EP1375859B1 - Procédé de contrôle d'un moteur à combustion interne avec une machine à ondes de pression à dynamique des gaz - Google Patents

Procédé de contrôle d'un moteur à combustion interne avec une machine à ondes de pression à dynamique des gaz Download PDF

Info

Publication number
EP1375859B1
EP1375859B1 EP20030405381 EP03405381A EP1375859B1 EP 1375859 B1 EP1375859 B1 EP 1375859B1 EP 20030405381 EP20030405381 EP 20030405381 EP 03405381 A EP03405381 A EP 03405381A EP 1375859 B1 EP1375859 B1 EP 1375859B1
Authority
EP
European Patent Office
Prior art keywords
pressure
gas
wave machine
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20030405381
Other languages
German (de)
English (en)
Other versions
EP1375859A2 (fr
EP1375859A3 (fr
Inventor
Urs Wenger
Roger Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swissauto Engineering SA
Original Assignee
Swissauto Engineering SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP02405544A external-priority patent/EP1375858B1/fr
Application filed by Swissauto Engineering SA filed Critical Swissauto Engineering SA
Priority to EP20030405381 priority Critical patent/EP1375859B1/fr
Publication of EP1375859A2 publication Critical patent/EP1375859A2/fr
Publication of EP1375859A3 publication Critical patent/EP1375859A3/fr
Application granted granted Critical
Publication of EP1375859B1 publication Critical patent/EP1375859B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/42Engines with pumps other than of reciprocating-piston type with driven apparatus for immediate conversion of combustion gas pressure into pressure of fresh charge, e.g. with cell-type pressure exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F13/00Pressure exchangers

Definitions

  • the present invention relates to a method for controlling an internal combustion engine with a gas-dynamic pressure wave machine according to the preamble of claim 1.
  • a gas-dynamic pressure wave machine which is intended to supply charge air to an internal combustion engine is known from WO 99/11913 of the same applicant.
  • a rotatable air housing is disclosed therein for aligning the ports of one of the two high pressure ports with respect to the other ports of the other high pressure port to achieve process calibration across the full map range of the internal combustion engine and variable width adjustment of the high pressure exhaust port and other features.
  • the first stage a distinction is made between two phases, a positive load step when accelerating and a negative load step when decelerating or decelerating.
  • the second stage can be divided into three phases, partial load phase, idle phase and constant full load phase.
  • the present invention relates in particular to the positive load step when accelerating and the negative Loss of load when removing the gas or braking with subsequent partial load behavior.
  • the pressure wave loader may be damaged, for example, the storage of the rotor is disturbed by streaks on the housings or by high exhaust gas recirculation and / or low boost pressure and / or high charge air temperature of the engine operation.
  • FIGs 1 and 2 a gas-dynamic pressure wave machine is shown, on which a variety of improvements have been carried out in order to increase the overall efficiency significantly.
  • the pressure wave machine 30 is connected via the high-pressure exhaust passage 31 and the high-pressure charge air passage 32 with the combustion engine 33 shown schematically.
  • the gas housing 34 is also the low-pressure exhaust passage 35, and it can be seen from this figure that the two channels, ie the high-pressure exhaust passage and the low-pressure exhaust passage in the gas housing rotor side as sector-shaped openings 36 A and 37 A, each with an opening edge 36th or 37, see also Figures 5 and 6. It also recognizes the rotor 40th with its cells 41, wherein the rotor is arranged in a jacket 42 and is driven for example by a belt drive 43.
  • the opening edges of the high-pressure charge air passage 32, d. H. the opening into the rotor cells openings, adjusted by either the air housing with respect to the stationary rotor and gas housing or only the high-pressure charge air duct is rotated.
  • the opening edges of the two high-pressure channels can always be adjusted to one another at each characteristic point point of the internal combustion engine so that the primary shaft can fulfill the above-mentioned condition.
  • the rotation of the housing can be, for example, 0-25 °.
  • the connecting line 46 which leads from the high-pressure charge air duct into the high pressure exhaust duct.
  • the connecting line includes a check valve 47, which is optionally provided with an electronic control.
  • the check valve acts as a control in the sense that only pressure surges are transmitted, the energy level is higher than the current pressure in the high-pressure exhaust passage.
  • the negative pressure pulses ie the state of the quasi negative pressure in the high-pressure exhaust gas channel
  • the entire pressure level is raised both within the high-pressure exhaust gas channel and the high-pressure charge air channel by the smoothing of the negative pressure pulses.
  • the pressure level in the rotor can be significantly increased before opening the high-pressure exhaust gas channel, and the pulsations arriving from there are damped.
  • this measure reduces the Einströmholde the hot exhaust gas into the rotor, since the entire process is damped.
  • branch which is located somewhere between the high-pressure charge air duct edge and the engine intake in FIG. 1 or 2, is arranged directly after the opening edge of the high-pressure charge air duct. This preferred variant is not shown in FIG. 1 for the sake of clarity.
  • the pressure wave machine is highly filling-dependent.
  • the provision of a connecting line allows the return of charge air to the high-pressure exhaust side of the pressure wave machine, thereby increasing the Mass flow rate of the machine and thus an increase in the degree of filling, which is noticeable in a significant increase in pressure.
  • An additional control of the recirculated fresh air high pressure by means of a regulated check valve can thus be used for boost pressure control in general and the gasoline engine in addition to power control.
  • the pressure wave machine in order to improve the compression efficiency, the pressure wave machine can be dimensioned somewhat larger at higher engine throughputs without losing boost pressure at lower engine throughputs.
  • This is particularly effective in the low to medium speed, temperature and load range of the internal combustion engine.
  • the system for increasing the power by means of a connecting line is a tool for a possibly too low achievable boost pressure at low engine speeds, from 1'000 to 3'000 RPM, a strong increase of the boost pressure by exploiting the exhaust gas pulsations and the positive pressure difference across the pressure wave machine to reach.
  • FIGS. 3, 3A an influencing of the high-pressure exhaust gas channel, or its widening, is shown schematically.
  • the unwound rotor 40 is shown with the cells 41 and a recess 48 is provided in the gas housing 34, which can be changed by a slider 49, as indicated by the arrow 50.
  • the slide 49 is fully engaged in the direction of the arrow, so that the high-pressure exhaust gas channel is broadened without a web being created.
  • a suitable and calculable for a professional control of the slide can be moved so that the high-pressure channel is widened until the pressure has dropped so far that the charge pressure generated by the pressure wave process drops to the desired level.
  • the gas pocket inflow can be varied in a manner known per se, albeit less effectively, since a web remains.
  • check valve of the connecting line may only be opened when all other parameters and actuators are already in the optimum position after the positive load step, because of the requirement of the highest possible boost pressure. This is necessary because with the power boost system, the high pressure process is increased at the expense of the purge process.
  • the housing rotation, the speed and position of the high pressure exhaust duct width or variable gas pocket inflow slide may vary as required and produce similar results in different settings. Good results can be achieved by optimizing the performance of the internal combustion engine or its torque when adjusting the pressure wave machine.
  • this application particularly describes the regulation of the positive and negative load step steps, but it goes without saying that the other three phases mentioned are also optimized for constant driving, in which case there is also a certain order of regulation is made. This regulation of the remaining three phases is then combined with the other regulatory steps with prescribed order.
  • the inventive method is not limited to the system described combustion engine pressure wave machine. In its basic form, the method is valid for all systems internal combustion engine pressure wave machine. Its full effectiveness unfolds with all options. This method also applies to both gasoline and diesel engines, with and without catalysts and with or without additional heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Claims (9)

  1. Procédé de régulation d'un moteur à combustion interne avec une machine à ondes de pression à dynamique des gaz, dans lequel la machine à ondes de pression à dynamique des gaz présente un carter rotatif pour adapter l'équilibrage des processus à l'ensemble des champs de caractéristiques du moteur à combustion interne, ainsi qu'un réglage de largeur variable du canal de gaz d'échappement à haute pression ou un flux variable de poches de gaz,
    caractérisé en ce que
    dans chaque champ de caractéristiques, on respecte une séquence de commande définie, et
    - dans le cas d'un saut de charge positif,
    on ajuste à l'aide de moyens appropriés, la vitesse de rotation et le carter de la machine à ondes de pression à dynamique des gaz sur la position optimale enregistrée dans le champ de caractéristiques,
    on règle la largeur varia le du canal de gaz d'échappement à haute pression ou le flu varia le de poches de gaz sur la pression de suralimentation nécessaire à partir du champ de caractéristiques du moteur ; et
    - dans le cas d'un saut de charge négatif,
    on ajuste à l'aide de moyens appropriés, la vitesse de rotation et le carter de la machine à ondes de pression à dynamique des gaz sur la position optimale enregistrée dans le champ de caractéristiques du moteur, et
    on ouvre le plus grand possi le le réglage de largeur varia le du canal de gaz d'échappement à haute pression ou le flu varia le de poches de gaz pour maintenir une pression différentielle la plus fai le possi le entre l'air de suralimentation à haute pression et le gaz d'échappement à haute pression.
  2. Procédé selon la revendication 1,
    caractérisé en ce qu'
    au dé ut d'un saut de charge positif, pour lequel on déplace l'élément de régulation du moteur à com ustion interne en fonction du conducteur qui souhaite une puissance plus importante, on ouvre tout d'a ord un volet d'air de alayage le plus grand possi le dans le canal d'admission de la machine à ondes de pression à dynamique des gaz.
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que
    dans le cas où le saut de charge est positif et où la pression de charge souhaitée n'est pas atteinte, on ouvre en plus une conduite de raccordement entre le canal d'air de suralimentation à haute pression et le canal de gaz d'échappement à haute pression.
  4. Procédé selon la revendication 3,
    caractérisé en ce que
    l'ouverture est effectuée dans une plage de Nmot = 1000 à 3 000 tr/min.
  5. Procédé selon la revendication 3 ou 4,
    caractérisé en ce que
    on n'ouvre la conduite de raccordement que lorsque tous les autres paramètres et actionneurs sont déjà dans la position optimale après le saut de charge positif.
  6. Procédé selon la revendication 1 en cas de saut de charge négatif,
    caractérisé en ce qu'
    on s'assure qu'une conduite de raccordement située entre le canal d'air de suralimentation à haute pression et le canal de gaz d'échappement à haute pression est fermée en toute sécurité.
  7. Procédé selon la revendication 6,
    caractérisé en ce qu'
    une soupape dans la conduite de raccordement est actionnée par la commande du moteur à com ustion interne à l'aide d'un actionneur.
  8. Procédé selon les revendications 6 ou 7,
    caractérisé en ce que
    au dé ut du saut de charge négatif, on ferme le plus possi le le volet d'air de alayage sans interrompre toutefois le alayage du rotor.
  9. Procédé selon une des revendications 1 à 8,
    caractérisé en ce que
    le carter rotatif de la machine à ondes de pression à dynamique des gaz est le carter d'admission d'air.
EP20030405381 2002-06-28 2003-05-27 Procédé de contrôle d'un moteur à combustion interne avec une machine à ondes de pression à dynamique des gaz Expired - Lifetime EP1375859B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20030405381 EP1375859B1 (fr) 2002-06-28 2003-05-27 Procédé de contrôle d'un moteur à combustion interne avec une machine à ondes de pression à dynamique des gaz

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP02405544A EP1375858B1 (fr) 2002-06-28 2002-06-28 Méthode de contrôle d'un moteur à combustion interne avec un compresseur à ondes de pression gazodynamique
EP02405544 2002-06-28
EP20030405381 EP1375859B1 (fr) 2002-06-28 2003-05-27 Procédé de contrôle d'un moteur à combustion interne avec une machine à ondes de pression à dynamique des gaz

Publications (3)

Publication Number Publication Date
EP1375859A2 EP1375859A2 (fr) 2004-01-02
EP1375859A3 EP1375859A3 (fr) 2006-01-04
EP1375859B1 true EP1375859B1 (fr) 2007-07-18

Family

ID=29718303

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030405381 Expired - Lifetime EP1375859B1 (fr) 2002-06-28 2003-05-27 Procédé de contrôle d'un moteur à combustion interne avec une machine à ondes de pression à dynamique des gaz

Country Status (1)

Country Link
EP (1) EP1375859B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055517A1 (de) 2010-12-22 2012-06-28 Volkswagen Ag Druckwellenverdichter und Verfahren zum Betrieb eines Druckwellenverdichters

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006020522A1 (de) 2006-05-03 2007-11-08 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
EP2253853A1 (fr) 2009-05-19 2010-11-24 MEC Lasertec AG Roue cellulaire et son procédé de fabrication

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162019A (ja) * 1984-02-01 1985-08-23 Diesel Kiki Co Ltd コンプレツクス型過給機の制御装置
JPH05187247A (ja) * 1992-01-09 1993-07-27 Mazda Motor Corp 圧力波過給機付エンジンの制御装置
JPH07310556A (ja) * 1994-05-19 1995-11-28 Mazda Motor Corp 圧力波過給機付エンジンの過給状態算出方法および圧力波過給機付エンジンの設計方法
US5839416A (en) * 1996-11-12 1998-11-24 Caterpillar Inc. Control system for pressure wave supercharger to optimize emissions and performance of an internal combustion engine
EP1007829B1 (fr) * 1997-08-29 2004-04-07 Swissauto Engineering S.A. Machine a dynamique gazeuse produisant une onde de pression
ATE272788T1 (de) 1997-08-29 2004-08-15 Swissauto Eng Sa Gasdynamische druckwellenmaschine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055517A1 (de) 2010-12-22 2012-06-28 Volkswagen Ag Druckwellenverdichter und Verfahren zum Betrieb eines Druckwellenverdichters

Also Published As

Publication number Publication date
EP1375859A2 (fr) 2004-01-02
EP1375859A3 (fr) 2006-01-04

Similar Documents

Publication Publication Date Title
EP1375858B1 (fr) Méthode de contrôle d'un moteur à combustion interne avec un compresseur à ondes de pression gazodynamique
DE69815882T2 (de) Anlage einer brennkraftmaschine
DE102005008578B4 (de) Motor mit Zylinderabschaltung
DE60203592T2 (de) Regeleinrichtung für Turbolader mit variabler Geometrie
DE102010043897B4 (de) Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors
DE10232337B4 (de) Verfahren und Vorrichtung zur Überwachung einer Luftmassenmessvorrichtung
DE102009055236B4 (de) Verfahren und Vorrichtung zur Regelung eines Abgasturboladers
DE4027503A1 (de) Ladedrucksteuereinrichtung fuer einen turboladermotor
EP2606213B1 (fr) Procédé de réglage du fonctionnement stable d'un turbocompresseur à gaz d'échappement d'un moteur à combustion interne et dispositif correspondant
EP2342437B1 (fr) Dispositif d'alimentation en gaz frais pour un moteur à combustion interne comprenant un turbocompresseur à gaz d'échappement et procédé pour la commande d'un tel dispositif
EP1355052A1 (fr) Système à surcharge pour un moteur à combustion interne et méthode pour son réglage
DE102004003378B4 (de) Regelungs- und Steuerungsvorrichtung und Regelungs- und Steuerungsverfahren für einen mehrstufigen Turbolader
WO2012139816A1 (fr) Dispositif de compression et procédé de fonctionnement associé
DE102015011393A1 (de) Steuervorrichtung für einen Motor, Verfahren zum Anhalten eines Motors und Computerprogrammprodukt
EP3722573A1 (fr) Procédé de fonctionnement d'un moteur à combustion interne doté d'un turbocompresseur à gaz d'échappement et d'un compresseur alimenté électriquement et ses dispositifs
EP3594480A1 (fr) Procédé de commande d'un syst?me de charge
DE112007002933T5 (de) Verfahren zur modulierten Turboladerbremsung
DE4041875C2 (fr)
DE10306600A1 (de) Aufladedrucksteuergerät
EP1375859B1 (fr) Procédé de contrôle d'un moteur à combustion interne avec une machine à ondes de pression à dynamique des gaz
DE60215903T2 (de) Verfahren zur Steuerung eines Abgasturboladers mit verstellbarer Turbinengeometrie
DE102012019896A1 (de) Brennkraftmaschine
EP1347157B1 (fr) Echangeur de pression dynamique à ondes
EP3591185A1 (fr) Procédé de fonctionnement d'un moteur à combustion interne avec un dispositif de réglage de l'ouverture du compresseur
WO2011045272A1 (fr) Moteur à combustion interne avec dispositif à suralimentation et procédé pour faire fonctionner un moteur à combustion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20060419

AKX Designation fees paid

Designated state(s): CH CZ DE LI SK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH CZ DE LI SK

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50307685

Country of ref document: DE

Date of ref document: 20070830

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20100524

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100614

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 2572

Country of ref document: SK

Effective date: 20110527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20160526

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160714

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50307685

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201