WO2022116887A1 - 移动通信设备 - Google Patents

移动通信设备 Download PDF

Info

Publication number
WO2022116887A1
WO2022116887A1 PCT/CN2021/132982 CN2021132982W WO2022116887A1 WO 2022116887 A1 WO2022116887 A1 WO 2022116887A1 CN 2021132982 W CN2021132982 W CN 2021132982W WO 2022116887 A1 WO2022116887 A1 WO 2022116887A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
frequency band
communication device
mobile communication
radiator
Prior art date
Application number
PCT/CN2021/132982
Other languages
English (en)
French (fr)
Inventor
黄红坤
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022116887A1 publication Critical patent/WO2022116887A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands

Definitions

  • the present application belongs to the technical field of mobile communication devices, and in particular relates to a mobile communication device.
  • GPS Global Positioning System
  • WiFi dual-band wireless network communication
  • WiFi-5G cellular band signals
  • 5G 5th Generation Mobile Communication Technology
  • breakpoints that is, isolation parts to isolate the radiating parts of different antennas.
  • more breakpoints will affect the overall strength and appearance of mobile communication equipment.
  • the purpose of the embodiments of the present application is to provide a mobile communication device that can achieve the effect of covering more signal frequency bands while setting as few isolation breakpoints as possible.
  • an embodiment of the present application provides a mobile communication device, including:
  • the isolation part is arranged on the radiation part and separates the radiation part into a first radiator and a second radiator;
  • the first end of the filter is connected to the first feeding point, and the second end of the filter is grounded.
  • the mobile communication device includes a radiation part, and the radiation part can be used to receive radio frequency signals.
  • the radiating portion may be disposed on a metal middle frame of a mobile communication device, such as a mobile phone, and located on the corner structures of the metal middle frame.
  • the communication device includes a first feeder, the first feeder is connected to the first radiator through the first feeding point, and at least two kinds of radio frequency signals can be received through the first radiator. At the same time, by setting a filter, one of the two radio frequency signals is filtered out, thereby avoiding signal interference caused when multiple radio frequency signals are received through a single radiation branch.
  • a single isolation unit is used to support multiple signal frequency bands, and at the same time, signal interference caused when a single radiation branch receives multiple radio frequency signals can be avoided.
  • the structural strength of the mobile communication device covers more signal frequency bands, which improves the communication performance of the mobile communication device.
  • FIG. 1 shows a schematic structural diagram of a mobile communication device according to an embodiment of the present application
  • FIG. 2 shows one of the schematic diagrams of S-parameter curves according to an embodiment of the present application
  • FIG. 3 shows one of the efficiency graphs according to an embodiment of the present application
  • FIG. 4 shows the second schematic diagram of the S-parameter curve according to the embodiment of the present application
  • FIG. 5 shows the second efficiency graph according to the embodiment of the present application.
  • 100 mobile communication equipment 102 radiating part, 1022 first radiator, 1024 second radiator, 104 isolation part, 1062 first feeder, 1064 filter, 1066 second feeder, 1068 third feeder, 108 first feeding point , 110 second feed point, 112 third feed point, 114 middle frame, 1142 first ground part, 1144 second ground part, GD first radiation branch, DF second radiation branch, ED third radiation branch, AC Fourth radiating branch, BC fifth radiating branch.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • FIG. 1 shows a schematic structural diagram of a mobile communication device according to an embodiment of the present application.
  • the communication device includes:
  • the isolation part 104 is arranged on the radiation part 102 and separates the radiation part 102 into a first radiator 1022 and a second radiator 1024;
  • the first feeding point 108 is disposed on the first radiator 1022;
  • a filter 1064, the first end of the filter 1064 is connected to the first feeding point 108, and the second end of the filter 1064 is grounded.
  • the mobile communication device 100 includes a radiation part 102, and the radiation part 102 can be used for receiving radio frequency signals.
  • the radiation portion 102 may be disposed on the metal middle frame 114 of the mobile communication device 100 , such as a mobile phone, and located on the corner structure of the metal middle frame 114 .
  • the mobile communication device 100 includes a first feeder 1062 , and the first feeder 1062 is connected to the first radiator 1022 through the first feed point 108 .
  • the first radiator 1022 can operate in at least two different frequency bands.
  • the filter 1064 one of the two radio frequency signals is filtered out, thereby avoiding signal interference caused when multiple radio frequency signals are received through a single radiation branch.
  • the radiation portion 102 is specifically a metal radiation portion 102, which may be an alloy material of metal aluminum or metal iron, such as aluminum alloy, stainless steel, and the like.
  • the embodiment of the present application does not limit the specific material of the radiation portion 102 .
  • the isolation portion 104 is made of an insulating material, including, for example, plastic, ceramic, etc.
  • the specific shape of the isolation portion 104 is not limited in the present application.
  • the function of the first feeder 1062 is to transmit the radio frequency signal to the main control board of the mobile communication device 100 or transmit the radio frequency signal of the main control board to the radiation part.
  • the first end of the filter 1064 is connected to the first feeder 1062, and the second end of the filter 1064 is connected to the ground of the main control board.
  • the first end of the filter 1064 is connected to the radiating part 102, specifically, to the first feeding point 108, and the second end of the filter 1064 is connected to the ground end of the main control board.
  • the filter 1064 can block the passage of signals in certain frequency bands, while allowing specific non-target signals to pass through, that is, to conduct specific non-target signals.
  • the non-target signals transmitted by the feeder 1062 are filtered out to avoid interference caused by the non-target signals.
  • a single isolation unit 104 is used to support multiple signal frequency bands, and at the same time, signal interference caused when a single radiation branch receives multiple radio frequency signals can be avoided.
  • the structural strength of the mobile communication device 100 is guaranteed, and on the other hand, more signal frequency bands are covered, and the communication performance of the mobile communication device 100 is improved.
  • the first radiator 1022 is further provided with a second feeding point 110 , and the second feeding point 110 is located between the first feeding point 108 and the isolation portion 104 , the second radiator 1024 is provided with the third feeding point 112 .
  • the first radiator 1022 is further provided with a second feed point 110, and the mobile communication device 100 includes a second feed line 1066.
  • the second feeder 1066 is connected to the first radiator 1022 through the second feed point 110 , so that the part of the first radiator 1022 is used as a radiating branch to acquire radio frequency signals, and the second feeder 1066 transmits the radio frequency signal Into the main control board to support some specific frequency bands of radio frequency signals.
  • the radiating part 102 is divided into a first radiator 1022 and a second radiator 1024 by the isolation part 104, wherein the second radiator 1024 is provided with a third feeding point 112, and the mobile communication device 100 includes a third feeding line 1068, which is isolated by The setting of the section 104 and multiple feed sources can support more frequency band signals.
  • the third feeder 1068 is connected to the second radiator 1024 through the second feed point 110 , so that all or part of the second radiator 1024 is used as a radiating branch to acquire radio frequency signals, and the third feeder 1068 transmits the radio frequency signal.
  • the RF signal is transmitted to the main control board to support the RF signal of some frequency bands.
  • the isolation portion 104 and the radiation provided by the embodiments of the present application are combined part 102, and various feed signals, so that the mobile communication device 100 can support radio frequency signals of more than 5 frequency bands, and only need to set a "breakpoint" of the isolation part 104 on the radiation part 102, which ensures the mobile communication device 100.
  • the overall strength of the communication device 100 is combined part 102, and various feed signals, so that the mobile communication device 100 can support radio frequency signals of more than 5 frequency bands, and only need to set a "breakpoint" of the isolation part 104 on the radiation part 102, which ensures the mobile communication device 100.
  • the first feeding point 108 , the second feeding point 110 and the third feeding point 112 are all feeding points.
  • the mobile communication device further includes a first grounding portion 1142 and a second grounding portion 1144 , the first grounding portion 1142 is disposed at the first end of the radiation portion 102 , and the second grounding portion 1142 The portion 1144 is disposed at the second end of the radiation portion 102 .
  • the first radiator 1022 includes a first radiating branch GD, a second radiating branch DF and a third radiating branch ED, the radiator between the first grounding part 1142 and the isolation part 104 is the first radiating branch GD, the isolation part 104 and the third radiating branch GD.
  • the radiator between a feeding point 108 is the second radiation branch DF
  • the radiator between the isolation portion 104 and the second feeding point 110 is the third radiation branch ED.
  • the second radiator 1024 includes the fourth radiating branch AC and the fifth radiating branch BC
  • the radiator between the second grounding part 1144 and the isolation part 104 is the fourth radiating branch AC
  • the third feeding point 112 and the isolation part 104 are the fourth radiating branch AC.
  • the radiator in between is the fifth radiating branch BC.
  • the part between points A and G is the above-mentioned radiating part 102
  • between CD is the isolation part 104 of the breakpoint
  • between GD is the first radiator 1022
  • the first radiator 1022 is integrally formed as a first radiating branch GD.
  • a second radiating branch DF is formed between the point D at one end of the isolation part 104 and the first feeding point 108, that is, the point F, and the point D at one end of the isolation part 104 and the second feeding point.
  • a third radiation branch ED is formed between the points 110E.
  • the second radiator 1024 is integrally formed as a fourth radiating branch AC, and on the second radiator 1024 , the third feeding point 112 , namely point B, and the isolation part 104
  • the fifth radiating branch BC is formed between the point C of the other end.
  • the first radiation branch GD, the second radiation branch DF, the third radiation branch ED, the fourth radiation branch AC, and the fifth radiation branch BC can be respectively used to receive radio frequency signals of five different frequency bands, thereby realizing that only setting An isolation part 104, that is, in the case of only one breakpoint, combined with multiple feed points, feed lines and multiple feed source signals set in the embodiments of the present application, thereby realizing the support for radio frequency signals of five different frequencies .
  • the working frequency band of the second radiation branch DF is the WiFi-2.4GHz frequency band
  • the working frequency band of the first radiation branch GD is the GPS L5 frequency band.
  • the first feeder 1062 is connected to the first radiation branch GD and the second radiation branch DF at the same time, wherein the first radiation branch GD works with the signal of the GPS L5 frequency band, and the second radiation branch DF works in the WiFi- 2.4GHz band.
  • the target signal of the first feeder 1062 is the GPS L5 signal
  • the WiFi-2.4GHz signal which is an interference signal
  • the signal of the main control board of 100 is only the GPS L5 signal of the target signal, thus avoiding the signal interference caused by connecting with two different radiation branch lines at the same time.
  • the signals sent and received through the first radiation branch GD are WiFi-2.4GHz signals and GPS L5 signals.
  • the embodiment of the present application does not limit the specific type of the signal that the first radiation branch GD works.
  • the above signal may also be a radio frequency signal of other types or frequencies.
  • the working frequency band of the third radiation branch ED is the WiFi-5GHz frequency band.
  • the WiFi-5GHz signal can be supported, thereby effectively increasing the communication capability of the mobile communication device 100.
  • the working frequency band of the third radiation branch ED is the WiFi-5GHz frequency band, but the embodiment of the present application does not limit the specific types of signals sent and received by the third radiation branch ED.
  • the frequency band to be supported by 100, the above signal may also be other types of radio frequency signals.
  • the working frequency band of the fourth radiation branch AC is the GPS L1 frequency band
  • the working frequency band of the fifth radiation branch BC is the N78 frequency band.
  • the third feeder 1068 is connected to the second radiator 1024, the second radiator 1024 is the fourth radiation branch AC, and the second radiator 1024 is separated by the third feeding point into the fifth radiation branch BC , the fourth radiation branch AC is used to receive the GPS L1 signal, thereby realizing the support for the GPS L1 signal.
  • the communication device realizes the support for GPS L5 signals through the first feeder 1062, and realizes the support for GPS L1 signals through the third feeder 1068, thus realizing the support for dual-frequency GPS signals.
  • the fifth radiation branch BC is used to receive the WiFi-2.4GHz signal, thereby realizing support for the WiFi-2.4GHz signal.
  • the communication device implements support for WiFi-5GHz signals through the second feeder 1066, and supports WiFi-2.4GHz signals through the third feeder 1068, thus realizing support for dual-band WiFi signals.
  • the second radiation branch DF is used for receiving N78 frequency band signals. Therefore, the communication device also supports 5G signals, so that on the premise that only one breakpoint is set, and dual-band GPS signals and dual-band WiFi signals are supported at the same time, the 5G antenna is further integrated, which is beneficial to the small size of the mobile communication device 100 on the one hand. At the same time, the structural strength of the mobile communication device 100 is ensured, and on the other hand, more signal frequency bands are covered, and the communication performance of the mobile communication device 100 is improved.
  • FIG. 1 a complete signal-antenna allocation manner is used for specific illustration.
  • the third feeder 1068 is a feeder of GPS L1, WiFi-2.4GHz and N78 frequency bands, and the radio frequency signals in the above frequency bands are fed at the third feed point, that is, point B.
  • the second feeder 1066 is a feeder in the WiFi-5GHz frequency band, and feeds at the second feed point, that is, point E.
  • the first feeder 1062 is a feeder in the GPS L5 frequency band, and is fed at the first feeding point, that is, point F.
  • a filter 1064 is added to the feed port of the first feeder 1062, that is, point F, the filter 1064 can prevent the GPS L5 frequency band signal from passing through, while allowing WiFi-2.4GHz and WiFi-5GHz frequency band signals pass through, so only the RF signals of GPS L5 frequency band can pass through the first feeder 1062, thus realizing the integration of GPS L1/GPS L5, WIFi-2.4GHz/WiFi-5GHz and N78 frequency band antennas on a single fracture set up.
  • FIG. 2 shows one of the schematic diagrams of S-parameter curves according to an embodiment of the present application, wherein the solid line part is the reflection coefficient, and the dotted line part is the coupling coefficient.
  • the solid line marked with a circle is the reflection coefficient of the antenna to which the third feeding point 112 belongs
  • the solid line marked with a square is the reflection coefficient of the antenna to which the second feeding point 110 belongs
  • the solid line marked with a triangle is the first feeding Reflection coefficient of the antenna to which point 108 belongs.
  • the dotted line marked with a circle is the coupling coefficient between the antenna to which the third feeding point 112 belongs and the antenna to which the second feeding point 110 belongs
  • the dotted line marked with a square is the antenna to which the first feeding point 108 belongs and the antenna to which the third feeding point 112 belongs.
  • the coupling coefficient between the antennas, the dotted line marked with a triangle is the coupling coefficient between the antenna to which the first feeding point 108 belongs and the antenna to which the second feeding point 110 belongs.
  • the reflection coefficients of the three antennas, as well as the coupling coefficients between the three antennas, are within a good range.
  • FIG. 3 shows one of the efficiency graphs according to an embodiment of the present application, wherein the solid line part is the system efficiency, and the dotted line part is the radiation efficiency.
  • the solid line marked with circles is the system efficiency of the antenna to which the third feeding point 112 belongs
  • the solid line marked with squares is the system efficiency of the antenna to which the second feeding point 110 belongs
  • the solid line marked with triangles is the first feeding System efficiency of the antenna to which point 108 belongs.
  • the dotted line marked with a circle is the radiation efficiency of the antenna to which the third feeding point 112 belongs
  • the dotted line marked with a square is the radiation efficiency of the antenna to which the second feeding point 110 belongs
  • the dotted line marked with a triangle is the radiation of the antenna to which the first feeding point 108 belongs. efficiency.
  • the system efficiency and radiation efficiency of the three antennas are all within a good range.
  • the working frequency band of the second radiation branch DF is the WiFi-2.4GHz frequency band
  • the working frequency band of the first radiation branch GD is the GPS L5 frequency band.
  • the first feeder 1062 is connected to point F, wherein the first radiation branch GD is used for receiving GPS L5 signals, and the second radiation branch DF is used for receiving N78 signals.
  • the target signal of the first feeder 1062 is the GPS L5 signal
  • the N78 signal which is an interfering signal, will be filtered out by the filter 1064. Therefore, the signal transmitted to the main control board of the mobile communication device 100 through the first feeder 1062 is only the GPS L5 signal of the target signal, thereby avoiding the signal interference caused by being connected to two different radiation branch lines at the same time.
  • the working frequency band of the third radiation branch ED is the WiFi-5GHz frequency band.
  • the second feeder 1066 is connected to point E, the second radiation branch is used for receiving signals in the N78 frequency band, and the third radiation branch ED is used for receiving WiFi-5GHz signals.
  • the 5G antenna is further integrated, which is beneficial to the miniaturization of the mobile communication device 100 on the one hand, while ensuring the structural strength of the mobile communication device 100, and on the other hand, it covers more signal frequency bands. The communication performance of the mobile communication device 100 is improved.
  • the working frequency band of the fourth radiation branch AC is the GPS L1 frequency band
  • the working frequency band of the fifth radiation branch BC is the N78 frequency band.
  • the third feeder 1068 is connected to the second radiator 1024, the second radiator 1024 is the fourth radiation branch AC, and the second radiator 1024 is separated by the third feeding point into the fifth radiation branch BC , the fourth radiation branch AC is used to receive the GPS L1 signal, thereby realizing the support for the GPS L1 signal.
  • the mobile communication device realizes the support for GPS L5 signals through the first feeder 1062, and realizes the support for GPS L1 signals through the third feeder 1068, thus realizing the support for dual-frequency GPS signals.
  • the third feeder 1068 is connected to point B, and the fifth radiation branch BC is used for receiving WiFi-2.4GHz signals, thereby realizing support for WiFi-2.4GHz signals.
  • the mobile communication device implements support for WiFi-5GHz signals through the second feeder 1066, and supports WiFi-2.4GHz signals through the third feeder 1068, thus realizing support for dual-band WiFi signals.
  • the third feeder 1068 is connected to point B, and the second radiating branch DF is used for receiving the N78 frequency band signal. Therefore, the communication device also supports 5G signals, so that on the premise that only one breakpoint is set, and dual-band GPS signals and dual-band WiFi signals are supported at the same time, the 5G antenna is further integrated, which is beneficial to the small size of the mobile communication device 100 on the one hand. At the same time, the structural strength of the mobile communication device 100 is ensured, and on the other hand, more signal frequency bands are covered, and the communication performance of the mobile communication device 100 is improved.
  • FIG. 1 another complete signal-antenna allocation manner is used for specific illustration.
  • the third feeder 1068 is a feeder of the GPS L1 and WiFi-2.4GHz frequency bands, and the radio frequency signal in the above frequency band is fed at the third feed point, that is, point B.
  • the second feeder 1066 is a feeder in the N78 frequency band and the WiFi-5GHz frequency band, and feeds at the second feeding point, that is, point E.
  • the first feeder 1062 is a feeder in the GPS L5 frequency band, and is fed at the first feeding point, that is, point F.
  • a filter 1064 is added to the feed port of the first feeder 1062, that is, point F, the filter 1064 can prevent the GPS L5 frequency band signal from passing through, while filtering out N78 and WiFi-5GHz Therefore, only the RF signal of the GPS L5 frequency band can pass through the first feeder 1062, thereby realizing the integrated setting of the GPS L1/GPS L5, WIFI-2.4GHz/WiFi-5GHz and N78 frequency band antennas on a single fracture.
  • the GPS L5 frequency band signal is mainly radiated through the first radiation branch GD
  • the GPS L1 frequency band signal is mainly radiated through the fourth radiation branch AC
  • the WiFi-2.4GHz frequency band signal is mainly radiated through the fifth radiation branch BC
  • the N78 The frequency band signals are mainly radiated through the second radiation branch FD
  • the WiFi-5GHz frequency band signals are mainly radiated through the third radiation branch ED.
  • FIG. 4 shows the second schematic diagram of the S-parameter curve according to the embodiment of the present application, wherein the solid line part is the reflection coefficient, and the dotted line part is the coupling coefficient.
  • the solid line marked with a circle is the reflection coefficient of the antenna to which the third feeding point 112 belongs
  • the solid line marked with a square is the reflection coefficient of the antenna to which the second feeding point 110 belongs
  • the solid line marked with a triangle is the first feeding Reflection coefficient of the antenna to which point 108 belongs.
  • the dotted line marked with a circle is the coupling coefficient between the antenna to which the third feeding point 112 belongs and the antenna to which the second feeding point 110 belongs
  • the dotted line marked in a square is the antenna to which the first feeding point 108 belongs and the antenna to which the third feeding point 112 belongs.
  • the coupling coefficient between , the dotted line marked with a triangle is the coupling coefficient between the antenna to which the first feeding point 108 belongs and the antenna to which the second feeding point 110 belongs.
  • the reflection coefficients of the three antennas, as well as the coupling coefficients between the three antennas, are within a good range.
  • FIG. 5 shows the second efficiency graph according to an embodiment of the present application, wherein the solid line part is the system efficiency, and the dotted line part is the radiation efficiency.
  • the solid line marked with circles is the system efficiency of the antenna to which the third feeding point 112 belongs
  • the solid line marked with squares is the system efficiency of the antenna to which the second feeding point 110 belongs
  • the solid line marked with triangles is the first feeding System efficiency of the antenna to which point 108 belongs.
  • the dotted line marked with a circle is the radiation efficiency of the antenna to which the third feeding point 112 belongs
  • the dotted line marked with a square is the radiation efficiency of the antenna to which the second feeding point 110 belongs
  • the dotted line marked with a triangle is the radiation of the antenna to which the first feeding point 108 belongs. efficiency.
  • the system efficiency and radiation efficiency of the three antennas are in the good range.
  • the mobile communication device 100 includes a middle frame 114 on which the radiation portion 102 is disposed, or at least a part of the middle frame 114 is formed as the radiation portion 102 .
  • the mobile device further includes a middle frame 114 , and the middle frame 114 may be a metal middle frame 114 or a non-metal middle frame 114 , and the material of the middle frame 114 is not limited in this embodiment of the present application.
  • the middle frame 114 is provided with a first grounding portion 1142 and a second grounding portion 1144 , and the radiation portion 102 is formed between the first grounding portion 1142 and the second grounding portion 1144 .
  • the mobile communication device 100 includes a main board.
  • the main board is arranged inside the middle frame 114 and is protected by the middle frame 114 .
  • the mainboard includes memory, processor and other circuit parts.
  • the processor on the mainboard decodes the radio frequency signal through the program stored in the memory and performs data processing to obtain the data contained in the radio frequency signal.
  • feedback information is generated according to the acquired data, and the feedback information is radiated and fed back to eg a base station, a data access point or other electronic devices through the antenna and the radiating part 102 .
  • grounding of the filter 1064 refers to the grounding point where the filter 1064 is connected to the motherboard, rather than the connection with the first grounding portion 1142 and the second grounding portion 1144 .
  • the filter 1064 does not share the ground with the first grounding portion 1142 and the second grounding portion 1144 , which is beneficial to improve the signal strength of the mobile communication device 100 .
  • the mobile communication device 100 includes at least one of the following: a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle electronic device, a wearable device, an ultra-mobile personal computer, a netbook, a personal digital assistant.
  • a mobile communication device refers to an electronic device that has a "communication” function and can work “mobile”, and the mobile communication device in the embodiments of the present application is not limited to the electronic devices listed above.
  • Product type any electronic device that can satisfy the function of "communication” and can work “mobile” falls within the protection scope of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开了一种移动通信设备,包括:辐射部;隔离部,设置于辐射部上,并将辐射部分隔为第一辐射体和第二辐射体;第一馈电点,设置于第一辐射体上;滤波器,滤波器的第一端与第一馈电点相连接,滤波器的第二端接地,滤波器对第一信号导通。

Description

移动通信设备
相关申请的交叉引用
本申请主张2020年12月02日在中国提交的中国专利申请号202011394904.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于移动通信设备技术领域,具体涉及一种移动通信设备。
背景技术
在相关技术中,对于手机等移动通信设备,需要实现对多种频段信号的支持,而现有技术中,信号频段种类繁多,包括全球定位系统(Global Positioning System,GPS)如GPS L1和GPS L5信号,双频无线网络通信(WiFi)如WiFi-2.4GHz和WiFi-5G信号,以及蜂窝频段信号和第五代移动通讯技术(5th Generation Mobile Communication Technology,5G)如N78信号。
要覆盖更多的信号,就需要设置更多的天线,也需要在设置更多的“断点”,即隔离部来将不同天线的辐射部进行隔离,一方面占用空间较大,不利于移动通信设备的小型化,另一方面更多的断点会影响移动通信设备的整体强度和美观。
而更少的断点会使单个辐射枝节同时接收多重射频信号,造成信号干扰。因此如何在尽可能少的设置断点的情况下实现对多频段的覆盖,并避免信号干扰,是目前亟待解决的技术问题。
发明内容
本申请实施例的目的是提供一种移动通信设备,能够实现尽可能少的设置隔离断点的情况下,覆盖更多的信号频段的效果。
第一方面,本申请实施例提供了一种移动通信设备,包括:
辐射部;
隔离部,设置于辐射部上,并将辐射部分隔为第一辐射体和第二辐射体;
第一馈电点,设置于第一辐射体上;
滤波器,滤波器的第一端与第一馈电点,滤波器的第二端接地。
在本申请实施例中,移动通信设备包括辐射部,该辐射部可用于接收射频信号。可选地,辐射部可以设置在移动通信设备,比如手机的金属中框上,并位于金属中框的角结构上。
辐射部上仅设置有一个隔离部,从而保证不会占用过多的空间,并保证移动通信设备的整体强度。通讯设备上包括第一馈线,该第一馈线通过第一馈电点,与第一辐射体相连接,通过第一辐射体能够接收到至少两种的射频信号。同时,通过设置滤波器,将两种射频信号中的一种滤除,从而避免了通过单个辐射枝节接收多种射频信号时导致的信号干扰。
本申请实施例中通过单个隔离部实现了对多种信号频段的支持,同时能够避免单个辐射枝节接收多种射频信号时导致的信号干扰,一方面有利于移动通信设备的小型化,同时保证了移动通信设备的结构强度,另一方面覆盖更多的信号频段,提高了移动通信设备的通讯性能。
附图说明
图1示出了根据本申请实施例的移动通信设备的结构示意图;
图2示出了根据本申请实施例的S参数曲线示意图之一;
图3示出了根据本申请实施例的效率曲线图之一;
图4示出了根据本申请实施例的S参数曲线示意图之二;
图5示出了根据本申请实施例的效率曲线图之二。
附图标记说明:
100移动通信设备,102辐射部,1022第一辐射体,1024第二辐射体,104隔离部,1062第一馈线,1064滤波器,1066第二馈线,1068第三馈线,108第一馈电点,110第二馈电点,112第三馈电点,114中框,1142第一接地部,1144第二接地部,GD第一辐射枝节,DF第二辐射枝节,ED第三辐射枝节,AC第四辐射枝节,BC第五辐射枝节。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员还可获得其他实施例,这些实施例都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的移动通信设备进行详细地说明。
在本申请的一些实施例中,图1示出了根据本申请实施例的移动通信设备的结构示意图,具体地,通信设备包括:
辐射部102;
隔离部104,设置于辐射部102上,并将辐射部102分隔为第一辐射体1022和第二辐射体1024;
第一馈电点108,设置于第一辐射体1022上;
滤波器1064,滤波器1064的第一端与第一馈电点108相连接,滤波器1064的第二端接地。
在本申请实施例中,移动通信设备100包括辐射部102,该辐射部102可用于接收射频信号。可选地,辐射部102可以设置在移动通信设备100,比如手机的金属中框114上,并位于金属中框114的角结构上。
辐射部102上仅设置有一个隔离部104,从而保证不会占用过多的空间,并保证移动通信设备100的整体强度。移动通信设备100中包括第一馈线1062,该第一馈线1062通过第一馈电点108,与第一辐射体1022相连接。第一辐射体1022能够工作于至少两个不同频段。同时,通过设置滤波器1064,将两种射频信号中的一种滤除,从而避免了通过单个辐射枝节接收多种射频信号时导致的信号干扰。
在本申请实施例中,辐射部102具体为金属辐射部102,可以是金属 铝、金属铁的合金材质,如铝合金、不锈钢等。本申请实施例对辐射部102的具体材质不做限定。
隔离部104为绝缘材质,包括如塑料、陶瓷等,本申请对隔离部104的具体形状不做限定。
第一馈线1062的作用是能够将射频信号传递至移动通信设备100的主控板或将主控板的射频信号传递至辐射部。
在一些实施方式中,滤波器1064的第一端与第一馈线1062相连接,滤波器1064的第二端与主控板的地端相连接。
在另一些实施方式中,滤波器1064的第一端与辐射部102相连接,具体为与第一馈电点108相连接,滤波器1064的第二端与主控板的地端相连接。
滤波器1064能够阻挡某些频段的信号通过,同时允许特定的非目标信号通过,即对特定的非目标信号导通,因此通过设置该滤波器1064,能够将同时与目标信号一并被第一馈线1062传输的非目标信号滤除,避免了非目标信号产生的干扰。
本申请实施例中通过单个隔离部104实现了对多种信号频段的支持,同时能够避免单个辐射枝节接收多种射频信号时导致的信号干扰,一方面有利于移动通信设备100的小型化,同时保证了移动通信设备100的结构强度,另一方面覆盖更多的信号频段,提高了移动通信设备100的通讯性能。
在本申请的一些实施例中,如图1所示,第一辐射体1022上还设置有第二馈电点110,第二馈电点110位于第一馈电点108和隔离部104之间,第二辐射体1024上设置有第三馈电点112。
在本申请实施例中,第一辐射体1022上还设置有第二馈电点110,同时移动通信设备100包括第二馈线1066,通过设置第二馈线1066和第二馈电点110,可以实现对更多频段信号的支持。具体地,第二馈线1066通过 第二馈电点110与第一辐射体1022相连接,从而通过第一辐射体1022的部分作为辐射枝节,以获取射频信号,并通过第二馈线1066将射频信号传入主控板,实现对一些特定频段的射频信号的支持。
辐射部102被隔离部104分隔成第一辐射体1022和第二辐射体1024,其中第二辐射体1024上设置有第三馈电点112,同时移动通信设备100包括第三馈线1068,通过隔离部104和多个馈源的设置,能够实现对更多频段信号的支持。具体地,第三馈线1068通过第二馈电点110与第二辐射体1024相连接,从而通过第二辐射体1024的全部或部分作为辐射枝节,从而获取射频信号,并通过第三馈线1068将射频信号传入主控板,实现对一些频段射频信号的支持。
通过设置第一馈电点108、第二馈电点110、第三馈电点112、第一馈线1062、第二馈线1066和第三馈线1068,结合本申请实施例设置的隔离部104和辐射部102,以及多种馈源信号,使得移动通信设备100能够实现对5种以上频段的射频信号的支持,且仅需在辐射部102上开设一个隔离部104的“断点”,保证了移动通信设备100的整体强度。
在本申请实施例中,第一馈电点108、第二馈电点110和第三馈电点112均为馈电点。
在本申请的一些实施例中,如图1所示,移动通信设备还包括第一接地部1142和第二接地部1144,第一接地部1142设置于辐射部102的第一端,第二接地部1144设置于辐射部102的第二端。第一辐射体1022包括第一辐射枝节GD、第二辐射枝节DF和第三辐射枝节ED,第一接地部1142与隔离部104之间的辐射体为第一辐射枝节GD,隔离部104和第一馈电点108之间的辐射体为第二辐射枝节DF,隔离部104和第二馈电点110之间的辐射体为第三辐射枝节ED。第二辐射体1024包括第四辐射枝节AC和第五辐射枝节BC,第二接地部1144和隔离部104之间的辐射体为第四辐射枝节AC,第三馈电点112和隔离部104之间的辐射体为第五辐 射枝节BC。
在本申请实施例中,具体参照图1所示,A点和G点之间的部分即上述辐射部102,CD之间为断点的隔离部104,GD之间为第一辐射体1022,在第一接地部1142和隔离部104之间,第一辐射体1022整体形成为第一辐射枝节GD。
在第一辐射体1022上,隔离部104一端的D点和第一馈电点108点,即F点之间形成为第二辐射枝节DF,在隔离部104一端的D点和第二馈电点110E点之间,形成为第三辐射枝节ED。
在第二接地部1144和隔离部104之间,第二辐射体1024整体形成为第四辐射枝节AC,同时在第二辐射体1024上,第三馈电点112,即B点与隔离部104的另一端的C点之间形成为第五辐射枝节BC。
上述第一辐射枝节GD、第二辐射枝节DF、第三辐射枝节ED、第四辐射枝节AC和第五辐射枝节BC,分别能够用于接收五种不同频段的射频信号,从而实现了在只设置一个隔离部104,即在仅有一个断点的情况下,结合本申请实施例设置的多个馈电点、馈线以及多种馈源信号,进而实现了对五种不同频率的射频信号的支持。
在本申请的一些实施例中,如图1所示,第二辐射枝节DF的工作频段为WiFi-2.4GHz频段,第一辐射枝节GD的工作频段为GPS L5频段。
在本申请实施例中,第一馈线1062同时与第一辐射枝节GD和第二辐射枝节DF相连接,其中第一辐射枝节GD工作与GPS L5频段的信号,第二辐射枝节DF工作于WiFi-2.4GHz频段。在该实施例中,第一馈线1062的目标信号是GPS L5信号,而作为干扰信号的WiFi-2.4GHz信号,则会被滤波器1064滤除,因此,通过第一馈线1062传入移动通信设备100的主控板的信号只有目标信号的GPS L5信号,从而避免了同时与两个不同的辐射枝节线连接造成的信号干扰。
能够理解的是,在本实施例中,通过第一辐射枝节GD收发的信号是 WiFi-2.4GHz信号和GPS L5信号。但本申请实施例对第一辐射枝节GD工作的信号的具体类型不做限制,根据移动通信设备100所要支援的频段,上述信号还可以是其他种类或其他频率的射频信号。
在本申请的一些实施例中,第三辐射枝节ED的工作频段为WiFi-5GHz频段。
在本申请实施例中,通过设置第二馈线1066,能够实现对WiFi-5GHz信号的支持,从而有效地增加了移动通信设备100的通信能力。能够理解的是,在本实施例中,第三辐射枝节ED的工作频段为WiFi-5GHz频段,但本申请实施例对第三辐射枝节ED收发的信号的具体类型不做限制,根据移动通信设备100所要支持的频段,上述信号还可以是其他种类的射频信号。
在本申请的一些实施例中,第四辐射枝节AC的工作频段为GPS L1频段,第五辐射枝节BC的工作频段为N78频段。
在本申请实施例中,第三馈线1068与第二辐射体1024相连接,第二辐射体1024为第四辐射枝节AC,第二辐射体1024被第三馈电点分隔出第五辐射枝节BC,第四辐射枝节AC用于接收GPS L1信号,从而实现对GPS L1信号的支持。
由此,通信设备通过第一馈线1062实现对GPS L5信号的支持,并通过第三馈线1068实现对GPS L1信号的支持,因此实现了对双频GPS信号的支持。
同时,第五辐射枝节BC用于接收WiFi-2.4GHz信号,从而实现对WiFi-2.4GHz信号的支持。
由此,通信设备通过第二馈线1066实现对WiFi-5GHz信号的支持,并通过第三馈线1068实现对WiFi-2.4GHz信号的支持,因此实现了对双频WiFi信号的支持。
进一步地,第二辐射枝节DF用于接收N78频段信号。因此,通信设 备还支持了5G信号,从而在只设置一个断点,且同时支持双频GPS信号和双频WiFi信号的前提下,进一步集成了5G天线,一方面有利于移动通信设备100的小型化,同时保证了移动通信设备100的结构强度,另一方面覆盖更多的信号频段,提高了移动通信设备100的通讯性能。
在本申请的一些实施例中,如图1所示,以一种完整的信号-天线分配方式进行具体举例说明。
具体地,第三馈线1068为GPS L1、WiFi-2.4GHz和N78频段的馈线,上述频段在的射频信号在第三馈电点,也即B点馈电。第二馈线1066为WiFi-5GHz频段的馈线,在第二馈电点,也即E点进行馈电。第一馈线1062为GPS L5频段的馈线,在第一馈电点,也即在F点进行馈电。
进一步地,在第一馈线1062上,具体为第一馈线1062的馈电端口即F点上增加一个滤波器1064,该滤波器1064可以阻止GPS L5频段信号通过,同时可以让WiFi-2.4GHz和WiFi-5GHz频段信号通过,因此能够通过第一馈线1062的只有GPS L5频段的射频信号,从而在单一断口上实现了GPS L1/GPS L5、WIFi-2.4GHz/WiFi-5GHz和N78频段天线的集成设置。
图2示出了根据本申请实施例的S参数曲线示意图之一,其中,实线部分为反射系数,虚线部分为耦合系数。
具体地,圆形标记的实线为第三馈电点112所属天线的反射系数,正方形标记的实线为第二馈电点110所属天线的反射系数,三角形标记的实线为第一馈电点108所属天线的反射系数。圆形标记的虚线为第三馈电点112所属天线和第二馈电点110所属天线之间的耦合系数,正方形标记的虚线为第一馈电点108所属天线和第三馈电点112所属天线之间的耦合系数,三角形标记的虚线为第一馈电点108所属天线和第二馈电点110所属天线之间的耦合系数。
如图2所示,三个天线的反射系数,以及三个天线之间的耦合系数均在良好的范围内。
图3示出了根据本申请实施例的效率曲线图之一,其中,实线部分为系统效率,虚线部分为辐射效率。
具体地,圆形标记的实线为第三馈电点112所属天线的系统效率,正方形标记的实线为第二馈电点110所属天线的系统效率,三角形标记的实线为第一馈电点108所属天线的系统效率。圆形标记的虚线为第三馈电点112所属天线的辐射效率,正方形标记的虚线为第二馈电点110所属天线的辐射效率,三角形标记的虚线为第一馈电点108所属天线的辐射效率。
如图3所示,三个天线的系统效率和辐射效率均处于良好的范围内。
在本申请的一些实施例中,第二辐射枝节DF的工作频段为WiFi-2.4GHz频段,第一辐射枝节GD的工作频段为GPS L5频段。
在本申请实施例中,第一馈线1062连接至F点,其中第一辐射枝节GD用于接收GPS L5信号,第二辐射枝节DF用于接收N78信号。在该实施例中,第一馈线1062的目标信号是GPS L5信号,而作为干扰信号的N78信号,则会被滤波器1064滤除。因此,通过第一馈线1062传入移动通信设备100的主控板的信号只有目标信号的GPS L5信号,从而避免了同时与两个不同的辐射枝节线连接造成的信号干扰。
在本申请的一些实施例中,第三辐射枝节ED的工作频段为WiFi-5GHz频段。
在本申请实施例中,第二馈线1066连接至E点,第二辐射枝节用于接收N78频段的信号,第三辐射枝节ED用于接收WiFi-5GHz信号。
通过设置第三辐射枝节ED和第二馈线1066,能够实现对5G信号和WiFi-5GHz信号的支持,从而有效地增加了移动通信设备100的通信能力。从而在只设置一个断点的前提下,进一步集成了5G天线,一方面有利于移动通信设备100的小型化,同时保证了移动通信设备100的结构强度,另一方面覆盖更多的信号频段,提高了移动通信设备100的通讯性能。
在本申请的一些实施例中,第四辐射枝节AC的工作频段为GPS L1频 段,第五辐射枝节BC的工作频段为N78频段。
在本申请实施例中,第三馈线1068与第二辐射体1024相连接,第二辐射体1024为第四辐射枝节AC,第二辐射体1024被第三馈电点分隔出第五辐射枝节BC,第四辐射枝节AC用于接收GPS L1信号,从而实现对GPS L1信号的支持。
由此,移动通信设备通过第一馈线1062实现对GPS L5信号的支持,并通过第三馈线1068实现对GPS L1信号的支持,因此实现了对双频GPS信号的支持。
同时,第三馈线1068连接至B点,第五辐射枝节BC用于接收WiFi-2.4GHz信号,从而实现对WiFi-2.4GHz信号的支持。
由此,移动通信设备通过第二馈线1066实现对WiFi-5GHz信号的支持,并通过第三馈线1068实现对WiFi-2.4GHz信号的支持,因此实现了对双频WiFi信号的支持。
进一步地,第三馈线1068连接至B点,第二辐射枝节DF用于接收N78频段信号。因此,通信设备还支持了5G信号,从而在只设置一个断点,且同时支持双频GPS信号和双频WiFi信号的前提下,进一步集成了5G天线,一方面有利于移动通信设备100的小型化的同时,保证了移动通信设备100的结构强度,另一方面覆盖更多的信号频段,提高了移动通信设备100的通讯性能。
在本申请的一些实施例中,如图1所示,以另一种完整的信号-天线分配方式进行具体举例说明。
具体地,第三馈线1068为GPS L1和WiFi-2.4GHz频段的馈线,上述频段在的射频信号在第三馈电点,也即B点馈电。第二馈线1066为N78频段和WiFi-5GHz频段的馈线,在第二馈电点,也即E点进行馈电。第一馈线1062为GPS L5频段的馈线,在第一馈电点,也即在F点进行馈电。
进一步地,在第一馈线1062上,具体为第一馈线1062的馈电端口即 F点上增加一个滤波器1064,该滤波器1064可以阻止GPS L5频段信号通过,同时滤除N78和WiFi-5GHz频段信号,因此能够通过第一馈线1062的只有GPS L5频段的射频信号,从而在单一断口上实现了GPS L1/GPS L5、WIFi-2.4GHz/WiFi-5GHz和N78频段天线的集成设置。
在本申请实施例中,GPS L5频段信号的主要通过第一辐射枝节GD辐射,GPS L1频段信号主要通过第四辐射枝节AC辐射、WiFi-2.4GHz频段信号主要通过第五辐射枝节BC辐射,N78频段信号主要通过第二辐射枝节FD辐射,WiFi-5GHz频段信号主要通过第三辐射枝节ED辐射。
图4示出了根据本申请实施例的S参数曲线示意图之二,其中,实线部分为反射系数,虚线部分为耦合系数。
具体地,圆形标记的实线为第三馈电点112所属天线的反射系数,正方形标记的实线为第二馈电点110所属天线的反射系数,三角形标记的实线为第一馈电点108所属天线的反射系数。圆形标记的虚线为第三馈电点112所属天线和第二馈电点110所属天线之间的耦合系数,正方形标记的虚线第一馈电点108所属天线和第三馈电点112所属天线之间的耦合系数,三角形标记的虚线为第一馈电点108所属天线和第二馈电点110所属天线之间的耦合系数。
如图4所示,三个天线的反射系数,以及三个天线之间的耦合系数均在良好的范围内。
图5示出了根据本申请实施例的效率曲线图之二,其中,实线部分为系统效率,虚线部分为辐射效率。
具体地,圆形标记的实线为第三馈电点112所属天线的系统效率,正方形标记的实线为第二馈电点110所属天线的系统效率,三角形标记的实线为第一馈电点108所属天线的系统效率。圆形标记的虚线为第三馈电点112所属天线的辐射效率,正方形标记的虚线为第二馈电点110所属天线的辐射效率,三角形标记的虚线为第一馈电点108所属天线的辐射效率。
如图5所示,三个天线的系统效率和辐射效率均处于良好的范围内。
在本申请的一些实施例中,如图1所示,移动通信设备100包括中框114,辐射部102设置在中框114上,或中框114的至少部分形成为辐射部102。
在该技术方案中,移动设备还包括中框114,该中框114可以是金属中框114或非金属中框114,本申请实施例对中框114材质不做限定。
中框114上设置有第一接地部1142和第二接地部1144,第一接地部1142和第二接地部1144之间,形成为上述辐射部102。
移动通信设备100包括主板,主板设置在中框114内部,收到中框114的保护。主板上包括存储器、处理器和其他电路部分,通过天线获取到射频信号之后,主板上的处理器通过存储器上存储的程序,对射频信号进行解码等数据处理,从而得到射频信号中包含的数据,以及根据获取到的数据生成回馈信息,并通过天线和辐射部102将回馈信息辐射反馈回如基站、数据接入点或其他电子设备。
值得注意的是,滤波器1064的接地指的是滤波器1064接入到主板上的接地点,而非与第一接地部1142活第二接地部1144相连接。实际上,滤波器1064与第一接地部1142和第二接地部1144均不共地,有利于提高移动通信设备100的信号强度。
在本申请的一些实施例中,移动通信设备100包括下述中的至少一种:手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机、上网本、个人数字助理。
在本申请实施例中,需要注意的是,移动通信设备指的是具有“通信”功能,且能够“移动”工作的电子设备,本申请实施例中的移动通信设备并不限于上述列举的电子产品类型,任何能够满足是具有“通信”功能,且能够“移动”工作的电子设备,均属于本申请的保护范围之内。
需要说明的是,在本说明书的描述中,参考术语“一个实施例”、 “一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (10)

  1. 一种移动通信设备,包括:
    辐射部(102);
    隔离部(104),设置于所述辐射部(102)上,并将所述辐射部(102)分隔为第一辐射体(1022)和第二辐射体(1024);
    第一馈电点(108),设置于所述第一辐射体(1022)上;
    滤波器(1064),所述滤波器(1064)的第一端与所述第一馈电点(108)相连接,所述滤波器(1064)的第二端接地。
  2. 根据权利要求1所述的移动通信设备,其中,所述第一辐射体(1022)上还设置有第二馈电点(110),所述第二馈电点(110)位于所述第一馈电点(108)和所述隔离部(104)之间;
    所述第二辐射体(1024)上设置有第三馈电点(112)。
  3. 根据权利要求2所述的移动通信设备,其中,所述移动通信设备还包括第一接地部(1142)和第二接地部(1144),所述第一接地部(1142)设置于所述辐射部(102)的第一端,所述第二接地部(1144)设置于所述辐射部(102)的第二端;
    所述第一辐射体(1022)包括第一辐射枝节(GD)、第二辐射枝节(DF)和第三辐射枝节(ED),所述第一接地部(1142)与所述隔离部(104)之间的辐射体为所述第一辐射枝节(GD),所述隔离部(104)和所述第一馈电点(108)之间的辐射体为所述第二辐射枝节(DF),所述隔离部(104)和所述第二馈电点(110)之间的辐射体为所述第三辐射枝节(ED);
    所述第二辐射体(1024)包括第四辐射枝节(AC)和第五辐射枝节(BC),所述第二接地部(1144)和所述隔离部(104)之间的辐射体为 所述第四辐射枝节(AC),所述第三馈电点(112)和所述隔离部(104)之间的辐射体为所述第五辐射枝节(BC)。
  4. 根据权利要求3所述的移动通信设备,其中,所述第二辐射枝节(DF)的工作频段为WiFi-2.4GHz频段,所述第一辐射枝节(GD)的工作频段为GPS L5频段。
  5. 根据权利要求4所述的移动通信设备,其中,所述第三辐射枝节(ED)的工作频段为WiFi-5GHz频段。
  6. 根据权利要求4所述的移动通信设备,其中,所述第四辐射枝节(AC)的工作频段为GPS L1频段,所述第五辐射枝节(BC)的工作频段为N78频段。
  7. 根据权利要求3所述的移动通信设备,其中,所述第二辐射枝节(DF)的工作频段为N78频段,所述第一辐射枝节(GD)的工作频段为GPS L5频段。
  8. 根据权利要求7所述的移动通信设备,其中,所述第二辐射枝节(DF)的工作频段为WiFi-5GHz频段。
  9. 根据权利要求7所述的移动通信设备,其中,所述第四辐射枝节的工作频段为GPS L1频段,所述第五辐射枝节(BC)的工作频段为WiFi-2.4GHz频段。
  10. 根据权利要求1至9中任一项所述的移动通信设备,其中,所述移动通信设备(100)包括中框(114),所述辐射部(102)设置在所述中框(114)上,或所述中框(114)的至少部分形成为所述辐射部(102)。
PCT/CN2021/132982 2020-12-02 2021-11-25 移动通信设备 WO2022116887A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011394904.9A CN112599975B (zh) 2020-12-02 2020-12-02 移动通信设备
CN202011394904.9 2020-12-02

Publications (1)

Publication Number Publication Date
WO2022116887A1 true WO2022116887A1 (zh) 2022-06-09

Family

ID=75187771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132982 WO2022116887A1 (zh) 2020-12-02 2021-11-25 移动通信设备

Country Status (2)

Country Link
CN (1) CN112599975B (zh)
WO (1) WO2022116887A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599975B (zh) * 2020-12-02 2023-02-07 维沃移动通信有限公司 移动通信设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396905A1 (de) * 2002-09-04 2004-03-10 Siemens Aktiengesellschaft Mobilfunkantenne für mindestens vier Frequenzbänder
CN102668238A (zh) * 2009-12-18 2012-09-12 莱尔德技术股份有限公司 天线构造和包括这种天线构造的便携无线电通信设备
CN108718007A (zh) * 2018-05-24 2018-10-30 广州三星通信技术研究有限公司 天线装置及包括该天线装置的通信终端
CN109687115A (zh) * 2019-01-28 2019-04-26 广州三星通信技术研究有限公司 用于电子终端的gps天线结构以及电子终端
CN211350951U (zh) * 2020-03-12 2020-08-25 Oppo广东移动通信有限公司 天线组件和电子设备
CN112531331A (zh) * 2019-09-18 2021-03-19 华为技术有限公司 一种天线及终端设备
CN112599975A (zh) * 2020-12-02 2021-04-02 维沃移动通信有限公司 移动通信设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203013922U (zh) * 2012-12-05 2013-06-19 罗森伯格(上海)通信技术有限公司 超宽频双极化基站天线辐射单元
WO2018068344A1 (zh) * 2016-10-12 2018-04-19 华为技术有限公司 一种天线装置及移动终端
CN108321495B (zh) * 2018-01-22 2020-05-19 Oppo广东移动通信有限公司 天线组件、天线装置及电子设备
CN111628298B (zh) * 2019-02-27 2022-03-11 华为技术有限公司 共体天线及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396905A1 (de) * 2002-09-04 2004-03-10 Siemens Aktiengesellschaft Mobilfunkantenne für mindestens vier Frequenzbänder
CN102668238A (zh) * 2009-12-18 2012-09-12 莱尔德技术股份有限公司 天线构造和包括这种天线构造的便携无线电通信设备
CN108718007A (zh) * 2018-05-24 2018-10-30 广州三星通信技术研究有限公司 天线装置及包括该天线装置的通信终端
CN109687115A (zh) * 2019-01-28 2019-04-26 广州三星通信技术研究有限公司 用于电子终端的gps天线结构以及电子终端
CN112531331A (zh) * 2019-09-18 2021-03-19 华为技术有限公司 一种天线及终端设备
CN211350951U (zh) * 2020-03-12 2020-08-25 Oppo广东移动通信有限公司 天线组件和电子设备
CN112599975A (zh) * 2020-12-02 2021-04-02 维沃移动通信有限公司 移动通信设备

Also Published As

Publication number Publication date
CN112599975A (zh) 2021-04-02
CN112599975B (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
WO2022068827A1 (zh) 天线组件和电子设备
KR102028525B1 (ko) 웨어러블 무선 장치의 결합 다중 대역 안테나
US7161543B2 (en) Antenna set for mobile devices
TWI539660B (zh) 行動裝置
EP2894713B1 (en) Mobile phone three-in-one aerial device and mobile terminal
CN107112627A (zh) 一种可穿戴设备的天线及可穿戴设备
TW201511406A (zh) 寬頻天線
WO2020057136A1 (zh) 天线及移动终端
US20180331430A1 (en) Antenna assembly, wireless communications electronic device and remote control having the same
WO2019144816A1 (zh) 天线及移动终端
WO2022116887A1 (zh) 移动通信设备
TWI450442B (zh) A small multi-frequency antenna and a communication device using the antenna
CN103682563B (zh) 手持电子装置
CN101853983B (zh) 双频天线及应用该双频天线的无线通信装置
TW202036986A (zh) 雙頻段天線
TWI481118B (zh) 雙頻天線及應用該雙頻天線之無線通訊裝置
CN108199140B (zh) 遥控器
TWI481121B (zh) 天線結構及其相關無線通訊裝置
TWM450086U (zh) 多頻天線
US8629810B2 (en) Multiband antenna and portable electronic device using the same
US20130099978A1 (en) Internal printed antenna
TWI594496B (zh) 天線結構
TWI594495B (zh) 多頻天線及應用該多頻天線的無線通訊裝置
Lu et al. Planar small-size LTE/WWAN tablet computer antenna with eight-band operation
TW201444177A (zh) 無線通訊裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899920

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21899920

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.02.2024)