EP1396905A1 - Mobilfunkantenne für mindestens vier Frequenzbänder - Google Patents

Mobilfunkantenne für mindestens vier Frequenzbänder Download PDF

Info

Publication number
EP1396905A1
EP1396905A1 EP02019915A EP02019915A EP1396905A1 EP 1396905 A1 EP1396905 A1 EP 1396905A1 EP 02019915 A EP02019915 A EP 02019915A EP 02019915 A EP02019915 A EP 02019915A EP 1396905 A1 EP1396905 A1 EP 1396905A1
Authority
EP
European Patent Office
Prior art keywords
antenna
mobile radio
triband
resonant circuit
frequency ranges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP02019915A
Other languages
English (en)
French (fr)
Inventor
Sheng-Gen Dr. Pan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP02019915A priority Critical patent/EP1396905A1/de
Priority to US10/655,415 priority patent/US20040046702A1/en
Publication of EP1396905A1 publication Critical patent/EP1396905A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means

Definitions

  • the invention relates to a cellular antenna for at least four separate mobile radio standard frequency ranges.
  • tri-band mobile radio antennas So-called “triband mobile radio antennas” have already been launched on the market, the three of the standard mobile radio frequency ranges mentioned above support.
  • Internal tri-band cellular antennas are inside a case of the Cellular device arranged and can be called a "PIFA antenna” be trained.
  • Such cellular antennas can the standard frequency ranges EGSM900, PSC1800 and PCS1900 support while the standard frequency band at GSM850 is not recorded.
  • the invention is based on the object a cellular antenna for at least four separate ones To create cellular standard frequency ranges by The smallest possible technical change to a known one Triband antenna can be produced.
  • a mobile radio antenna for at least four separate mobile radio standard frequency ranges which has a triband antenna which is designed for three of the at least four standard frequency ranges and has a high-frequency feed point and at least one ground point, which form an input connection of the triband antenna, and A resonant circuit with high-pass filter properties is connected to the input connection of the triband antenna, which is designed such that a combination of the triband antenna and the resonant circuit is adapted for the at least four standard frequency ranges.
  • the basic idea of the invention is therefore a Combine triband antenna with a resonant circuit, so is designed that the emerging cellular antenna for at least four separate mobile radio standard frequency ranges can be used.
  • An overall antenna structure of the Cellular antenna results from the combination of one Triband antenna and the resonant circuit.
  • the triband antenna is preferably an internal PIFA antenna, those for the standard frequency ranges EGSM900, PCN1800 and PCS1900 is adapted and are components of the resonant circuit chosen such that the combination of the triband antenna and the resonant circuit for the standard frequency ranges ESGM900, PCN1800, PCS1900 and GSM850 is adapted.
  • the resonant circuit can consist of a plurality of inductors and Capacities have been built up, the values of Input impedance of the input connection of the triband antenna can be determined by means of simulation. It should be emphasized that the design of the resonant circuit with High pass filter properties especially from the Input impedance of the triband antenna is dependent, which in essentially due to the spatial dimensions of the triband antenna is determined. However, there is no easier one Relationship between the spatial dimensions of the triband antenna and their input impedance between the High frequency feed point and the ground point. In this respect it is often necessary to consider the input impedance either to be determined empirically or by means of simulation calculations determine.
  • the Tuning circuit with high pass filter characteristics preferred by is the ⁇ type.
  • the resonant circuit can consist of three Inductors and two capacities can be built.
  • a Antenna for at least four separate mobile radio standard frequency ranges is combined from a triband antenna A, which has an input connector with a High frequency feed point S1 and a ground point P1 has, and one connected to the input terminal Oscillating circuit S, which has high pass filter properties.
  • Input signal for the overall antenna structure Oscillating circuit S and triband antenna A are used High-frequency signal from a power amplifier (not shown) of a mobile device.
  • FIG. 2 shows the structure of a more in detail Embodiment of a cellular antenna for at least four separate mobile radio standard frequency ranges.
  • the triband antenna A shown for the standard mobile radio frequency ranges EGSM900, PCN1800 and PpCS1900 is adapted.
  • the triband antenna A shows a first antenna area P1, which in the essentially describes a rectangular line, but a Has opening at a corner of the rectangular line, and one essentially surrounds second antenna area P2.
  • the second antenna area P2 is used in the present Embodiment of the triband antenna A also as "parasitic Element "denotes and is on the antenna surface P1 capacitively coupled.
  • the antenna area P2 has one separate ground point G2.
  • the high-frequency feed point S1 is located at one Outside of the antenna area P1, approximately opposite the opening provided in the first antenna area P1.
  • the ground point G1 is also arranged on the antenna surface P1. Its position results from the requirement that a short arm of the antenna area P1 together with the second antenna area P2 is provided for the mobile radio standard frequency ranges PCN1800 and PCS1900 with respect to the ground point G1. In contrast, the long arm of the first antenna area P1 - based on the ground point G1 - is used for the standard frequency range EGSM900. It should be emphasized that the above descriptions relate to the sole operation of the triband antenna A. The interconnection of the triband antenna A with the resonant circuit S now to be explained has an influence on the course of a reflection coefficient S 11 .
  • the resonant circuit S is in the Detail shown.
  • the resonant circuit S is on the Input connection of the triband antenna A connected to the through the high frequency feed point S1 and the ground point G1 is defined.
  • the resonant circuit S is made up of three Inductors Lp1, Lp2, Lp3 and two capacitors Cs1, Cs2 built up.
  • This structure corresponds to a typical one Circuit arrangement for a ⁇ -type high-pass filter, the Inductors Lp1, Lp2 and Lp3 on the ground side are united while on the part of the High frequency supply point S1 one of the capacities Cs1, Cs2 interposed.
  • the embodiment of the inductors Lp1, Lp2, Lp3 are in the range of 5 - 35nH, while the Capacities Cs1, Cs2 assume values in the range of 1 - 10 pF can.
  • FIG. 3 shows the course of the reflection coefficient S 11 , strictly speaking its amount, as a function of the frequency between 800 and 2000 MHz.
  • a first curve 1 relates to the combination of the triband antenna A and the resonant circuit S from FIG. 2 for specific values for the inductances Lp1, Lp2, Lp3 and the capacitances Cs1, Cs2 in the intervals specified above.
  • An examination of curve 1 shows that the reflection coefficient S 11 has local minima for the standard frequency ranges EGSM900, GSm850, PCN1800 and PCS1900, so that it can be used for four separate standard mobile radio frequency ranges.
  • a further minimum for the reflection coefficient S 11 results at approximately 1550 MHz, which is so pronounced that the mobile radio antenna could also be used in this frequency range, which can be of practical importance for a GPS application at 1575 MHz.
  • the combination of the triband antenna A and the resonant circuit S has five separate local minima for the reflection coefficient S 11 .
  • the course of the reflection coefficient S 11 for the triband antenna A alone is shown in FIG. 3 as curve 2. It can be seen that the triband antenna A shows a comparatively narrow minimum of the reflection coefficient S 11 at 900 MHz, that curve 1 is less pronounced due to the addition of the resonant circuit S, but on the low-frequency side for the combination of triband Antenna A and resonant circuit S results in a further minimum of the reflection coefficient S 11 .
  • the tri-band antenna A alone there is a broad minimum compared to the course of the reflection coefficient S 11 for the combination at about 1900 MHz, so that the standard mobile radio frequency band at 1800 MHz is also included.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transceivers (AREA)

Abstract

Die Erfindung bezieht sich auf eine Mobilfunkantenne für mindestens vier getrennte Mobilfunk-Standardfrequenzbereiche, die eine Triband-Antenne A aufweist, die für drei der mindestens vier Standardfrequenzbereiche ausgelegt ist und einen Hochfrequenzzuführungspunkt S sowie mindestens einen Massepunkt G1 aufweist, die einen Eingangsanschluss der Triband-Antenne A bilden, und an den Eingangsanschluss der Triband-Antenne A ein Schwingkreis S mit Hochpassfiltereigenschaften angeschlossen ist, der derart ausgelegt ist, dass eine Kombination aus der Triband-Antenne A und dem Schwingkreis S für die mindestens vier Standardfrequenzbereiche angepasst ist. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Mobilfunkantenne für mindestens vier getrennte Mobilfunk-Standardfrequenzbereiche.
Zu diesem Thema finden im Bereich der Mobilfunktechnik derzeit umfangreiche Entwicklungstätigkeiten statt. Dem liegt zu Grunde, dass im europäischen Raum die Mobilfunk-Standardfrequenzbereiche EGSM900 und PCN1800 definiert sind, während im nordamerikanischen Raum die Mobilfunk-Standardfrequenzbereiche GSM850 und PCS1900 benutzt werden. Die im europäischen Raum genutzten Mobilfunk-Standardfrequenzbereiche sind auch in vielen weiteren Regionen der Welt im Einsatz.
Für die Hersteller und Anbieter von Mobilfunkgeräten ist es wünschenswert, die Mobilfunkgeräte mit Mobilfunkantennen auszustatten, die weltweit ohne weitere technische Anpassung einsetzbar sind. Dies führt zu einem Bedarf an Mobilfunkantennen, die mindestens vier getrennte Mobilfunk-Standardfrequenzbereiche bedienen können.
Bereits in den Markt eingeführt sind sogenannte "Triband-Mobilfunkantennen", die drei der oben genannten Mobilfunk-Standardfrequenzbereiche unterstützen. Interne Triband-Mobilfunkantennen sind innerhalb eines Gehäuses des Mobilfunkgerätes angeordnet und können als sogenannte "PIFA-Antenne" ausgebildet sein. Solche Mobilfunkantennen können die Standardfrequenzbereiche EGSM900, PSC1800 und PCS1900 unterstützen, während das Standardfrequenzband bei GSM850 nicht erfasst wird.
Ausgehend hiervon liegt der Erfindung die Aufgabe zu Grunde, eine Mobilfunkantenne für mindestens vier getrennte Mobilfunk-Standardfrequenzbereiche zu schaffen, die durch möglichst geringe technische Änderung einer bekannten Triband-Antenne herstellbar ist.
Diese Aufgabe wird gelöst durch eine Mobilfunkantenne für mindestens vier getrennte Mobilfunk-Standardfrequenzbereiche, die eine Triband-Antenne aufweist, die für drei der mindestens vier Standardfrequenzbereiche ausgelegt ist und einen Hochfrequenzzuführungspunkt sowie mindestens einen Massepunkt aufweist, die einen Eingangsanschluss der Triband-Antenne bilden, und
an den Eingangsanschluss der Triband-Antenne ein Schwingkreis mit Hochpassfiltereigenschaften angeschlossen ist, der derart ausgelegt ist, dass eine Kombination aus der Triband-Antenne und dem Schwingkreis für die mindestens vier Standardfrequenzbereiche angepasst ist.
Der Grundgedanke der Erfindung besteht somit darin, eine Triband-Antenne mit einem Schwingkreis zu kombinieren, der so ausgelegt ist, dass die entstehende Mobilfunkantenne für mindestens vier getrennte Mobilfunk- Standardfrequenzbereiche einsetzbar ist. Eine Gesamt-Antennenstruktur der Mobilfunkantenne ergibt sich somit aus der Kombination einer Triband-Antenne und des Schwingkreises.
Auf diese Weise ergibt sich der Vorteil, dass Mobilfunkgeräte, die auf mindestens vier getrennten Mobilfunk- Standardfrequenzbereichen arbeiten sollen, grundsätzlich mit Antennen ausgestattet werden können, die beispielsweise bereits in dem Markt eingeführt sind und für die insbesondere Werkzeuge für ihre Herstellung bereits vorhanden sind. Die erforderliche Nachrüstung mit dem beschriebenen Schwingkreis ist als volumensparende Lösung anzusehen, da sich die Schaltung des Schwingkreises auf der standardmäßig in einem Mobilfunkgerät vorhandenen gedruckten Schaltkreisplatine verwirklichen lässt.
Bevorzugt ist die Triband-Antenne eine interne PIFA-Antenne, die für die Standardfrequenzbereiche EGSM900, PCN1800 und PCS1900 angepasst ist und Komponenten des Schwingkreises sind derart gewählt, dass die Kombination aus der Triband-Antenne und dem Schwingkreis für die Standardfrequenzbereiche bei ESGM900, PCN1800,PCS1900 und GSM850 angepasst ist. In der Praxis wird der Verlauf eines Reflexionskoeffizienten der Triband-Antenne durch den Einsatz des Schwingkreises mit Hochpassfiltereigenschaften derart modifiziert, dass auch ein Einsatz der Mobilfunkantenne bei GSM850 ermöglicht wird.
Der Schwingkreis kann aus einer Mehrzahl Induktivitäten und Kapazitäten aufgebaut sein, deren Werte aufgrund einer Eingangsimpedanz des Eingangsanschlusses der Triband-Antenne mittels Simulation ermittelbar sind. Es ist hervorzuheben, dass die Auslegung des Schwingkreises mit Hochpassfiltereigenschaften insbesondere von der Eingangsimpedanz der Triband-Antenne abhängig ist, die im wesentlichen durch die räumlichen Abmessungen der Triband-Antenne bestimmt wird. Allerdings existiert kein einfacherer Zusammenhang zwischen den räumlichen Abmessungen der Triband-Antenne und ihrer Eingangimpedanz zwischen dem Hochfrequenzzuführungspunkt und dem Massepunkt. Insofern wird es häufig erforderlich sein, die Eingangimpedanz entweder empirisch zu bestimmen oder mittels Simulationsrechnungen zu ermitteln.
Zum Auffinden geeigneter Werte für die Induktivitäten und Kapazitäten kann, ausgehend von dem ermittelten Wert für die Eingangimpedanz, empirisch vorgegangen werden oder aber es wird ein linearer Schaltkreissimulator eingesetzt, mit dessen Hilfe ein zu erwartender Verlauf des Reflexionskoeffizienten der Kombination aus der Triband-Antenne und dem Schwingkreis abgeschätzt werden kann.
In praktischen Versuchen hat sich gezeigt, dass der Schwingkreis mit Hochpassfiltereigenschaften bevorzugt von dem π-Typ ist. Insbesondere kann der Schwingkreis aus drei Induktivitäten und zwei Kapazitäten aufgebaut sein.
Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnungen noch näher erläutert. Es zeigen:
Fig. 1
Ein Übersichtsschema einer Mobilfunkantenne für mindestens vier getrennte Mobilfunk-Standardfrequenzbereiche,
Fig. 2
ein Ausführungsbeispiel einer Kombination aus einer Triband-Antenne und einem Schwingkreis mit Hochpassfiltereigenschaften und
Fig. 3
einen Verlauf eines Reflexionskoeffizienten S11 der Kombination von Fig. 2 im Frequenzbereich zwischen 800 und 2000 MHz.
Aus dem Übersichtsschema der Fig. 1 geht hervor, dass eine Antenne für mindestens vier getrennte Mobilfunk-Standardfrequenzbereiche kombiniert ist aus einer Triband-Antenne A, die einen Eingangsanschluss mit einem Hochfrequenzzuführungspunkt S1 und einen Massepunkt P1 aufweist, und einem an dem Eingangsanschluss angeschlossenen Schwingkreis S, der Hochpassfiltereigenschaften aufweist. Als Eingangssignal für die Gesamt-Antennenstruktur aus Schwingkreis S und Triband-Antenne A dient ein Hochfrequenzsignal, das von einer Sendendstufe (nicht dargestellt) eines Mobilfunkgerätes stammt.
Aus der Fig. 2 geht mehr im Detail der Aufbau eines Ausführungsbeispiels einer Mobilfunkantenne für mindestens vier getrennte Mobilfunk-Standardfrequenzbereiche hervor. Auf der rechten Seite der Fig. 2 ist die Triband-Antenne A dargestellt, die für die Mobilfunk-Standardfrequenzbereiche EGSM900, PCN1800 und PpCS1900 angepasst ist. Die Triband-Antenne A zeigt eine erste Antennenfläche P1, die im wesentlichen eine Rechtecklinie beschreibt, jedoch eine Öffnung an einer Ecke der Rechtecklinie aufweist, und eine zweite Antennenfläche P2 im wesentlichen umschließt. Die zweite Antennenfläche P2 wird bei der vorliegenden Ausführungsform der Triband-Antenne A auch als "parasitäres Element" bezeichnet und ist an die Antennenfläche P1 kapazitiv gekoppelt. Die Antennenfläche P2 weist einen gesonderten Massepunkt G2 auf.
Der Hochfrequenzzuführungspunkt S1 befindet sich an einer Außenseite der Antennenfläche P1, und zwar etwa gegenüber der in der ersten Antennenfläche P1 vorgesehenen Öffnung.
Der Massepunkt G1 ist ebenfalls an der Antennenfläche P1 angeordnet. Seine Position ergibt sich aus dem Erfordernis, dass in Bezug auf den Massepunkt G1 ein kurzer Arm der Antennenfläche P1 zusammen mit der zweiten Antennenfläche P2 für die Mobilfunk-Standardfrequenzbereiche PCN1800 und PCS1900 vorgesehen ist. Demgegenüber wird der lange Arm der ersten Antennenfläche P1 - bezogen auf den Massepunkt G1 - für den Standardfrequenzbereich EGSM900 eingesetzt. Dabei ist hervorzuheben, dass vorstehende Beschreibungen sich genau genommen auf einen alleinigen Betrieb der Triband-Antenne A beziehen. Das Zusammenschalten der Triband-Antenne A mit dem nun zu erläuternden Schwingkreis S hat Einfluss auf einen Verlauf eines Reflexionskoeffizienten S11.
Auf der linken Seite der Fig. 2 ist der Schwingkreis S im Detail dargestellt. Der Schwingkreis S ist an den Eingangsanschluss der Triband-Antenne A angeschlossen, der durch den Hochfrequenzzuführungspunkt S1 und den Massepunkt G1 definiert ist. Der Schwingkreis S ist aus drei Induktivitäten Lp1, Lp2, Lp3 und zwei Kapazitäten Cs1, Cs2 aufgebaut. Dieser Aufbau entspricht einer typischen Schaltungsanordnung für einen π-Typ-Hochpassfilter, wobei die Induktivitäten Lp1, Lp2 und Lp3 masseseitig zusammengeschlossen sind, während sie auf Seiten des Hochfrequenzzuführungspunktes S1 jeweils eine der Kapazitäten Cs1, Cs2 zwischengeschaltet haben. Im vorliegenden Ausführungsbeispiel können die Werte der Induktivitäten Lp1, Lp2, Lp3 im Bereich von 5 - 35nH liegen, während die Kapazitäten Cs1, Cs2 Werte im Bereich von 1 - 10 pF annehmen können.
Konkrete Werte für die Induktivitäten Lp1, Lp2, Lp3 und die Kapazitäten Cs1, Cs2 werden empirisch oder per Simulation bestimmt, und zwar ausgehend von einer Eingangsimpedanz der Triband-Antenne A.
Die Fig. 3 zeigt den Verlauf des Reflexionskoeffizienten S11, genau genommen seines Betrages, als Funktion der Frequenz zwischen 800 - 2000 MHz. Eine erste Kurve 1 bezieht sich auf die Kombination aus der Triband-Antenne A und dem Schwingkreis S von Fig. 2 für bestimmte Werte für die Induktivitäten Lp1, Lp2, Lp3 und die Kapazitäten Cs1, Cs2 in den oben angegebene Intervallen. Eine Betrachtung der Kurve 1 zeigt, dass der Reflexionskoeffizient S11 jeweils für die Standardfrequenzbereiche EGSM900, GSm850, PCN1800 und PCS1900 lokale Minima aufweist, so dass sie für vier getrennte Mobilfunk-Standardfrequenzbereiche einsetzbar ist. Ein weiteres Minimum für den Reflexionskoeffizienten S11 ergibt sich bei etwa 1550 MHz, das derart ausgeprägt ist, dass die Mobilfunkantenne auch in diesem Frequenzbereich einsetzbar wäre, was für eine GPS-Anwendung bei 1575 MHz von praktischer Bedeutung sein kann. Insgesamt weist die Kombination aus der Triband-Antenne A und dem Schwingkreis S jedoch fünf voneinander getrennte lokale Minima für den Reflexionskoeffizienten S11 auf.
Zum Vergleich ist in der Fig. 3 als Kurve 2 auch der Verlauf des Reflexionskoeffizienten S11 für die Triband-Antenne A allein dargestellt. Es ist ersichtlich, dass die Triband-Antenne A ein vergleichsweise schmales Minimum des Reflexionskoeffizienten S11 bei 900 MHz zeigt, dass in Kurve 1 durch die Hinzuschaltung des Schwingkreises S weniger stark ausgeprägt ist, wobei sich jedoch auf der niederfrequenten Seite für die Kombination aus Triband-Antenne A und Schwingkreis S ein weiteres Minimum des Reflexionskoeffizienten S11 ergibt. Für die Triband-Antenne A allein ergibt sich gegenüber dem Verlauf des Reflexionskoeffizienten S11 für die Kombination bei etwa 1900 MHz ein breit ausgeprägtes Minimum, so dass auch das Mobilfunk- Standardfrequenzband bei 1800 MHz mit erfasst wird.

Claims (5)

  1. Mobilfunkantenne für mindestens vier getrennte Mobilfunk-Standardfrequenzbereiche, die eine Triband-Antenne (A) aufweist, die für drei der mindestens vier Standardfrequenzbereiche ausgelegt ist und einen Hochfrequenzzuführungspunkt (S)sowie mindestens einen Massepunkt (G1) aufweist, die einen Eingangsanschluss der Triband-Antenne (A) bilden, und
    an den Eingangsanschluss der Triband-Antenne (A) ein Schwingkreis (S) mit Hochpassfiltereigenschaften angeschlossen ist, der derart ausgelegt ist, dass eine Kombination aus der Triband-Antenne (A) und dem Schwingkreis (S) für die mindestens vier Standardfrequenzbereiche angepasst ist.
  2. Mobilfunkantenne nach Anspruch 1, bei der die Triband-Antenne (A) eine interne PIFA-Antenne ist, die für die Standardfrequenzbereiche EGSM900, PCN1800 und PCS1900 angepasst ist und Komponenten des Schwingkreises (S) derart gewählt sind, dass die Kombination aus der Triband-Antenne (A) und dem Schwingkreis (S) für die Standardfrequenzbereiche bei EGSM900, PCN1800, PCS1900 und GSM850 angepasst ist.
  3. Mobilfunkantenne nach einem der Ansprüche 1 oder 2, bei der der Schwingkreis (S) aus einer Mehrzahl Induktivitäten und Kapazitäten aufgebaut ist, deren Werte aufgrund einer Eingangsimpedanz des Eingangsanschlusses der Triband-Antenne (A) mittels Simulation ermittelbar sind.
  4. Mobilfunkantenne nach Anspruch 3, bei der der Schwingkreis (S) mit Hochpassfiltereigenschaften von dem π-Typ ist.
  5. Mobilfunkantenne nach einem der Ansprüche 3 oder 4, bei der der Schwingkreis aus drei Induktivitäten (Lp1, Lp2, Lp3) und zwei Kapazitäten (Ls1, LS2) aufgebaut ist.
EP02019915A 2002-09-04 2002-09-04 Mobilfunkantenne für mindestens vier Frequenzbänder Ceased EP1396905A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02019915A EP1396905A1 (de) 2002-09-04 2002-09-04 Mobilfunkantenne für mindestens vier Frequenzbänder
US10/655,415 US20040046702A1 (en) 2002-09-04 2003-09-04 Quad-band mobile radio antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP02019915A EP1396905A1 (de) 2002-09-04 2002-09-04 Mobilfunkantenne für mindestens vier Frequenzbänder

Publications (1)

Publication Number Publication Date
EP1396905A1 true EP1396905A1 (de) 2004-03-10

Family

ID=31502722

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02019915A Ceased EP1396905A1 (de) 2002-09-04 2002-09-04 Mobilfunkantenne für mindestens vier Frequenzbänder

Country Status (2)

Country Link
US (1) US20040046702A1 (de)
EP (1) EP1396905A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022116887A1 (zh) * 2020-12-02 2022-06-09 维沃移动通信有限公司 移动通信设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20040584A (fi) * 2004-04-26 2005-10-27 Lk Products Oy Antennielementti ja menetelmä sen valmistamiseksi
WO2008119699A1 (en) 2007-03-30 2008-10-09 Fractus, S.A. Wireless device including a multiband antenna system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613209A1 (de) * 1993-02-26 1994-08-31 Nec Corporation Schaltungsanordnung zur Impedanzanpassung für zwei Frequenzen für eine Antenne
WO2002043182A1 (de) * 2000-11-24 2002-05-30 Siemens Aktiengesellschaft Pifa-antennenvorrichtung für mobile kommunikationsendgeräte

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2808633B1 (fr) * 2000-05-04 2002-07-26 Sagem Recepteur radio courte portee multibande pour donnees de vehicule automobile
US6573869B2 (en) * 2001-03-21 2003-06-03 Amphenol - T&M Antennas Multiband PIFA antenna for portable devices
US6466170B2 (en) * 2001-03-28 2002-10-15 Motorola, Inc. Internal multi-band antennas for mobile communications
US7057472B2 (en) * 2001-08-10 2006-06-06 Hitachi Metals, Ltd. Bypass filter, multi-band antenna switch circuit, and layered module composite part and communication device using them
US6650294B2 (en) * 2001-11-26 2003-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Compact broadband antenna
US6700540B2 (en) * 2002-02-14 2004-03-02 Ericsson, Inc. Antennas having multiple resonant frequency bands and wireless terminals incorporating the same
US6670923B1 (en) * 2002-07-24 2003-12-30 Centurion Wireless Technologies, Inc. Dual feel multi-band planar antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613209A1 (de) * 1993-02-26 1994-08-31 Nec Corporation Schaltungsanordnung zur Impedanzanpassung für zwei Frequenzen für eine Antenne
WO2002043182A1 (de) * 2000-11-24 2002-05-30 Siemens Aktiengesellschaft Pifa-antennenvorrichtung für mobile kommunikationsendgeräte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022116887A1 (zh) * 2020-12-02 2022-06-09 维沃移动通信有限公司 移动通信设备

Also Published As

Publication number Publication date
US20040046702A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
DE60213543T2 (de) Erhöhung der elektrischen Isolation zwischen zwei Antennen eines Funkgeräts
DE60211316T2 (de) Antennenanordnung
DE602004000423T2 (de) Einstellbare mehrbandige PIFA-Antenne
EP1406345B1 (de) PIFA-Antenne mit Zusatzinduktivität
DE60108046T2 (de) Doppeltwirkende Antenne
DE60306513T2 (de) Antennenanordnung
DE60102052T2 (de) Doppeltwirkende Antenne
DE60036283T2 (de) Struktur einer radiofrequenz-eingangsschaltung
DE60313409T2 (de) Akustisches Bandsperrenfilter
DE69929968T2 (de) Antennenschalter
DE10150159B4 (de) Impedanzanpassungsschaltung für einen Mehrband-Leisungsverstärker
DE202015009879U1 (de) Mehrbandstrahlerarray mit niedriger Gleichtaktresonanz
DE112009005325B4 (de) Front-End-Schaltung für verbesserte Antennenleistung
DE10025262B4 (de) Antennenvorrichtung
DE10223497A1 (de) Dualbandantenne mit drei Resonatoren
DE102011050566A1 (de) Antenna module
DE112012002502B4 (de) Demultiplexer
DE102014108135A1 (de) Balun mit vier LC Elementen
WO2000018026A1 (de) Mehrband-antennenschalter
EP1154518B1 (de) Integrierte Antenne für Mobilfunktelefone
DE60315938T2 (de) Anpassungs - Schaltung mit Schalter für VHF/UHF Bänder
DE60128700T2 (de) Drahtloses funkgerät
DE102013211824B4 (de) Mobilkommunikationsvorrichtung
EP1114490A2 (de) Bei mehreren frequenzbändern betreibbare antenne
DE202020106896U1 (de) Hochfrequenzmodul und Kommunikationsgerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040405

17Q First examination report despatched

Effective date: 20040504

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20040910