by 10 -5 wt .-%, of a blue dye.
  • a particularly preferred dye is Tinolux® (commercial product of Ciba-Geigy).
  • Suitable soil repellants are those which preferably contain ethylene terephthalate and / or polyethylene glycol terephthalate groups, wherein the molar ratio of ethylene terephthalate to polyethylene glycol terephthalate may be in the range of 50:50 to 90:10.
  • the molecular weight of the linking polyethylene glycol units is in particular in the range from 750 to 5,000, ie the degree of ethoxylation of the polymers containing polyethylene glycol groups may be about 15 to 100.
  • the polymers are characterized by an average molecular weight of about 5000 to 200,000 and may have a block, but preferably a random structure.
  • Preferred polymers are those having molar ratios of ethylene terephthalate / polyethylene glycol terephthalate of from about 65:35 to about 90:10, preferably from about 70:30 to 80:20. Further preferred are those polymers comprising linking polyethylene glycol units having a molecular weight of from 750 to 5,000, preferably from 1000 to about 3000 and a molecular weight of the polymer of about 10,000 to about 50,000. Examples of commercially available polymers are the products Milease® T (ICI) or Repelotex® SRP 3 (Rhöne-Poulenc).
  • waxy compounds can be used as defoamers.
  • "Waxy” is understood as meaning those compounds which have a melting point at atmospheric pressure above 25 ° C. (room temperature), preferably above 50 ° C. and in particular above 70 ° C.
  • the waxy defoamer substances are practically insoluble in water, i. at 20 ° C in 100 g of water they have a solubility below 0.1 wt .-%.
  • Suitable waxy compounds are, for example, bisamides, fatty alcohols, fatty acids, carboxylic esters of monohydric and polyhydric alcohols and paraffin waxes or mixtures thereof.
  • Suitable paraffin waxes are generally a complex mixture without a sharp melting point. For characterization is usually determined its melting range by differential thermal analysis (DTA) and / or its solidification point. This is the temperature at which the paraffin passes from the liquid to the solid state by slow cooling. In this case, at room temperature completely liquid paraffins, that is those with a solidification point below 25 ° C, according to the invention not useful. Soft waxes having a melting point in the range of 35 to 50 ° C preferably include the group of petrolates and their hydrogenation products. You take off microcrystalline paraffins and up to 70 wt .-% oil together, have an ointment-like plastic-to-plastic consistency and represent bitumen-free residues from petroleum processing.
  • DTA differential thermal analysis
  • distillation residues certain paraffin-based and mixed basic crude oils, which are further processed to Vaseline.
  • These petrolates represent the most important starting point for the production of microwaxes.
  • These petrolatum are mixtures of microcrystalline waxes and refractory n-paraffins.
  • paraffin wax mixtures of, for example, 26% by weight to 49% by weight of microcrystalline paraffin wax having a solidification point of 62 ° C. to 90 ° C., 20% by weight to 49% by weight hard paraffin with a solidification point of 42 ° C to 56 ° C and 2 wt .-% to 25 wt .-% soft paraffin with a solidification point of 35 ° C to 40 ° C.
  • paraffins or paraffin mixtures are used which solidify in the range of 30 ° C to 90 ° C.
  • paraffin wax mixtures may contain different proportions of liquid paraffin.
  • this liquid fraction is as low as possible and is preferably completely absent.
  • particularly preferred paraffin wax mixtures at 30 ° C have a liquid content of less than 10 wt .-%, in particular from 2 wt .-% to 5 wt .-%, at 40 ° C, a liquid content of less than 30 wt .-%, preferably from 5 Wt .-% to 25 wt .-% and in particular from 5 wt .-% to 15 wt .-%, at 60 ° C, a liquid content of 30 wt .-% to 60 wt .-%, in particular of 40 wt .-%.
  • the temperature at which a liquid content of 100% by weight of the paraffin wax is reached is, in the case of particularly preferred paraffin wax mixtures, still below 85 ° C., in particular at 75 ° C. to 82 ° C.
  • the paraffin waxes may be petrolatum, microcrystalline waxes or hydrogenated or partially hydrogenated paraffin waxes.
  • Suitable bisamides as defoamers are those which are derived from saturated fatty acids containing 12 to 22, preferably 14 to 18, carbon atoms and alkylenediamines having 2 to 7 carbon atoms.
  • Suitable fatty acids are lauric, myristic, stearic, arachic and behenic acid as well their mixtures, as obtainable from natural fats or hardened oils, such as tallow or hydrogenated palm oil.
  • Suitable diamines are, for example, ethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, p-phenylenediamine and toluenediamine.
  • Preferred diamines are ethylenediamine and hexamethylenediamine.
  • Particularly preferred bisamides are bis-myristoylethylenediamine, bispalmitoylethylenediamine, bisstearoylethylenediamine and mixtures thereof and the corresponding derivatives of hexamethylenediamine.
  • Suitable carboxylic esters as defoamers are derived from carboxylic acids having 12 to 28 carbon atoms. In particular, they are esters of behenic acid, stearic acid, hydroxystearic acid, oleic acid, palmitic acid, myristic acid and / or lauric acid.
  • the alcohol portion of the carboxylic acid ester contains a monohydric or polyhydric alcohol having 1 to 28 carbon atoms in the hydrocarbon chain.
  • suitable alcohols are behenyl alcohol, arachidyl alcohol, coconut oil, 12-hydroxystearyl alcohol, oleyl alcohol and lauryl alcohol and also ethylene glycol, glycerol, polyvinyl alcohol, sucrose, erythritol, pentaerythritol, sorbitan and / or sorbitol.
  • Preferred esters are those of ethylene glycol, glycerol and sorbitan, wherein the acid portion of the ester is selected in particular from behenic acid, stearic acid, oleic acid, palmitic acid or myristic acid.
  • Candidate polyhydric alcohol esters include xylitol monopalmitate, pentarythritol monostearate, glycerol monostearate, ethylene glycol monostearate and sorbitan monostearate, sorbitan palmitate, sorbitan monolaurate, sorbitan dilaurate, sorbitan distearate, sorbitan dibehenate, sorbitan dioleate and mixed tallow alkyl sorbitan mono- and diesters.
  • Useful glycerol esters are the mono-, di- or triesters of glycerol and said carboxylic acids, the mono- or diesters being preferred.
  • Glycerol monostearate, glycerol monooleate, glycerol monopalmitate, glycerol monobehenate and glyceryl distearate are examples of this.
  • suitable natural esters as defoamers are beeswax, which consists mainly of the esters CH 3 (CH 2 ) 24 COO (CH 2 ) 27 CH 3 and CH 3 (CH 2 ) 26 COO (CH 2 ) 25 CH 3
  • carnauba wax which is a mixture of carnaubaic acid alkyl esters, often in combination with low levels of free carnaubaic acid, other long chain acids, high molecular weight alcohols and hydrocarbons.
  • Suitable carboxylic acids as further defoamer compound are, in particular, behenic acid, stearic acid, oleic acid, palmitic acid, myristic acid and lauric acid, and mixtures thereof, which are obtainable from natural fats or optionally hardened oils, such as tallow or hydrogenated palm oil.
  • Preferred are saturated fatty acids having 12 to 22, in particular 18 to 22 C-atoms. In the same way, the corresponding fatty alcohols of the same C chain length can be used.
  • dialkyl ethers may additionally be present as defoamers.
  • the ethers may be asymmetric or symmetric, i. contain two identical or different alkyl chains, preferably having 8 to 18 carbon atoms.
  • Typical examples are di-n-octyl ethers, di-i-octyl ethers and di-n-stearyl ethers, particularly suitable are dialkyl ethers which have a melting point above 25 ° C., in particular above 40 ° C.
  • Further suitable defoamer compounds are fatty ketones, which are according to relevant methods of preparative organic chemistry can be obtained.
  • Suitable fatty ketones are those prepared by pyrolysis of the magnesium salts of lauric, myristic, palmitic, palmitoleic, stearic, oleic, elaidic, petroselic, arachidic, gadoleic, behenic or erucic acid.
  • fatty acid polyethylene glycol esters which are preferably obtained by basic homogeneously catalyzed addition of ethylene oxide to fatty acids.
  • the addition of ethylene oxide to the fatty acids takes place in the presence of alkanolamines as catalysts.
  • alkanolamines especially triethanolamine, results in extremely selective ethoxylation of the fatty acids, especially when it comes to producing low ethoxylated compounds.
  • Suitable silicones are customary organopolysiloxanes which may have a finely divided silica content, which in turn may also be silanated. Particularly preferred are polydiorganosiloxanes and especially polydimethylsiloxanes known in the art. Suitable polydiorganosiloxanes have a nearly linear chain and have a degree of oligomerization of 40 to 1500. Examples of suitable substituents are methyl, ethyl, propyl, isobutyl, tert. Butyl and phenyl.
  • silicones which may be both liquid and resinous at room temperature.
  • simethicones which are mixtures of dimethicones having an average chain length of from 200 to 300 dimethylsiloxane units and hydrogenated silicates.
  • the silicones in general and the polydiorganosiloxanes in particular contain finely divided silica, which may also be silanated.
  • siliceous dimethyl polysiloxanes are particularly suitable for the purposes of the present invention.
  • the polydiorganosiloxanes have a Brookfield viscosity at 25 ° C (spindle 1, 10 rpm) in the range from 5000 mPas to 30,000 mPas, in particular from 15,000 to 25,000 mPas.
  • the silicones are used in the form of their aqueous emulsions.
  • the silicone is added to the initially charged water with stirring.
  • thickening agents known in the art may be added to increase the viscosity of the aqueous silicone emulsions.
  • nonionic cellulose ethers such as methylcellulose, ethylcellulose and mixed ethers such as methylhydoxyethylcellulose, methylhydroxypropylcellulose, methylhydroxybutylcellulose and anionic carboxycellulose types such as the carboxymethylcellulose sodium salt (abbreviation CMC).
  • Particularly suitable thickeners are mixtures of CMC to nonionic cellulose ethers in a weight ratio of from 80:20 to 40:60, in particular from 75:25 to 60:40.
  • aqueous silicone solutions as thickener starch, which is accessible from natural sources, such as rice, potatoes, corn and wheat.
  • the starch is advantageously present in amounts of from 0.1 to 50% by weight, based on the silicone emulsion, and in particular in a mixture with the already described thickener mixtures of sodium carboxymethylcellulose and a nonionic cellulose ether in the already mentioned Amounts.
  • the thickeners if present, are allowed to pre-swell in water before the addition of the silicones takes place.
  • the incorporation of the silicones is expediently carried out with the aid of effective stirring and mixing devices.
  • the paraffin waxes described are particularly preferably used alone as waxy defoamers or in admixture with one of the other waxy defoamers, wherein the proportion of paraffin waxes in the mixture is preferably more than 50% by weight, based on waxy defoamer mixture.
  • the paraffin waxes can be applied to carriers as needed.
  • carrier material all known inorganic and / or organic carrier materials are suitable. Examples of typical inorganic carrier materials are alkali metal carbonates, aluminosilicates, water-soluble phyllosilicates, alkali metal silicates, alkali metal sulphates, for example sodium sulphate, and alkali metal phosphates.
  • the alkali metal silicates are preferably a compound having a molar ratio of alkali metal oxide to SiO 2 of from 1: 1.5 to 1: 3.5.
  • the use of such silicates results in particularly good Komeigenschaften, in particular high abrasion stability and yet high dissolution rate in water.
  • the aluminosilicates referred to as support material include, in particular, the zeolites, for example zeolite NaA and NaX.
  • the compounds referred to as water-soluble layered silicates include, for example, amorphous or crystalline water glass.
  • silicates can be used, which are under the name Aerosil® or Sipernat® commercially.
  • Suitable organic support materials are, for example, film-forming polymers, for example polyvinyl alcohols, polyvinylpyrrolidones, poly (meth) acrylates, polycarboxylates, cellulose derivatives and starch.
  • Useful cellulose ethers are, in particular, alkali metal carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose and so-called cellulose mixed ethers, such as, for example, methylhydroxyethylcellulose and methylhydroxypropylcellulose, and mixtures thereof.
  • Particularly suitable mixtures are composed of sodium carboxymethylcellulose and methylcellulose, wherein the carboxymethylcellulose usually has a degree of substitution of 0.5 to 0.8 carboxymethyl groups per anhydroglucose unit and the methylcellulose has a degree of substitution of 1.2 to 2 methyl groups per anhydroglucose unit.
  • the mixtures preferably contain alkali metal carboxymethylcellulose and nonionic cellulose ethers in weight ratios of from 80:20 to 40:60, especially from 75:25 to 50:50.
  • native starch is suitable, which is composed of amylose and amylopectin. Native starch is starch, as it is available as an extract from natural sources, such as rice, potatoes, corn and wheat.
  • Native starch is a commercial product and thus easily accessible.
  • carrier materials one or more of the abovementioned compounds can be used, in particular selected from the group of the alkali metal carbonates, Alkali metal sulfates, alkali phosphates, zeolites, water-soluble phyllosilicates, alkali silicates, polycarboxylates, cellulose ethers, polyacrylate / polymethacrylate and starch.
  • Particularly suitable are mixtures of alkali metal carbonates, in particular sodium carbonate, alkali metal silicates, in particular sodium silicate, alkali metal sulphates, in particular sodium sulphate and zeolites.
  • the solid preparations may further contain disintegrants or disintegrants. These are substances which are added to the shaped bodies in order to accelerate their decomposition upon contact with water. These substances increase their volume upon ingress of water, whereby on the one hand the intrinsic volume increases (swelling), on the other hand a pressure can be generated by the release of gases which causes the tablet to disintegrate into smaller particles.
  • disintegration aids are, for example, carbonate / citric acid systems, although other organic acids can also be used.
  • Swelling disintegration aids are, for example, synthetic polymers such as optionally crosslinked polyvinylpyrrolidone (PVP) or natural polymers or modified natural substances such as cellulose and starch and their derivatives, alginates or casein derivatives.
  • PVP polyvinylpyrrolidone
  • Disintegrating agents based on cellulose are used as preferred disintegrating agents in the context of the present invention.
  • Pure cellulose has the formal gross composition (C 6 H 10 O 5 ) n and is formally a ⁇ -1,4-polyacetal of cellobiose, which in turn is composed of two molecules of glucose.
  • Suitable celluloses consist of about 500 to 5000 glucose units and therefore have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrating agents which can be used in the context of the present invention are also cellulose derivatives obtainable by polymer-analogous reactions of cellulose.
  • Such chemically modified celluloses include, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • celluloses in which the hydroxyl groups have been replaced by functional groups which are not bonded via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali metal celluloses, carboxymethylcellulose (CMC), cellulose esters and ethers, and aminocelluloses.
  • the said cellulose derivatives are preferably not used alone as disintegrating agents based on cellulose, but used in admixture with cellulose.
  • the content of these mixtures of cellulose derivatives is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrating agent. It is particularly preferred to use cellulose-based disintegrating agent which is free of cellulose derivatives.
  • microcrystalline cellulose Another disintegrating agent based on cellulose or as a component of this component may be microcrystalline cellulose be used.
  • This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which attack and completely dissolve only the amorphous regions (about 30% of the total cellulose mass) of the celluloses, leaving the crystalline regions (about 70%) intact.
  • Subsequent deaggregation of the microfine celluloses produced by the hydrolysis yields the microcrystalline celluloses which have primary particle sizes of about 5 ⁇ m and can be compacted, for example, into granules having an average particle size of 200 ⁇ m.
  • the disintegrating agents can be homogeneously distributed macroscopically in the molded body, but microscopically they form zones of increased concentration due to their production.
  • Disintegrating agents which may be present within the meaning of the invention are, for example, collidone, alginic acid and their alkali metal salts, amorphous or even partially crystalline layered silicates (bentonites), polyacrylates, polyethylene glycols.
  • the preparations may contain the disintegrants in amounts of 0.1 to 25, preferably 1 to 20 and in particular 5 to 15 wt .-% - based on the moldings.
  • perfume oils or fragrances individual perfume compounds, for example the synthetic products of the ester type, ethers, aldehydes, ketones, alcohols and hydrocarbons can be used.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzylformate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrallylpropionate and benzylsalicylate.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes, for example, the linear alkanals with 8-18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones such as the ionone, ⁇ -isomethylionone and Methylcedrylketon to the alcohols include anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol; the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • fragrances are used, which together produce an attractive fragrance.
  • perfume oils may also contain natural fragrance mixtures as are available from vegetable sources, eg pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • the fragrances can be incorporated directly into the compositions of the invention, but it may also be advantageous to apply the fragrances on carriers, which enhance the adhesion of the perfume on the laundry and provide a slower fragrance release for long-lasting fragrance of the textiles.
  • cyclodextrins have been proven, the cyclodextrin-perfume complexes can be additionally coated with other excipients.
  • compositions are water-soluble inorganic salts such as bicarbonates, carbonates, amorphous silicates, normal water glasses which do not have outstanding builder properties, or mixtures of these;
  • alkali metal carbonate and / or amorphous alkali silicate especially sodium silicate with a molar ratio of Na 2 O: SiO 2 of 1: 1 to 1: 4.5, preferably from 1: 2 to 1: 3.5, are used.
  • the content of sodium carbonate in the final preparations is preferably up to 40 wt .-%, advantageously between 2 and 35 wt .-%.
  • the content of sodium silicate (without any special builder properties) is generally up to 10% by weight and preferably between 1 and 8% by weight.
  • Sodium sulfate in amounts of from 0 to 10, in particular from 1 to 5,% by weight, based on the composition, can furthermore be contained as fillers or leveling agents
  • the detergents obtainable using the additives according to the invention can be prepared or used in the form of powders, extrudates, granules or agglomerates. These may be both universal and fine or color detergents, if appropriate in the form of compactates or super compacts.
  • the agents are prepared by mixing together various particulate components containing detergent ingredients.
  • the particulate components can be prepared by spray drying, simple mixing or complex granulation processes, for example fluidized bed granulation. It is preferred in particular that at least one surfactant-containing component is produced by fluidized bed granulation.
  • aqueous preparations of the alkali silicate and of the alkali carbonate are sprayed together with other detergent ingredients in a drying device, wherein granulation can take place simultaneously with the drying.
  • the drying device in which the aqueous preparation is sprayed, may be any dry equipment.
  • the drying is carried out as spray drying in a drying tower.
  • the aqueous preparations are exposed in a known manner a drying gas stream in finely divided form.
  • Patent publications by Henkel describe an embodiment of spray drying with superheated steam. The working principle disclosed therein is hereby expressly also made the subject of the present invention disclosure.
  • a particularly preferred way to prepare the means is to subject the precursors to fluidized bed granulation ("SKET" granulation).
  • SKET fluidized bed granulation
  • the precursors can be used both in the dried state and as an aqueous preparation.
  • Preferably used fluidized bed apparatus have bottom plates with dimensions of 0.4 to 5 m.
  • the granulation is carried out at fluidized air velocities in the range of 1 to 8 m / s.
  • the discharge of the granules from the fluidized bed is preferably carried out via a size classification of the granules.
  • the classification can be carried out, for example, by means of a sieve device or by a countercurrent air stream (classifier air), which is regulated in such a way that only particles above a certain particle size are removed from the fluidized bed and smaller particles are retained in the fluidized bed.
  • the incoming air is composed of the heated or unheated classifier air and the heated bottom air.
  • the soil air temperature is between 80 and 400, preferably 90 and 350 ° C.
  • a starting material for example a granular material from a previous experimental batch, is introduced.
  • the mixtures are subsequently subjected to a compaction step, with further ingredients being added to the compositions only after the compaction step.
  • the compaction of the ingredients takes place in a preferred embodiment of the invention in a press agglomeration process.
  • the press agglomeration process in which the solid premix (dried base detergent) is subjected, can be realized in various apparatuses. Depending on the type of agglomerator used, different press agglomeration processes are distinguished.
  • the four most common and in the present invention preferred press agglomeration processes are the extrusion, the roll pressing or compaction, the hole pressing (pelletizing) and tableting, so that in the present invention preferred press agglomeration processes extrusion, Walzenkompakt réelles-, pelletizing or Tabletting operations are.
  • binders can be used as an aid for compaction. However, it should be made clear that it is always possible to use several different binders and mixtures of different binders.
  • a binder is used which is completely present as a melt at temperatures up to a maximum of 130 ° C., preferably up to a maximum of 100 ° C. and in particular up to 90 ° C. The binder must therefore be selected depending on the process and process conditions or the process conditions, in particular the process temperature must - if a particular binder is desired - be adapted to the binder.
  • the actual compression process is preferably carried out at processing temperatures which correspond at least in the compression step at least the temperature of the softening point, if not even the temperature of the melting point of the binder.
  • the process temperature is significantly above the melting point or above the temperature at which the binder is present as a melt.
  • the process temperature in the compression step is not more than 20 ° C above the melting temperature or the upper limit of the melting range of the binder.
  • Such a temperature control has the further advantage that even thermally sensitive raw materials, for example Peroxyblleichsch such as perborate and / or percarbonate, but also enzymes, increasingly without serious losses of active substance can be processed.
  • the possibility of precise temperature control of the binder in particular in the decisive step of the compression, ie between the mixing / homogenization of the premix and the shaping, allows an energetically very favorable and extremely gentle for the temperature-sensitive components of the premix process, since the premix for a short time the is exposed to higher temperatures.
  • the working tools of the press agglomerator (the screw (s) of the extruder, the roller (s) of the roll compactor and the press roll (s) of the pellet press) have a maximum temperature of 150 ° C., preferably not more than 100 ° C. and in particular not more than 75 ° C and the process temperature is 30 ° C and in particular at most 20 ° C above the melting temperature or the upper temperature limit of the melting range of the binder.
  • the duration of the action of temperature in the compression region of the press agglomerators is a maximum of 2 minutes and is in particular in a range between 30 seconds and 1 minute.
  • Preferred binders which can be used alone or in admixture with other binders are polyethylene glycols, 1,2-polypropylene glycols and modified polyethylene glycols and polypropylene glycols.
  • the modified polyalkylene glycols include, in particular, the sulfates and / or the disulfates of polyethylene glycols or polypropylene glycols having a molecular weight between 600 and 12,000 and in particular between 1,000 and 4,000.
  • Another group consists of mono- and / or disuccinates of the polyalkylene glycols in turn, have molecular weights between 600 and 6,000, preferably between 1,000 and 4,000.
  • polyethylene glycols include polymers in the production of which, in addition to ethylene glycol, C 3 -C 5 glycols and also glycerol and mixtures thereof are used as starting molecules. Also included are ethoxylated derivatives such as trimethylolpropane having 5 to 30 EO.
  • the polyethylene glycols preferably used may have a linear or branched structure, with particular preference being given to linear polyethylene glycols.
  • Particularly preferred polyethylene glycols include those having molecular weights between 2,000 and 12,000, advantageously about 4,000, wherein polyethylene glycols having molecular weights below 3,500 and above 5,000, in particular in combination with polyethylene glycols having a molecular weight of about 4,000 can be used and Such combinations advantageously have more than 50% by weight, based on the total amount of polyethylene glycols, of polyethylene glycols having a molecular weight between 3,500 and 5,000.
  • polyethylene glycols which are present in liquid state at room temperature and a pressure of 1 bar can also be used as binders; here is mainly of polyethylene glycol with a molecular weight from 200, 400 and 600 the speech.
  • these per se liquid polyethylene glycols should be used only in a mixture with at least one other binder, said mixture must meet the requirements of the invention again, ie must have a melting point or softening point of at least above 45 ° C.
  • suitable as binders are low molecular weight polyvinylpyrrolidones and derivatives of these having molecular weights of not more than 30,000. Preference is given here to molecular weight ranges between 3,000 and 30,000, for example around 10,000.
  • Polyvinylpyrrolidones are preferably not used as sole binders but in combination with others. especially in combination with polyethylene glycols used.
  • the compacted material preferably has temperatures not exceeding 90 ° C. directly after leaving the production apparatus, temperatures between 35 and 85 ° C. being particularly preferred. It has been found that outlet temperatures - especially in the extrusion process - from 40 to 80 ° C, for example up to 70 ° C, are particularly advantageous.
  • the detergent according to the invention is produced by means of an extrusion.
  • a solid premix is extruded under pressure strand and cut the strand after exiting the hole shape by means of a cutting device to the predeterminable granule dimension.
  • the homogeneous and solid premix contains a plasticizer and / or lubricant which causes the premix to be plastically softened and extrudable under the pressure of specific work.
  • Preferred plasticizers and / or lubricants are surfactants and / or polymers.
  • the pre-mixture is preferably supplied to a planetary roller extruder or a 2-screw extruder with co-rotating or counter-rotating screw guide, whose housing and its extruder granulating head can be heated to the predetermined extrusion temperature.
  • the premix under pressure which is preferably at least 25 bar, at extremely high throughputs depending on the apparatus used but also may be below, compacted, plasticized, extruded in the form of fine strands through the hole die plate in the extruder head and finally
  • the extrudate is reduced by means of a rotating doctor blade to approximately spherical to cylindrical granules.
  • the hole diameter of the hole nozzle plate and the strand cut length are matched to the selected granule dimension.
  • the production of granules of a substantially uniformly predeterminable particle size succeeds, in particular, the absolute particle sizes may be adapted to the intended use.
  • particle diameters of at most 0.8 cm are preferred.
  • Important embodiments provide for the production of uniform granules in the millimeter range, for example in the range of 0.5 to 5 mm and in particular in the range of about 0.8 to 3 mm.
  • the length / diameter ratio of the chopped primary granules is preferably in the range from about 1: 1 to about 3: 1.
  • edges present on the raw extrudate are rounded, so that in the end spherically shaped up to approximately spherical extrudate grains can be obtained.
  • small amounts of dry powder for example, zeolite powder, such as zeolite NaA powder, may be included in this stage.
  • This shaping can be done in commercially available Rondiertechnikn. Care should be taken to ensure that only small amounts of fine grain content are produced in this stage. Drying, which is described in the above-mentioned prior art documents as a preferred embodiment, is subsequently possible, but not absolutely necessary. It may just be preferable to stop drying after the compaction step.
  • extrusions / compression can also be carried out in low-pressure extruders, in the Kahl press (Amandus Kahl) or in Bexx Bextruder.
  • the temperature control in the transition region of the screw, the predistributor and the nozzle plate is designed such that the melting temperature of the binder or the upper limit of the melting range of the binder is at least achieved, but preferably exceeded.
  • the duration of the action of temperature in the compression region of the extrusion is preferably less than 2 minutes and in particular in a range between 30 seconds and 1 minute.
  • the detergents according to the invention can also be prepared by means of roll compaction.
  • the premix is selectively metered between two smooth or provided with wells of defined shape rollers and rolled between the two rollers under pressure to form a sheet-like Kompaktat, the so-called scoop.
  • the rollers exert a high line pressure on the premix and can be additionally heated or cooled as required.
  • smooth rolls smooth, unstructured flake tapes are obtained, while by using structured rolls, correspondingly structured flakes can be produced in which, for example, certain shapes of the later detergent particles can be specified.
  • the sling band is subsequently broken by a tee and crushing process into smaller pieces and can be processed in this way to granules which can be refined by further known surface treatment methods, in particular in approximately spherical shape.
  • the temperature of the pressing tools, ie the rolls is preferably not more than 150 ° C., preferably not more than 100 ° C. and in particular not more than 75 ° C.
  • Particularly preferred production processes work in the case of roll compaction with process temperatures which are 10 ° C., in particular at most 5 ° C. above the melting temperature or the upper temperature limit of the melting range of the binder.
  • the duration of the action of temperature in the compression region of the smooth rolls or rolls provided with depressions of defined shape amounts to a maximum of 2 minutes and is in particular in a range between 30 seconds and 1 minute.
  • the detergent according to the invention can also be produced by means of pelleting.
  • the premix is applied to a perforated surface and pressed by means of a pressure-emitting body under plasticization through the holes.
  • the premix is compressed under pressure, plasticized, pressed by means of a rotating roller in the form of fine strands through a perforated surface and finally comminuted with a knock-off device to Granulatkömem.
  • a knock-off device to Granulatkömem.
  • flat perforated plates are used as well as concave or convex ring matrices, through which the material is pressed through one or more pressure rollers.
  • the press rollers can also be conically shaped in the plate devices, in the annular devices can matrices and press roller (s) have co-rotating or opposite directions of rotation.
  • the ring matrix press disclosed in this document consists of a rotating ring die interspersed by press channels and at least one press roller operatively connected to its inner surface, which presses the material supplied to the die space through the press channels into a material discharge.
  • ring matrix and press roller are driven in the same direction, whereby a reduced shear stress and thus lower temperature increase of the premix can be realized.
  • pelletizing with heatable or coolable rollers in order to set a desired temperature of the premix.
  • the temperature of the pressing tools is preferably not more than 150 ° C., preferably not more than 100 ° C. and in particular not more than 75 ° C.
  • Particularly preferred production processes work with roll compaction at process temperatures, the 10 ° C, in particular at most 5 ° C above the melting temperature or the upper temperature limit of the melting range of the binder are.
  • the production of moldings is usually carried out by tabletting or press agglomeration.
  • the resulting particulate press agglomerates can either be used directly as a detergent or be aftertreated and / or processed by conventional methods beforehand.
  • the usual post-treatments include, for example, powdering with finely divided ingredients of detergents or cleaners, whereby the bulk density is generally further increased.
  • a preferred aftertreatment is the procedure in which dust-like or at least finely divided ingredients (the so-called fines) are adhered to the particle-shaped process end products according to the invention, which serve as the core, and thus agents are formed which have these so-called fine fractions as outer shell.
  • this is again done by melt agglomeration.
  • the solid detergents are in tablet form, these tablets preferably having rounded corners and edges, in particular for storage and transport reasons.
  • the base of these tablets may, for example, be circular or rectangular.
  • Multi-layer tablets, especially tablets with 2 or 3 layers, which may also be different in color, are especially preferred.
  • Blue-white or green-white or blue-green-white tablets are particularly preferred.
  • the tablets may also contain pressed and unpressed portions. Moldings having a particularly advantageous dissolution rate are obtained when the granular constituents before pressing have a proportion of particles which have a diameter outside the range from 0.02 to 6 mm of less than 20, preferably less than 10% by weight.
  • a particle size distribution in the range from 0.05 to 2.0 and particularly preferably from 0.2 to 1.0 mm is preferred.
  • Example 4 is according to the invention, examples 1-3, 5, V1-V3 serve as a comparison.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Treatment Of Sludge (AREA)
  • Amplifiers (AREA)

Claims (8)

  1. Détergent solide contenant :
    (a) des sulfates d'alcool gras, et
    (b) des amides grasses de formule (Ia) et/ou des amido composés d'acide gras de formule (Ib) selon le cas sous la forme de leurs sels avec des acides carboxyliques organiques

            R1NH2     (Ia)

            R2CO-NH-[X]-R3     (Ib)

    dans lesquels R1 représente un radical alkyl et/ou alcényl linéaire ou ramifié ayant de 12 à 22, de préférence de 16 à 18 atomes de carbone et R2CO représente un radical acyl linéaire ou ramifié, saturé ou insaturé ayant de 5 à 21 atomes de carbone, X représente un radical alkylène linéaire ou ramifié ayant de 1 à 4 atomes de carbone et R3 représente un groupe amino, un groupe hydroxyl ou un groupe [N-X-NH2] ou [N-X-OH].
  2. Détergent selon la revendication 1,
    caractérisé en ce qu'
    il renferme en tant que composant (a) des sulfates d'alcool gras de formule (II)

            R4OSO3X     (II)

    dans laquelle R4 représente des radicaux alkyl et/ou alcényl linéaires ou ramifiés ayant de 12 à 22 atomes de carbone et X représente un alcalin, un alcalino terreux, un ammonium, un alkyl ammonium, un alcanol ammonium ou un glucammonium.
  3. Détergent selon les revendications 1 et/ou 2,
    caractérisé en ce qu'
    en tant que composant (a), il renferme des sulfates d'alcool gras de formule (II) dans laquelle R4 représente un radical alkyl ayant de 12 à 18 atomes de carbone et X un alcalin.
  4. Détergent selon les revendications 1 et/ou 2,
    caractérisé en ce qu'
    il renferme en tant que composant (a) des sulfates d'alcool gras de formule (II) dans laquelle R4 représente un radical alkyl ayant de 12 à 14 atomes de carbone et X un alcalin.
  5. Détergent selon au moins l'une des revendications 1 à 4,
    caractérisé en ce qu'
    il renferme en tant que composant (b) des amines grasses de formule (Ia) dans laquelle R1 représente un radical alkyl ayant de 16 à 18 atomes de carbone.
  6. Détergent selon au moins l'une des revendications 1 à 5,
    caractérisé en ce qu'
    il renferme en tant que composant (b) des amido composés d'acides gras de formule (Ib) dans laquelle R2CO représente un radical acyl ayant de 15 à 17 atomes de carbone, X représente un groupe éthylène et R3 représente un radical NH-CH2CH2-OH.
  7. Détergent selon au l'une des revendications 1 à 6,
    caractérisé en ce qu'
    il renferme les composants (a) et (b) dans un rapport pondéral de 25:75 à 75:25.
  8. Utilisation de mélanges selon la revendication 1 pour l'obtention des détergents solides.
EP02022092A 2002-10-02 2002-10-02 Détergents solides Expired - Lifetime EP1405899B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES02022092T ES2309129T3 (es) 2002-10-02 2002-10-02 Agente de lavado solidos.
DE50212446T DE50212446D1 (de) 2002-10-02 2002-10-02 Feste Waschmittel
AT02022092T ATE399840T1 (de) 2002-10-02 2002-10-02 Feste waschmittel
EP02022092A EP1405899B1 (fr) 2002-10-02 2002-10-02 Détergents solides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP02022092A EP1405899B1 (fr) 2002-10-02 2002-10-02 Détergents solides

Publications (2)

Publication Number Publication Date
EP1405899A1 EP1405899A1 (fr) 2004-04-07
EP1405899B1 true EP1405899B1 (fr) 2008-07-02

Family

ID=31985039

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02022092A Expired - Lifetime EP1405899B1 (fr) 2002-10-02 2002-10-02 Détergents solides

Country Status (4)

Country Link
EP (1) EP1405899B1 (fr)
AT (1) ATE399840T1 (fr)
DE (1) DE50212446D1 (fr)
ES (1) ES2309129T3 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006039873B4 (de) * 2006-08-25 2013-10-31 Henkel Ag & Co. Kgaa Verstärkung der Reinigungsleistung von Waschmitteln durch baumwollaktives schmutzablösevermögendes Cellulosederivat

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2213557A1 (de) * 1972-03-12 1973-09-27 Henkel & Cie Gmbh Verfahren und mittel zum waschen und weichmachen von textilien
US3844959A (en) * 1972-10-16 1974-10-29 Procter & Gamble Detergent composition with an amido-amine fabric softening agent
US4913828A (en) * 1987-06-10 1990-04-03 The Procter & Gamble Company Conditioning agents and compositions containing same
US4762645A (en) * 1987-11-16 1988-08-09 The Procter & Gamble Company Detergent plus softener with amide ingredient
WO1997044434A1 (fr) * 1996-05-17 1997-11-27 The Procter & Gamble Company Barre detergente de lessive possedant une faible teneur en humidite et une stabilite de blanchiment amelioree

Also Published As

Publication number Publication date
ES2309129T3 (es) 2008-12-16
EP1405899A1 (fr) 2004-04-07
ATE399840T1 (de) 2008-07-15
DE50212446D1 (de) 2008-08-14

Similar Documents

Publication Publication Date Title
EP1240290B1 (fr) Granulats de tensioactifs presentant une plus grande vitesse de dissolution
EP1235897B1 (fr) Pastilles de detergent
EP1106675B1 (fr) Utilisation de polyglycolethers de glycerides partiels
EP1321509B1 (fr) Hydroxy-ethers mixtes et polymers en forme de pro-produits solides pour produits de lavage, de rinçage et de nettoyage
EP1232242B1 (fr) Granules d'agent tensio-actif a vitesse de decomposition amelioree
DE19962883A1 (de) Waschmitteltabletten
EP1188817A2 (fr) Composition Detergente
DE19953796A1 (de) Feste Wasch-, Spül- und Reinigungsmittel
EP1228192A1 (fr) Granules de tensioactifs presentant une vitesse de dissolution amelioree
EP1250412B1 (fr) Procede de production de granules tensioactifs
EP1274822B1 (fr) Detergents et nettoyants
DE10152142A1 (de) Feste Wasch-, Spül- und Reinigungsmittel
EP1214389B1 (fr) Melanges de tensioactifs
EP1405899B1 (fr) Détergents solides
EP1228187A1 (fr) Pastilles de detergent
EP1205536A2 (fr) Utilisation des mélanges tensioactifs
WO2001000763A1 (fr) Detergent solide a mousse controlee
EP1090979A1 (fr) Granulés anti-mousse
EP1375633A1 (fr) Compositions détergentes contenant des polymères
DE10055517A1 (de) Verwendung von Gemischen
DE10253976A1 (de) Wasch- und Reinigungsmittel
DE10002009A1 (de) Tensidgranulate
EP1090978A1 (fr) Agent de lavage, de rinçage et nettoyage solide contenant des granulats antimousse
WO2001000762A1 (fr) Detergents solides a mousse controlee
WO2001000761A1 (fr) Detergents solides a mousse controlee

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021002

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COGNIS IP MANAGEMENT GMBH

17Q First examination report despatched

Effective date: 20060310

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50212446

Country of ref document: DE

Date of ref document: 20080814

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2309129

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081202

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081002

BERE Be: lapsed

Owner name: COGNIS IP MANAGEMENT G.M.B.H.

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20090403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081002

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081003

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141031

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141230

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151022

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20151126

Year of fee payment: 14

Ref country code: FR

Payment date: 20151029

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50212446

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151002

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161003

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181123