EP1402181A1 - Device for transporting a free-flowing bulk product to be transported - Google Patents
Device for transporting a free-flowing bulk product to be transportedInfo
- Publication number
- EP1402181A1 EP1402181A1 EP02745395A EP02745395A EP1402181A1 EP 1402181 A1 EP1402181 A1 EP 1402181A1 EP 02745395 A EP02745395 A EP 02745395A EP 02745395 A EP02745395 A EP 02745395A EP 1402181 A1 EP1402181 A1 EP 1402181A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- delivery
- conveyed
- cylinder
- tube
- piston
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 6
- 230000000295 complement effect Effects 0.000 claims description 5
- 230000009969 flowable effect Effects 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 1
- 230000000750 progressive effect Effects 0.000 abstract 1
- 238000007789 sealing Methods 0.000 description 13
- 239000013536 elastomeric material Substances 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/12—Devices for removing or hauling away excavated material or spoil; Working or loading platforms
- E21D9/124—Helical conveying means therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B15/00—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04B15/02—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
- F04B15/023—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous supply of fluid to the pump by gravity through a hopper, e.g. without intake valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/008—Spacing or clearance between cylinder and piston
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/16—Casings; Cylinders; Cylinder liners or heads; Fluid connections
- F04B53/162—Adaptations of cylinders
- F04B53/164—Stoffing boxes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/22—Arrangements for enabling ready assembly or disassembly
Definitions
- the invention relates to a device for conveying flowable or pourable conveyed material with at least one delivery piston, which can preferably be pushed back and forth by hydraulic means, with a bearing tube axially leading the delivery piston on its outer surface, with an axially adjoining the bearing tube in the conveying direction, via a feed channel or hopper with filling material that can be conveyed, and with a delivery cylinder arranged axially in the displacement path of the delivery piston, connected on the inlet side to the filling chamber and on the outlet side to a discharge tube, the delivery piston releasing the filling chamber to the feed channel or hopper in its end position retracted into the storage tube and at Feed penetrates the filling space with the conveyed material and penetrates into the feed cylinder.
- the delivery piston designed as a plunger cylinder is guided in a sliding guide of the bearing tube.
- inward-pointing grooves for receiving wiper and fine sealing rings are screwed into the bearing tube near its end on the filling chamber side.
- the gap between the bearing tube and the delivery piston is supplied with lubricating oil via lubrication holes in a central lubrication system.
- the piston penetrating into the feed cylinder lies against the wall on the inlet side, so that a vacuum is created with each return stroke.
- a cross slide is arranged in the feed pipe behind the feed cylinder, which is closed before each return stroke of the feed cylinder and opened again before each pressure stroke.
- the high susceptibility to wear in the area of the bearing tube is a disadvantage considered.
- the known conveying device is not readily suitable for conveying the material to be conveyed from a pressurized filling space into an atmospheric outside space without the risk of a pressure breakthrough.
- the invention has for its object to improve the known device of the type mentioned in such a way that even when a pressure difference between the filling space and the outside space is maintained, discharge of the conveyed material in a stationary operation without a slide is possible.
- the solution according to the invention is based on the procedural idea that an airtight plug consisting of compressed material to be conveyed is produced in the discharge tube before its outlet opening, with at least part of the plug on each delivery stroke of the delivery piston due to advancing and material which compresses via the outlet opening in the outside space is displaced.
- the discharge tube has a free discharge opening for the material to be conveyed at its end facing away from the feed cylinder, that between the inner surface of the feed cylinder and the lateral surface of the feed piston penetrated into it, a gap for the air passage between the filling space and remains free of the pipe section and that an airtight plug is formed in the discharge pipe during conveying operation, which can be built up by moving material to be conveyed and can be pushed out via its outlet opening.
- a preferred embodiment of the invention provides that the outlet opening of the discharge tube is formed by a diaphragm with a diaphragm diameter which is smaller than the inside diameter of the discharge tube.
- the diaphragm is expediently detachable and / or interchangeably arranged on the discharge tube.
- the plug is mechanically divided in the area of the outlet opening when it exits into the outside space.
- a separating member can be arranged in the area of the outlet opening for dividing the plug portion which is forced outward during the conveying stroke.
- a base plug In order to make this possible, it is proposed according to a preferred embodiment of the invention that, in order to produce a base plug, material to be conveyed is first compressed with the delivery piston in a space between the delivery cylinder and the discharge tube, and that the base plug thus formed with the delivery piston is then moved forward with an open space and material which condenses and is plugged out is discharged into the discharge pipe.
- a further pipe section which cannot be penetrated by the delivery piston, and a slider which penetrates the pipe section transversely are arranged between the delivery cylinder and the discharge pipe.
- two conveying cylinders with a subsequent discharge tube are provided, the two conveying pistons penetrating into the conveying cylinders being operable in push-pull.
- a pipe section with a cross slide is provided between the feed cylinders and the associated discharge pipe. So that's it possible to generate the necessary material plug independently of each other in each discharge pipe.
- the two cross slides are expediently arranged at a lateral and axial distance from one another.
- each delivery piston is equipped with a position measuring system with which the stroke of the delivery piston can be measured at any time.
- FIG. 1a shows a diagrammatic representation of a spoil discharge lock for use in tunnel construction
- FIG. 1b and 1c show a side view and a top view of the discharge lock according to FIG. 1a with the feed hopper placed on the filling space;
- FIGS. 1a to c a side view of a tunnel boring machine with discharge lock and FIGS. 1a to c;
- FIGS. 1a to c show two longitudinal sections offset by 90 ° with respect to one another and a cross section of the delivery piston designed as a plunger cylinder of the discharge device according to FIGS. 1a to c;
- 3a and b show an end view and a side view of the sealing cassette of the bearing tube on the filling chamber side;
- 3c shows a section along the section line A - A of FIG. 3a; 4a to e an enlarged detail from FIG. 3c in different sectional planes A to E of FIG. 3a;
- Fig. 5a is a plan view of the segmented scraper ring
- Fig. 5b is a plan view of one of the cutting ring segments
- 5c shows a section along the section line A - A of FIG. 5b;
- FIGS. 4a to e show a side view and an inside view of a segment of the fine seal according to FIGS. 4a to e;
- the discharge lock 8 shown in the drawing is intended for use in tunnel boring machines 1.
- it has an obliquely upwardly directed flange plate 10 and a feed hopper 12, with which it can be connected to a transport pipe 3 equipped with a screw conveyor 2 for the waste 5 accumulating in the excavation chamber 4 of the tunnel boring machine 1.
- the earthy or rocky overburden 5, which as a rule cannot be pumped, is fed under a pressure P> P atm UDer which is increased due to the earth pressure, a stone crusher 7 and the feed hopper 12 of the discharge lock 8 and via the discharge pipes 14 against atmospheric pressure p atm for further conveyance, for example via a belt conveyor 6 removed.
- the two hooks 16 arranged in the vicinity of the flange plate 10 serve to facilitate assembly and maintenance.
- the discharge lock 8 has two conveying devices or lock parts 18 which operate in push-pull and which are constructed essentially the same.
- the two lock parts each contain a filling space 20, which are separated from one another by a partition 22 and can be fed with conveyed material via the common feed hopper 12.
- a delivery piston 24 designed as a plunger, which can be pushed back and forth via a hydraulic drive cylinder 26.
- a support cage 28, a bearing tube 30, one of the filling chambers 20, a delivery cylinder 32, an intermediate tube 34 with a cross slide 36 and one of the discharge tubes 14 are assigned axially one behind the other to each delivery piston 24.
- the material to be conveyed is compressed in the feed cylinder 32, in the subsequent intermediate tube 34 and in the discharge tube 14 to form a plug so that there is an airtight seal between the filling space 20 and the outside space located outside the outlet opening 38 of the discharge tube 14.
- Knife-like separating members 40 are located in the outlet opening 38, which break up and break up the emerging plug section.
- a grafting must first be built up.
- the two cross slides 36 are provided, which are offset from one another in the axial direction for reasons of space.
- the material to be conveyed is then pressed with the respective delivery piston 24 with reduced feed force against the cross slide 36 engaging in the feed path within the intermediate tube 34 and thereby compressed to form a plug.
- the displacement path of the delivery piston 24 is monitored by a displacement measuring system 62, 64 connected to the hydraulic drive cylinder 26.
- the cross slides 36 are opened and the plugs are moved into the associated discharge tube 14 during the subsequent conveying strokes of the conveying piston 24 until they reach the outlet opening 38.
- diaphragms (not shown) with different opening cross sections in the area of the outlet openings 38.
- delivery pistons 24 and delivery cylinders 32 are dimensioned such that a gap for the air passage between the filling space 20 and the intermediate tube 34 remains free between them.
- the inner surface of the discharge pipe, the intermediate pipe and possibly also the delivery cylinder are equipped with wear strips, which are screwed detachably from the outside through the respective pipe wall. The wear strips complement one another to form a non-circular cross-section, preferably a polygonal inner surface.
- the lateral surface 42 of the delivery piston 24 is formed by an elongated hollow cylinder 44, the free end face of which is closed by an end plate 46 and in which the hydraulic drive cylinder 26 is located.
- the cylinder part 48 of the drive cylinder 26 is articulated on its base part 50 via a joint 52 at the rear end of the support cage 28 and on its rod end via two support rollers 54, which are at an angular distance of 90 ° from one another have, supported and guided on the inner surface of the hollow cylinder 44.
- the piston rod 56 of the drive cylinder is articulated on the inside of the end plate 46 via a joint 58.
- the hinge axes of the joints 52 and 58 are perpendicular to one another and aligned with the direction of displacement of the piston rod 56.
- the piston rod 56 has an axis-central cavity 60, into which a stainless steel tube 62, which protects a waveguide and which is fixed at the bottom end of the cylinder part, engages axially centrally.
- a permanent magnet 64 that is fixed to the piston rod, the waveguide 62 forms the position measuring system with which the current displacement position of the delivery piston 24 can be measured.
- the support piston 24 is supported and guided axially centrally within the bearing tube 30.
- guide rollers 66 are arranged on the outside of the bearing tube, and their running surface 68 extends through wall openings of the bearing tube in the direction of the outer surface 42 of the delivery piston.
- the guide rollers 66 which are made of an elastomeric material, preferably of heavy-duty polyamide, are each mounted on a bearing block 70.
- Each bearing block is articulated at one end to a pivot bearing 72 which is fixed to the bearing tube and is screwed to the bearing tube 30 at its other end by means of a spring-assisted screw 74.
- the running surface 68 of the guide rollers has a concave transverse curvature which is complementary to the outer surface 42 of the delivery piston 24 (FIG. 7c).
- the guide rollers are arranged in three axial positions spaced apart from one another and in three circumferential positions spaced apart from one another in the circumferential direction, each circumferential position being equipped with two guide rollers arranged next to one another.
- the feed piston 24 is dimensioned such that it moves out of the region of the guide rollers 66 located in the rear axial position when it is moved into the feed cylinder 32.
- the bearing tube 30 has a sealing cassette 76, which is clamped in a floating manner between two O-rings 78, 80 in a recess in the bearing tube end with the aid of a clamping ring 82 and is easily replaceable.
- the sealing cassette 76 has a metallic, ring-shaped base body 84, which is provided on the inside with circumferential grooves 86 for receiving a radially adjustable wiper 88 and a radially adjustable fine seal 90 made of elastomeric material.
- the circumferential grooves 86 for the wiper 88 and for the fine seal 90 are delimited by an insert ring 94 arranged in an annular recess 92 of the base body 84. As can be seen from FIGS.
- the wiper 88 and the fine seal 90 are composed of several segments 88 ', 90' divided in the circumferential direction, each against a radially outer elastomeric ring 96, 98 apply, and can be acted upon indirectly with a pressure medium, for example with grease.
- the segments 88 ', 90' of the scraper 88 and the fine seal 90 have mutually complementary grooves for receiving a closed elastomeric retaining ring 104, 106 and are supported in the region of the retaining ring against the associated radially outer sealing ring 96, 98.
- the segments 88 'of the scraper 88 do not twist in the circumferential direction, they are fixed in the circumferential direction with the aid of pins 130 inserted into the insert ring 94 via the recesses 132 in the segments 88' (see FIGS. 5a to c and Fig. 4a and d). It can be seen in FIG. 6 b that the fine sealing segments 90 ′ have steps 120 that overlap one another in the circumferential direction. In addition, the fine sealing segments 90 'are composed of two elastomeric segment parts 90 ", 90"' with different hardness.
- the circumferential grooves 86 for the wiping segments 88 'and the fine sealing segments 90' can be acted upon independently of one another with pressure medium via channels 108, 110 in the base body.
- the insert ring is also provided with ring channels for circumferential grooves 112, 114 which delimit the pressure medium supply and open to the edge of an annular surface 116 of the base body Mistake.
- the circumferential grooves 112, 114 are sealed off from one another and to the outside by sealing rings 118 arranged in adjacent circumferential grooves.
- Another channel 122 is used to supply a lubricant or flushing agent.
- the base body On its inner surface, the base body has further circumferential grooves for receiving a grooved ring 124 and an elastomeric guide band 126.
- the sealing cassettes 76 can be prefabricated and exchanged as a whole.
- a mounting tube 128 is provided which is pushed out of the sealing cassette during the assembly process when the sealing cassette 76 is pushed onto the delivery piston 24.
- the invention relates to a device for conveying flowable and pourable material to be conveyed. It has at least one delivery piston 24, which can preferably be pushed back and forth by hydraulic means 26, a bearing tube 30 axially guiding the delivery piston 24 on its outer surface 42, a filling chamber 20 axially adjoining the bearing tube in the conveying direction, which can be filled with material to be conveyed via a feed funnel 12, and an axially arranged in the displacement path of the delivery piston 24, connected on the input side to the filling chamber 20 and on the output side to a discharge pipe 14.
- the discharge tube 14 at its end facing away from the feed cylinder 32 has a free outlet opening 38 for the material to be conveyed that between the inner surface of the feed cylinder 32 and the outer surface 42 of the feed piston 24 which has penetrated into it, a gap space for the air passage between the filling space 20 and the discharge pipe 14 remains free and that in Discharge tube 14 is formed in the conveying operation of an airtight plug which can be built up by advancing conveyed material and can be extracted via its outlet opening 38 and consists of compressed conveyed material.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
- Air Transport Of Granular Materials (AREA)
- Feeding Of Articles To Conveyors (AREA)
- General Preparation And Processing Of Foods (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10131903 | 2001-07-04 | ||
DE10131903A DE10131903A1 (en) | 2001-07-04 | 2001-07-04 | Device for conveying flowable and pourable material |
PCT/EP2002/006763 WO2003004875A1 (en) | 2001-07-04 | 2002-06-19 | Device for transporting a free-flowing bulk product to be transported |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1402181A1 true EP1402181A1 (en) | 2004-03-31 |
EP1402181B1 EP1402181B1 (en) | 2006-06-07 |
Family
ID=7690258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02745395A Expired - Lifetime EP1402181B1 (en) | 2001-07-04 | 2002-06-19 | Device for transporting a free-flowing bulk product to be transported |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1402181B1 (en) |
JP (1) | JP2004533385A (en) |
AT (1) | ATE329154T1 (en) |
DE (2) | DE10131903A1 (en) |
ES (1) | ES2266526T3 (en) |
WO (1) | WO2003004875A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7473347B2 (en) | 2001-03-05 | 2009-01-06 | Shell Oil Company | Process to prepare a lubricating base oil |
US7531081B2 (en) | 2001-02-13 | 2009-05-12 | Shell Oil Company | Base oil composition |
EP1487942B2 (en) † | 2002-02-25 | 2011-08-24 | Shell Internationale Research Maatschappij B.V. | Process to prepare a catalytically dewaxed gas oil or gas oil blending component |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108953137B (en) * | 2018-08-16 | 2024-04-02 | 浙江永联民爆器材有限公司 | Static sensitization pipeline of seamless steel pipe |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1130646A (en) * | 1979-09-14 | 1982-08-31 | Tymen Clay | Ram type pump |
JPS62107199A (en) * | 1985-11-01 | 1987-05-18 | 株式会社小松製作所 | Soil and sand carry-out device for shield excavator |
DE3874126T2 (en) * | 1988-05-05 | 1993-03-18 | Wallander Hydropress Co Ab | METHOD FOR TREATING WASTE AND DEVICE FOR CARRYING OUT THE METHOD. |
DE4228806B4 (en) * | 1992-08-29 | 2004-03-04 | Putzmeister Ag | Device for conveying thick matter |
DE4341607A1 (en) * | 1993-02-02 | 1994-08-04 | Putzmeister Maschf | Transport system for shredded scrap-metal in viscous material |
DE19524048C2 (en) * | 1995-07-01 | 1998-09-17 | Hoppecke Zoellner Sohn Accu | Pump for conveying non-flowable media |
DE19643491A1 (en) * | 1996-10-22 | 1998-04-23 | Putzmeister Ag | Arrangement and method for determining the delivery quantity or the mass flow of material conveyed by means of a piston-type nitrogen pump |
-
2001
- 2001-07-04 DE DE10131903A patent/DE10131903A1/en not_active Withdrawn
-
2002
- 2002-06-19 AT AT02745395T patent/ATE329154T1/en not_active IP Right Cessation
- 2002-06-19 JP JP2003510615A patent/JP2004533385A/en active Pending
- 2002-06-19 EP EP02745395A patent/EP1402181B1/en not_active Expired - Lifetime
- 2002-06-19 WO PCT/EP2002/006763 patent/WO2003004875A1/en active IP Right Grant
- 2002-06-19 ES ES02745395T patent/ES2266526T3/en not_active Expired - Lifetime
- 2002-06-19 DE DE50207116T patent/DE50207116D1/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO03004875A1 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7531081B2 (en) | 2001-02-13 | 2009-05-12 | Shell Oil Company | Base oil composition |
US7473347B2 (en) | 2001-03-05 | 2009-01-06 | Shell Oil Company | Process to prepare a lubricating base oil |
EP1487942B2 (en) † | 2002-02-25 | 2011-08-24 | Shell Internationale Research Maatschappij B.V. | Process to prepare a catalytically dewaxed gas oil or gas oil blending component |
Also Published As
Publication number | Publication date |
---|---|
DE10131903A1 (en) | 2003-02-13 |
WO2003004875A1 (en) | 2003-01-16 |
ES2266526T3 (en) | 2007-03-01 |
EP1402181B1 (en) | 2006-06-07 |
ATE329154T1 (en) | 2006-06-15 |
DE50207116D1 (en) | 2006-07-20 |
JP2004533385A (en) | 2004-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4020513C3 (en) | Device for conveying material containing solids between rooms of different pressures | |
DE1534660A1 (en) | Tunneling machine and tunneling method | |
EP2384651A1 (en) | Device and method for transferring rod-shaped items for the tobacco industry from a cartridge into a conveyor pipe with a constant flow of pressure in the ejector channel | |
DE102013014837B4 (en) | Method and device for removing soil material in front of the front wall of a shield tunneling machine (SVM) | |
EP0681672B2 (en) | Process for conveying thick matter containing preshredded scrap metal or similar solids | |
DE1777044A1 (en) | Extrusion device | |
DE3622053A1 (en) | COMPRESSOR | |
CH647701A5 (en) | MOLDING MACHINE. | |
EP1402181B1 (en) | Device for transporting a free-flowing bulk product to be transported | |
DE10056610A1 (en) | High-pressure bulge-forming apparatus for producing complex-shaped hollow articles, has fasteners that releasably secure heads on stems of actuators aligned with cavity ends of multipart die assembly | |
EP1402180B1 (en) | Device for conveying free-flowing or bulk materials | |
DE3410211A1 (en) | DEVICE FOR SEALING A CONCRETE PUMP | |
DE1653605A1 (en) | Piston pump for conveying material consisting of small solid particles | |
EP1402179B1 (en) | Device for conveying flowable or pourable material | |
DE2537994A1 (en) | PLANT FOR MANUFACTURING CASTING MOLDS MADE OF THE SAME MOLD PARTS | |
DE1916528A1 (en) | Device for feeding and compacting finely divided particulate material | |
EP0097115B1 (en) | Device and method for the extrusion of profiles or the like from a block or billet | |
DE69728129T4 (en) | Venting device and method for viscous or viscous substances | |
DE2602102C2 (en) | Extrusion press | |
EP0371393B1 (en) | Apparatus for comminuting scrap | |
DE3541674C2 (en) | ||
DE2634473C2 (en) | Device for the production of cartridges from vented lead compound for the production of writing leads | |
DE2054514C3 (en) | concrete pump | |
CH622886A5 (en) | Solids metering (dosing) pump | |
DE2054514B2 (en) | concrete pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030801 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HURR, HELLMUT Inventor name: FISCHER, GERALD Inventor name: PIRWASS, FRANK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060607 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060607 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060607 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060630 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060630 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50207116 Country of ref document: DE Date of ref document: 20060720 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060907 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061107 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2266526 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060619 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060607 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A |
|
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: PUTZMEISTER CONCRETE PUMPS GMBH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20080618 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060607 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080620 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CJ Ref country code: FR Ref legal event code: CD |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20080709 Year of fee payment: 7 |
|
BERE | Be: lapsed |
Owner name: *PUTZMEISTER CONCRETE PUMPS G.M.B.H. Effective date: 20090630 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: SD Effective date: 20100729 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090620 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110630 Year of fee payment: 10 Ref country code: ES Payment date: 20110616 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20110621 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110723 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20130101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50207116 Country of ref document: DE Effective date: 20130101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120702 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130101 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130101 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20131018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120620 |