EP1390666A1 - Systeme d'incineration thermique regenerative des dechets - Google Patents

Systeme d'incineration thermique regenerative des dechets

Info

Publication number
EP1390666A1
EP1390666A1 EP20020736236 EP02736236A EP1390666A1 EP 1390666 A1 EP1390666 A1 EP 1390666A1 EP 20020736236 EP20020736236 EP 20020736236 EP 02736236 A EP02736236 A EP 02736236A EP 1390666 A1 EP1390666 A1 EP 1390666A1
Authority
EP
European Patent Office
Prior art keywords
waste
ceramic layer
regenerative thermal
air
waste incineration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20020736236
Other languages
German (de)
English (en)
Inventor
Suk-In Oh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Key Engineering Co Ltd
Original Assignee
Key Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Key Engineering Co Ltd filed Critical Key Engineering Co Ltd
Publication of EP1390666A1 publication Critical patent/EP1390666A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • F23G7/068Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator using regenerative heat recovery means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/10Drying by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/40Stationary bed furnace
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the present invention relates to a regenerative thermal waste incineration
  • industrial waste sludge, urban waste, food refuse and sewage sludge are disposed of by land filling and/or incineration
  • incineration by which the amount of waste can be considerably reduced and little secondary
  • fluid bed incinerators have been used to incinerate waste from urban sewage treatment plants, e g , wet waste or sludge
  • the fluid bed incinerator is constructed by a cylindrical, fire-resistant (refractory) wall and has its lower part filled with sand 0 used as a fluid medium Air is employed to cause material to be incinerated to float and flow in the fluid medium
  • the air is introduced into the sand bed through an outlet of a panel supporting the sand bed at a pressure of approximately 20 to 34 kPa, causing fluidity of the sand bed
  • the sand bed is maintained at a temperature of approximately 5 800°C or higher
  • the volume of the fluidized sand is increased by approximately 30 to 60%
  • the waste is introduced from the lower part of the incinerator If the flow rate of air is high, some of uncombusted waste in the upper part of the incinerator may be discharged into the air with combustion gas
  • the flow rate of air is high, some of uncombusted
  • the present invention provides a regenerative thermal waste incineration system which can cost-effectively incinerate sludge having a high content of moisture and can prevent generation of incomplete combustibles such as unpleasant odor or carbon monoxide that may cause secondary pollution
  • FIG 1 shows a regenerative thermal waste incineration system according to the present invention
  • FIG 2 shows a regenerative thermal waste incineration system having a blower at its rear end according to the present invention
  • FIG 3 shows a regenerative thermal waste incineration system having a 3-way, automatic openable valve according to the present invention
  • FIG 4 shows a regenerative thermal waste incineration system having a
  • FIGS 1 and 2 show a regenerative thermal waste incineration system according to the present invention
  • the regenerative thermal waste incineration system according to the present invention includes a two-bed regenerative incineration furnace having first and second ceramic layers 105 and 106 for recovering heat from high-temperature gas, third and fourth ceramic layers 107 and 108 for compensating for the temperature of the waste sharply decreasing in the course of drying the waste to keep the incineration temperature at a constant range and accumulating high-temperature heat after incineration, first and second waste inlet valves 109 and 1 1 0 installed at spaces between the ceramic layers 1 05 and 1 07 and between the ceramic layers 106 and 1 08, the two-bed regenerative furnace 1 1 3 having a space enough for complete combustion of combustibles between the ceramic layers 107 and 108 and operating by means of automatically openable valves 1 01 , 1 02, 103 and 1 04 so as to be capable of accumulating and regenerating heat, a blower 1 00 for supplying combustion air, and
  • the regenerative thermal waste incineration system having the configuration as shown in FIG 1 operates as follows Combustion air is supplied to the heat-accumulating ceramic layer 1 05 through the valve 101 by means of the blower 100 and pre-heated to a high temperature of 800 to 1200°C
  • the valves 101 and 104 are open whereas the valves 102 and 103 are closed
  • the wet waste having a high moisture content is supplied to a space between the ceramic layer 1 05 and the ceramic layer 107 through the first waste inlet valve 1 09
  • the valve 1 10 for introducing the waste is in a closed state
  • the wet waste is separated into vapor and dried waste by hot air passed through the ceramic layer 105
  • the temperatures of the combustion air, vapor and waste are raised again while passing through the heat-accumulating, high-temperature ceramic layer 1 07
  • the dried waste is burnt and the combustion heat further increases the temperature of exhaust gas, compared to the case of passing through the ceramic layer 107
  • the exhaust gas While passing through the ceramic layers 108 and 106, the exhaust gas discharges most of sensible heat into the ceramic layers 108 and 106 cooled l o during previous operation The temperature of the exhaust gas vanes according to the proportion of moisture contained in the waste Thus, heat is supplied from the furnace 1 1 3 to allow the ceramic layers 108 and 106 to have heat enough for subsequent operation
  • the first waste inlet valve 109 is closed and untreated waste at a space between the ceramic layer 105 and the ceramic layer 1 07 are completely combusted using hot air passed through the ceramic layer 105 and ash remaining after combustion is allowed to escape This operation is called a forward operation After the forward operation, the valves 101 and 104 are closed and the valves 102 and 1 03
  • the second waste inlet valve 1 10 is opened to introduce the waste into a space between the ceramic layer 106 and the ceramic layer 108
  • the first waste inlet valve 109 is closed and a backward operation is performed in the same manner as the forward operation The forward and backward operations are repeated
  • the ash generated due to incineration is filtered at a cyclone 1 1 1 through the valve 104 via the ceramic layers 107, 108 and 106
  • the ash is filtered at the cyclone 1 1 1 through the valve 103 via the ceramic layers 1 08, 107 and 105
  • the remaining ash unfiltered at the cyclone 1 1 1 is trapped at the bag filter 1 12
  • the exhaust gas is purified to
  • the regenerative thermal waste incineration system according to the present invention has a very high heat recovery efficiency by directly heating ceramic packing materials using high-temperature exhaust gas, bringing room-temperature air into contact with high-temperature air to thus regenerate heat, and then drying and incinerating the waste having a high moisture content using the high-temperature air Therefore, extra fuel expenses necessary for incinerating the waste having a high moisture content can be noticeably reduced Also, since the exhaust gas is not brought into direct contact with raw waste after incineration, there is no emission of unpleasant odor from the exhaust gas and secondary pollutants due to incomplete combustion
  • Example 1 Wet sludge introduced into the regenerative thermal waste incineration system according to the present invention includes 87% of moisture, 3% of ash and 10% of organic matter represented by C ⁇ HsO ⁇ Clo iNiSo i
  • the standard conditions of incineration include 1 tone/hr in feed rate, 850°C in combustion temperature and 5% in radiation loss
  • the amount of total emissions from the wet sludge is 5,880 kcal/kg
  • the amount of air introduced into the regenerative thermal waste incineration system is 5,000 Nm 3 /hr, a temperature difference ( ⁇ T) between the inlet and outlet of the regenerative thermal waste incineration system is 80°C, and a total amount of exhaust gas is 6,149 Nm 3 /hr
  • the total heat capacity needed is 754,000 kcal/hr
  • sludge's self-radiation, i e , 588,000 kcal/hr is subtracted therefrom to yield the heat capacity actually needed, i e , 166,000 kcal/hr
  • Extra heat capacity in the conventional fluid bed incinerator is calculated as follows
  • the amount of air introduced into the conventional fluid bed incinerator is 1 ,600 Nm 3 /hr in the case of 1 3 in air ratio, and a total amount of exhaust gas is 2,793 Nm 3 /hr
  • the total heat capacity needed is 1 , 125,000 kcal/hr
  • sludge's self-radiation, i e , 588,000 kcal/hr is subtracted therefrom to yield the heat capacity actually needed, i e , 537,000 kcal/hr

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chimneys And Flues (AREA)
  • Treatment Of Sludge (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Air Supply (AREA)

Abstract

L'invention concerne un système d'incinération thermique régénérative des déchets permettant d'incinérer des déchets au moyen d'un équipement thermique régénératif. Ce système d'incinération thermique régénérative des déchets comprend une première et une deuxième couche céramique, conçues pour accumuler de la chaleur à partir de gaz haute température en opération précédente puis régénérer la chaleur accumulée en gaz basse température en opération suivante, ainsi qu'une troisième couche céramique et une quatrième couche céramique, conçues pour accumuler de la chaleur à partir de gaz haute température en opération suivante et régénérer la chaleur accumulée en gaz basse température en opération précédente. Ce système comprend également une première vanne d'admission des déchets située entre la première couche céramique et la deuxième couche céramique pour l'alimentation en déchets en opération suivante, une seconde vanne d'admission des déchets située entre la troisième couche céramique et la quatrième couche céramique pour l'alimentation en déchets en opération précédente, un brûleur situé entre la deuxième couche céramique et la troisième couche céramique pour l'alimentation en chaleur d'incinération, une première vanne d'air pour l'alimentation en air du système à travers la première couche céramique en opération suivante ainsi qu'une seconde vanne d'air pour l'alimentation en air du système à travers la quatrième couche céramique en opération précédente.
EP20020736236 2001-05-30 2002-05-30 Systeme d'incineration thermique regenerative des dechets Withdrawn EP1390666A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020010029953A KR20010070670A (ko) 2001-05-30 2001-05-30 축열식 폐기물 소각 시스템
KR2001029953 2001-05-30
PCT/KR2002/001026 WO2002097328A1 (fr) 2001-05-30 2002-05-30 Systeme d'incineration thermique regenerative des dechets

Publications (1)

Publication Number Publication Date
EP1390666A1 true EP1390666A1 (fr) 2004-02-25

Family

ID=19710153

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020736236 Withdrawn EP1390666A1 (fr) 2001-05-30 2002-05-30 Systeme d'incineration thermique regenerative des dechets

Country Status (7)

Country Link
US (1) US20040020415A1 (fr)
EP (1) EP1390666A1 (fr)
JP (1) JP2004520565A (fr)
KR (1) KR20010070670A (fr)
CN (1) CN1460166A (fr)
CA (1) CA2410719A1 (fr)
WO (1) WO2002097328A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10149807B4 (de) * 2001-10-09 2007-12-27 Herhof Verwaltungsgesellschaft Mbh Verfahren und Vorrichtung zum Reinigen von Abgasen, die heizwerthaltige Substanzen, insbesondere Schadstoffpartikel und/oder Geruchspartikel, enthalten
JP4580388B2 (ja) * 2004-05-18 2010-11-10 國臣 荒木 燻焼式減容化処理方法及びその装置
WO2006136105A1 (fr) * 2005-06-21 2006-12-28 Institute Of Engineering Thermophysics, Chinese Academy Of Sciences Secheur combine, procede et installation d'incineration de boues humides utilisant le secheur combine
KR100771667B1 (ko) * 2006-05-10 2007-11-01 김일동 이동식 포집기
US9657989B2 (en) * 2008-04-07 2017-05-23 Wastedry, Llc Systems and methods for processing municipal wastewater treatment sewage sludge
CN105327589A (zh) * 2015-11-13 2016-02-17 惠州市环发环保科技有限公司 废气处理系统
CN106051790A (zh) * 2016-05-24 2016-10-26 杨峥雄 一种以废溶剂为辅助燃料蓄热式燃烧炉rto及燃烧方法
CN106348371B (zh) * 2016-11-17 2019-04-12 山东大学 一种难降解水中挥发性有机物的去除方法
EP3859207A1 (fr) * 2020-01-29 2021-08-04 Steinmüller Engineering GmbH Installation de combustion pourvue d'accumulateur de chaleur
CN115405941B (zh) * 2022-08-30 2024-07-16 江苏乾宏环保科技有限公司 一种双塔交替蓄热式rto废气焚烧装置及其焚烧方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128171A (en) * 1978-03-29 1979-10-04 Nittetsu Kakoki Kk Incinerating device of noxious matter in waste gas
US4252070A (en) * 1979-06-27 1981-02-24 Regenerative Environmental Equipment Co., Inc. Double valve anti-leak system for thermal regeneration incinerators
US4454826A (en) * 1982-06-23 1984-06-19 Regenerative Environmental Equipment Co., Inc. Vertical flow incinerator having regenerative heat exchange
JPH05322145A (ja) * 1992-05-18 1993-12-07 Chizuo Matsumoto 流動床焼却炉
JPH05332523A (ja) * 1992-06-02 1993-12-14 Takuma Co Ltd 蓄熱脱臭装置
US5553555A (en) * 1994-04-28 1996-09-10 Dasibi Environmental Corporation System and method for flue gas purification for thermal power units
US5503551A (en) * 1995-06-05 1996-04-02 Houston; Reagan Rotary valve for fume incinerator
US5626088A (en) * 1995-11-28 1997-05-06 Foster Wheeler Energia Oy Method and apparatus for utilizing biofuel or waste material in energy production
US5888063A (en) * 1996-03-07 1999-03-30 Scott; Gregory J. Method and apparatus for quick purging a multiple bed regenerative fume incinerator
US6119607A (en) * 1997-05-09 2000-09-19 Corporation De L'ecole Polytechnique Granular bed process for thermally treating solid waste in a flame
KR19980082082A (ko) * 1998-08-21 1998-11-25 오석인 유기 폐수의 증발 축열소각 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02097328A1 *

Also Published As

Publication number Publication date
CN1460166A (zh) 2003-12-03
WO2002097328A1 (fr) 2002-12-05
US20040020415A1 (en) 2004-02-05
KR20010070670A (ko) 2001-07-27
JP2004520565A (ja) 2004-07-08
CA2410719A1 (fr) 2002-12-05

Similar Documents

Publication Publication Date Title
CN1981173B (zh) 可燃废物焚化的方法和装置
CN1180812A (zh) 在多膛炉中进行氧气喷射的装置和方法
JP2634320B2 (ja) ガススクラバーの後に後燃焼と熱回収とを行う一段焼却炉を用いたスラッジ焼却方法
JPS6155004B2 (fr)
US4859177A (en) Apparatus for incinerating combustible material
US20040020415A1 (en) Regenerative thermal waste incineration system
US4391208A (en) Method for controlling temperatures in the afterburner and combustion hearths of a multiple hearth furnace
CN111140858A (zh) 一种小型生活垃圾焚烧炉
CN212644630U (zh) 一种小型生活垃圾焚烧炉
JP2006023030A (ja) 一次燃焼装置を備えた竪型ごみ焼却炉及びその運転制御方法
US7448332B2 (en) Refuse disposal by environmentally safe high temperature disintegration
CN212108415U (zh) 生活垃圾热解气化焚烧炉排炉及其处理系统
JP2000283427A (ja) 反応型ごみ焼却炉及びそれを用いたごみ焼却方法
CN100529536C (zh) 蜂窝炉排焚化炉
JP3556852B2 (ja) 汚泥混焼装置
HUT73708A (en) Method and apparatous for pyrolizing of wastes
KR101125257B1 (ko) 폐기물 열분해 가스화 소각장치
JP3933771B2 (ja) 大容量炭化設備
JPH1122947A (ja) ストーカ式ごみ焼却炉
JPH03279705A (ja) 燃焼温度制御型焼却炉
JP3461671B2 (ja) 交番燃焼式流動床炉
JP3015266B2 (ja) 廃棄物溶融処理装置
CN116678001A (zh) 集成炉排垃圾气化燃烧炉处理垃圾的方法
JPH11294731A (ja) 焼却炉の焼却方法
JP3993329B2 (ja) 焼却炉

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031230

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070331