EP1368894A1 - Structure de transducteur fonctionnant avec des ondes acoustiques - Google Patents

Structure de transducteur fonctionnant avec des ondes acoustiques

Info

Publication number
EP1368894A1
EP1368894A1 EP02721986A EP02721986A EP1368894A1 EP 1368894 A1 EP1368894 A1 EP 1368894A1 EP 02721986 A EP02721986 A EP 02721986A EP 02721986 A EP02721986 A EP 02721986A EP 1368894 A1 EP1368894 A1 EP 1368894A1
Authority
EP
European Patent Office
Prior art keywords
transducer
structure according
finger
idt
interdigital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02721986A
Other languages
German (de)
English (en)
Inventor
Thomas Bauer
Martin BÜNNER
Andreas Detlefsen
Dietmar Ritter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of EP1368894A1 publication Critical patent/EP1368894A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14555Chirped transducers

Definitions

  • the invention relates to a transducer structure working with acoustic waves, in particular for a surface wave filter (SAW or SAW filter) or an S-BAR filter (bulk acoustic wave resonator).
  • a surface wave filter SAW or SAW filter
  • S-BAR filter bulk acoustic wave resonator
  • transducer structures for example SAW resonators
  • SAW resonators are used as impedance elements with acoustic waves.
  • Such a resonator is constructed from metallic electrode structures on the surface of a piezoelectric substrate and has an interdigital transducer with at least two connections, which is generally arranged between two reflectors.
  • Known resonators have interdigital transducers which are characterized by a finger period and finger width which are homogeneous over the entire transducer. Each resonator has a so-called resonance and an anti-resonance frequency. The frequency position and the intensity of resonance and anti-resonance can be influenced by varying the apertures, the number of fingers and the finger period. The frequency spacing between the resonance and anti-resonance frequencies and their shape is retained.
  • the resonators are used as impedance elements and connected to form a ladder-like arrangement.
  • resonators are arranged in a serial and at least one, but preferably a plurality of parallel branches.
  • the resonance frequency of a resonator in the serial branch is set so that it approximately corresponds to the anti-resonance frequency of a resonator in the parallel branch.
  • More complex filters with a plurality of parallel branches and serial resonators arranged in between can be constructed from a plurality of basic elements, each comprising a parallel and a serial resonator.
  • the interaction of the resonances of the individual resonators produces a desired band-pass retention of the filter.
  • the resonance frequencies of the individual resonators and the intensity of the resonances are suitably set.
  • finger periods, number of fingers and apertures of the individual resonators are the known degrees of freedom.
  • An ideal filter has good electrical adaptation, good damping behavior in the stop band and the lowest possible insertion loss in the pass band. It is disadvantageous, however, that the properties mentioned cannot usually be optimized at the same time, so that only a suitable combination of properties can always be obtained, but not an optimal filter in all properties.
  • broadband filters that have a relative bandwidth of more than 2% or with filters that are built on substrates with low electro-acoustic coupling, for example on LiTaC> 3 in conjunction with a small layer thickness or on quartz, optimization only at a non-optimal level Filters with unsatisfactory properties.
  • the object of the present invention is to provide a transducer structure which operates with acoustic waves and which has at least one further degree of freedom in the
  • a transducer structure has one or more between
  • Interdigital transducers arranged on reflectors. These in turn include electrode fingers connected to bus bars, that mesh like a comb.
  • the filter can be a DMS, a TCF or a reactance filter.
  • the reflection at the input or output of the filter can be minimized with a transducer structure with a varying finger period.
  • the standing wave ratio can be reduced in the case of a reactance filter used in the high frequency range.
  • the resonators according to the invention can be used to construct reactance filters which have an improved passband and in particular an improved insertion loss.
  • the finger spacing can be varied in such a way that the concrete values for the finger spacing (finger periods) plotted over the length of the interdigital transducer come to lie on a curve corresponding to a continuous function.
  • the concrete values for the finger spacing at a point x thus correspond to those scanned at point x
  • a quasi-continuous function is preferably selected. Such a function shows no jumps.
  • a further advantageous variation of the finger spacing is obtained if the said distribution of the finger spacing over the length of the transducer follows a function which is symmetrical about an axis perpendicular to the direction of wave propagation, the axis preferably being in the vicinity of the center of the transducer.
  • a function is preferably selected which has a maximum at the mirror axis.
  • a simple variation of the finger spacing over the length of the interdigital transducer follows a linear function in which the finger spacing increases or decreases linearly in one direction.
  • the distribution of the finger distances can be such that the increase takes place from one end to the other end of the interdigital transducer, or that the increase or decrease takes place up to the mirror axis in order to then decrease or increase again.
  • the finger distances are varied by a mean value up to a maximum of +/- 2.5%, so that there is a maximum difference of 5% between two finger distances.
  • interdigital converters according to the invention have maximum differences of 2 to 3%, for example of 3%.
  • Advantageous improvements in reactance filters are already achieved with fewer differences than, for example, strain gauge filters. The latter can take full advantage of the specified range of variation and have a difference of up to 5%.
  • a resonator according to the invention results from an additional variation in the finger widths of the electrode fingers over the length of the interdigital transducer.
  • This variation also preferably follows a continuous function.
  • the finger widths can be varied so that the metallization ratio remains constant over the length of the transducer.
  • the metallization ratio increases or decreases continuously over the length of the transducer or in which the metallization ratio of the corresponding distribution
  • ⁇ ⁇ ⁇ H- 3 0 ⁇ P- ⁇ P- p. s: Di Di P- SD rr ⁇ p- 3 rr Q tr H- LQ 3 LQ ⁇ ⁇ tn 0
  • resonators according to the invention or filters made from them are constructed in the case of poor electro-acoustic coupling, for example on lithium tantalate with a small layer thickness. Under such conditions, better electrical adaptation is achieved through improved electroacoustic behavior.
  • Figure 1 shows a known resonator.
  • Figure 2 shows a known structure for a reactance filter.
  • Figure 3 shows a resonator according to the invention.
  • FIGS. 4 to 6 show functions according to the invention for distributing the finger widths over the length of the transducer.
  • FIG. 7 compares the standing wave ratio of known reactance filters according to the invention.
  • FIG. 8 compares the transmission behavior of a reactance filter according to the invention with that of a known reactance filter.
  • FIG. 1 A resonator operating with acoustic waves is shown in FIG. 1.
  • the metallic electrode structures which consist for example of aluminum, an aluminum alloy or a multilayer structure comprising aluminum layers, are applied to a piezoelectric substrate.
  • the resonator consists of one
  • Interdigital transducer IDT which is arranged between two reflectors Ref. Each interdigital converter IDT consists of )> tt P 1 H in o in o in o in
  • the finger distances P are plotted over the number of fingers n on a preferably continuous function, in FIG. on a straight line.
  • the finger distance P falls from a maximum finger distance Pmax to a minimum finger distance Pmin over the length of the transducer.
  • distributions of the finger spacings are also possible, as are shown, for example, in FIGS. 5 and 6.
  • a linear distribution over the length of the transducer is also shown in FIG. 5, the overall distribution function being composed of two linear subfunctions which a mirror axis lying in the area of a central electrode finger Nm and vertically to the wave propagation direction X are arranged symmetrically to one another.
  • FIG. 6 shows a distribution of the finger distances P, which corresponds to a parabolic function, the maximum of which is located in the region of the center of the converter.
  • Resonator which has an interdigital transducer IDT V shown in Figure 3 with linearly varying finger spacing, used to produce a reactance filter.
  • resonators are interconnected to form a reactance filter as shown in FIG.
  • ⁇ P SU tr ⁇ P LQ rr LQ M ⁇ P 3 0 ⁇ • d ⁇ P- N ⁇ ⁇ P P- d
  • SD CD ra ⁇ P- P- rr ra 2 ⁇ d " ⁇ ⁇ 3 ⁇ ⁇ tr ⁇ ⁇ ⁇ 3 ⁇ P P-
  • CD CD SD P- tr P- P- CO 3 ⁇ ⁇ - 3 ⁇ Di P "ra rr ⁇ P 1 SD P P- N rr er 3 LQ su ra 3 ⁇ P- rr SU P ⁇ CD SD ⁇ ö ⁇ rr er CD Mi t rr

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

L'objectif de l'invention est d'améliorer l'adaptation d'un filtre fonctionnant avec des ondes acoustiques. A cet effet, on fait appel à une structure de transducteur dans laquelle les écarts entre respectivement deux doigts d'électrode adjacents d'un transducteur interdigité (IDTV) varient sur la longueur du transducteur. Cette variation suit de préférence une fonction de répartition continue. Des filtres à réactance équipés de tels résonateurs dans la branche en série présentent une adaptation électrique améliorée dans la bande passante.
EP02721986A 2001-03-13 2002-03-01 Structure de transducteur fonctionnant avec des ondes acoustiques Withdrawn EP1368894A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10111959.3A DE10111959B4 (de) 2001-03-13 2001-03-13 Mit akustischen Wellen arbeitende Wandlerstruktur
DE10111959 2001-03-13
PCT/DE2002/000755 WO2002073800A1 (fr) 2001-03-13 2002-03-01 Structure de transducteur fonctionnant avec des ondes acoustiques

Publications (1)

Publication Number Publication Date
EP1368894A1 true EP1368894A1 (fr) 2003-12-10

Family

ID=7677235

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02721986A Withdrawn EP1368894A1 (fr) 2001-03-13 2002-03-01 Structure de transducteur fonctionnant avec des ondes acoustiques

Country Status (5)

Country Link
US (1) US7042132B2 (fr)
EP (1) EP1368894A1 (fr)
JP (1) JP4017984B2 (fr)
DE (1) DE10111959B4 (fr)
WO (1) WO2002073800A1 (fr)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100817849B1 (ko) * 2004-01-09 2008-03-31 마쯔시다덴기산교 가부시키가이샤 일단자쌍 탄성 표면파 공진자 및 이를 이용한 탄성 표면파 필터
DE102004020183B4 (de) 2004-04-22 2015-12-03 Epcos Ag Oberflächenwellen-Resonatorfilter mit longitudinal gekoppelten Wandlern
JP4668178B2 (ja) * 2004-04-28 2011-04-13 パナソニック株式会社 弾性表面波共振子
DE102004048715B4 (de) * 2004-10-06 2014-05-22 Epcos Ag SAW-Filter mit Impedanz-Transformation
DE102005051852B4 (de) 2005-10-28 2021-05-20 Snaptrack, Inc. SAW Filter mit breitbandiger Bandsperre
DE102008037091A1 (de) * 2008-08-08 2010-02-11 Epcos Ag SAW-Bauelement
CN102187574B (zh) 2008-10-24 2014-07-09 精工爱普生株式会社 表面声波谐振器、表面声波振荡器以及表面声波模块装置
KR20110081865A (ko) * 2008-10-24 2011-07-14 엡슨 토요콤 가부시키 가이샤 탄성 표면파 공진자, 탄성 표면파 발진기 및 탄성 표면파 모듈 장치
JP5163746B2 (ja) * 2008-10-24 2013-03-13 セイコーエプソン株式会社 弾性表面波共振子、弾性表面波発振器および弾性表面波モジュール装置
JP5239741B2 (ja) 2008-10-24 2013-07-17 セイコーエプソン株式会社 弾性表面波共振子、弾性表面波発振器および弾性表面波モジュール装置
CN102244188A (zh) * 2010-05-13 2011-11-16 展晶科技(深圳)有限公司 发光二极管芯片的电极结构
DE102010048965B4 (de) 2010-10-20 2015-01-22 Epcos Ag Bandsperrfilter mit einer Serienverschaltung von zumindest zwei pi-Gliedern
DE102014111828A1 (de) * 2014-08-19 2016-02-25 Epcos Ag Mit akustischen Oberflächenwellen arbeitender Eintorresonator
US9853624B2 (en) 2015-06-26 2017-12-26 Qorvo Us, Inc. SAW resonator with resonant cavities
DE102017121221A1 (de) 2017-09-13 2019-03-14 RF360 Europe GmbH SAW-Resonator und diesen umfassendes Filter
US10461720B2 (en) 2017-09-21 2019-10-29 Snaptrack, Inc. Acoustic filter
US11996827B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with periodic etched holes
US20220116015A1 (en) 2018-06-15 2022-04-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11323089B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US10911023B2 (en) 2018-06-15 2021-02-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with etch-stop layer
US11206009B2 (en) 2019-08-28 2021-12-21 Resonant Inc. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US20220247384A1 (en) * 2021-02-03 2022-08-04 Resonant Inc. Transversely-excited film bulk acoustic resonator with multi-mark interdigital transducer
US11323096B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US11146232B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11323090B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator using Y-X-cut lithium niobate for high power applications
US10826462B2 (en) 2018-06-15 2020-11-03 Resonant Inc. Transversely-excited film bulk acoustic resonators with molybdenum conductors
US11374549B2 (en) 2018-06-15 2022-06-28 Resonant Inc. Filter using transversely-excited film bulk acoustic resonators with divided frequency-setting dielectric layers
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US11146238B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Film bulk acoustic resonator fabrication method
US10917072B2 (en) 2019-06-24 2021-02-09 Resonant Inc. Split ladder acoustic wave filters
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US11323091B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals
US12009798B2 (en) 2018-06-15 2024-06-11 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with electrodes having irregular hexagon cross-sectional shapes
US11264966B2 (en) 2018-06-15 2022-03-01 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US12021496B2 (en) 2020-08-31 2024-06-25 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US10998882B2 (en) 2018-06-15 2021-05-04 Resonant Inc. XBAR resonators with non-rectangular diaphragms
CN109781087B (zh) * 2018-12-05 2022-09-16 中北大学 一种基于驻波模式的saw陀螺仪
DE102019103490A1 (de) * 2018-12-07 2020-06-10 RF360 Europe GmbH Mikroakustischer Kondensator
JP7484045B2 (ja) * 2019-01-30 2024-05-16 太陽誘電株式会社 フィルタおよびマルチプレクサ
CN113615083A (zh) 2019-03-14 2021-11-05 谐振公司 带有半λ介电层的横向激励的薄膜体声波谐振器
DE102019108843A1 (de) * 2019-04-04 2020-10-08 RF360 Europe GmbH Modifizierter SAW-Wandler, SAW-Resonator und SAW-Filter, das diese umfasst
US20210273629A1 (en) * 2020-02-28 2021-09-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with multi-pitch interdigital transducer
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11742828B2 (en) 2020-06-30 2023-08-29 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with symmetric diaphragm
US11405017B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Acoustic matrix filters and radios using acoustic matrix filters
WO2023200670A1 (fr) * 2022-04-12 2023-10-19 Murata Manufacturing Co., Ltd. Filtre en échelle à résonateurs acoustiques de volume en couche à excitation transversale ayant des pas différents

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2036374A5 (fr) * 1969-03-12 1970-12-24 Thomson Csf
US4162465A (en) * 1977-09-14 1979-07-24 University Of Illinois Foundation Surface acoustic wave device with reflection suppression
US4473888A (en) * 1981-10-28 1984-09-25 The United States Of America As Represented By The Secretary Of The Army Saw monolithic convolver using dispersive transducers
EP0104314A3 (fr) 1982-09-07 1985-09-11 Siemens-Albis Aktiengesellschaft Filtre à ondes acoustiques de surface
GB8327551D0 (en) 1983-10-14 1983-11-16 Secr Defence Acoustic transducer
FR2638047B1 (fr) * 1988-10-14 1990-11-23 Thomson Csf
DE4010310A1 (de) * 1990-03-30 1991-10-02 Siemens Ag Oberflaechenwellenwandler, insbesondere in splitfinger-ausfuehrung, mit unterdrueckung von reflexionen endstaendiger wandlerfinger
JP2847438B2 (ja) * 1991-03-29 1999-01-20 三井金属鉱業株式会社 弾性表面波素子
US5568001A (en) * 1994-11-25 1996-10-22 Motorola, Inc. Saw device having acoustic elements with diverse mass loading and method for forming same
DE19730710C2 (de) * 1997-07-17 2002-12-05 Epcos Ag Oberflächenwellenakustikfilter mit verbesserter Flankensteilheit
JP3687566B2 (ja) * 2000-07-25 2005-08-24 株式会社村田製作所 縦結合共振子型弾性表面波フィルタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02073800A1 *

Also Published As

Publication number Publication date
US20040090145A1 (en) 2004-05-13
DE10111959B4 (de) 2014-11-20
JP4017984B2 (ja) 2007-12-05
DE10111959A1 (de) 2002-09-19
JP2004523179A (ja) 2004-07-29
WO2002073800A1 (fr) 2002-09-19
US7042132B2 (en) 2006-05-09

Similar Documents

Publication Publication Date Title
EP1368894A1 (fr) Structure de transducteur fonctionnant avec des ondes acoustiques
DE3751858T2 (de) Akustische Oberflächenwellenresonatoren kombinierendes Filter
EP1125364B1 (fr) Systeme a ondes de surface presentant au moins deux structures a ondes de surface
DE112015005349B4 (de) Vorrichtung für elastische Wellen
DE69533389T2 (de) Akustisches Oberflächenwellenfilter
DE69734034T2 (de) Akustisches Wellenfilter
DE3586199T2 (de) Wandler fuer akustische oberflaechenwellen.
EP1488514B1 (fr) Filtre comportant des resonateurs couples de facon acoustique
DE68916308T2 (de) Akustisches Oberflächenwellenfilter.
DE10135871B4 (de) Wandler für Oberflächenwellen mit verbesserter Unterdrückung störender Anregung
EP0995265B1 (fr) Filtre a ondes acoustiques de surface a pente du signal amelioree
DE19830315C2 (de) Oberflächenwellenelement
WO2007048376A1 (fr) Filtre a ondes de surface pourvu d'un filtre coupe-bande a large bande
DE69120372T2 (de) Einphasiger, einseitig gerichteter, gruppenförmig angeordneter Wandler mit 3/8 Lambda und 5/8 Lambda Bemusterung
DE3309709A1 (de) Gebilde von einrichtungen fuer akustische wellen
DE19818826B4 (de) Oberflächenwellenfilter mit erhöhter Bandbreite
EP1407546A1 (fr) Filtre r actance pente de flanc am lior e
DE102018130144A1 (de) Elektroakustischer Resonator und HF-Filter
DE102018118384A1 (de) Hochfrequenzfilter
EP0927456B1 (fr) Filtres jumeles du type bimode
WO2001065688A1 (fr) Convertisseur d'ondes de surface a reflexion optimisee
DE19924933B4 (de) Oberflächenwellenbauelement
DE10057848B4 (de) Reaktanzfilter mit verbesserter Leistungsverträglichkeit
DE69215727T2 (de) Akustische Oberflächenwellenanordnung für Bandpassfilter mit geringer Einfügungsdämpfung und vorbestimmter Bandpasskennlinie für Breitbandigkeit
DE3750940T2 (de) Wandler.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RITTER, DIETMAR

Inventor name: DETLEFSEN, ANDREAS

Inventor name: BUENNER, MARTIN

Inventor name: BAUER, THOMAS

17Q First examination report despatched

Effective date: 20061116

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111001