EP1395096B1 - Verfahren zum Betreiben von Leuchtstofflampen und Vorschaltgerät - Google Patents

Verfahren zum Betreiben von Leuchtstofflampen und Vorschaltgerät Download PDF

Info

Publication number
EP1395096B1
EP1395096B1 EP03017859A EP03017859A EP1395096B1 EP 1395096 B1 EP1395096 B1 EP 1395096B1 EP 03017859 A EP03017859 A EP 03017859A EP 03017859 A EP03017859 A EP 03017859A EP 1395096 B1 EP1395096 B1 EP 1395096B1
Authority
EP
European Patent Office
Prior art keywords
control loop
actual value
fluorescent lamp
time intervals
bridge circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03017859A
Other languages
English (en)
French (fr)
Other versions
EP1395096A3 (de
EP1395096A2 (de
Inventor
Markus Ziegler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP1395096A2 publication Critical patent/EP1395096A2/de
Publication of EP1395096A3 publication Critical patent/EP1395096A3/de
Application granted granted Critical
Publication of EP1395096B1 publication Critical patent/EP1395096B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3925Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by frequency variation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2988Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the lamp against abnormal operating conditions

Definitions

  • the invention relates to a method for operating fluorescent lamps according to the preamble of patent claim 1.
  • the EP 0 287 360 A2 discloses an apparatus for operating a laser diode.
  • the device comprises at least two D / A converters, with the aid of which at least two control loops for coarse and fine adjustment of the light emission of the laser diode are realized.
  • the US 4,894,587 describes a ballast for high-frequency operation and for brightness control of fluorescent lamps.
  • the inventive method for operating fluorescent lamps by means of a ballast having an inverter with semiconductor switches, which are arranged in a bridge circuit, and with a control device for the semiconductor switches and at least one connected to the inverter, designed as a resonant circuit load circuit, in the at least one Fluorescent lamp is operated, wherein the at least one fluorescent lamp is acted upon by the inverter with a high-frequency current and the power consumption of the at least one fluorescent lamp by means of a first control loop by varying the frequency of the high-frequency current is set to a predetermined value, characterized in that by means of a second control loop which is run through in shorter time intervals than the first control loop, the power consumption of the at least one fluorescent lamp is stabilized to the predetermined value.
  • the second control loop ensures that the fluorescent lamps can be safely operated even in the critical power range corresponding to approximately 25% to 10% of their rated luminous flux, without the occurrence of significant fluctuations in the power consumption or brightness of the fluorescent lamps.
  • the second control loop is run in much shorter time intervals than the first control loop and can therefore counteract rapid changes in the power consumption of the fluorescent lamps, as they can occur in the aforementioned critical range.
  • the time intervals for passing through the second control loop are advantageously 50 ⁇ s to 200 ⁇ s, while the time intervals for passing through the first control loop are preferably significantly longer, preferably with 1 ms to 2 ms.
  • the method according to the invention is advantageously for the implementation of the first control loop adjustable in size setpoint at predetermined time intervals compared with an actual value, which is derived from the time average power consumption of the at least one fluorescent lamp, and formed therefrom a first control value for the control device, while Execution of the second control loop at predetermined time intervals, which are shorter than the time intervals of the first control loop, the change in power consumption of the at least one fluorescent lamp for generating a second control value for the control device is evaluated, and both control values for generating control signals for the control of the switching frequency Semiconductor switches are evaluated.
  • control variables for both the first and the second control loop are derived from the current flowing through the bridge circuit because the time average of this current is proportional to the power consumption of the fluorescent lamps.
  • the control variables, that is to say, the actual values of both control loops are derived, for example, by means of low-pass filters from the current flowing through the bridge circuit, the time constant of the second low-pass filter belonging to the second control loop being smaller than the time constant of the first low-pass filter belonging to the first control loop.
  • the time constants are each adapted to the abovementioned time intervals of the control loops.
  • the functions of the two low-pass filters are each taken over by a digital filter which operates with different sampling frequencies adapted to the abovementioned time intervals.
  • digital filters simplifies the structure of the circuit arrangement, because they can be formed as part of a microprocessor.
  • the second control loop is designed as a nominal actual value comparison, which is repeated continuously at predetermined time intervals, wherein at the end of each time interval, the current flowing through the bridge circuit Current is derived from an actual value and this is compared with the actual value of the immediately preceding time interval serving as a setpoint, in order to generate therefrom the second control value for the control device of the inverter.
  • the ballast for carrying out the method according to the invention comprises an inverter with Halbieiterschaltern, which are arranged in a bridge circuit, a control device for the semiconductor switches and at least one connected to the inverter, designed as a resonant circuit load circuit with terminals for at least one fluorescent lamp, wherein the control device comprises means for Variation of the switching frequency of the semiconductor switch has to set the power consumption of the at least one fluorescent lamp to a predetermined value, and the control device has means for stabilizing the power consumption of the at least one fluorescent lamp to the predetermined value.
  • the means for stabilizing the power consumption of the at least one fluorescent lamp are preferably called differential regulators, also called D-regulators, which monitors the change in power consumption of the at least one fluorescent lamp at predetermined time intervals and in dependence thereon a manipulated variable for the stabilization control apparatus the power consumption is generated to the specifiable value.
  • the ballast according to the invention preferably has a, compared to the D controller slow proportional-integral controller, also called PI controller, on which the time-average power consumption of at least compares a fluorescent lamp with a predefined setpoint.
  • Both controllers are advantageously designed as part of a microprocessor, which in turn is part of the control device.
  • the control values generated by both controllers; are superimposed and stored in a digital data register of the microprocessor.
  • FIG. 1 schematically the construction of an electronic ballast for erfindungsgcmäßcn operation of a fluorescent lamp is shown.
  • This ballast has a half-bridge inverter with two half-switches, in particular transistors T1, T2, a control device ST for the semiconductor switches T1, T2 and two terminals +, - for the DC power supply of the half-bridge inverter.
  • a trained as a resonant circuit load circuit is connected at the center tap M of the half-bridge inverter .
  • the load circuit comprises the resonance inductor L1, the resonance capacitor C1, the coupling capacitor C2, the discharge resistor RI arranged parallel to the coupling capacitor C2, and connections for the electrode filaments E1, E2 of a fluorescent lamp LP.
  • the fluorescent lamp LP is arranged in the load circuit such that its discharge path is connected in parallel to the resonance capacitor C1 and the electrode coils E1, E2 are connected in series with the resonance capacitor C1.
  • This circuit arrangement is for example in the Patent EP 0422 255 B1 disclosed.
  • the semiconductor switches T1, T2 are alternately activated and deactivated by means of the control device ST, so that the load circuit and the lamp LP are subjected to a high-frequency current whose frequencies are in the range of approximately 40 kHz and 150 kHz.
  • the ignition voltage required to ignite the gas discharge in the fluorescent lamp LP is provided by means of the resonance peaking method on the resonance capacitor CI.
  • the switching frequency of the semiconductor switches T1, T2 and thus also the frequency of the current in the load circuit is set to a value close to the resonance frequency of the resonance components L1, C1.
  • the load circuit formed as a resonant circuit is attenuated by the impedance of the now conductive discharge path between the electrodes E1, E2 of the fluorescent lamp LP.
  • the impedance of the discharge path of the fluorescent lamp LP and its power consumption are dependent on the frequency of the lamp LP flowing electricity.
  • the half-bridge current flowing through the resistor R2 is evaluated by means of two low-pass filters R3, C3 and R4, C4, since the half-bridge current flowing through the resistor R2 during a half-wave - namely with the switch T2 closed - with that through the fluorescent lamp LP flowing current is identical.
  • the first low-pass filter R3, C3 acting as an integrator forms at the capacitor C3 a voltage drop which is proportional to the power consumption of the fluorescent lamp LP and which is the actual value for a first control loop for controlling the brightness and regulating the power consumption of the fluorescent lamp. Integral controller IR is supplied.
  • This actual value is compared in the proportional-integral controller IR with a predefinable setpoint SW, which is the controller ST from the outside, for example, from a dimming potentiometer or other dimming device specified.
  • the setpoint SW represents the desired brightness level or power level of the fluorescent lamp LP.
  • the proportional-integral controller IR determines a first control value for controlling the switching frequency of the semiconductor switches T1, T2.
  • the first manipulated variable is stored in the 14-bit data register S1 and read out by the driver switch TR, which generates control signals for the base or gate electrode of the semiconductor switches T1, T2.
  • the first control loop is executed at intervals of 1 ms each.
  • the frequency dependence of the half-bridge current is qualitatively represented.
  • the fluorescent lamp has its highest brightness and the luminous flux is therefore 100% of its nominal luminous flux. If the frequency is increased, the half-bridge current and thus also the power consumption and the luminous flux of the fluorescent lamp decreases.
  • the half-bridge current shows an extremely strong frequency dependence, so that unstable operating states can occur in this range.
  • a second control loop is implemented by means of the second low-pass filter R4, C4, the differential controller DR, the data memory S2 and the data register S1, which is traversed much faster than the first control loop.
  • the low-pass filter R4, C4 changes in the half-bridge current flowing through the resistor R2 are detected at time intervals of 100 ⁇ s.
  • the differential controller DR performs at intervals of 100 microseconds a setpoint-actual value comparison, being used as the actual value of the current, from the low-pass filter R4, C4 evaluated half-bridge current and is used as the setpoint of the data memory S2 temporarily stored actual value of each immediately preceding time interval ,
  • a second setpoint value is generated by the differential controller DR, which is supplied to the 14-bit data register S1 and added to the first setpoint value.
  • the driver circuit TR determines signals for frequency control of the semiconductor switches T1, T2. By means of the second control loop, the half-bridge current and thus the power consumption and the brightness of the fluorescent lamp are stabilized to the desired value.
  • the differential controller DR can be deactivated outside this critical operating range. This happens because the actual value of the second control loop before the nominal actual value comparison with a Amplification factor K is multiplied, which is dependent on the selected brightness level, that is, from the target value SW of the first control loop.
  • the gain K can be reduced to zero.
  • Both controllers IR, DR are designed as algorithms of a program-controlled microprocessor, which is part of the control device ST.
  • the first C3, R3 and second low-pass filters C4, R4 are replaced by a respective digital filter, wherein the first digital filter, the function of the first low-pass filter C3, R3 and the second digital filter, the function of the second Low-pass filter C4, R4 takes over.
  • the digital filters are formed as part of the control device ST and in particular as part of the aforementioned, programmatically operating microprocessor. Both digital filters evaluate the current flowing through the bridge circuit, that is, the voltage drop across the resistor R2. Their filter properties are determined by the software implemented in the microprocessor. In all other details, this embodiment is consistent with the above-explained first embodiment.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben von Leuchtstofflampen gemäß dem Oberbegriff des Patentanspruchs 1.
  • I. Stand der Technik
  • Ein derartiges Verfahren ist beispielsweise in der Patentschrift EP 0 422 255 B1 offenbart. Diese Schrift beschreibt ein elektronisches Vorschaltgerät zum Betreiben von Leuchtstofflampen, das eine Helligkeits- und Leistungsregelung der Leuchtstofflampen durch Variieren der Schaltfrequenz der Wechselrichterschalter ermöglicht. Um ein Erlöschen der Leuchtstofflampe bei geringer Helligkeit, das heißt, beim Betrieb mit nur 1% des Nennlichtstroms, zu verhindern, wird zusätzlich zur Leistung der momentane Entladungswiderstand der Leuchtstofflampe überwacht und aus dem bei abnehmender Helligkeit der Leuchtstofflampe anwachsenden Entladungswiderstands eine Hilfsregelgröße für die Steuerung der Wechselrichterschalter abgeleitet.
  • Es hat sich gezeigt, dass bei Leuchtstofflampen Schwankungen des Betriebszustandes bzw. instabile Betriebszustände auftreten, wenn ihr Lichtstrom mittels des oben erläuterten Verfahrens auf ca. 25% bis 10% ihres Nennlichtstroms geregelt wird. Ursache dieser instabilen Betriebszustände ist eine nicht-lineare Abhängigkeit der Leistungsaufnahme der Leuchtstofflampe von der Frequenz des vom Wechselrichter generierten Stroms. Im ungünstigen Fall können in dem vorgenannten Bereich bereits geringste Änderungen der Schaltfrequenz des Wechselrichters und damit der Frequenz des durch die Brückenschaltung fließenden Stroms starke Änderungen der Lampenleistung bewirken.
  • Die EP 0 287 360 A2 offenbart eine Vorrichtung zum Betreiben eine Laserdiode. Die Vorrichtung umfasst mindestens zwei D/A-Konverter, mit deren Hilfe mindestens zwei Regelschleifen für eine grobe und eine feine Justage der Lichtemission der Laserdiode realisiert werden.
  • Die US 4,894,587 beschreibt ein Vorschaltgerät zum Hochfrequenzbetrieb und zur Helligkeitsregelung von Leuchtstofflampen.
  • II. Darstellung der Erfindung
  • Es ist die Aufgabe der Erfindung, ein Verfahren zur stabilen Regelung der Leistungsaufnahme und der Helligkeit von Leuchtstofflampen bereitzustellen.
  • Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst. Besonders vorteilhafte Ausführungen der Erfindung sind in den abhängigen Patentansprüchen beschrieben.
  • Das erfindungsgemäße Verfahren zum Betreiben von Leuchtstofflampen mit Hilfe eines Vorschaltgerätes, das einen Wechselrichter mit Halbleiterschaltern, die in einer Brückenschaltung angeordnet sind, und mit einer Steuervorrichtung für die Halbleiterschalter und mindestens einen an den Wechselrichter angeschlossenen, als Resonanzkreis ausgebildeten Lastkreis aufweist, in dem mindestens eine Leuchtstofflampe betrieben wird, wobei die mindestens eine Leuchtstofflampe von dem Wechselrichter mit einem hochfrequenten Strom beaufschlagt wird und die Leistungsaufnahme der mindestens einen Leuchtstofflampe mittels einer ersten Regelschleife durch Variieren der Frequenz des hochfrequenten Stroms auf einen vorgebbaren Wert eingestellt wird, zeichnet sich dadurch aus, dass mittels einer zweiten Regelschleife die in kürzeren Zeitintervallen durchlaufen wird als die erste Regelschleife, die Leistungsaufnahme der mindestens einen Leuchtstofflampe auf den vorgebbaren Wert stabilisiert wird. Die zweite Regelschleife gewährleistet, dass die Leuchtstofflampen auch in dem kritischen Leistungsbereich, der ca. 25% bis 10% ihres Nennlichtstroms entspricht, sicher betrieben werden können, ohne das Auftreten von erheblichen Schwankungen der Leistungsaufnahme bzw. Helligkeit der Leuchtstofflampen. Die zweite Regelschleife wird in deutlich kürzeren Zeitintervallen, als die erste Regelschleife durchlaufen und kann daher schnellen Änderungen der Leistungsaufnahme der Leuchtstofflampen, wie sie in dem vorgenannten kritischen Bereich auftreten können, entgegensteuern. Die Zeitintervalle zum Durchlaufen der zweiten Regelschleife betragen vorteilhafterweise 50 µs bis 200 µs, während die Zeitintervalle zum Durchlaufen der ersten Regelschleife mit vorzugsweise 1 ms bis 2 ms deutlich länger sind.
  • Bei dem erfindungsgemäßen Verfahren wird vorteilhafterweise zur Durchführung der ersten Regelschleife ein in seiner Größe einstellbarer Sollwert in vorgegebenen Zeitabständen mit einem Istwert verglichen, der aus der zeitlich gemittelten Leistungsaufnahme der mindestens einen Leuchtstofflampe abgeleitet wird, und daraus ein erster Stellwert für die Steuervorrichtung gebildet, während zur Durchführung der zweiten Regelschleife in vorgegebenen Zeitintervallen, die kürzer als die Zeitabstände der ersten Regelschleife sind, die Änderung der Leistungsaufnahme der mindestens einen Leuchtstofflampe zur Erzeugung eines zweiten Stellwertes für die Steuervorrichtung ausgewertet wird, und beide Stellwerte zum Erzeugen von Steuersignalen für die Regelung der Schaltfrequenz der Halbleiterschalter ausgewertet werden. Auf diese Weise kann mittels der ersten Regelschleife bei den Leuchtstofflampen die gewünschte Leistungsaufnahme und Helligkeit eingestellt werden und mittels der zweiten Regelschleife unerwünschte Schwankungen der Leistungsaufnahme der Leuchtstofflampen, insbesondere in dem obengenannten kritischen Betriebsbereich, verhindert werden. Vorteilhafterweise werden die Regelgrößen sowohl für die erste als auch für die zweite Regelschleife aus dem durch die Brückenschaltung fließenden Strom abgeleitet, weil der zeitliche Mittelwert dieses Stroms proportional zur Leistungsaufnahme der Leuchtstofflampen ist. Die Regelgrößen, das heißt, die Istwerte, beider Regelschleifen werden beispielsweise mittels Tiefpassfilter aus dem über die Brückenschaltung fließenden Strom abgeleitet, wobei die Zeitkonstante des zur zweiten Regelschleife gehörenden zweiten Tiefpassfilters kleiner als die Zeitkonstante des zur ersten Regelschleife gehörenden ersten Tiefpassfilters ist. Die Zeitkonstanten sind jeweils an die obengenannten Zeitintervalle der Regelschleifen angepasst. Vorzugsweise werden die Funktionen der beiden Tiefpassfilter von jeweils einem digitalen Filter übernommen, die mit unterschiedlichen, an die obengenannten Zeitintervalle angepassten Abtastfrequenzen arbeiten. Durch die Verwendung digitaler Filter vereinfacht sich der Aufbau der Schaltungsanordnung, weil sie als Bestandteil eines Mikroprozessors ausgebildet werden können.
  • Vorteilhafterweise ist die zweite Regelschleife als ein Soll-lstwertvergleich ausgebildet, der in vorgegebenen Zeitintervallen fortlaufend wiederholt wird, wobei am Ende eines jeden Zeitintervalls aus dem durch die Brückenschaltung fließenden Strom ein Istwert abgeleitet wird und dieser mit dem als Sollwert dienenden Istwert des unmittelbar vorangegangenen Zeitintervalls verglichen wird, um daraus den zweiten Stellwert für die Steuervorrichtung des Wechselrichters zu generieren.
  • Das Vorschaltgerät zur Durchführung des erfindungsgemäßen Verfahrens weist einen Wechselrichter mit Halbieiterschaltern, die in einer Brückenschaltung angeordnet sind, eine Steuervorrichtung für die Halbleiterschalter und mindestens einen an den Wechselrichter angeschlossenen, als Resonanzkreis ausgebildeten Lastkreis mit Anschlüssen für mindestens eine Leuchtstofflampe auf, wobei die Steuervorrichtung Mittel zur Variation der Schaltfrequenz der Halbleiterschalter besitzt, um die Leistungsaufnahme der mindestens einen Leuchtstofflampe auf einen vorgebbaren Wert einzustellen, und die Steuervorrichtung Mittel zur Stabilisierung der Leistungsaufnahme der mindestens einen Leuchtstofflampe auf den vorgebbaren Wert besitzt.
  • Die Mittel zur Stabilisierung der Leistungsaufnahme der mindestens einen Leuchtstoff lampe sind vorzugweise als Differential-Regler, auch D-Regler genannt, ausgebildet, der in vorgegebenen Zeitintervallen die Änderung der Leistungsaufnahme der mindestens einen Leuchtstofflampe überwacht und in Abhängigkeit davon einen Stellwert für die Steuervorrichtung zur Stabilisierung der Leistungsaufnahme auf den vorgebbaren Wert generiert. Zum Einstellen der Helligkeit bzw. Leistungsaufnahme der mindestens einen Leuchtstofflampe auf den gewünschten Wert weist das erfindungsgemäße Vorschaltgerät vorzugsweise einen, im Vergleich zum D-Regler langsamen Proportional-Integral-Regler, auch PI-Regler genannt, auf, der die zeitlich gemittelte Leistungsaufnahme der mindestens einen Leuchtstofflampe mit einem vorgebbaren Sollwert vergleicht. Beide Regler sind vorteilhafterweise als Bestandteil eines Mikroprozessors ausgebildet, der wiederum Bestandteil der Steuervorrichtung ist. Die von beiden Reglern generierten Stellwerte; werden überlagert und in einem digitalen Datenregister des Mikroprozessors gespeichert.
  • II. Beschreibung des bevorzugten Ausführungsbeispiels
  • Nachstehend wird die Erfindung anhand eines bevorzugten Ausführungsbeispiels näher erläutert. Es zeigen:
  • Figur 1
    Eine schematische Darstellung des erfindungsgemäßen Vorschaltgerätes
    Figur 2
    Eine schematische Darstellung der Abhängigkeit des Halbbrückenstroms von der Frequenz des Wechselrichters
  • In der Figur 1 ist schematisch der Aufbau eines elektronischen Vorschaltgerätes zum erfindungsgcmäßcn Betreiben von einer Leuchtstofflampe dargestellt. Dieses Vorschaltgerät besitzt einen Halbbrückenwechselrichter mit zwei Halbschaltern, insbesondere Transistoren T1, T2, einer Steuervorrichtung ST für die Halbleiterschalter T1, T2 und zwei Anschlüssen +, - für die Gleichspannungsversorgung des Halbbrückenwechselrichters. An den Mittenabgriff M des Halbbrückenwcchselrichters ist ein als Resonanzkreis ausgebildeter Lastkreis angeschlossen. Der Lastkreis umfasst die Resonanzinduktivität L1, den Resonanzkondensator C1, den Koppelkondensator C2, den parallel zum Koppelkondensator C2 angeordneten Entladewiderstand RI und Anschlüsse für die Elektrodenwendeln E1, E2 einer Leuchtstofflampe LP. Die Leuchtstofflampe LP ist derart in dem Lastkreis angeordnet, dass ihre Entladungsstrecke parallel zu dem Resonanzkondensator C1 geschaltet ist und die Elektrodenwendeln E1, E2 in Serie zu dem Resonanzkondensator C1 geschaltet sind. Diese Schaltungsanordnung ist beispielsweise in der Patentschrift EP 0422 255 B1 offenbart. Die Halbleiterschalter T1, T2 werden mittels der Steuervorrichtung ST alternierend aktiviert und deaktiviert, so dass der Lastkreis und die Lampe LP mit einem hochfrequenten Strom beaufschlagt werden, dessen Frequenzen im Bereich von ca. 40 kHz und 150 kHz liegen. Die zum Zünden der Gasentladung in der Leuchtstofflampe LP erforderliche Zündspannung wird mittels der Methode der Resonanzüberhöhung am Resonanzkondensator CI bereitgestellt. Zu diesem Zweck wird die Schaltfrequenz der Halbleiterschalter T1, T2 und damit auch die Frequenz des Stroms im Lastkreis auf einen Wert nahe der Resonanzfrequenz der Resonanzbauteile L1, C1 eingestellt. Nach erfolgter Zündung der Gasentladung in der Leuchtstofflampe LP wird der als Resonanzkreis ausgebildete Lastkreis durch die Impedanz der nun leitfähigen Entladungsstrecke zwischen den Elektroden E1, E2 der Leuchtstofflampe LP bedämpft. Die Impedanz der Entladungsstrecke der Leuchtstoff lampe LP und ihre Leistungsaufnahme sind abhängig von der Frequenz des durch die Lampe LP fließenden Stroms. Diese Tatsache kann zur Regelung der Leistungsaufnahme der Leuchtstofflampe und damit auch zu ihrer Helligkeitsregelung ausgenutzt werden, indem die Schaltfrequenz der Halbleiterschalter T1, T2 mittels der Steuervorrichtung ST entsprechend variiert wird, so dass sie einen mehr oder minder großen Abstand zur Resonanzfrequenz des bedämpften Resonanzkreises besitzt.
  • Zur Überwachung der Leistungsaufnahme der Leuchtstofflampe LP wird mittels zweier Tiefpassfilter R3, C3 und R4, C4 der durch den Widerstand R2 fließende Halbbrückenstrom ausgewertet, da der durch den Widerstand R2 fließende Halbbrückenstrom während einer Halbwelle - nämlich bei geschlossenem Schalter T2 - mit dem durch die Leuchtstofflampe LP fließenden Strom identisch ist. Der als Integrationsglied wirkende erste Tiefpassfilter R3, C3 bildet am Kondensator C3 einen über mehrere der obengenannten Halbwellen gemittelten Spannungsabfall, der proportional zur Leistungsaufnahme der Leuchtstofflampe LP ist und als Istwert für eine erste Regelschleife zur Helligkeitsregelung und Regelung der Leistungsaufnahme der Leuchtstofflampe dem Eingang des Proportional-Integral-Reglers IR zugeführt wird. Dieser Istwert wird in dem Proportional-Integral-Regler IR mit einem vorgebbaren Sollwert SW verglichen, der der Steuervorrichtung ST von außen, beispielsweise von einem Dimm-Potentiometer oder einer anderen Dimm-Vorrichtung, vorgegeben wird. Der Sollwert SW repräsentiert die gewünschte Helligkeitsstufe oder Leistungsstufe der Leuchtstofflampe LP. In Abhängigkeit von dem Soll-Istwertvergleich ermittelt der Proportional-Integral-Regler IR einen ersten Stellwert zur Steuerung der Schaltfrequenz der Halbleiterschalter T1, T2. Der erste Stellwert wird in dem 14 Bit-Datenregister S1 gespeichert und von der Treiberschalter TR ausgelesen, die Steuersignale für die Basis- bzw.- Gate-Elektrode der Halbleiterschalter T1, T2 generiert. Die erste Regelschleife wird in Zeitabständen von jeweils 1 ms ausgeführt. Das heißt, nach jeweils 1 ms wird mittels des ersten Tiefpasses R3, C3 ein neuer Istwert in den Proportional-Integral-Regler IR eingespeist, mit dem vorgebbaren Sollwert SW verglichen und ein aktualisierter erster Stellwert in das Datenregister S1 geschrieben.
  • In Figur 2 ist die Frequenzabhängigkeit des Halbbrückenstroms qualitativ dargestellt. Bei der Frequenz fl besitzt die Leuchtstofflampe ihre größte Helligkeit und der Lichtstrom beträgt daher 100% ihres Nennlichtstroms. Wird die Frequenz erhöht, so nimmt der Halbbrückenstrom und damit auch die Leistungsaufnahme sowie der Lichtstrom der Leuchtstofflampe ab. In dem Frequenzbereich Δf, der einem Lichtstrom von ca. 25% bis 10% des Nennlichtstroms entspricht, zeigt der Halbbrückenstrom eine extrem starke Frequenzabhängigkeit, so dass in diesem Bereich instabile Betriebszustände auftreten können.
  • Um Oszillationen der Leuchtstofflampe zwischen mehreren Betriebszuständen zu vermeiden, wird mittels des zweiten Tiefpassfilters R4, C4, des Differentiellen Reglers DR, des Datenspeichers S2 und des Datenregisters S1 eine zweite Regelschleife realisiert, die deutlich schneller durchlaufen wird als die erste Regelschleife. Mittels des Tiefpassfilters R4, C4 werden in Zeitintervallen von 100 µs Änderungen des durch den Widerstand R2 fließenden Halbbrückenstroms detektiert. Der Differentielle Regler DR führt in zeitlichen Abständen von 100 µs einen Soll-Istwertvergleich durch, wobei als Istwert der jeweils aktuelle, vom Tiefpassfilter R4, C4 ausgewertete Halbbrückenstrom verwendet wird und als Sollwert der im Datenspeicher S2 temporär gespeicherte Istwert des jeweils unmittelbar vorangegangenen Zeitintervalls herangezogen wird. In Abhängigkeit von dem Soll-Istwertvergleich wird von dem Differentiellen Regler DR ein zweiter Stellwert generiert, der dem 14 Bit-Datenregister S1 zugeführt und zu dem ersten Stellwert addiert wird. Aus der Summe der beiden Stellwerte ermittelt die Treiberschaltung TR Signale zur Frequenzsteuerung der Halbleiterschalter T1, T2. Mittels der zweiten Regelschleife wird der Halbbrückenstrom und damit die Leistungsaufnahme sowie die Helligkeit der Leuchtstofflampe auf den gewünschten Wert stabilisiert.
  • Da Oszillationen zwischen unterschiedlichen Betriebszuständen nur in dem oben erwähnten kritischen Betriebsbereich von ca. 25% bis 10% des Nennlichtstroms der Leuchtstofflampe zu erwarten sind, kann der Differentielle Regler DR außerhalb dieses kritischen Betriebsbereiches deaktiviert werden. Dieses geschieht dadurch, dass der Istwert der zweiten Regelschleife vor dem Soll-lstwertvergleich mit einem Verstärkungsfaktor K multipliziert wird, der abhängig von der gewählten Helligkeitsstufe, das heißt, von dem Sollwert SW der ersten Regelschleife, ist. Beim Betrieb der Leuchtstofflampe LP mit mehr als 25% ihres Nennlichtstroms kann der Verstärkungsfaktor K auf Null reduziert werden.
  • Beide Regler IR, DR sind als Algorithmen eines programmgesteuert arbeitenden Mikroprozessors ausgebildet, der Bestandteil der Steuervorrichtung ST ist. Gemäß eines weiteren, besonders bevorzugten Ausführungsbeispiels der Erfindung sind das erste C3, R3 und zweite Tiefpassfilter C4, R4 durch jeweils ein digitales Filter ersetzt, wobei das erste digitale Filter die Funktion des ersten Tiefpassfilters C3, R3 und das zweite digitale Filter die Funktion des zweiten Tiefpassfilters C4, R4 übernimmt. Die digitalen Filter sind als Bestandteil der Steuervorrichtung ST und insbesondere als Bestandteil des vorgenannten, programmgesteuert arbeitenden Mikroprozessors ausgebildet. Beide digitalen Filter werten den durch die Brückenschaltung fließenden Strom, das heißt, den Spannungsabfall am Widerstand R2, aus. Ihre Filtereigenschaften sind durch die im Mikroprozessor implementierte Software bestimmt. In allen anderen Details stimmt dieses Ausführungsbeispiel mit dem oben erläuterten ersten Ausführungsbeispiel überein.

Claims (9)

  1. Verfahren zum Betreiben von Leuchtstofflampen mit Hilfe eines Vorschaltgerätes, das einen Wechselrichter mit Halbleiterschaltern (T1, T2), die in einer Brückenschaltung angeordnet sind, und mit einer Steuervorrichtung (ST) für die Halbleiterschalter (T1, T2) und mindestens einen an den Wechselrichter angeschlossenen, als Resonanzkreis ausgebildeten Lastkreis aufweist, in dem mindestens eine Leuchtstofflampe (LP) betrieben wird, wobei die mindestens eine Leuchtstofflampe (LP) von dem Wechselrichter mit einem hochfrequenten Strom beaufschlagt wird und die Leistungsaufnahme der mindestens einen Leuchtstofflampe (LP) mittels einer ersten Regelschleife durch Variieren der Frequenz des hochfrequenten Stroms auf einen vorgebbaren Wert eingestellt wird,
    dadurch gekennzeichnet, dass zusätzlich mittels einer zweiten Regelschleife, die in kürzeren Zeitintervallen durchlaufen wird als die erste Regelschleife, die Leistungsaufnahme der mindestens einen Leuchtstofflampe (LP) auf den vorgebbaren Wert stabilisiert wird, wobei zur Durchführung der ersten Regelschleife ein in seiner Größe einstellbarer Sollwert in vorgegebenen Zeitabständen mit einem Istwert verglichen wird, der aus der zeitlich gemittelten Leistungsaufnahme der mindestens einen Leuchtstofflampe (LP) abgeleitet wird, und daraus ein erster Stellwert für die Steuervorrichtung (ST) gebildet wird, und wobei zur Durchführung der zweiten Regelschleife in vorgegebenen Zeitintervallen, die kürzer als die Zeitabstände der ersten Regelschleife sind, die Änderung der Leistungsaufnahme der mindestens einen Leuchtstofflampe (LP) zur Erzeugung eines zweiten Stellwertes für die Steuervorrichtung (ST) ausgewertet wird, und beide Stellwerte zum Erzeugen von Steuersignalen für die Regelung der Schaltfrequenz der Halbleiterschalter (T1, T2) ausgewertet werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Durchführung der ersten Regelschleife ein in seiner Größe einstellbarer Sollwert (SW) in vorgegebenen Zeitabständen mit einem Istwert verglichen wird, der aus dem durch die Brückenschaltung fließenden Strom abgeleitet wird, und wobei zur Durchführung der zweiten Regelschleife in vorgegebenen Zeitintervallen, die kürzer als die Zeitabstände der ersten Regelschleife sind, die Änderung des durch die Brückenschaltung fließenden Stroms ausgewertet wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Istwert für die erste Regelschleife mittels eines ersten Tiefpassfilters (R3, C3) aus dem durch die Brückenschaltung fließenden Strom abgeleitet wird.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Istwert für die erste Regelschleife mittels eines ersten digitalen Filters aus dem durch die Brückenschaltung fließenden Strom abgeleitet wird.
  5. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass während der zweiten Regelschleife ein Soll-Istwertvergleich durchgeführt wird, wobei am Ende eines jeden vorgegebenen Zeitintervalls aus dem durch die Brückenschaltung fließenden Strom ein Istwert abgeleitet wird und dieser mit dem als Sollwert dienenden, Istwert des unmittelbar vorangegangenen Zeitintervalls verglichen wird und daraus der zweite Stellwert für die Steuervorrichtung generiert wird.
  6. Verfahren nach den Ansprüchen 3 und 5, dadurch gekennzeichnet, dass der Istwert für die zweite Regelschleife mittels eines zweiten Tiefpassfilters (R4, C4) aus dem durch die Brückenschaltung fließenden Strom abgeleitet wird, wobei die Zeitkonstante des zweiten Tiefpassfilters kleiner als die Zeitkonstante des ersten Tiefpassfilters ist.
  7. Verfahren nach den Ansprüchen 4 und 5, dadurch gekennzeichnet, dass der Istwert für die zweite Regelschleife mittels eines zweiten Tiefpassfilters (R4, C4) aus dem durch die Brückenschaltung fließenden Strom abgeleitet wird, wobei die Zeitkonstante des zweiten Tiefpassfilters kleiner als die Zeitkonstante des ersten Tiefpassfilters ist.
  8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die vorgegebenen Zeitabstände der ersten Regelschleife eine Länge von 1 ms bis 2 ms besitzen.
  9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die vorgegebenen Zeitintervalle der zweiten Regelschleife eine Länge von 50 µs bis 200 µs besitzen.
EP03017859A 2002-08-30 2003-08-05 Verfahren zum Betreiben von Leuchtstofflampen und Vorschaltgerät Expired - Lifetime EP1395096B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10240807 2002-08-30
DE10240807A DE10240807A1 (de) 2002-08-30 2002-08-30 Verfahren zum Betreiben von Leuchtstofflampen und Vorschaltgerät

Publications (3)

Publication Number Publication Date
EP1395096A2 EP1395096A2 (de) 2004-03-03
EP1395096A3 EP1395096A3 (de) 2005-09-07
EP1395096B1 true EP1395096B1 (de) 2011-04-20

Family

ID=31197599

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03017859A Expired - Lifetime EP1395096B1 (de) 2002-08-30 2003-08-05 Verfahren zum Betreiben von Leuchtstofflampen und Vorschaltgerät

Country Status (6)

Country Link
US (1) US6933682B2 (de)
EP (1) EP1395096B1 (de)
AT (1) ATE506837T1 (de)
CA (1) CA2437995A1 (de)
DE (2) DE10240807A1 (de)
TW (1) TWI273863B (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050062852A (ko) * 2003-12-19 2005-06-28 삼성전자주식회사 액정 표시 장치, 표시 장치용 광원의 구동 장치 및 그방법
DE102005008483A1 (de) * 2005-02-24 2006-08-31 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH EVG für Hochdruckentladungslampe mit Strommesseinrichtung
DE102005018764A1 (de) * 2005-04-22 2006-10-26 Tridonicatco Gmbh & Co. Kg Einstellbare digitale Leuchtmittelleistungsregelung
US8093836B2 (en) * 2006-09-25 2012-01-10 Osram Ag Circuit arrangement and method for striking a discharge lamp
US7489531B2 (en) * 2006-09-28 2009-02-10 Osram Sylvania, Inc. Inverter with improved overcurrent protection circuit, and power supply and electronic ballast therefor
US8049430B2 (en) 2008-09-05 2011-11-01 Lutron Electronics Co., Inc. Electronic ballast having a partially self-oscillating inverter circuit
CN102640572B (zh) * 2009-12-08 2015-01-28 皇家飞利浦电子股份有限公司 用于驱动荧光灯的方法和设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463287A (en) * 1981-10-07 1984-07-31 Cornell-Dubilier Corp. Four lamp modular lighting control
US4894587A (en) * 1984-08-17 1990-01-16 Lutron Electronics Co., Inc. High frequency gas discharge lamp dimming ballast
EP0497431B1 (de) * 1987-04-13 1995-06-28 Sharp Kabushiki Kaisha Apparat zum Betreiben einer Halbleiterlaservorrichtung
CA2015281C (en) * 1989-04-25 1995-08-29 Minoru Maehara Polarized electromagnetic relay
ATE102430T1 (de) * 1989-10-09 1994-03-15 Siemens Ag Elektronisches vorschaltgeraet.
US5118997A (en) * 1991-08-16 1992-06-02 General Electric Company Dual feedback control for a high-efficiency class-d power amplifier circuit
EP0677982B1 (de) * 1994-04-15 2000-02-09 Knobel Ag Lichttechnische Komponenten Verfahren zum Betrieb eines Vorschaltgeräts für Entladungslampen
KR0157093B1 (ko) * 1994-12-22 1998-12-15 김광호 궤환 디밍 제어회로
US5798620A (en) * 1996-12-17 1998-08-25 Philips Electronics North America Corporation Fluorescent lamp dimming
US6040661A (en) * 1998-02-27 2000-03-21 Lumion Corporation Programmable universal lighting system
JP3600976B2 (ja) * 1998-07-14 2004-12-15 三菱電機株式会社 放電灯点灯装置
US6424100B1 (en) * 1999-10-21 2002-07-23 Matsushita Electric Industrial Co., Ltd. Fluorescent lamp operating apparatus and compact self-ballasted fluorescent lamp
JP2002043087A (ja) * 2000-07-26 2002-02-08 Toshiba Lighting & Technology Corp 放電灯点灯装置及び照明装置
US6414449B1 (en) * 2000-11-22 2002-07-02 City University Of Hong Kong Universal electronic ballast

Also Published As

Publication number Publication date
TW200407055A (en) 2004-05-01
EP1395096A3 (de) 2005-09-07
CA2437995A1 (en) 2004-03-30
US20040051481A1 (en) 2004-03-18
US6933682B2 (en) 2005-08-23
DE50313622D1 (de) 2011-06-01
EP1395096A2 (de) 2004-03-03
TWI273863B (en) 2007-02-11
ATE506837T1 (de) 2011-05-15
DE10240807A1 (de) 2004-03-11

Similar Documents

Publication Publication Date Title
DE3407067C2 (de) Steuerschaltung für Gasentladungslampen
EP0422255B1 (de) Elektronisches Vorschaltgerät
DE10250229B4 (de) Leistungsregelung für Hochfrequenzverstärker
EP0965251B1 (de) Verfahren und vorrichtung zum regeln des betriebsverhaltens von gasentladungslampen
WO1997027726A1 (de) Verfahren und elektronische steuerschaltung zum regeln des betriebsverhaltens von gasentladungslampen
DE60224094T2 (de) Elektronische schaltung und verfahren zum betrieb einer hochdrucklampe
EP1395096B1 (de) Verfahren zum Betreiben von Leuchtstofflampen und Vorschaltgerät
WO2002034015A1 (de) Elektronisches vorschaltgerät mit vollbrückenschaltung
DE19839160B4 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
EP1148768A2 (de) Stabilisierung des Betriebs von Gasentladungslampen
EP1901591B1 (de) Zündung von Gasentladungslampen unter variablen Umgebungsbedingungen
EP1276355B1 (de) Schaltungsanordnung zum Bestimmen eines Vorheizleistungswerts
DE19917365A1 (de) Verfahren zum Abgleich mindestens eines Betriebsparameters eines Betriebsgerätes für elektrische Lampen
EP1900262B1 (de) Vorrichtung und verfahren zum betreiben einer hochdruckentladungslampe
EP1476003B1 (de) Betriebsgerät und Verfahren zum Betreiben von Gasentladungslampen
DE3704511C2 (de)
EP1047286B1 (de) Vorschaltgerät für eine Hochdruckgasentladungslampe in einem Kraftfahrzeug
EP1670294B1 (de) Betriebsgerät und Verfahren zum Betreiben von Gasentladungslampen
EP1732365A2 (de) Schaltungsanordnung und Verfahren zum Erfassen eines Crestfaktors eines Lampenstroms oder einer Lampenbrennspannung einer elektrischen Lampe
DE60225818T2 (de) Schaltungsanordnung
EP2067385A1 (de) Schaltungsanordnung und verfahren zum zünden einer entladungslampe
WO2007096253A1 (de) Schaltungsanordnung und verfahren zum betreiben einer hochdruckentladungslampe
EP2005804B1 (de) Schaltungsanordnung und verfahren zum betreiben einer entladungslampe
DE102004023750A1 (de) Verfahren zum Betreiben eines Gaslasers mit einer getakteten Hochfrequenzspannung und nach diesem Verfahren betriebener Gaslaser
EP2119324A1 (de) Verfahren zum bestimmen eines crestfaktors eines lampenstroms einer elektrischen lampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050922

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50313622

Country of ref document: DE

Date of ref document: 20110601

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50313622

Country of ref document: DE

Effective date: 20110601

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110822

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313622

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUEHLAMPEN MBH, 81543 MUENCHEN, DE

Effective date: 20110324

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313622

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

26N No opposition filed

Effective date: 20120123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50313622

Country of ref document: DE

Effective date: 20120123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313622

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313622

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130815

Year of fee payment: 11

Ref country code: AT

Payment date: 20130813

Year of fee payment: 11

Ref country code: CH

Payment date: 20130821

Year of fee payment: 11

Ref country code: SE

Payment date: 20130821

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130821

Year of fee payment: 11

Ref country code: FR

Payment date: 20130823

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140826

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140820

Year of fee payment: 12

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150301

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 506837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140805

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140806

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140805

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170822

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50313622

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301