EP1392962B1 - Kraftstoffeinspritzeinrichtung mit druckübersetzungseinrichtung und druckübersetzungseinrichtung - Google Patents

Kraftstoffeinspritzeinrichtung mit druckübersetzungseinrichtung und druckübersetzungseinrichtung Download PDF

Info

Publication number
EP1392962B1
EP1392962B1 EP02742691A EP02742691A EP1392962B1 EP 1392962 B1 EP1392962 B1 EP 1392962B1 EP 02742691 A EP02742691 A EP 02742691A EP 02742691 A EP02742691 A EP 02742691A EP 1392962 B1 EP1392962 B1 EP 1392962B1
Authority
EP
European Patent Office
Prior art keywords
pressure
fuel
space
valve
backspace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02742691A
Other languages
English (en)
French (fr)
Other versions
EP1392962A1 (de
Inventor
Christoph Magel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1392962A1 publication Critical patent/EP1392962A1/de
Application granted granted Critical
Publication of EP1392962B1 publication Critical patent/EP1392962B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • F02M57/026Construction details of pressure amplifiers, e.g. fuel passages or check valves arranged in the intensifier piston or head, particular diameter relationships, stop members, arrangement of ports or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/105Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive

Definitions

  • the invention relates to a fuel injection device or a pressure booster device according to the preamble of the independent claims.
  • fuel injection devices or pressure booster devices are already known in which a pressure booster piston by means of a filling or emptying a back space allows an increase in the fuel injection pressure above the value provided by a common rail system addition.
  • the fuel injection device according to the invention or the pressure booster device according to the invention have the advantage that, by means of a valve that connects, for example, depending on the prevailing fuel pressure in the back pressure chamber connected to the high pressure source side of the pressure booster directly to the fuel injector connected to the side, it allows both Filling the backspace with Fuel as well as a closure of the connected to the injector side of the pressure booster from the high-pressure fuel source with this one valve without additional components to ensure.
  • a further advantage is to be considered that the filling of the fuel injector connected to the high-pressure chamber of the pressure booster device does not take place via an example spring-loaded separate check valve, but over a constantly open in the reset phase path. This ensures an improved, in particular faster resetting of the piston of the pressure booster device.
  • an additional control of the combination valve by the pressure build-up in the high pressure chamber is particularly advantageous, so that in addition to the pressure drop in the rear space at the same time the pressure buildup in the high pressure chamber drives the valve body and thus can turn the combination valve very fast.
  • FIG. 1 shows a fuel injection device
  • FIG. 2 shows a pressure booster device in the active state
  • FIG. 3 shows the pressure booster device of a further fuel injection device.
  • the high-pressure fuel source includes a plurality of non-illustrated elements such as a fuel tank, a pump and the high-pressure rail of a conventional rail system known per se, wherein the pump provides up to 1600 bar high fuel pressure in the high-pressure rail by fuel from the tank in the High-pressure rail transported.
  • the injector 10 has a fuel injection valve with a valve member 12, which projects with its injection openings 8 into the combustion chamber 11 of a cylinder of an internal combustion engine.
  • the valve member is surrounded on a pressure shoulder 9 by a pressure chamber 13, which is connected via a high-pressure line 21 to the high-pressure chamber 40 of the pressure booster 30.
  • the control valve 15 is designed as a 2/2-way valve and closed in the first position; in the second position it connects the throttle 19 with a low-pressure line 17.
  • the valve member is resiliently mounted via a return spring 14, wherein the return spring presses the valve member against the injection openings 8.
  • the space of the injection valve of the injector contained in the spring is connected to a further low-pressure line 16.
  • the pressure booster 30 has a spring-mounted piston 36 which separates the high-pressure chamber 40 connected to the high-pressure line 21 from a space 35 which is connected directly to the high-pressure fuel source 60.
  • the spring 39 used for mounting the piston is arranged in a rear space 38 of the pressure booster 30.
  • the piston 36 has a continuation piece 37 which has a smaller diameter than the piston 36 at its end facing the space 35.
  • the rear chamber 38 can be connected via a 2/2-way valve 31 with a low pressure line 32.
  • the low pressure line 32 leads as well as the low pressure lines 16 and 17 back to the fuel tank, not shown.
  • the space 35 of the pressure booster device is connected via a built-in as a bore in the piston throttle 47 with the rear chamber 38.
  • a combination valve 50 is integrated in a bore 58 of the piston 36.
  • the bore communicates with the space 35.
  • a cylindrical valve body 51 is movably mounted.
  • a spring 54 is arranged, which presses the valve body in the relaxed state just so far in the direction of space 35 that the valve chamber 53 on the one hand with a space 35 leading, designed as a bore in the piston feed line 52 and on the other hand with a leading to the high pressure chamber 40, as a bore through the continuation piece 37 running high-pressure chamber line 56 is in communication.
  • valve space 53 is beyond regardless of the position of the valve body 51 via a designed as a bore in the piston 36 and remote from the space 35 end of the bore 58 opening into the bore back space line 55 with the rear chamber 38 in conjunction, since the valve body 51 on its spring 54 side facing a extends through the spring center extension 57 which, as shown in Figure 2, limits the movement of the valve body as soon as it has closed the lines 52 and 56.
  • the mode of operation of the stroke-controlled injector 10 is already known per se from the German patent application DE 199 10 970.
  • At the high pressure line 21 is constantly at a high fuel pressure.
  • Fuel passes from the pressure chamber 13 through the injection openings 8 into the combustion chamber 11, as soon as the valve member is relieved at its end facing away from the injection openings by opening the 2/2-way valve 15 is temporarily relieved of fuel pressure and thus acting on the pressure shoulder 9 in the opening direction acting force is greater than the sum of spring force (14) and force due to remaining in the working space 18 fuel pressure.
  • the valve 15 In the idle state, however, the valve 15 is closed, the injection valve is closed and there is no injection.
  • the pressure of the high-pressure fuel source prevails in the rear space 38, and the pressure booster 30 is pressure balanced, so that no pressure boost takes place.
  • the combination valve 50 is then open and the piston 36, 37 in its initial position, characterized by a large volume of the rear chamber 38.
  • the pressure of the high-pressure fuel source can pass through the open combination valve 50, the supply line 52 and the return chamber line 55 into the back space 38.
  • the pressure of the high-pressure fuel source via the supply line 52 and the high-pressure chamber line 56 reaches the high-pressure chamber 40 and from there to the injector 10. Thus can take place at any time an injection with the pressure of the high-pressure fuel source.
  • the control valve 15 of the injector must be actuated, whereby the injection valve opens. If now an injection with increased pressure take place, then the translator control valve 31 is opened, so that the pressure in the rear chamber 38 may drop, whereby the combination valve 50 closes. In the closed state closes the combination valve 50, as shown in Figure 2, the high-pressure chamber line 56 and the supply line 52. Thus, in the high-pressure chamber 40 to be compressed fuel does not flow back (check valve function of the combination valve) and the fuel flows from the room 35 only throttled via the throttle 47 in the back space 38 (filling valve function of the combination valve).
  • the pressure relief of the back space 38 of the piston 36 is not pressure balanced and there is a pressure gain in the high pressure chamber 40 corresponding to the pressure area ratio of space 35 and high pressure chamber 40.
  • the pressure booster 30 is turned off by closing the booster valve 31, then takes place via the throttle 47 a Pressure equalization between the chambers 35, 38 and 40.
  • the combination valve 50 opens when the pressure in the rear chamber 38 has reached the pressure in the space 35 minus an opening pressure difference.
  • the opening pressure difference of the combination valve is determined by the spring constant of the spring 54 and the hydraulic pressure surfaces of the valve body to the spaces 35 and 53. In the illustrated embodiment, the hydraulic pressure surfaces are the same size.
  • FIG. 3 shows a further embodiment of the fuel injection device according to the invention.
  • the pressure booster device arranged between the high-pressure fuel source 60 and the high-pressure line 21 leading to the injector 10 has a piston 36 with an integrated alternative combination valve 70.
  • the valve body 78 of the combination valve 70 is movably mounted in a cylindrical cavity 88 of the piston 36.
  • a run as a bore in the piston 36 supply line 72 leads from the space 35 into an annular groove 90 of the cavity 88.
  • the back space 38 is independent of the position of the valve body in the cavity via the return line 74 connected to the cavity 88, so that constantly prevailing in the rear space Fuel pressure on the valve body can attack.
  • a spring 80 is stretched between the wall of the cavity 88 and a shoulder of the valve body 78, that in the spring force acting on the valve body mainly forces via the annular groove 90, a fluid exchange between the space 35 and the cavity 88 can take place.
  • an elevation 94 of the valve body arranged at the end facing away from the spring 80 is pressed against the cavity boundary.
  • a designed as a bore in the piston high-pressure chamber line 76 connects the high-pressure chamber 40 with the between the elevation 94 limited pressure surface 92 and the piston wall located part of the cavity 88.
  • the combination valve 50 thus has both a pressure surface to the high pressure chamber 40, the pressure surface 92, as well as a pressure surface to the rear chamber 38, it is closed by a falling pressure in the rear space and by an increasing pressure in the high pressure chamber.
  • the opening spring force of the spring 80 sets the opening pressure difference between the rear space and the high-pressure space to which the combination valve is opened.
  • the sealing function is ensured for the high-pressure chamber line 40 by the flat sealing seat surfaces 82 and for the supply line 72 through the slider sealing edges 84.
  • a pressure increase in the high-pressure chamber is carried out as in the previously described embodiment when opening the booster control valve 31 for pressure relief of the back space 38th

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Stand der Technik
  • Die Erfindung geht aus von einer Kraftstoffeinspritzeinrichtung beziehungsweise einer Druckübersetzungseinrichtung nach der Gattung der unabhängigen Ansprüche. Aus der DE 199 10 970 sind schon Kraftstoffeinspritzeinrichtungen beziehungsweise Druckübersetzungseinrichtungen bekannt, bei denen ein Druckverstärkerkolben mittels einer Befüllung beziehungsweise einer Entleerung eines Rückraums eine Erhöhung des Kraftstoffeinspritzdrucks über den von einem Common-Rail-System hinaus bereitgestellten Wert ermöglicht.
  • Vorteile der Erfindung
  • Die erfindungsgemäße Kraftstoffeinspritzeinrichtung beziehungsweise die erfindungsgemäße Druckübersetzungseinrichtung haben demgegenüber den Vorteil, dass mittels eines Ventils, das beispielsweise in Abhängigkeit des im Rückraum herrschenden Kraftstoffdrucks die mit der Kraftstoffhochdruckquelle verbundene Seite der Druckübersetzungseinrichtung direkt mit der mit dem Kraftstoffinjektor verbundenen Seite verbindet, es ermöglicht wird, sowohl eine Befüllung des Rückraums mit Kraftstoff als auch eine Abriegelung der mit dem Injektor verbundenen Seite der Druckübersetzungseinrichtung von der Kraftstoffhochdruckquelle mit diesem einen Ventil ohne zusätzliche Bauteile zu gewährleisten. Als weiterer Vorteil ist anzusehen, dass das Befüllen des mit dem Kraftstoffinjektor verbundenen Hochdruckraums der Druckübersetzungseinrichtung nicht über ein beispielsweise federbelastetes separates Rückschlagventil erfolgt, sondern über einen in der Rückstellphase ständig geöffneten Pfad. Dies gewährleistet ein verbessertes, insbesondere schnelleres Rückstellen des Kolbens der Druckübersetzungseinrichtung.
  • Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der in den unabhängigen Ansprüchen 1 und 10 angegebenen Kraftstoffeinspritzeinrichtung beziehungsweise Druckübersetzungseinrichtung möglich.
  • Vorteilhaft ist ferner eine Integration einer Drossel in den Kolben der Druckübersetzungseinrichtung, so dass keine Leitung mehr am durchmessergrößeren Ende des Kolbens vorbeigeführt werden muss. Dies resultiert in einer noch kompakteren Bauform der Kraftstoffeinspritzeinrichtung beziehungsweise der Druckübersetzungseinrichtung.
  • Besonders vorteilhaft ist darüber hinaus eine zusätzliche Steuerung des Kombiventils durch den Druckaufbau im Hochdruckraum, so dass neben dem Druckabfall im Rückraum gleichzeitig der Druckaufbau im Hochdruckraum den Ventilkörper antreibt und somit das Kombiventil besonders schnell schalten kann.
  • Weitere Vorteile ergeben sich durch die weiteren in den weiteren abhängigen Ansprüchen und in der Beschreibung genannten Merkmale.
  • Zeichnung
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine Kraftstoffeinspritzeinrichtung, Figur 2 eine Druckübersetzungseinrichtung in aktivem Zustand und Figur 3 die Druckübersetzungseinrichtung einer weiteren Kraftstoffeinspritzeinrichtung.
  • Beschreibung der Ausführungsbeispiele
  • In Figur 1 ist eine Kraftstoffeinspritzeinrichtung dargestellt, bei der ein Injektor 10 über eine Druckübersetzungseinrichtung 30 mit einer Kraftstoffhochdruckquelle 60 verbunden ist. Die Kraftstoffhochdruckquelle umfasst mehrere nicht näher dargestellte Elemente wie einen Kraftstofftank, eine Pumpe und das Hochdruckrail eines an sich bekannten Common-Rail-Systems, wobei die Pumpe einen bis zu 1600 bar hohen Kraftstoffdruck in dem Hochdruckrail bereitstellt, indem sie Kraftstoff aus dem Tank in das Hochdruckrail befördert. Der Injektor 10 weist ein Kraftstoffeinspritzventil mit einem Ventilglied 12 auf, das mit seinen Einspritzöffnungen 8 in den Brennraum 11 eines Zylinders einer Brennkraftmaschine hineinragt. Das Ventilglied ist an einer Druckschulter 9 von einem Druckraum 13 umgeben, der über eine Hochdruckleitung 21 mit dem Hochdruckraum 40 der Druckübersetzungseinrichtung 30 verbunden ist. Das schematisch dargestellte Ventilglied ragt an seinem dem Brennraum abgewandten Ende in einen Arbeitsraum 18 hinein, der über eine Drossel 20 mit der Hochdruckleitung 21 und über eine Drossel 19 mit einem Steuerventil 15 des Injektors verbunden ist, wobei die Drossel 20 einen kleineren Öffnungsqerschnitt hat als die Drossel 19. Das Steuerventil 15 ist als 2/2-Wege-Ventil ausgeführt und in der ersten Stellung geschlossen; in der zweiten Stellung verbindet es die Drossel 19 mit einer Niederdruckleitung 17. Das Ventilglied ist über eine Rückstellfeder 14 federnd gelagert, wobei die Rückstellfeder das Ventilglied gegen die Einspritzöffnungen 8 drückt. Der die Feder enthaltene Raum des Einspritzventils des Injektors ist mit einer weiteren Niederdruckleitung 16 verbunden. Die Druckübersetzungseinrichtung 30 besitzt einen federnd gelagerten Kolben 36, der den mit der Hochdruckleitung 21 verbundenen Hochdruckraum 40 von einem Raum 35 trennt, der direkt an die Kraftstoffhochdruckquelle 60 angeschlossen ist. Die zur Lagerung des Kolbens verwendete Feder 39 ist in einem Rückraum 38 der Druckübersetzungseinrichtung 30 angeordnet. Der Kolben 36 weist ein Fortsetzungsstück 37 auf, das einen kleineren Durchmesser hat als der Kolben 36 an seinem dem Raum 35 zugewandten Ende. Der Rückraum 38 ist über ein 2/2-Wege-Ventil 31 mit einer Niederdruckleitung 32 verbindbar. Die Niederdruckleitung 32 führt ebenso wie die Niederdruckleitungen 16 und 17 zurück zum nicht näher dargestellten Kraftstofftank. Der Raum 35 der Druckübersetzungseinrichtung ist über eine als Bohrung im Kolben integrierte Drossel 47 mit dem Rückraum 38 verbunden. Neben der Drosselbohrung 47 ist ein Kombiventil 50 in einer Bohrung 58 des Kolben 36 integriert. Die Bohrung steht mit dem Raum 35 in Verbindung. In ihr ist ein zylindrischer Ventilkörper 51 beweglich gelagert. Zwischen dem Kolben 36 und dem Ventilkörper 51 ist eine Feder 54 angeordnet, die im entspannten Zustand den Ventilkörper gerade so weit in Richtung Raum 35 drückt, dass der Ventilraum 53 zum einen mit einer zum Raum 35 führenden, als Bohrung im Kolben ausgeführten Zulaufleitung 52 und zum anderen mit einer zum Hochdruckraum 40 führenden, als Bohrung durch das Fortsetzungsstück 37 ausgeführten Hochdruckraumleitung 56 in Verbindung steht. Der Ventilraum 53 steht darüber hinaus unabhängig von der Stellung des Ventilkörpers 51 über eine als Bohrung im Kolben 36 ausgeführte und am dem Raum 35 abgewandten Ende der Bohrung 58 in die Bohrung einmündende Rückraumleitung 55 mit dem Rückraum 38 in Verbindung, da der Ventilkörper 51 auf seiner der Feder 54 zugewandten Seite einen durch die Federmitte hindurchgehenden Fortsatz 57 besitzt, der, wie in Figur 2 dargestellt, die Bewegung des Ventilkörpers begrenzt, sobald er die Leitungen 52 und 56 verschlossen hat.
  • Die Funktionsweise des hubgesteuerten Injektors 10 ist an sich bereits aus der deutschen Patentanmeldung DE 199 10 970 bekannt. An der Hochdruckleitung 21 liegt ständig ein hoher Kraftstoffdruck an. Kraftstoff gelangt aus dem Druckraum 13 durch die Einspritzöffnungen 8 in den Brennraum 11, sobald das Ventilglied an seinem den Einspritzöffnungen abgewandten Ende durch Öffnen des 2/2-Wege-Ventils 15 kurzzeitig vom Kraftstoffdruck entlastet wird und somit die an der Druckschulter 9 angreifende in Öffnungsrichtung wirkende Kraft größer ist als die Summe von Federkraft (14) und Kraft infolge des im Arbeitsraum 18 verbleibenden Kraftstoffdrucks. Im Ruhezustand hingegen ist das Ventil 15 geschlossen, das Einspritzventil ist geschlossen und es findet keine Einspritzung statt. Ist auch das Übersetzer-Steuerventil 31 geschlossen, so herrscht im Rückraum 38 der Druck der Kraftstoffhochdruckquelle und die Druckübersetzungseinrichtung 30 ist druckausgeglichen, so dass keine Druckverstärkung stattfindet. Das Kombiventil 50 ist dann geöffnet und der Kolben 36, 37 in seiner Ausgangslage, gekennzeichnet durch ein grosses Volumen des Rückraums 38. Der Druck der Kraftstoffhochdruckquelle kann über das geöffnete Kombiventil 50, die Zulaufleitung 52 und die Rückraumleitung 55 in den Rückraum 38 gelangen. Weiterhin gelangt der Druck der Kraftstoffhochdruckquelle über die Zulaufleitung 52 und die Hochdruckraumleitung 56 zum Hochdruckraum 40 und von dort zum Injektor 10. Somit kann zu jeder Zeit eine Einspritzung mit dem Druck der Kraftstoffhochdruckquelle stattfinden. Hierzu muss lediglich, wie bereits eingangs beschrieben, das Steuerventil 15 des Injektors betätigt werden, wodurch sich das Einspritzventil öffnet. Soll nun eine Einspritzung mit erhöhtem Druck stattfinden, dann wird das Übersetzer-Steuerventil 31 geöffnet, so dass der Druck im Rückraum 38 abfallen kann, wodurch sich das Kombiventil 50 schließt. In geschlossenem Zustand verschließt das Kombiventil 50, wie in Figur 2 dargestellt, die Hochdruckraumleitung 56 und die Zulaufleitung 52. Damit kann der im Hochdruckraum 40 zu komprimierende Kraftstoff nicht zurückfliessen (Rückschlagventil-Funktion des Kombiventils) und der Kraftstoff aus dem Raum 35 strömt nur gedrosselt über die Drossel 47 in den Rückraum 38 (Füllventil-Funktion des Kombiventils). Infolge der Druckentlastung des Rückraums 38 ist der Kolben 36 nicht druckausgeglichen und es erfolgt im Hochdruckraum 40 eine Druckverstärkung entsprechend dem Druckflächenverhältnis von Raum 35 und Hochdruckraum 40. Wird die Druckübersetzungseinrichtung 30 durch Schließen des Übersetzer-Steuerventils 31 abgeschaltet, dann erfolgt über die Drossel 47 ein Druckausgleich zwischen den Räumen 35, 38 und 40. Das Kombiventil 50 öffnet, wenn der Druck im Rückraum 38 den Druck im Raum 35 abzüglich einer Öffnungsdruckdifferenz erreicht hat. Die Öffnungsdruckdifferenz des Kombiventils ist durch die Federkonstante der Feder 54 und die hydraulischen Druckflächen des Ventilkörpers zu den Räumen 35 und 53 festgelegt. Im dargestellten Ausführungsbeispiel sind die hydraulischen Druckflächen gleich gross. Sobald das Kombiventil geöffnet ist, kann eine schnelle Füllung des Rückraums 38 und des Hochdruckraums 40 und damit eine schnelle Rückstellung des Kolbens der Druckübersetzungseinrichtung erfolgen. Dadurch, dass die Einspritzung mit zwei unterschiedlichen Druckniveaus (Raildruck und übersetzter Druck) stattfinden kann und ein Zuschalten der Druckübersetzungseinrichtung zu jeder Zeit möglich ist, kann eine flexible Formung des Einspritzverlaufs erfolgen. Dabei sind rechteckförmige, rampenförmige oder auch "Boot"-Einspritzungen mit variabler Länge der Bootphase möglich.
  • Figur 3 zeigt eine weitere Ausführungsform der erfindungsgemäßen Kraftstoffeinspritzeinrichtung. Die zwischen der Kraftstoffhochdruckquelle 60 und der zum Injektor 10 führenden Hochdruckleitung 21 angeordnete Druckübersetzungseinrichtung weist einen Kolben 36 mit einem integrierten alternativen Kombiventil 70 auf. Der Ventilkörper 78 des Kombiventils 70 ist in einem zylindrischen Hohlraum 88 des Kolbens 36 beweglich gelagert. Eine als Bohrung im Kolben 36 ausgeführte Zulaufleitung 72 führt vom Raum 35 in eine Ringnut 90 des Hohlraums 88. Der Rückraum 38 ist unabhängig von der Stellung des Ventilkörpers im Hohlraum über die Rückraumleitung 74 mit dem Hohlraum 88 verbunden, so dass ständig ein im Rückraum herrschender Kraftstoffdruck am Ventilkörper angreifen kann. Eine Feder 80 ist so zwischen der Wandung des Hohlraums 88 und einer Schulter des Ventilkörpers 78 gespannt, dass bei überwiegend in Federkraftrichtung auf den Ventilkörper wirkenden Kräften über die Ringnut 90 ein Flüssigkeitsaustausch zwischen dem Raum 35 und dem Hohlraum 88 stattfinden kann. Dabei wird eine am der Feder 80 abgewandten Ende des Ventilkörpers angeordnete Erhebung 94 des Ventilkörpers gegen die Hohlraumbegrenzung gedrückt. Eine als Bohrung im Kolben ausgeführte Hochdruckraumleitung 76 verbindet den Hochdruckraum 40 mit dem zwischen der von der Erhebung 94 begrenzten Druckfläche 92 und der Kolbenwandung befindlichen Teil des Hohlraums 88. Im entspannten Zustand der Feder 80 steht ferner der Bereich des Hohlraums 88, der von dem der Feder zugewandten Ende des Ventilkörpers 78 begrenzt wird, über eine zentrale Bohrung 86 des Ventilkörpers mit dem Bereich des Hohlraums in Verbindung, der von dem der Feder abgewandten Ende des Ventilkörpers begrenzt wird. Überwiegen die gegen Federkraftrichtung wirkenden Kräfte auf den Ventilkörper, so werden die Flachdichtsitzflächen 82 aufeinandergepresst und die Bohrung 86 verschlossen. Gleichzeitig wird die Ringnut 90 vom restlichen Teil des Hohlraums 88 durch die Schieberdichtkanten 84 verschlossen.
  • Da das Kombiventil 50 also sowohl eine Druckfläche zum Hochdruckraum 40, die Druckfläche 92, als auch eine Druckfläche zum Rückraum 38 aufweist, wird es durch einen abfallenden Druck im Rückraum und durch einen ansteigenden Druck im Hochdruckraum geschlossen. Die öffnende Federkraft der Feder 80 legt die Öffnungsdruckdifferenz zwischen dem Rückraum und dem Hochdruckraum fest, bis zu der das Kombiventil geöffnet ist. Die Dichtfunktion ist dabei für die Hochdruckraumleitung 40 durch die Flachdichtsitzflächen 82 und für die Zulaufleitung 72 durch die Schieberdichtkanten 84 gewährleistet. Eine Druckverstärkung im Hochdruckraum erfolgt wie im vorhergehend beschriebenen Ausführungsbeispiel bei Öffnung des Übersetzer-Steuerventils 31 zur Druckentlastung des Rückraums 38.

Claims (10)

  1. Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit einem von einer Kraftstoffhochdruckquelle (60) versorgbaren Kraftstoffinjektor (10), wobei zwischen dem Kraftstoffinjektor (10) und der Kraftstoffhochdruckquelle (60) eine einen beweglichen Kolben (36) aufweisende Druckübersetzungseinrichtung (30) geschaltet ist, wobei der bewegliche Kolben (36) einen an die Kraftstoffhochdruckquelle (60) angeschlossenen Raum (35) von einem mit dem Injektor verbundenen Hochdruckraum (40) trennt, wobei durch Befüllen eines Rückraumes (38) der Druckübersetzungseinrichtung (30) mit Kraftstoff beziehungsweise durch Entleeren des Rückraums (38) von Kraftstoff der Kraftstoffdruck im Hochdruckraum (40) variiert werden kann, dadurch gekennzeichnet, dass ein Ventil (50; 70) mit einem verschiebbar angeordneten Ventilkörper (51; 78) vorgesehen ist, so dass in einer Stellung des Ventilkörpers (51; 78) sowohl der Hochdruckraum (40) über das Ventil (50; 70) mit dem Raum (35) verbindbar (56, 53, 52; 76, 86, 88, 72) als auch der Rückraum (38) über das Ventil mit dem Raum (35) verbindbar (55, 53, 52; 74, 88, 72) ist.
  2. Kraftstoffeinspritzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Ventilkörper (51; 78) in Abhängigkeit von dem im Rückraum (38) herrschenden Kraftstoffdruck verschiebbar angeordnet ist.
  3. Kraftstoffeinspritzeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Ventil (50; 70) im Kolben (36, 37) integriert ist.
  4. Kraftstoffeinspritzeinrichtung nach Anspruch 3, dadurch gekennzeichnet, dass das Ventil (50; 70) über als im Kolben integrierte Bohrungen ausgeführte Leitungen (52, 55, 56; 72, 74, 76) mit dem Raum (35), dem Rückraum (38) und dem Hochdruckraum (40) verbunden ist.
  5. Kraftstoffeinspritzeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ventilkörper einenends mit dem im Rückraum (38) herrschenden Kraftstoffdruck beaufschlagbar (55) und andernends mit dem im Raum (35) herrschenden Kraftstoffdruck beaufschlagbar ist.
  6. Kraftstoffeinspritzeinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Ventilkörper einenends mit dem im Rückraum (38) herrschenden Kraftstoffdruck beaufschlagbar (74) und andernends über eine Druckfläche (92) mit dem im Hochdruckraum (40) herrschenden Kraftstoffdruck beaufschlagbar (76) ist.
  7. Kraftstoffeinspritzeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Raum (35) mit dem Rückraum (38) über eine Drossel (47) verbunden ist.
  8. Kraftstoffeinspritzeinrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Drossel (47) als im Kolben (36, 37) integrierte Bohrung ausgeführt ist.
  9. Kraftstoffeinspritzeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rückraum (38) über ein Steuerventil (31) mit einer Niederdruckleitung (32) verbindbar ist.
  10. Druckübersetzungseinrichtung (30) mit einem beweglichen Kolben (36), der einen an eine Kraftstoffhochdruckquelle (60) anschließbaren Raum (35) von einem mit einem Kraftstoffinjektor (10) verbindbaren Hochdruckraum (40) trennt, wobei durch Befüllen eines Rückraumes (38) der Druckübersetzungseinrichtung (30) mit Kraftstoff beziehungsweise durch Entleeren des Rückraums (38) von Kraftstoff der Kraftstoffdruck im Hochdruckraum (40) variiert werden kann, dadurch gekennzeichnet, dass ein Ventil (50; 70) mit einem verschiebbar angeordneten Ventilkörper (51; 78) vorgesehen ist, so dass in einer Stellung des Ventilkörpes (51; 78) sowohl der Hochdruckraum (40) über das Ventil (50; 70) mit dem Raum (35) verbindbar (56, 53, 52; 76, 86, 88, 72) als auch der Rückraum (38) über das Ventil mit dem Raum (35) verbindbar (55, 53, 52; 74, 88, 72) ist.
EP02742691A 2001-05-17 2002-04-26 Kraftstoffeinspritzeinrichtung mit druckübersetzungseinrichtung und druckübersetzungseinrichtung Expired - Lifetime EP1392962B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10123914A DE10123914B4 (de) 2001-05-17 2001-05-17 Kraftstoffeinspritzeinrichtung mit Druckübersetzungseinrichtung und Druckübersetzungseinrichtung
DE10123914 2001-05-17
PCT/DE2002/001535 WO2002092992A1 (de) 2001-05-17 2002-04-26 Kraftstoffeinspritzeinrichtung mit druckübersetzungseinrichtung und druckübersetzungseinrichtung

Publications (2)

Publication Number Publication Date
EP1392962A1 EP1392962A1 (de) 2004-03-03
EP1392962B1 true EP1392962B1 (de) 2006-09-13

Family

ID=7685052

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02742691A Expired - Lifetime EP1392962B1 (de) 2001-05-17 2002-04-26 Kraftstoffeinspritzeinrichtung mit druckübersetzungseinrichtung und druckübersetzungseinrichtung

Country Status (6)

Country Link
US (1) US7066147B2 (de)
EP (1) EP1392962B1 (de)
JP (1) JP2004519610A (de)
KR (1) KR20030017633A (de)
DE (2) DE10123914B4 (de)
WO (1) WO2002092992A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10229412A1 (de) * 2002-06-29 2004-01-29 Robert Bosch Gmbh Kraftstoffinjektor mit Druckübersetzer für Mehrfacheinspritzung
DE10247903A1 (de) * 2002-10-14 2004-04-22 Robert Bosch Gmbh Druckverstärkte Kraftstoffeinspritzeinrichtung mit innenliegender Steuerleitung
GB0305557D0 (en) * 2003-03-11 2003-04-16 Delphi Tech Inc Fuel injector
JP2006522254A (ja) * 2003-04-02 2006-09-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 増圧器を備えたサーボ弁制御式の燃料インジェクタ
DE10315016A1 (de) 2003-04-02 2004-10-28 Robert Bosch Gmbh Kraftstoffinjektor mit leckagefreiem Servoventil
DE10333787A1 (de) * 2003-07-24 2005-02-24 Volkswagen Mechatronic Gmbh & Co. Kg Pumpe-Düse-Vorrichtung
DE102004017304A1 (de) * 2004-04-08 2005-10-27 Robert Bosch Gmbh Servoventilangesteuerter Kraftstoffinjektor
JP3994990B2 (ja) * 2004-07-21 2007-10-24 株式会社豊田中央研究所 燃料噴射装置
SE529810C2 (sv) * 2006-04-10 2007-11-27 Scania Cv Ab Insprutningsorgan för en förbränningsmotor
DE102006038840A1 (de) * 2006-08-18 2008-02-21 Robert Bosch Gmbh Kraftstoffinjektor mit Kolbenrückholung eines Druckübersetzerkolbens
US20080047527A1 (en) * 2006-08-25 2008-02-28 Jinhui Sun Intensified common rail fuel injection system and method of operating an engine using same
US20090126689A1 (en) * 2007-11-16 2009-05-21 Caterpillar Inc. Fuel injector having valve with opposing sealing surfaces
US8291889B2 (en) 2009-05-07 2012-10-23 Caterpillar Inc. Pressure control in low static leak fuel system
DE102010000828A1 (de) * 2010-01-12 2011-07-14 Robert Bosch GmbH, 70469 Druckverstärkungseinrichtung für ein Kraftstoffeinspritzsystem und Kraftstoffeinspritzsystem
DE102010008467A1 (de) 2010-02-18 2011-08-18 Continental Automotive GmbH, 30165 Hochdruck-Kraftstoff-Einspritzventil für einen Verbrennungsmotor
US8443780B2 (en) * 2010-06-01 2013-05-21 Caterpillar Inc. Low leakage cam assisted common rail fuel system, fuel injector, and operating method therefor
RU2545020C1 (ru) * 2014-04-28 2015-03-27 Федеральное государственное унитарное предприятие "Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт "НАМИ" Устройство для подачи топлива к форсунке теплового двигателя

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3245142A1 (de) * 1982-12-07 1984-06-07 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zum einspritzen von kraftstoff
DE4229595C1 (de) * 1992-09-04 1993-08-19 Bayerische Motoren Werke Ag, 8000 Muenchen, De
US5722373A (en) * 1993-02-26 1998-03-03 Paul; Marius A. Fuel injector system with feed-back control
JP2885076B2 (ja) * 1994-07-08 1999-04-19 三菱自動車工業株式会社 蓄圧式燃料噴射装置
US5862792A (en) * 1996-02-28 1999-01-26 Paul; Marius A. Self-injection system
DE19908217B4 (de) * 1999-02-25 2005-03-17 Siemens Ag Anordnung und Verfahren zur Druckverstärkung von Kraftstoff für einen Kraftstoffinjektor
DE19910970A1 (de) * 1999-03-12 2000-09-28 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE19916657A1 (de) * 1999-04-14 2000-10-19 Hydraulik Ring Gmbh Einspritzvorrichtung für Verbrennungsmaschinen, vorzugsweise Dieselmotoren
DE19939429A1 (de) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE19939428A1 (de) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Verfahren und Vorrichtung zur Durchführung einer Kraftstoffeinspritzung
DE19952512A1 (de) * 1999-10-30 2001-05-10 Bosch Gmbh Robert Druckverstärker und Kraftstoffeinspritzsystem mit einem Druckverstärker

Also Published As

Publication number Publication date
US7066147B2 (en) 2006-06-27
JP2004519610A (ja) 2004-07-02
KR20030017633A (ko) 2003-03-03
EP1392962A1 (de) 2004-03-03
US20040025845A1 (en) 2004-02-12
WO2002092992A1 (de) 2002-11-21
DE50208146D1 (de) 2006-10-26
DE10123914A1 (de) 2002-11-28
DE10123914B4 (de) 2005-10-20

Similar Documents

Publication Publication Date Title
EP1392962B1 (de) Kraftstoffeinspritzeinrichtung mit druckübersetzungseinrichtung und druckübersetzungseinrichtung
EP1392966B1 (de) Kraftstoffeinspritzeinrichtung mit druckübersetzungseinrichtung und druckübersetzungseinrichtung
DE2447741C2 (de)
DE19541507A1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE102005022661A1 (de) Fluidpumpe, insbesondere Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine mit Kraftstoff-Direkteinspritzung
DE10024268A1 (de) Vorrichtung zur Benzindirekteinspritzung in einer Kolbenbrennkraftmaschine
DE112007001777T5 (de) Mehrstufiges Begrenzungsventil mit unterschiedlichen Öffnungsdrücken
DE102004053421A1 (de) Kraftstoffeinspritzvorrichtung
EP0947690B1 (de) Ventil zum Steuern von Flüssigkeiten
DE19527402A1 (de) Pumpe
DE10139055A1 (de) Verfahren, Computerprogramm, Steuer- und/oder Regelgerät sowie Kraftstoffsystem für eine Brennkraftmaschine
EP1311755B1 (de) Kraftstoffeinspritzeinrichtung
DE102015226070A1 (de) Kraftstoffinjektor
DE102018201279B4 (de) Hochdruckanschluss für eine Kraftstoffhochdruckpumpe eines Kraftstoffeinspritzsystems sowie Kraftstoffhochdruckpumpe
DE4026849C2 (de) Ventilanordnung zum Erzeugen eines Steuerdrucks in einer hydraulischen Anlage
WO2019105827A1 (de) Gasdruckregler zur regelung des drucks eines gasförmigen kraftstoffs, system zur versorgung einer brennkraftmaschine mit gasförmigem kraftstoff unter verwendung eines solchen gasdruckreglers und verfahren zum betreiben dieses systems
WO2019233666A1 (de) Kraftstoff-hochdruckkolbenpumpe
DE10050599B4 (de) Einspritzventil mit einem Pumpkolben
DE102008040342A1 (de) Druckverstärker für eine Kraftstoffeinspritzeinrichtung
DE102017222202A1 (de) Kraftstofffördereinrichtung für kryogene Kraftstoffe
DE3925222C2 (de) Ventil oder entsperrbares Rückschlagventil, insbesondere für einen Flügelzellenverdichter, eingesetzt in einer zentralen Türverriegelungsanlage
DE10233574B4 (de) Ventil zum Steuern von Flüssigkeiten
DE102008041393A1 (de) Kraftstoffsystem für eine Brennkraftmaschine
DE10333688B3 (de) Kraftstoffeinspritzvorrichtung
AT3213U1 (de) Schadraumeinstellungs-einrichtung für kolbenverdichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20041214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060913

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50208146

Country of ref document: DE

Date of ref document: 20061026

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061220

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080428

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080418

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080423

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090426

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140626

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208146

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151103