EP1311755B1 - Kraftstoffeinspritzeinrichtung - Google Patents

Kraftstoffeinspritzeinrichtung Download PDF

Info

Publication number
EP1311755B1
EP1311755B1 EP01956391A EP01956391A EP1311755B1 EP 1311755 B1 EP1311755 B1 EP 1311755B1 EP 01956391 A EP01956391 A EP 01956391A EP 01956391 A EP01956391 A EP 01956391A EP 1311755 B1 EP1311755 B1 EP 1311755B1
Authority
EP
European Patent Office
Prior art keywords
pressure
valve
filling valve
space
injection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01956391A
Other languages
English (en)
French (fr)
Other versions
EP1311755A1 (de
Inventor
Hans-Christoph Magel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1311755A1 publication Critical patent/EP1311755A1/de
Application granted granted Critical
Publication of EP1311755B1 publication Critical patent/EP1311755B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/462Delivery valves

Definitions

  • the invention relates to a fuel injection device according to the preamble of patent claim 1.
  • the fuel injection device according to the invention may be formed both stroke-controlled and pressure-controlled.
  • a stroke-controlled fuel injection device is understood to mean that the opening and closing of the injection opening takes place by means of a displaceable valve member due to the hydraulic interaction of the fuel pressures in a nozzle space and in a control space.
  • a pressure reduction within the control chamber causes a stroke of the valve member.
  • the deflection of the valve member by an actuator take place.
  • a pressure-controlled fuel injection device In a pressure-controlled fuel injection device according to the invention, the valve member is moved by the pressure prevailing in the nozzle chamber of an injector fuel pressure against the action of a closing force (spring), so that the injection port for injection of the fuel from the nozzle chamber is released into the cylinder.
  • injection pressure The pressure with which fuel exits the nozzle chamber into a cylinder of an internal combustion engine
  • system pressure is understood to mean the pressure below which fuel is available or stored in the fuel injector.
  • a stroke-controlled injection has become known for example from DE 196 19 523 A1.
  • the achievable injection pressure is limited here by the pressure storage space (rail) and the high pressure pump to about 1600 to 1800 bar.
  • a pressure booster unit is possible, as is known, for example, from US Pat. No. 5,143,291 or US Pat. No. 5,522,545.
  • the disadvantage of these pressure-translated systems lies in a lack of flexibility of the injection and a poor quantity tolerance in the metering of small amounts of fuel.
  • a pressure booster unit arranged in the injector is known from EP 0 691 471 A1.
  • a bypass line for a pressure injection and a pressure chamber of the pressure booster unit are in series, so that the bypass line only continuously is as long as a displaceable piston unit of the pressure booster unit is not moved and is fully retracted.
  • a fuel injection device in which a pressure booster unit is arranged between a pressure storage space and a nozzle space, which has a displaceable piston unit in order to increase the pressure of the fuel to be supplied to the nozzle space.
  • the piston unit for controlling the pressure booster unit has a transition from a larger to a smaller piston cross-section and a difference space formed thereby, which is connected via a filling path with a filling valve to the pressure storage space.
  • EPC for the states DE, FR, GB and IT discloses a fuel injection device in which a pressure booster unit is arranged between a pressure storage space and a nozzle space, which has a displaceable piston unit to increase the pressure of the fuel to be supplied to the nozzle chamber.
  • the piston unit for controlling the pressure booster unit has a transition from a larger to a smaller piston cross-section and a difference space formed thereby, which is connected via a filling path with a filling valve to the pressure storage space.
  • the piston unit is pressed by means of a spring in a low-pressure chamber via a stop for the spring in the region of the larger piston cross section in its initial position.
  • a pressure booster unit is advantageous.
  • a control of the pressure booster unit is used with a simple 2/2-way valve.
  • a throttling can be formed between the valve body and the guide bore.
  • An additional supply line with a preferably small-held throttle serves to initiate the provision of the piston unit. If the filling valve has a spring and corresponding pressure surfaces pressurizable by fuel for switching the filling valve, the valve body of the filling valve can be easily transferred to the closed position of the filling valve.
  • Fig. 1 shows a part of a common rail system.
  • This comprises a pressure booster unit 1, the drive of which is apparent from FIG. 1, and an injector (nozzle needle displaceable to carry out the injection process).
  • the pressure in the formed by a transition from a larger to a smaller piston cross-section differential space 2 is used.
  • the differential space 2 is acted upon by a supply pressure (rail pressure) by connecting the pressure booster unit 1 via a supply line 3 to a common pressure storage space (rail) of the common rail system, not shown in FIG. Then prevail at all pressure surfaces of a piston unit 4, the same pressure conditions (rail pressure).
  • the piston unit 4 is druckausgegfichen.
  • the piston unit 4 is pressed into its starting position.
  • the differential space 2 is depressurized by means of a valve 6 and the pressure booster unit 1 generates a pressure boost according to the area ratio.
  • a valve 6 By this type of control can be achieved that for resetting the pressure booster unit 1 and for refilling a pressure chamber 7, a large primary chamber 8 need not be depressurized. With a small hydraulic ratio, the relaxation losses can be greatly reduced.
  • this type of control of the pressure booster unit 1 can be achieved by means of a simple 2/2-way valve.
  • the throttle 11 and the filling valve 10 connect the differential chamber 2 with standing under supply pressure fuel from the pressure storage chamber.
  • the 2/2-way valve 6 connects the differential chamber 2 to a leakage line 12.
  • To activate the pressure booster unit 11 opens valve 6.
  • the differential chamber 2 is relieved of pressure via the valve 6.
  • the pressure in the differential space 2 drops sharply.
  • the throttle 11 should be designed as small as possible become. The amount of control during injection is reduced.
  • the throttle 11 may be integrated in the valve body or the valve seat in the filling path 13.
  • the throttle 11 may be integrated into the piston unit 4 or formed by the gap leakage of the piston guides. Possibly. can be dispensed with appropriate design and the throttled inlet 13 '.
  • the pressure in the differential space 2 is used to control the filling valve 10. If the pressure drops in the differential chamber 2 during activation of the pressure booster unit 1, the filling valve 10 closes the filling path 13. Thus, no loss can flow through the filling path 13 in the leakage.
  • the valve 6 is closed and in the differential space 2 is built on the throttle 11, the rail pressure. Then the filling valve 10 opens and releases the filling path 13. The required when deferring the piston unit 4 filling the differential space 2 can be done quickly and without strong throttling. As a result, a smaller spring force is required to return. This brings great structural advantages, since in modern engines in the existing space no large spring forces can be realized.
  • the filling valve 10 is designed so that it closes at a certain pressure difference ⁇ p1 between the valve inlet and the differential chamber 2.
  • the valve body 14 has a pressure surface for the valve inlet and a pressure surface for the differential space 2. Furthermore, the valve body 14 is acted upon by an opening spring force. If the pressure in the differential chamber 2 falls below the set pressure difference ⁇ p1 in relation to the pressure in the valve inlet, then the filling valve 10 rises. If the pressure booster unit 1 deactivates, the pressure in the differential chamber 2 rises again and reaches the pressure in the valve inlet minus the pressure difference ⁇ p1, the filling valve opens 10 and the filling path 13 is released again.
  • the pressure difference necessary for switching the filling valve 10 is determined by the spring force and the pressure surfaces.
  • a restriction between the valve body 14 and the valve housing must be present. This can be done, for example, by limiting the valve lift or by throttling between the valve body 14 and its guide bore.
  • the injector is under the pressure of the pressure storage chamber 7.
  • the pressure booster unit 1 is in the starting position. Now, by opening the valve 16, an injection with rail pressure can take place, because a nozzle needle 17 can lift off from a sealing surface 18 as a result of the hydraulic pressure conditions at the nozzle needle 17. If an injection with a higher pressure is desired, the 2/2-way valve 6 is activated (opened) and thus reaches a pressure boost.
  • FIG. 2 An alternative control of the pressure booster unit 1 results from FIG. 2.
  • the inlet to the differential space 2 is regulated by the throttle 11 and the filling valve 19.
  • the inlet side (in front of the sealing seat) of the filling valve 19 is pressure balanced.
  • a pressure surface 20 In the region of the sealing seat is a pressure surface 20 which is acted upon by a pressure present in the differential space 2. If the pressure in the differential chamber 2 below the closing pressure, the pressure force 20 is smaller than the force of a spring 23 and the filling valve 19 closes the filling path 13. If the pressure in the differential chamber 2 on the closing pressure increases, the pressure force on the pressure surface 20 is greater than the force of Spring 23 and the filling valve 19 opens the filling path 13.
  • the piston unit 4 may be formed in one piece as well as in several parts.
  • the filling valve 19 may also be integrated in the piston unit 4.
  • the piston unit 4 may be formed in one piece as well as in several parts.
  • the filling valve 10, 19 may also be integrated in the piston unit 4.

Description

    Stand der Technik
  • Die Erfindung betrifft eine Kraftstoffeinspritzeinrichtung gemäß dem Oberbegriff des Patentanspruchs 1.
  • Zum besseren Verständnis der Beschreibung und der Patentansprüche werden nachfolgend einige Begriffe erläutert: Die Kraftstoffeinspritzeinrichtung gemäß der Erfindung kann sowohl hubgesteuert als auch druckgesteuert ausgebildet sein. Im Rahmen der Erfindung wird unter einer hubgesteuerten Kraftstoffeinspritzeinrichtung verstanden, dass das Öffnen und Schließen der Einspritzöffnung mit Hilfe eines verschieblichen Ventilglieds aufgrund des hydrautisnhen Zusammenwirkens der Kraftstoffdrücke in einem Düsenraum und in einem Steuerraum erfolgt. Eine Druckabsenkung innerhalb des Steuerraums bewirkt einen Hub des Ventilglieds. Alternativ kann das Auslenken des Ventilglieds durch ein Stellglied (Aktor, Aktuator) erfolgen. Bei einer druckgesteuerten Kraftstoffeinspritzeinrichtung gemäß der Erfindung wird durch den im Düsenraum eines Injektors herrschenden Kraftstoffdruck das Ventilglied gegen die Wirkung einer Schließkraft (Feder) bewegt, so dass die Einspritzöffnung für eine Einspritzung des Kraftstoffs aus dem Düsenraum in den Zylinder freigegeben wird. Der Druck, mit dem Kraftstoff aus dem Düsenraum in einen Zylinder einer Brennkraftmaschine austritt, wird als Einspritzdruck bezeichnet, während unter einem Systemdruck der Druck verstanden wird, unter dem Kraftstoff innerhalb der Kraftstoffeinspritzeinrichtung zur Verfügung steht bzw. bevorratet ist. Kraftstoffzumessung bedeutet, eine definierte Kraftstoffmenge zur Einspritzung bereitzustellen. Unter Leckage ist eine Menge an Kraftstoff zu verstehen, die beim Betrieb der Kraftstoffeinspritzeinrichtung entsteht (z.B. eine Führungsleckage), nicht zur Einspritzung verwendet und zum Kraftstofftank zurückgefördert wird. Das Druckniveau dieser Leckage kann einen Standdruck aufweisen, wobei der Kraftstoff anschließend auf das Druckniveau des Kraftstofftanks entspannt wird.
  • Eine hubgesteuerte Einspritzung ist beispielsweise durch die DE 196 19 523 A1 bekanntgeworden. Der erreichbare Einspritzdruck ist hier durch den Druckspeicherraum (rail) und die Hochdruckpumpe auf ca. 1600 bis 1800 bar begrenzt.
  • Zur Erhöhung des Einspritzdruckes ist eine Druckübersetzungseinheit möglich, wie sie beispielsweise aus der US 5,143,291 oder der US 5,522,545 bekannt ist. Der Nachteil dieser druckübersetzten Systeme liegt in einer mangelnden Flexibilität der Einspritzung und einer schlechten Mengentoleranz bei der Zumessung kleiner Kraftstoffmengen.
  • Eine im Injektor angeordnete Druckübersetzungseinheit ist aus der EP 0 691 471 A1 bekannt. Eine Bypass-Leitung für eine Druckeinspritzung und eine Druckkammer der Druckübersetzungseinheit liegen in Reihe, so dass die Bypass-Leitung nur durchgängig ist, solange eine verschiebliche Kolbeneinheit der Druckübersetzungseinheit nicht bewegt wird und vollständig zurückgezogen ist.
  • Aus der EP 0 691 471 A ist eine Kraftstoffeinspritzeinrichtung bekannt, bei der zwischen einem Druckspeicherraum und einem Düsenraum eine Druckübersetzungseinheit angeordnet ist, die eine verschiebliche Kolbeneinheit aufweist, um den Druck des dem Düsenraum zuzuführenden Kraftstoffes zu verstärken. Die Kolbeneinheit zur Steuerung der Druckübersetzungseinheit weist einen Übergang von einem größeren zu einem kleineren Kolbenquerschnitt und einen hierdurch gebildeten Differenzraum auf, der über einen Füllpfad mit einem Füllventil an den Druckspeicherraum angeschlossen ist.
  • Aus dem Stand der Technik WO 01/52916 A2 nach Artikel 54(3) EPÜ für die Staaten DE, FR, GB und IT ist eine Kraftstoffeinspritzeinrichtung bekannt, bei der zwischen einem Druckspeicherraum und einem Düsenraum eine Druckübersetzungseinheit angeordnet ist, die eine verschiebliche Kolbeneinheit aufweist, um den Druck des dem Düsenraum zuzuführenden Kraftstoffes zu verstärken. Die Kolbeneinheit zur Steuerung der Druckübersetzungseinheit weist einen Übergang von einem größeren zu einem kleineren Kolbenquerschnitt und einen hierdurch gebildeten Differenzraum auf, der über einen Füllpfad mit einem Füllventil an den Druckspeicherraum angeschlossen ist. Die Kolbeneinheit wird mittels einer Feder in einem Niederdruckraum über einen Anschlag für die Feder im Bereich des größeren Kolbenquerschnittes in ihre Ausgangsstellung gedrückt.
  • Gegenstand und Vorteile der Erfindung
  • Zur Erhöhung des Einspritzdrucks und der Flexibilität der Einspritzung ist bei einem Common-Rail-Einspritzsystem eine Druckübersetzungseinheit vorteilhaft. Um den fertigungstechnischen Aufwand und damit die Fertigungskosten gering zu halten, wird eine Steuerung der Druckübersetzungseinheit mit einem einfachen 2/2-Wege-Ventil verwendet.
  • Zur Verringerung der Steuermenge während der Ansteuerung der Druckübersetzungseinheit und zur Durchführung einer schnellen Rückstellung der Kolbeneinheit der Druckübersetzungseinheit wird eine Kraftstoffeinspritzeinrichtung gemäß Patentanspruch 1 vorgeschlagen.
  • Durch das Füllventil wird zur Rückstellung der Kolbeneinheit ein zusätzlicher Füllpfad freigegeben. Die Steuerung des Füllventils erfolgt ohne Aktor durch eine Druckdifferenz an der Druckübersetzungseinheit, um den konstruktiven Aufwand gering zu halten.
  • Um eine definierte Druckdifferenz am Ventilkörper des Füllventils zu erreichen, kann eine Drosselung zwischen dem Ventilkörper und der Führungsbohrung ausgebildet sein. Eine zusätzliche Zuleitung mit einer vorzugsweise kleingehaltenen Drossel dient dem Einleiten der Rückstellung der Kolbeneinheit. Wenn das Füllventil eine Feder und entsprechende durch Kraftstoff druckbeaufschlagbare Druckflächen zum Schalten des Füllventils aufweist, kann der Ventilkörper des Füllventils leicht in die geschlossene Stellung des Füllventils überführt werden.
  • Zeichnung
  • Zwei Ausführungsbeispiele der erfindungsgemäßen Beschaltung einer Druckübersetzungseinheit einer Kraftstoffeinspritzeinrichtung sind in der schematischen Zeichnung dargestellt und werden in der nachfolgenden Beschreibung erläutert. Es zeigt:
  • Fig. 1
    eine erste Beschaltung der Druckübersetzungseinheit;
    Fig. 2
    eine zweite Beschaltung der Druckübersetzungseinheit.
    Beschreibung der Ausführungsbeispiele
  • Fig. 1 zeigt einen Teil eines Common Rail Systems. Dieser umfasst eine Druckübersetzungseinheit 1, deren Ansteuerung aus der Fig. 1 ersichtlich ist, und einen Injektor (zur Durchführung des Einspritzvorgangs verschiebliche Düsennadel). Zur Steuerung der Druckübersetzungseinheit 1 wird der Druck im durch einen Übergang von einem größeren zu einem kleineren Kolbenquerschnitt ausgebildeten Differenzraum 2 verwendet. Zur Wiederbefüllung und Deaktivierung der Druckübersetzungseinheit 1 wird der Differenzraum 2 mit einem Versorgungsdruck (Raildruck) beaufschlagt, indem die Druckübersetzungseinheit 1 über eine Versorgungsleitung 3 an einen in der Fig. 1 nicht gezeigten gemeinsamen Druckspeicherraum (Rail) des Common Rail Systems angeschlossen ist. Dann herrschen an allen Druckflächen einer Kolbeneinheit 4 die gleichen Druckverhältnisse (Raildruck). Die Kolbeneinheit 4 ist druckausgegfichen. Durch eine zusätzliche Feder 5 wird die Kolbeneinheit 4 in ihre Ausgangsstellung gedrückt. Zur Aktivierung der Druckübersetzungseinheit 1 wird der Differenzraum 2 mit Hilfe eines Ventils 6 druckentlastet und die Druckübersetzungseinheit 1 erzeugt eine Druckverstärkung gemäß dem Flächenverhältnis. Durch diese Art der Steuerung kann erreicht werden, dass zur Rückstellung der Druckübersetzungseinheit 1 und zum Wiederbefüllen einer Druckkammer 7 eine große Primärkammer 8 nicht druckentlastet werden muß. Bei einer kleinen hydraulischen Übersetzung können damit die Entspannungsverluste stark reduziert werden. Weiterhin kann durch diese Art eine Steuerung der Druckübersetzungseinheit 1 mittels eines einfachen 2/2-Wege-Ventils erreicht werden.
  • Zur Steuerung der Druckübersetzungseinheit 1 dienen ein Rückschlagventil 9, ein Füllventil 10 und eine Drossel 11. Die Drossel 11 und das Füllventil 10 verbinden den Differenzraum 2 mit unter Versorgungsdruck stehendem Kraftstoff aus dem Druckspeicherraum. Das 2/2-Wege-Ventil 6 schließt den Differenzraum 2 an eine Leckageleitung 12 an. Zur Aktivierung der Druckübersetzungseinheit 11 öffnet Ventil 6. Der Differenzraum 2 wird über das Ventil 6 druckentlastet. Der Druck im Differenzraum 2 fällt stark ab. Während das Ventil 2 geöffnet ist, fließt über die Drossel 11 eine Verlustmenge in die Leckageleitung 12. Die Drossel 11 sollte möglichst klein ausgelegt werden. Die Steuermenge während der Einspritzung wird verringert. Die Drossel 11 kann in den Ventilkörper oder den Ventilsitz im Füllpfad 13 integriert sein. Ebenso kann die Drossel 11 in die Kolbeneinheit 4 integriert sein oder durch die Spaltleckage der Kolbenführungen ausgebildet sein. Evtl. kann bei entsprechender Auslegung auch auf den gedrosselten Zulauf 13' verzichtet werden.
  • Der Druck im Differenzraum 2 wird zur Steuerung des Füllventils 10 verwendet. Fällt der Druck im Differenzraum 2 während der Aktivierung der Druckübersetzungseinheit 1 ab, schließt das Füllventil 10 den Füllpfad 13. Somit kann keine Verlustmenge über den Füllpfad 13 in die Leckage strömen.
  • Zur Deaktivierung der Druckübersetzungseinheit 1 wird das Ventil 6 geschlossen und im Differenzraum 2 baut sich über die Drossel 11 der Raildruck auf. Dann öffnet das Füllventil 10 und gibt den Füllpfad 13 frei. Die bei Zurückstellung der Kolbeneinheit 4 erforderliche Befüllung des Differenzraums 2 kann schnell und ohne starke Drosselung erfolgen. Dadurch ist zur Rückstellung eine kleinere Federkraft erforderlich. Dies bringt große konstruktive Vorteile, da bei modernen Motoren im vorhandenen Bauraum keine großen Federkräfte realisiert werden können.
  • Das Füllventil 10 ist so ausgebildet, dass es bei einer bestimmten Druckdifferenz Δp1 zwischen dem Ventilzulauf und dem Differenzraum 2 schließt. Der Ventilkörper 14 weist dazu eine Druckfläche zum Ventilzulauf und eine Druckfläche zum Differenzraum 2 auf. Weiterhin ist der Ventilkörper 14 mit einer öffnenden Federkraft beaufschlagt. Fällt der Druck im Differenzraum 2 gegenüber dem Druck im Ventilzulauf unter die eingestellte Druckdifferenz Δp1, so schließt das Füllventil 10. Steigt der Druck im Differenzraum 2 nach Deaktivierung der Druckübersetzungseinheit 1 wieder an und erreicht den Druck im Ventilzulauf abzüglich der Druckdifferenz Δp1, öffnet das Füllventil 10 und der Füllpfad 13 wird wieder freigegeben.
  • Hierdurch ergibt sich eine schnelle Füllung des Differenzraumes 2. Die zum Schalten des Füllventils 10 notwendige Druckdifferenz wird durch die Federkraft und die Druckflächen festgelegt. Zum Erreichen einer definierten Druckdifferenz am durch eine Kugel ausgebildeten Ventilkörper 14 muß eine Drosselung zwischen dem Ventilkörper 14 und dem Ventilgehäuse vorhanden sein. Dies kann z.B. durch Begrenzung des Ventilhubes oder durch eine Drosselung zwischen dem Ventilkörper 14 und dessen Führungsbohrung erfolgen.
  • Sind die 2/2-Wege-Ventile 6 und 16 geschlossen, so steht der Injektor unter dem Druck des Druckspeicherraums 7. Die Druckübersetzungseinheit 1 befindet sich in der Ausgangsstellung. Nun kann durch Öffnen des Ventils 16 eine Einspritzung mit Raildruck erfolgen, weil sich eine Düsennadel 17 in Folge der hydraulischen Druckverhältnisse an der Düsennadel 17 von einer Dichtfläche 18 abheben kann. Wird eine Einspritzung mit höherem Druck gewünscht, so wird das 2/2-Wege-Ventil 6 angesteuert (geöffnet) und damit eine Druckverstärkung erreicht.
  • Eine alternative Ansteuerung des Druckübersetzungseinheit 1 ergibt sich aus der Fig. 2. Der Zulauf zu dem Differenzraum 2 wird durch die Drossel 11 und das Füllventil 19 geregelt. Die Zulaufseite (vor dem Dichtsitz) des Füllventil 19 ist druckausgeglichen. Im Bereich des Dichtsitzes befindet sich eine Druckfläche 20, die mit einem im Differenzraum 2 vorhandenen Druck beaufschlagt ist. Fällt der Druck im Differenzraum 2 unter den Schließdruck wird die Druckkraft 20 kleiner als die Kraft einer Feder 23 und das Füllventil 19 schließt den Füllpfad 13. Steigt der Druck im Differenzraum 2 über den Schließdruck wird die Druckkraft auf die Druckfläche 20 größer als die Kraft der Feder 23 und das Füllventil 19 öffnet den Füllpfad 13.
  • Zum Erreichen einer definierten Druckdifferenz am Ventilkörper des Füllventils 19 muss eine Drosselung im Dichtsitz ausgebildet oder aber eine zusätzliche Drossel 23 muß dem Füllventil 19 vorgeschaltet sein. Die Kolbeneinheit 4 kann sowohl einteilig als auch mehrteilig ausgebildet sein. Das Füllventil 19 kann auch in der Kolbeneinheit 4 integriert sein. Die Kolbeneinheit 4 kann sowohl einteilig als auch mehrteilig ausgebildet sein. Das Füllventil 10, 19 kann auch in der Kolbeneinheit 4 integriert sein. Bei deaktivierter Druckübersetzungseinheit wird der Raildruck über das Rückschlagventil 9 stromabwärts bis zum Injektor geführt. Daher kann der Zulauf des Füllventils 10, 19 ebenfalls stromabwärts des Rückschlagventils 9 angeschlossen sein. Hierbei ergibt sich eine Verbindung des Füllventilzulaufs mit unter Versorgungsdruck stehendem Kraftstoff aus dem Druckspeicherraum über das Rückschlagventil 9.
  • BEZUGSZEICHENLISTE
  • 1
    Druckübersetzungseinheit
    2
    Differenzraum
    3
    Versorgungsleitung
    4
    Kolbeneinheit
    5
    Feder
    6
    Ventil
    7
    Druckkammer
    8
    Primärkammer
    9
    Rückschlagventil
    10
    Füllventil
    11
    Drossel
    12
    Leckageleitung
    13
    Füllpfad
    13'
    Zulauf
    14
    Ventilkörper
    15
    Dichtsitz
    16
    Ventil
    17
    Düsennadel
    18
    Dichtfläche
    19
    Füllventil
    20
    Druckfläche
    21
    Leckageleitung
    22
    Feder
    23
    Drossel

Claims (7)

  1. Kraftstoffeinspritzeinrichtung mit einer zwischen einem Druckspeicherraum und einem Düsenraum angeordneten Druckübersetzungseinheit (1), die eine verschiebliche Kolbeneinheit (4) aufweist, um den Druck des dem Düsenraum zuzuführenden Kraftstoffs zu verstärken, wobei die Kolbeneinheit (4) zur Steuerung der Druckübersetzungseinheit (1) einen Übergang von einem größeren zu einem kleineren Kolbenquerschnitt und einen hierdurch ausgebildeten Differenzraum (2) aufweist, der über eine Füllpfad (13) mit einem Füllventil (10; 19) an den Druckspeicherraum angeschlossen ist, wobei im Differenzraum (2) eine Feder (5), die die Kolbeneinheit (4) in ihre Ausgangsstellung drückt, vorgesehen ist, dadurch gekennzeichnet, dass das Füllventil (10; 19) durch die Druckverhältnisse im Differenzraum (2) steuerbar ist.
  2. Kraftstoffeinspritzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Differenzraum (2) zusätzlich über eine Zuleitung (13') mit einer Drossel (11) an den Druckspeicherraum angeschlossen ist.
  3. Kraftstoffeinspritzeinrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Füllventil (19) eine Drosselung im Dichtsitz aufweist.
  4. Kraftstoffeinspritzeinrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Füllventil (10; 19) eine Feder und entsprechende durch Kraftstoff druckbeaufschlagbare Druckflächen zum Schalten des Füllventils (10; 19) aufweist.
  5. Kraftstoffeinspritzeinrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Füllventil (10; 19) derart ausgebildet ist, dass das Füllventil (10; 19) geöffnet ist, wenn der Druck im Differenzraum (2) höher ist als Druck im Ventilzulauf abzüglich der eingestellten Druckdifferenz Δp1.
  6. Kraftstoffeinspritzeinrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Füllventil (10; 19) derart ausgebildet ist, dass das Füllventil (10; 19) geschlossen ist, wenn der Druck im Differenzraum (2) geringer ist als Druck im Ventilzulauf abzüglich der eingestellten Druckdifferenz Δp1.
  7. Kraftstoffeinspritzeinrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Steuerung der Druckübersetzungseinheit (1) ein 2/2-Wege-Ventil (6) zwischen dem Differenzraum (2) und der Leckageleitung (12) vorgesehen ist.
EP01956391A 2000-08-18 2001-07-27 Kraftstoffeinspritzeinrichtung Expired - Lifetime EP1311755B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10040526A DE10040526A1 (de) 2000-08-18 2000-08-18 Kraftstoffeinspritzeinrichtung
DE10040526 2000-08-18
PCT/DE2001/002845 WO2002014681A1 (de) 2000-08-18 2001-07-27 Kraftstoffeinspritzeinrichtung

Publications (2)

Publication Number Publication Date
EP1311755A1 EP1311755A1 (de) 2003-05-21
EP1311755B1 true EP1311755B1 (de) 2006-07-12

Family

ID=7652946

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01956391A Expired - Lifetime EP1311755B1 (de) 2000-08-18 2001-07-27 Kraftstoffeinspritzeinrichtung

Country Status (5)

Country Link
US (1) US6810856B2 (de)
EP (1) EP1311755B1 (de)
JP (1) JP2004506839A (de)
DE (2) DE10040526A1 (de)
WO (1) WO2002014681A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10229419A1 (de) * 2002-06-29 2004-01-29 Robert Bosch Gmbh Druckübersetzter Kraftstoffinjektor mit schnellem Druckabbau bei Einspritzende
DE10229418A1 (de) * 2002-06-29 2004-01-29 Robert Bosch Gmbh Einrichtung zur Dämpfung des Nadelhubes an Kraftstoffinjektoren
US6854446B2 (en) 2002-07-11 2005-02-15 Toyota Jidosha Kabushiki Kaisha Fuel injection apparatus
DE10247210A1 (de) * 2002-10-10 2004-04-22 Robert Bosch Gmbh Filteranordnung für Kraftstoffeinspritzsysteme
DE10251932B4 (de) * 2002-11-08 2007-07-12 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung mit integriertem Druckverstärker
DE10315016A1 (de) * 2003-04-02 2004-10-28 Robert Bosch Gmbh Kraftstoffinjektor mit leckagefreiem Servoventil
DE102004010760A1 (de) * 2004-03-05 2005-09-22 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit Nadelhubdämpfung
EP2416779B1 (de) 2009-04-06 2016-03-09 Vanda Pharmaceuticals Inc. Verfahren zur vorhersagen der veranlagung zur qt verlängerung basierend auf bai3 gensequenz oder produkte davon
JP7027956B2 (ja) * 2018-02-28 2022-03-02 株式会社Ihi 圧縮比可変機構
DE102019219441A1 (de) * 2019-01-31 2020-08-06 Robert Bosch Gmbh Zweistoffinjektor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001052916A2 (de) * 2000-01-20 2001-07-26 Robert Bosch Gmbh Einspritzeinrichtung und verfahren zum einspritzen von fluid

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2803049A1 (de) * 1978-01-25 1979-08-09 Bosch Gmbh Robert Pumpe-duese fuer brennkraftmaschinen
JPS5726261A (en) * 1980-07-24 1982-02-12 Diesel Kiki Co Ltd Fuel injector of internal combustion engine
US4426977A (en) * 1980-12-17 1984-01-24 The Bendix Corporation Dual solenoid distributor pump system
JPS57124073A (en) * 1981-01-24 1982-08-02 Diesel Kiki Co Ltd Fuel injection device
US4417557A (en) * 1981-07-31 1983-11-29 The Bendix Corporation Feed and drain line damping in a fuel delivery system
JPH0199948U (de) * 1987-12-24 1989-07-05
US5143291A (en) 1992-03-16 1992-09-01 Navistar International Transportation Corp. Two-stage hydraulic electrically-controlled unit injector
JP2885076B2 (ja) 1994-07-08 1999-04-19 三菱自動車工業株式会社 蓄圧式燃料噴射装置
US5522545A (en) 1995-01-25 1996-06-04 Caterpillar Inc. Hydraulically actuated fuel injector
DE19619523A1 (de) 1996-05-15 1997-11-20 Bosch Gmbh Robert Kraftstoffeinspritzventil für Hochdruckeinspritzung
US6053421A (en) 1998-05-19 2000-04-25 Caterpillar Inc. Hydraulically-actuated fuel injector with rate shaping spool control valve
DE19910970A1 (de) 1999-03-12 2000-09-28 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001052916A2 (de) * 2000-01-20 2001-07-26 Robert Bosch Gmbh Einspritzeinrichtung und verfahren zum einspritzen von fluid

Also Published As

Publication number Publication date
US20030029422A1 (en) 2003-02-13
US6810856B2 (en) 2004-11-02
DE50110459D1 (de) 2006-08-24
EP1311755A1 (de) 2003-05-21
WO2002014681A1 (de) 2002-02-21
JP2004506839A (ja) 2004-03-04
DE10040526A1 (de) 2002-03-14

Similar Documents

Publication Publication Date Title
EP1078160B1 (de) Kraftstoffeinspritzeinrichtung
EP0959243B1 (de) Steuerventil für Kraftstoffeinspritzventil
WO2004003376A1 (de) Druckübersetzer kraftstoffinjektor mit schnellem druckabbau bei einspritzende
AT410124B (de) Vorrichtung zur steuerung des hubes eines hydraulisch betätigbaren ventiles
EP1311755B1 (de) Kraftstoffeinspritzeinrichtung
DE102004024527A1 (de) Kraftstoffeinspritzeinrichtung
DE60213018T2 (de) Common Rail Kraftstoffeinspritzgerät und Steuermethode dafür
WO2005015000A1 (de) Schaltventil mit druckausgleich für einen kraftstoffinjektor mit druckverstärker
DE19939425B4 (de) Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE102005032464A1 (de) Kraftstoffinjektor mit Vorsteuerraum
EP1537300B1 (de) Hydraulischer ventilsteller zum betätigen eines gaswechselventils
EP1397593B1 (de) Kraftstoffeinspritzeinrichtung mit druckverstärker
EP1354133B1 (de) Kraftstoffeinspritzvorrichtung
DE19949527A1 (de) Injektor für ein Kraftstoffeinspritzsystem für Brennkraftmaschinen mit in den Ventilsteuerraum ragender Düsennadel
EP1392965B1 (de) Druckverstärker einer kraftstoffeinspritzeinrichtung
EP1920156A1 (de) Kraftstoff-einspritzsystem für eine brennkraftmaschine
DE102018201279B4 (de) Hochdruckanschluss für eine Kraftstoffhochdruckpumpe eines Kraftstoffeinspritzsystems sowie Kraftstoffhochdruckpumpe
DE102008000773A1 (de) Injektor
DE102018200565A1 (de) Injektor zur Dosierung von gasförmigem Kraftstoff, Gaseinblassystem mit einem solchen Injektor und Verfahren zum Betreiben dieses Injektors
EP1397591B1 (de) Kraftstoffeinspritzeinrichtung mit druckverstärker
DE10394151B4 (de) Kraftstoff-Einspritzsystem mit einer Speicher-Füll-Ventilanordnung
DE102007030794A1 (de) Kraftstoff-Injektor mit einem für hohe Kraftstoffdrücke geeigneten Injektorkörper
WO1999066190A1 (de) Ventilsteuereinheit für ein kraftstoffeinspritzventil
EP1799993A1 (de) Kraftstoffinjektor
WO2008125377A1 (de) Kraftstoffinjektor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030318

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20050520

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50110459

Country of ref document: DE

Date of ref document: 20060824

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061018

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070413

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080925

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090720

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090724

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090729

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100727

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100727

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100727