EP1400158A1 - Hom-gedämpfter hochfrequenz-resonator - Google Patents

Hom-gedämpfter hochfrequenz-resonator

Info

Publication number
EP1400158A1
EP1400158A1 EP02750795A EP02750795A EP1400158A1 EP 1400158 A1 EP1400158 A1 EP 1400158A1 EP 02750795 A EP02750795 A EP 02750795A EP 02750795 A EP02750795 A EP 02750795A EP 1400158 A1 EP1400158 A1 EP 1400158A1
Authority
EP
European Patent Office
Prior art keywords
waveguide
hom
resonator
webs
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02750795A
Other languages
English (en)
French (fr)
Other versions
EP1400158B1 (de
Inventor
Ernst Weihreter
Frank Marhauser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Original Assignee
BERLINER ELEKTRONENSPEICHER
Berliner Elektronenspeicherring-Gesellschaft fur Synchrotronstrahlung Mbh
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BERLINER ELEKTRONENSPEICHER, Berliner Elektronenspeicherring-Gesellschaft fur Synchrotronstrahlung Mbh, Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH filed Critical BERLINER ELEKTRONENSPEICHER
Publication of EP1400158A1 publication Critical patent/EP1400158A1/de
Application granted granted Critical
Publication of EP1400158B1 publication Critical patent/EP1400158B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators

Definitions

  • the invention relates to a HOM-damped high-frequency resonator, having a cylindrical resonator cavity, on the outer surface of which three circular tapered waveguides are arranged with two symmetrically arranged webs, the cut-off frequency of the waveguide basic mode being constant over the length of the waveguides by varying the web height is held, and the ridge waveguides have at their end with the smaller diameter an impedance transformer for broadband RF matching of the coaxial line.
  • the brilliance of the photon beams depends on the quality of the stored electron beam. Beam instabilities in particular have a negative impact on the brilliance generated. The beam instabilities are caused by multibunch vibrations, which lead to an increase in the energy width (longitudinal vibrations) and the transverse emittance (transverse vibrations).
  • the multibunch vibrations are excited by the interaction of the electron packets with the higher order modes (HOM) of the acceleration resonator.
  • HOM higher order modes
  • the installation length in the axial direction is approximately 2 m.
  • the wide-band rectangular waveguides have a transition to a 7/8 "EIA coaxial line for coupling out the HOM energy.
  • relatively small values for the HOM impedances can be achieved. This advantage is, however, also clear with one reduced shunt impedance for the basic mode, which entails higher operating costs.
  • the high-frequency resonator has a cylindrical resonator cavity, on the outer surface of which three circular waveguides are arranged for coupling to the HOMs, each of which is connected to a broadband transition to a coaxial line (broadband circular waveguide to coaxial transition - CWCT).
  • a coaxial line broadband circular waveguide to coaxial transition - CWCT
  • a circular waveguide is described for such an arrangement, which is designed as a tapered ridge waveguide with a constant cut-off frequency and an impedance transformer for the 7/8 "coaxial line.
  • the dimensions of a HOM-damped high-frequency resonator could can be reduced, but the reduction of the shunt impedance of the fundamental mode is relatively large and the damping efficiency for the higher order modes is insufficient.
  • a HOM-damped high-frequency resonator of the type mentioned at the outset in that, according to the invention, the waveguide with two symmetrically arranged webs for adjusting an asymmetry relative to the central plane of the cylindrical resonator cavity is offset in the direction of its longitudinal axis on the Shell surface of the resonator cavity are arranged, the waveguides with two symmetrically arranged webs are adjustable in their angle to the axis of the cylindrical resonator cavity and the webs of the waveguides protrude into the cylindrical resonator cavity in such a way that the modes of higher order are optimally coupled.
  • the circular waveguides are offset relative to the center plane of the cylindrical resonator cavity in the direction of its longitudinal axis.
  • the orientation of the waveguide web relative to the beam axis can be selected. This makes it possible to selectively optimize the coupling to individual HOMs that are particularly disruptive in a specific storage ring.
  • the solution according to the invention ensures that the vacuum transitions and the HF transitions are not realized at the same location.
  • the partial length of the webs of the waveguides protruding into the resonator cavity is varied (in addition to other geometric parameters) by numerical simulation in such a way that the HOM Impedances above the cut-off frequency (650 MHz) to 3 GHz can be minimized.
  • the webs of the waveguides are aligned in parallel with respect to the axis of the cylindrical resonator cavity, i.e. the angle of the ridge waveguides to the axis of the cylindrical resonator cavity is 0 degrees.
  • This version is the optimal solution in the event that all HOMs are excited by the electron beam with the same strength. If this is not the case, the adjustability of the orientation of the waveguide webs enables a minimization of the HOMs specific to the ring ring.
  • This ridge profile is particularly favorable because the cut-off frequency of the waveguide is kept constant and the reflection factor of the tapered waveguide section is thus minimized in the above-mentioned frequency range.
  • the impedance transformer has a section which is designed as a tapered coaxial connection. This enables the use of vacuum RF windows of any embodiment.
  • the resonator cavity has a jet pipe opening with nose-shaped extensions. This "nose cone" geometry used in the area of the beam tube opening causes the accelerating field to be concentrated on the resonator axis, as a result of which a large shunt impedance is achieved with a high HOM damping efficiency guaranteed to the state of the art.
  • the solution according to the invention enables the use of HOM-damped resonators in most synchrotron radiation sources.
  • the maximum local thermal power densities on the inner surface of the resonator in the transition region between the waveguide and the resonator wall (with external excitation of the basic mode) are approximately 50% lower when using round waveguides than with rectangular waveguides. This allows a much simpler design of the cooling water channels.
  • the connection of a round waveguide with a cylindrical resonator is easier and cheaper than the connection of a rectangular waveguide with a spherical or bell-shaped design.
  • the production costs are only about 40%.
  • the “nose cone” geometry used to design the beam tube opening of the resonator cavity brings about a high shunt impedance of the fundamental mode with simultaneous efficient HOM damping.
  • FIG. 2 shows a schematic side view according to FIG. 1;
  • FIG. 3 schematically shows a spatial sectional drawing through an HOM-attenuated RF resonator according to FIG. 1;
  • Fig. 4 shows a ridge waveguide schematically in longitudinal section.
  • FIG. 1 schematically shows an HOM-damped RF resonator according to the invention.
  • a normally conductive 500 MHz acceleration resonator for synchrotron sources three circular ridge waveguides 2.1; 2.2; 2.3 by means of the flanges F1; F2; F3 arranged.
  • the flanges F1; F2; F3 enable the orientation of the webs of the waveguides 2.1; 2.2; 2.3.
  • the figure also shows the opening for an HF coupling element 4, the opening for the tuner 3 and the opening for connection to a measuring loop 5.
  • the offset of the three waveguides 2.1 arranged on the lateral surface of the resonator cavity 1 in the direction of its longitudinal axis can be clearly seen.
  • the offset according to the invention of the waveguides 2.1; 2.2; 2.3 to one another has the effect that both the modes that are symmetrical and antisymmetric with respect to the central plane are efficiently coupled out.
  • the jet pipe SR into which the resonator cavity 1 is fitted, is also shown.
  • FIG. 3 is a schematic spatial sectional drawing of the HOM-attenuated RF resonator shown in FIG. 1.
  • the two webs S1.1 and S2.1; S1.2 and S2.2; S1.3 and S2.3 of the three waveguides 2.1; 2.2; 2.3 protrude into the resonator cavity 1 according to the invention, ie the length of the webs S1.1; S2.1; S1.2; S2.2; S1.3; S2.3 is greater than the length of the wall of the waveguide 2.1; 2.2; 2.3.
  • the flanges F1; F2; F3 are the circular waveguides 2.1; 2.2; 2.3 adjustable in their orientation with respect to the beam axis with the resonator cavity 1, which enables a storage ring-specific optimization of the coupling of particularly disruptive HOMs.
  • the opening R of the jet pipe SR in the resonator cavity 1 has a “nose cone” geometry, as a result of which - as already described - the accelerating field is concentrated on the resonator axis.
  • Each waveguide 2.1; 2.2; 2.3 is - as shown in Figure 3 - each an impedance transformer 6.1; 6.2; 6.3 assigned. These impedance transformers 6.1; 6.2; 6.3 each have a section 7.1; 7.2; 7.3 on, which is designed as a tapered coaxial line.
  • the special design of the waveguide 2.1; 2.2; 2.3 with their symmetrically arranged two webs S1.1 and S2.1 penetrating into the resonator cavity 1; S1.2 and S2.2; S1.3 and S2.3 can be seen particularly well in this sectional drawing.
  • FIG. 4 shows one of the three circular waveguides 2 with two symmetrically arranged webs S1; S2 shown in longitudinal section.
  • the cut-off frequency along the waveguide 2.1; 2.2; 2.3 kept constant and thereby - as already mentioned - the reflection factor of the tapered waveguide section in the frequency range 650 MHz to 3 GHz minimized.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Particle Accelerators (AREA)

Description

Bezeichnung
HOM-gedämpfter Hochfrequenz-Resonator
Beschreibung
Die Erfindung betrifft einen HOM-gedämpften Hochfrequenz-Resonator, aufweisend einen zylinderförmigen Resonatorhohlraum, auf dessen Mantelfläche drei zirkuläre getaperte Wellenleiter mit zwei symmetrisch angeordneten Stegen angeordnet sind, wobei die cut-off-Frequenz des Wellenleitergrundmodes über die Länge der Wellenleiter durch Variation der Steghöhe konstant gehalten ist, und die Stegwellenleiter an ihrem Ende mit dem kleineren Durchmesser einen Impedanztransformator zur breitbandigen HF-Anpassung der Koaxialleitung aufweisen.
In Elektronen-Speicherringen zur Erzeugung von Synchrotronstrahlung hängt die Brillanz der Photonenstrahlen empfindlich von der Qualität des gespeicherten Elektronenstrahls ab. Insbesondere Strahlinstabilitäten haben einen negativen Einfluss auf die erzeugte Brillanz. Die Strahlinstabilitäten werden durch Multibunch-Schwingungen hervorgerufen, die eine Vergrößerung der Energiebreite (longitudinale Schwingungen) und der transversalen Emittanz (transversale Schwingungen) nach sich ziehen.
Die Multibunch-Schwingungen werden durch die Wechselwirkung der Elektronenpakete mit den Moden höherer Ordnung (HOM) des Beschleunigungsresonators angeregt. Durch Verringerung der Impedanzen dieser HOM's unterhalb der für jede Synchrotron-Quelle spezifischen kritischen Impedanz können die o.g. Instabilitäten unterdrückt werden.
Für die Unterdrückung der Instabilitäten sind dem Stand der Technik nach verschiedene Lösungen für Resonatoren bekannt. So ist beispielsweise in Proc. of the European Particle Accelerator Conference (EPAC 1990), Vol. 1 , pp. 149; Proc. of the European Particle Accelerator Conference (EPAC 1996), Vol. 1 , pp. 148 und ebenda Vol. 3, pp. 1976 der Resonator am Laboratori Nazionale di Frascati, INFN, in Frascati/Italien beschrieben. Dieser Resonator besteht aus einem glockenförmigen Resonatorhohlraum mit drei langen Rechteckhohlleitern zur HOM-Dämpfung, die unter einem Winkel von ca. 15 Grad zur Resonatorachse angeordnet sind. Bedingt durch diese Geometrie und die langen kegelstumpfförmigen Strahlrohre zur Anpassung des großen rohrseitigen Durchmessers an die Vakuumkammer des Rings beträgt die Einbaulänge in axialer Richtung etwa 2 m. Die breitbandigen Rechteckhohlleiter besitzen einen Übergang auf eine 7/8" EIA-Koaxialleitung zur Auskopplung der HOM-Energie. Nicht zuletzt aufgrund des großen Durchmessers der Strahlrohröffnungen können relativ kleine Werte für die HOM-Impedanzen erreicht werden. Dieser Vorteil wird aber mit einer ebenfalls deutlich reduzierten Shuntimpedanz für den Grundmode erkauft, was höhere Betriebskosten nach sich zieht.
Eine andere Lösung, radial angeordnete Wellenleiter an die störenden HOM's anzukoppeln, ist für das Cavity (Hohlraumresonator) am Stanford Linear Accelerator Center, SLAC, in Stanford/USA entwickelt worden (beispielsweise beschrieben in SLAC-PUB-6129, LBL-30624, BECON-91 , April 1991). Diese Anordnung besteht aus einem Resonatorhohlraum mit sphärischer radialer Kontur und drei rechteckigen Wellenleitern zur HOM-Dämpfung, die unter einem Winkel von ca. 30 Grad zur Strahlachse am Resonator angeordnet, dann aber parallel zur Achse orientiert und schließlich aus Platzgründen um 180 Grad gebogen sind. Die HOM-Energie wird in Ferritabsorbern im Innenraum der Wellenleiter absorbiert. Bedingt durch die Geometrie der Anordnung beträgt die Einbaulänge in axialer Richtung etwa 1 ,8 m.
Beide genannten Resonatoren sind für den Einsatz in Elektron-Positron- Speicherringen für die Hochenergiephysik mit längeren geraden Sektionen entwickelt worden und daher für die Verwendung in Synchrotron- Strahlungsquellen nur bedingt geeignet.
In Proc. of the European Particle Accelerator Conference (EPAC 1996), Vol. 3, pp. 1940 ist ein Resonator beschrieben, wie er von der Berliner Elektro- nenspeicherring-Gesellschaft für Synchrotronstrahlung m.b.H. vorgeschlagen worden ist. Hierbei weist der Hochfrequenz-Resonator einen zylinderförmigen Resonatorhohlraum auf, auf dessen Mantelfläche drei zirkuläre Wellenleiter zur Ankopplung an die HOM's angeordnet sind, die jeweils mit einem breitbandigen Übergang auf eine Koaxialleitung verbunden sind (broadband circular waveguide to coaxial transition - CWCT). Mit dieser Anordnung können die notwendigen Abmessungen, insbesondere die Einbaulänge, im Vergleich zum Stand der Technik verringert werden. In Proc. of the European Particle Accelerator Conference (EPAC 1998), Vol. 3, pp. 2065 ist für eine solche Anordnung ein zirkularer Wellenleiter beschrieben, der als getaperter Stegwellenleiter mit einer konstanten cut-off-Frequenz und einem Impedanztransformator zur 7/8"-Koaxialleitung ausgebildet ist. Wie bereits erwähnt, konnten die Abmessungen eines HOM-gedämpften Hochfrequenz- Resonators verringert werden, jedoch ist die Reduzierung der Shuntimpedanz des Fundamentalmodes relativ groß und die Dämpfungseffizienz für die Moden höherer Ordnung ungenügend.
Deshalb ist es Aufgabe der Erfindung, einen kostengünstig herstellbaren HOM-gedämpften HF-Resonator mit verbesserter Dämpfungscharakteristik bei gleichzeitig hoher Shuntimpedanz für den Fundamentalmode in Platz sparender Bauweise anzugeben.
Diese Aufgabe wird durch einen HOM-gedämpften Hochfrequenz-Resonator der eingangs genannten Art dadurch gelöst, dass erfindungsgemäß die Wellenleiter mit zwei symmetrisch angeordneten Stegen zur Einstellung einer Asymmetrie relativ zur Mittelebene des zylinderförmigen Resonatorhohlraumes in Richtung seiner Längsachse versetzt auf der Mantelfläche des Resonatorhohlraums angeordnet sind, die Wellenleiter mit zwei symmetrisch angeordneten Stegen in ihrem Winkel zur Achse des zylinderförmigen Resonatorhohlraums einstellbar ausgebildet sind und die Stege der Wellenleiter in den zylinderförmigen Resonatorhohlraum derart hineinragen, dass die Moden höherer Ordnung optimal angekoppelt sind.
Für die effiziente Reduzierung der HOM-Impedanzen ist eine möglichst breitbandige und reflexionsarme Anpassung der kreisförmigen Wellenleiter bei möglichst großer Kopplung von ausschlaggebender Bedeutung. Diese Wirkungen werden gerade durch die erfindungsgemäße Lösung realisiert.
Um sicherzustellen, dass sowohl die bezüglich der Mittelebene symmetrischen Moden als auch die antisymmetrischen Moden effizient ausgekoppelt werden, sind die zirkulären Wellenleiter relativ zur Mittelebene des zylinderförmigen Resonatorhohlraums in Richtung seiner Längsachse versetzt.
Da die Wellenleiter in ihrem Winkel zur Achse des zylinderförmigen Resonatorhohlraumes einstellbar ausgebildet sind, beispielsweise mittels rotationssymmetrischer UHV-Flansche mit dem Resonatorhohlraum verbunden sind, ist die Orientierung des Wellenleitersteges relativ zur Strahlachse wählbar. Dadurch ist es möglich, die Ankopplung an einzelne in einem spezifischen Speicherring besonders störende HOM's selektiv zu optimieren.
Da die Wellenleiter mit ihren Stegen in den Resonatorhohlraum tiefer hineinragen als vom Verbindungselement, beispielsweise den erwähnten Flanschen, vorgegeben, wird durch die erfindungsgemäße Lösung gewährleistet, dass nicht am selben Ort die Vakuumübergänge und die HF- Übergänge realisiert sind. Die Teillänge der in den Resonatorhohlraum hineinragenden Stege der Wellenleiter wird (neben anderen geometrischen Parametern) durch numerische Simulation derart variiert, dass die HOM- Impedanzen oberhalb der cut-off-Frequenz (650 MHz) bis 3 GHz minimiert werden.
Insbesondere die Einstellung der Winkel der Stege der Wellenleiter bezüglich der Achse des zylinderförmigen Resonatorhohiraums mittels rotationssymmetrischer Flansche ermöglicht eine Optimierung der Ankopplung besonders störender HOM's.
In einer Ausführungsform ist vorgesehen, dass die Stege der Wellenleiter bezüglich der Achse des zylinderförmigen Resonatorhohlraums parallel ausgerichtet sind, d.h. die Winkel der Stegwellenleiter zur Achse des zylinderförmigen Resonatorhohlraums beträgt 0 Grad. Diese Ausführung ist die optimale Lösung für den Fall, dass alle HOM's vom Elektronenstrahl mit gleicher Stärke angeregt werden. Ist dies nicht der Fall, so erlaubt die Einsteilbarkeit der Orientierung der Wellenleiterstege eine speicherringspezifische Minimierung der HOM's.
In einer anderen Ausführung weisen die zirkulären getaperten Stegwellenleiter eine variable Steghöhe auf, die über die Länge des getaperten Wellenleiters durch das Polynom zweiter Ordnung y = 3,6328 + 0,0347513x + 0,000183869x2 beschrieben ist, wobei x die Länge (in mm) des getaperten Wellenleiters und y der halbe Abstand der Stege (in mm) zueinander bedeuten. Dieses Stegprofil ist besonders günstig, da die cut-off-Frequenz des Wellenleiters konstant gehalten wird und dadurch der Reflexionsfaktor der getaperten Wellenleitersektion im o.g. Frequenzbereich minimiert ist.
Eine weitere Ausführungsform sieht vor, dass der Impedanztransformator eine Sektion aufweist, die als getaperte Koaxialverbindung ausgebildet ist. Dadurch wird die Verwendung von Vakuum-HF-Fenstern beliebiger Ausführungsformen ermöglicht. Der Resonatorhohlraum weist in einer nächsten Ausführungsform zur Optimierung der Shuntimpedanz des Fundamentalmodes eine Strahlrohröffnung mit nasenförmigen Erweiterungen auf. Diese verwendete „nose cone"-Geometrie im Bereich der Strahlrohröffnung bewirkt eine Konzentration des beschleunigenden Feldes auf der Resonatorachse, wodurch eine große Shuntimpedanz bei gleichzeitig hoher HOM- Dämpfungseffizienz erreicht wird. Durch die Realisierung einer hohen Shuntimpedanz ist im Beschleuinigerbetrieb eine energieeffizientere Beschleunigung des Elektronenstrahls i.V. zum Stand der Technik gewährleistet.
Die erfindungsgemäße Lösung ermöglicht mit ihrer Platz sparenden Bauweise den Einsatz von HOM-gedämpften Resonatoren in den meisten Synchrotron- Strahlungsquellen. Die maximalen lokalen thermischen Leistungsdichten auf der inneren Oberfläche des Resonators im Übergangsbereich zwischen Wellenleiter und Resonatorwand (bei externer Anregung des Grundmodes) sind bei Verwendung runder Wellenleiter um etwa 50 % geringer als bei rechteckförmigen Wellenleitern. Dies erlaubt eine wesentlich einfachere Gestaltung der Kühlwasserkanäle. Aus fertigungstechnischer Sicht ist die Verbindung eines runden Wellenleiters mit einem zylinderförmigen Resonator einfacher und kostengünstiger als die Verbindung eines rechteckförmigen Wellenleiters mit einer sphärischen oder glockenförmigen Ausführung. Im Vergleich zu den im Stand der Technik erwähnten Lösungen betragen die Herstellungungskosten nur etwa 40 %. Die für die Gestaltung der Strahlrohröffnung des Resonatorhohlraumes genutzte „nose cone"-Geometrie bewirkt - wie bereits erwähnt - eine hohe Shuntimpedanz des Fundamentalmodes bei gleichzeitiger effizienter HOM-Dämpfung.
Die Erfindung soll im folgenden Ausführungsbeispiel anhand von Zeichnungen näher erläutert werden.
Dabei zeigen Fig. 1 schematische Gesamtdarstellung eines HOM-gedämften HF-
Resonators in Strahlrichtung; Fig. 2 schematische Seitenansicht gemäß Fig. 1 ;
Fig. 3 schematisch eine räumliche Schnittzeichnung durch einen HOM- gedämpften HF-Resonator gemäß Fig. 1 ;
Fig. 4 einen Stegwellenleiter schematisch im Längsschnitt.
In Fig. 1 ist schematisch ein erfindungsgemäßer HOM-gedämpfter HF- Resonator dargestellt. In einem normalleitenden 500 MHz- Beschleunigungsresonator für Synchrotron-Quellen sind an einem zylinderförmigen Resonatorhohlraum 1 drei zirkuläre Stegwellenleiter 2.1 ; 2.2; 2.3 mittels der Flansche F1 ; F2; F3 angeordnet. Die Flansche F1 ; F2; F3 ermöglichen die Einstellung der Orientierung der Stege der Wellenleiter 2.1 ; 2.2; 2.3. Dargestellt in dieser Figur ist ebenfalls die Öffnung für ein HF- Einkoppelelement 4, die Öffnung für den Tuner 3 und die Öffnung für den Anschluss an eine Messschleife 5.
In der in Fig. 2 schematisch dargestellten Seitenansicht gemäß Fig. 1 ist gut erkennbar der Versatz der drei auf der Mantelfläche des Resonatorhohlraums 1 in Richtung seiner Längsachse angeordneten Wellenleiter 2.1 ; 2.2; 2.3 zueinander. Ebenfalls dargestellt sind in dieser Figur die Impedanztransformatoren 6.1 ; 6.2; 6.3. Der dargestellte erfindungsgemäße Versatz der Wellenleiter 2.1; 2.2; 2.3 zueinander bewirkt, dass sowohl die bezüglich der Mittelebene symmetrischen als auch antisymmetrischen Moden effizient ausgekoppelt werden. Eingezeichnet ist ebenfalls das Strahlrohr SR, in das der Resonatorhohlraum 1 eingepasst ist.
Die Fig. 3 ist eine schematische räumliche Schnittzeichnung des in Fig. 1 dargestellten HOM-gedämpften HF-Resonators. Hier ist nun gut erkennbar, wie jeweils die beiden Stege S1.1 und S2.1; S1.2 und S2.2; S1.3 und S2.3 der drei Wellenleiter 2.1 ; 2.2; 2.3 erfindungsgemäß in den Resonatorhohlraum 1 hineinragen, d.h. die Länge der Stege S1.1 ; S2.1 ; S1.2; S2.2; S1.3; S2.3 ist größer als die Länge der Wandung der Wellenleiter 2.1 ; 2.2; 2.3. Hierdurch erfolgt eine im Vergleich zum Stand der Technik verbesserte Ankopplung höherer Moden. Mittels der Flansche F1 ; F2; F3 sind die Zirkularen Wellenleiter 2.1 ; 2.2; 2.3 in ihrer Orientierung bezüglich der Strahlachse einstellbar mit dem Resonatorhohlraum 1 verbunden, wodurch eine speicherringspezifische Optimierung der Ankopplung besonders störender HOM's ermöglicht wird. Die Öffnung R des Strahlrohres SR im Resonatorhohlraum 1 weist eine „nose cone"-Geometrie auf, wodurch - wie bereits beschrieben - eine Konzentration des beschleunigenden Feldes auf der Resonatorachse realisiert ist.
Jedem Wellenleiter 2.1 ; 2.2; 2.3 ist - wie in Figur 3 dargestellt - auch je ein Impedanztransformator 6.1 ; 6.2; 6.3 zugeordnet. Diese Impedanztransformatoren 6.1 ; 6.2; 6.3 weisen je eine Sektion 7.1 ; 7.2; 7.3 auf, die als eine getaperte Koaxialleitung ausgebildet ist. Die spezielle Ausbildung der Wellenleiter 2.1 ; 2.2; 2.3 mit ihren in den Resonatorhohlraum 1 eindringenden jeweils symmetrisch angeordneten zwei Stegen S1.1 und S2.1 ; S1.2 und S2.2; S1.3 und S2.3 ist in dieser Schnittzeichnung besonders gut zu erkennen.
In der Figur 4 ist einer der drei zirkulären Wellenleiter 2 mit zwei symmetrisch angeordneten Stegen S1 ; S2 im Längsschnitt dargestellt. Der Abstand der beiden Stege S1 ; S2 im Wellenleiter 2 über seine Länge wird beispielsweise durch das Polynom zweiter Ordnung y = 3,6328 + 0,0347513x + 0,000183869x2 beschrieben, wobei x die Länge (in mm) des getaperten Wellenleiters 2 und y der halbe Abstand der Stege (in mm) S1 ; S2 zueinander bedeuten. Mit diesem Stegprofil wird die cut-off- Frequenz längs des Wellenleiters 2.1 ; 2.2; 2.3 konstant gehalten und dadurch - wie bereits erwähnt - der Reflexionsfaktor der getaperten Wellenleitersektion im Frequenzbereich 650 MHz bis 3 GHz minimiert. Numerisch konnte nachgewiesen werden, dass die erfindungsgemäße Lösung die Realisierung eines Beschleunigerresonators erlaubt, der die fast vollständige Unterdrückung von multibunch-lnstabilitäten in modernen Synchrotronstrahlungsquellen der dritten Generation gewährleistet. Ausserdem konnte gezeigt werden, dass die maximalen Stromschwellen in Synchrotronstrahlungsquellen i.V. zum Stand der Technik für Resonatoren mindestens um den Faktor 2 erhöht werden.

Claims

Patentansprüche
1. HOM-gedämpfter Hochfrequenz-Resonator, aufweisend einen zylinderförmigen Resonatorhohlraum (1), auf dessen Mantelfläche drei zirkuläre getaperte Wellenleiter (2.1; 2.2; 2.3) mit je zwei symmetrisch angeordneten Stegen (S1.1 und S2.1; S1.2 und S2.2; S1.3 und S2.3) angeordnet sind, wobei die cut-off-Frequenz des Wellenleitergrundmodes über die Länge der Wellenleiter (2.1; 2.2; 2.3) durch Variation der Steghöhe konstant gehalten ist, und die Stegwellenleiter (2.1; 2.2; 2.3) an ihrem Ende mit dem kleineren Durchmesser je einen Impedanztransformator (6.1; 6.2;
6.3) zur breitbandigen HF-Anpassung der Koaxialleitung aufweisen, dadurch gekennzeichnet, dass die Wellenleiter (2.1; 2.2; 2.3) mit je zwei symmetrisch angeordneten Stegen (S1.1 und S2.1; S1.2 und S2.2; S1.3 und S2.3) zur Einstellung einer
Asymmetrie relativ zur Mittelebene des zylinderförmigen Resonatorhohlraums
(1) in Richtung seiner Längsache versetzt auf der Mantelfläche des
Resonatorhohlraums (1) angeordnet sind, die Wellenleiter (2.1; 2.2; 2.3) mit den zwei symmetrisch angeordneten Stegen (S1.1 und S2.1; S1.2 und S2.2; S1.3 und S2.3) in ihrem Winkel zur
Achse des zylinderförmigen Resonatorhohlraums (1) einstellbar ausgebildet sind und die Stege (S1.1 und S2.1; S1.2 und S2.2; S1.3 und S2.3) der Wellenleiter
(2.1; 2.2; 2.3) in den zylinderförmigen Resonatorhohlraum (1) derart hineinragen, dass die Moden höherer Ordnung optimal angekoppelt sind.
2. HOM-gedämpfter Resonator nach Anspruch 1 , dadurch gekennzeichnet, dass die Stege (S1.1 und S2.1; S1.2 und S2.2; S1.3 und S2.3) der Wellenleiter (2.1; 2.2; 2.3) bezüglich der Achse des zylinderförmigen Resonatorhohlraums (1) parallel ausgerichtet sind.
3. HOM-gedämpfter Resonator nach Anspruch 1 , dadurch gekennzeichnet, dass die zirkulären getaperten Stegwellenleiter (2.1; 2.2; 2.3) eine Steghöhe aufweisen, die über die Länge des getaperten Wellenleiters (2.1; 2.2; 2.3) durch das Polynom zweiter Ordnung y = 3,6328 + 0,0347513x + 0,000183869x2 beschrieben ist, wobei x die Länge (in mm) des getaperten Wellenleiters und y der halbe Abstand der Stege (in mm) zueinander bedeuten.
4. HOM-gedämpfter Resonator nach Anspruch 1 , dadurch gekennzeichnet, dass jeder Impedanztransformator (6.1; 6.2; 6.3) eine Sektion (7.1; 7.2; 7.3) aufweist, die als getaperte Koaxialleitung ausgebildet ist.
5. HOM-gedämpfter Resonator nach Anspruch 1 , dadurch gekennzeichnet, dass der Resonatorhohlraum (1) eine Strahlrohröffnung (R) mit nasenförmigen Erweiterungen zur Konzentration des beschleunigenden Feldes auf der Resonatorachse aufweist.
EP02750795A 2001-06-15 2002-06-13 Hom-gedämpfter hochfrequenz-resonator Expired - Lifetime EP1400158B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10129774A DE10129774C2 (de) 2001-06-15 2001-06-15 HOM-gedämpfter Hochfrequenz-Resonator
DE10129774 2001-06-15
PCT/DE2002/002230 WO2002104086A1 (de) 2001-06-15 2002-06-13 Hom-gedämpfter hochfrequenz-resonator

Publications (2)

Publication Number Publication Date
EP1400158A1 true EP1400158A1 (de) 2004-03-24
EP1400158B1 EP1400158B1 (de) 2009-03-25

Family

ID=7688857

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02750795A Expired - Lifetime EP1400158B1 (de) 2001-06-15 2002-06-13 Hom-gedämpfter hochfrequenz-resonator

Country Status (5)

Country Link
US (1) US7973621B2 (de)
EP (1) EP1400158B1 (de)
AT (1) ATE427028T1 (de)
DE (2) DE10129774C2 (de)
WO (1) WO2002104086A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020127132B4 (de) 2020-10-15 2023-03-30 Helmholtz-Zentrum Berlin für Materialien und Energie Gesellschaft mit beschränkter Haftung HOM-gedämpfter supraleitender Hohlraumresonator, Nutzung desselben und Verfahren zu seiner Erzeugung
FR3125226A1 (fr) 2021-07-19 2023-01-20 L'oreal Pulvérisateur d’écran solaire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096457A (en) * 1976-10-29 1978-06-20 Harvard Industries, Inc. Low pass harmonic absorber
JPH0737698A (ja) * 1993-07-23 1995-02-07 Toshiba Corp 高周波加速空胴

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02104086A1 *

Also Published As

Publication number Publication date
US7973621B2 (en) 2011-07-05
DE50213392D1 (en) 2009-05-07
EP1400158B1 (de) 2009-03-25
ATE427028T1 (de) 2009-04-15
US20040164822A1 (en) 2004-08-26
WO2002104086A1 (de) 2002-12-27
DE10129774C2 (de) 2003-07-10
DE10129774A1 (de) 2003-01-30

Similar Documents

Publication Publication Date Title
DE3853507T2 (de) Ablenkmagnet.
DE1156454B (de) Verfahren und Vorrichtung zur UEbertragung von Hochfrequenz mittels eines im wesentlichen zylindrischen Buendels fortlaufend freier Wellen
EP0060922B1 (de) Breitbandiger Rillenhornstrahler
DE1184426B (de) Magnetronroehre der Radbauart
DE4426597A1 (de) Erweiterte, einen modifizierten scheibenbelasteten Wellenleiter verwendende Wechselwirkungs-Ausgangsschaltung
DE10129774C2 (de) HOM-gedämpfter Hochfrequenz-Resonator
DE1541926A1 (de) Mikrowellenroehre mit gekreuzten elektrischen und magnetischen Feldern
EP0177668B1 (de) Vorrichtung zur Führung eines Elektronenstrahls
DE2738644C2 (de) Kopplungsvorrichtung für Höchstfrequenzröhren
DE2525845C3 (de) Breitbandig reflexionsarm bedämpfte Verzögerungsleitung und Verfahren zu ihrer Herstellung
DE2208570A1 (de) Hochfrequenzröhre
DE1541929B1 (de) Laufzeitroehre fuer breites Frequenzband
DE3134588A1 (de) Wanderfeldroehre
DE3134583A1 (de) Gyrotron-hohlraumresonator
DE2842576A1 (de) Polarisationsweiche
DE1011004B (de) Wellenleiter fuer Wanderfeldroehren
DE1566031A1 (de) Hochfrequenz-Entladungseinrichtung mit Geschwindigkeitsmodulation
DE710452C (de) Anordnung zur Erzeugung oder zum Empfang hochfrequenter Schwingungen
EP2553757A1 (de) Koaxialleiterstruktur
DE2353555A1 (de) Laufzeitroehre
DE1491530A1 (de) Elektronen-Entladungseinrichtung
DE10040320C1 (de) Innenleiter eines koaxialen Gyrotrons mit um den Umfang gleichverteilten axialen Korrugationen
DE3913188C2 (de) Laserresonator
EP0280151B1 (de) Mikrowellen-Polarisationsweiche
EP1206812A1 (de) Hohlleiterübergang

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELMHOLTZ-ZENTRUM BERLIN FUER MATERIALIEN UND ENER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MARHAUSER, FRANK

Inventor name: WEIHRETER, ERNST

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50213392

Country of ref document: DE

Date of ref document: 20090507

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090625

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090706

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

BERE Be: lapsed

Owner name: HELMHOLTZ-ZENTRUM BERLIN FUR MATERIALIEN UND ENER

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090626

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100423

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100423

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110613

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50213392

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50213392

Country of ref document: DE

Effective date: 20120914

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210621

Year of fee payment: 20

Ref country code: FR

Payment date: 20210621

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50213392

Country of ref document: DE