EP1368845A1 - Polymermembran, verfahren zu deren herstellung sowie deren verwendung - Google Patents

Polymermembran, verfahren zu deren herstellung sowie deren verwendung

Info

Publication number
EP1368845A1
EP1368845A1 EP02748325A EP02748325A EP1368845A1 EP 1368845 A1 EP1368845 A1 EP 1368845A1 EP 02748325 A EP02748325 A EP 02748325A EP 02748325 A EP02748325 A EP 02748325A EP 1368845 A1 EP1368845 A1 EP 1368845A1
Authority
EP
European Patent Office
Prior art keywords
polymer
polymer membrane
film
membrane according
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02748325A
Other languages
English (en)
French (fr)
Inventor
Oemer Uensal
Joachim Kiefer
Jochen Baurmeister
Jürgen PAWLIK
Werner Kraus
Frauke Jordt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Fuel Cell Research GmbH
Original Assignee
Celanese Ventures GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Ventures GmbH filed Critical Celanese Ventures GmbH
Publication of EP1368845A1 publication Critical patent/EP1368845A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an acid-doped polymer membrane based on polyazoles, a process for producing the same and their use.
  • the acid-doped polymer membrane according to the invention can be used in a variety of ways due to its excellent chemical, thermal and mechanical properties and is particularly suitable as a polymer electrolyte membrane (PEM) in so-called PEM fuel cells.
  • PEM polymer electrolyte membrane
  • PEM fuel cells Acid-doped polyazole membranes for use in PEM fuel cells are already known.
  • the basic polyazole membranes are doped with concentrated phosphoric acid or sulfuric acid and act as proton conductors and separators in so-called polymer electrolyte membrane fuel cells (PEM fuel cells).
  • PEM fuel cells polymer electrolyte membrane fuel cells
  • such polymer electrolyte membranes - processed into membrane electrode assemblies (MEE) - can be used in fuel cells at continuous operating temperatures above 100 ° C, in particular above 120 ° C.
  • This high continuous operating temperature allows the activity of the precious metal-based catalysts contained in the membrane electrode assembly (MEE) to be increased.
  • significant amounts of carbon monoxide are contained in the reformer gas, which usually have to be removed by complex gas treatment or gas purification.
  • the possibility of increasing the operating temperature means that significantly higher concentrations of CO impurities can be tolerated permanently.
  • the object of the present invention is to provide acid-doped polymer membranes based on polyazoles, which on the one hand have improved mechanical properties and on the other hand have the advantages of the polymer membrane based on polyazoles and enable an operating temperature above 100 ° C. without additional fuel gas humidification.
  • the present invention relates to a doped polymer membrane based on polyazoles obtainable by a process comprising the steps A) Casting a film using a solution of polymers based on polyazoles in a polar, aprotic organic solvent
  • step B) drying the film formed in step A) until it is self-supporting
  • step B) Treatment of the film obtained in step B) with a treatment liquid at a temperature between room temperature and the boiling point of the treatment liquid
  • step E) doping the film treated according to step D) with a dopant.
  • EP-A-0816415 describes a process for dissolving polymers based on polyazoles using N, N-dimethylacetamide as a polar, aprotic solvent at temperatures above 260 ° C.
  • a much gentler method for producing solutions based on polyazoles is disclosed in German patent application 10052237.8.
  • Polymers containing recurring azole units of the general formula (I) and / or (II) are used as polymers based on polyazoles.
  • Ar are the same or different and are a four-membered aromatic or heteroaromatic group, which can be mononuclear or polynuclear
  • Ar 1 are the same or different and are for a double-bonded aromatic or heteroaromatic group which can be mononuclear or polynuclear
  • Ar 2 are the same or different and are for a three-membered aromatic or heteroaromatic group which may be mononuclear or polynuclear,
  • X is the same or different and for oxygen, sulfur or an amino group which carries a hydrogen atom, a group having 1-20 carbon atoms, preferably a branched or unbranched alkyl or alkoxy group, or an aryl group as a further radical
  • Preferred aromatic or heteroaromatic groups are derived from benzene, naphthalene, biphenyl, diphenyl ether, diphenylmethane, diphenyldimethylmethane, bisphenone, diphenylsulfone, quinoline, pyridine, bipyridine, anthracene and phenanthrene, which can optionally also be substituted.
  • the substitution pattern of Ar 1 is arbitrary, in the case of phenylene, for example, Ar 1 can be ortho-, meta- and para-phenylene. Particularly preferred groups are derived from benzene and biphenylene, which may also be substituted.
  • Preferred alkyl groups are short-chain alkyl groups with 1 to 4 carbon atoms, such as. B. methyl, ethyl, n- or i-propyl and t-butyl groups.
  • Preferred aromatic groups are phenyl or naphthyl groups.
  • the alkyl groups and the aromatic groups can be substituted.
  • Preferred substituents are halogen atoms such as. B. fluorine, amino groups or short-chain alkyl groups such as. B. methyl or ethyl groups.
  • radicals X should be the same within a repeating unit.
  • the polyazoles used according to the invention can in principle also have different recurring units, which can be found, for example, in distinguish their remainder X. However, it preferably has only the same X radicals in a recurring unit.
  • the polymer containing recurring azole units is a copolymer which contains at least two units of the formula (I) and / or (II) which differ from one another.
  • the polymer containing recurring azole units is a polyazole which contains only units of the formula (I) and / or (II).
  • the number of repeating azole units in the polymer is preferably an integer greater than or equal to 10.
  • Particularly preferred polymers contain at least 100 repeating azole units.
  • polymers containing recurring benzimidazole units are preferably used.
  • An example of an extremely useful polymer containing recurring benzimidazole units is represented by formula (III):
  • n is an integer greater than or equal to 10, preferably greater than or equal to 100.
  • a polymer film is poured from a polymer solution according to step A) by means of measures known per se which are known from the prior art.
  • step B) The film is dried in step B) at temperatures between room temperature and 300 ° C. Drying is carried out under normal pressure or reduced pressure. The drying time depends on the thickness of the film and is between 10 seconds and 24 hours.
  • the film dried according to step B) is then self-supporting and can be processed further. Drying is carried out using drying processes customary in the film industry.
  • the polar, aprotic organic solvent is largely removed using the drying carried out in step B).
  • the residual content of polar, aprotic organic solvents is usually between 10-23%.
  • a further reduction in the residual solvent content to below 2% by weight can be achieved by increasing the drying temperature and drying time, but the subsequent doping of the film, for example with phosphoric acid, is significantly delayed.
  • a residual solvent content of 5-15% is therefore useful for reducing the doping time.
  • the treatment of the film dried according to step B) by means of a treatment liquid takes place in the temperature range between room temperature (20 ° C.) and the boiling temperature of the treatment liquid at normal pressure.
  • liquid solvent selected from the group of alcohols, ketones, alkanes (aliphatic and cycloaliphatic), ethers (aliphatic and cycloaliphatic), esters, carboxylic acids, where the above group members can be halogenated, water, inorganic acids (such as H3PO4 , H2SO4) and mixtures thereof.
  • C1-C10 alcohols C2-C5 ketones, C1-C10 alkanes (aliphatic and cycloaliphatic), C2-C6 ethers (aliphatic and cycloaliphatic), C2-C5 esters, C1-C3 carboxylic acids, dichloromethane, water, inorganic acids are preferred (such as H3PO4, H2SO4) and mixtures thereof.
  • the treatment liquid introduced in step C) can be removed with the aid of the drying carried out in step D). Drying takes place depending on the partial vapor pressure of the selected treatment liquid. Drying is usually carried out at normal pressure and temperatures between 20 ° C and 200 ° C. A more gentle drying can also be done in a vacuum. Instead of drying, the membrane can also be dabbed in step D) and thus freed from excess treatment liquid. The order is not critical.
  • step E) the doping of the film obtained in step C) or D) is carried out.
  • the film is wetted with a dopant or inserted therein.
  • Acids which are preferably used for the polymer membranes according to the invention are all known Lewis and Bransted acids, in particular inorganic Lewis and Bransted acids.
  • the use of polyacids is also possible, in particular isopolyacids and heteropolyacids, and mixtures of different acids.
  • heteropolyacids denote inorganic polyacids with at least two different central atoms, each of which consists of weak, polybasic oxygen acids of a metal (preferably Cr, Mo, V, W) and a non-metal (preferably As, I, P, Se, Si, Te) arise as partially mixed anhydrides. They include, among others, 12-molybdate phosphoric acid and 12-tungsten phosphoric acid.
  • Dopants which are particularly preferred according to the invention are sulfuric acid and phosphoric acid.
  • a very particularly preferred dopant is phosphoric acid (H 3 PO 4 ).
  • doped polymer membranes refer to those polymer membranes which, owing to the presence of doping agents, have an increased proton conductivity in comparison with the undoped polymer membranes.
  • Methods for producing doped polymer membranes are known. In a preferred embodiment of the present invention, they are obtained by adding a film of the polymer in question for a suitable time, preferably 5 minutes to 96 hours, particularly preferably 1 to 72 hours Temperatures between room temperature and 100 ° C and optionally increased pressure with concentrated acid, preferably wetted with highly concentrated phosphoric acid.
  • the conductivity of the polymer membrane according to the invention can be influenced via the degree of doping.
  • the conductivity increases with increasing dopant concentration until a maximum value is reached.
  • the degree of doping is stated as mole of acid per mole of repeating unit of the polymer. In the context of the present invention, a degree of doping between 3 and 15, in particular between 6 and 12, is preferred.
  • the polymer membrane according to the invention has improved material properties compared to the previously known doped polymer membranes. In particular, they have very good mechanical properties and perform better than untreated membranes.
  • the polymer membranes according to the invention show an improved proton conductivity compared to untreated membranes.
  • the doped polymer membranes according to the invention Possible areas of application of the doped polymer membranes according to the invention include use in fuel cells, in electrolysis, in capacitors and in battery systems. Because of their property profile, the doped polymer membranes are preferably used in fuel cells.
  • the present invention also relates to a membrane electrode assembly which has at least one polymer membrane according to the invention.
  • a membrane electrode assembly which has at least one polymer membrane according to the invention.
  • the films were placed untreated in 85% H3PO 4 for 96 hours.
  • H 2 O and residual solvent content is determined from the film using Karl Fischer (KF) titration.
  • Karl Fischer (KF) titration Using a Mettler-Toledo apparatus, the water content in the film is determined directly as follows by KF titration. The sample, which is in a closed sample tube, is heated to 250 ° C. and dried at this temperature. The gas released in this way is fed directly into a closed titration vessel and analyzed with Karl-Fischer [KF] reagent.
  • the residual solvent content is determined by gravimetric determination of the weight before and after drying.
  • the films were boiled in boiling water for 1 hour. Then the water bath was changed and boiled for another hour. The films were then rinsed with fresh water and finally dried at 160 ° C. for 3 hours. H 2 O and residual solvent content were determined from the treated film using KF titration. The membranes were obtained by doping the films for 96 hours in 85% H 3 PO 4 .
  • the films were boiled in boiling water for 1 hour. Then the water bath is changed and boiled for another hour and then the films were dabbed off with a cloth and used again while moist. H 2 O and residual solvent content were determined from the film using KF titration. The membranes were doped in 85% H3PO496 h. Washing with methanol:
  • the films were placed in methanol and refluxed for 2 hours (from the boiling of the methanol). The films were taken out and first air-dried for 1 minute, then at 100 ° C. under vacuum in a drying cabinet for 2 hours. H2O and organic residual solvent contents were determined from the film using KF titration. The membranes were doped in 85% H 3 PO 4 for 96 h.
  • the films were placed in acetone and refluxed for 2 hours (from the boiling of the acetone). Then the films were first dried in air at RT for 1 minute and then at 100 ° C. under vacuum in a drying cabinet for 2 hours. H 2 O and residual solvent content were determined from the film using KF titration. The membranes were doped in 85% H 3 PO 4 for 96 h.
  • Figure 1 shows the result of the KF titration.
  • the organic residual solvent is completely removed by washing with water. With acetone or with methanol, the residual organic solvent content is reduced from 16.6% to 3.7 or 2.3%.
  • FIG. 1 KF titration results from untreated and treated films
  • FIG. 2 shows a proton conductivity improved by 10% even at room temperature, which is maintained or further improved at elevated temperature.
  • the specific conductivity is measured by means of impedance spectroscopy in a 4-pole arrangement in potentiostatic mode and using platinum electrodes (wire, 0.25 mm diameter). The distance between the current-consuming electrodes is 2 cm.
  • the spectrum obtained is evaluated using a simple model consisting of a parallel arrangement of an ohmic resistor and a capacitor.
  • the sample cross-section of the membrane doped with phosphoric acid is measured immediately before the sample assembly. To measure the temperature dependency, the measuring cell is brought to the desired temperature in an oven and controlled via a Pt-100 thermocouple positioned in the immediate vicinity of the sample. After reaching the temperature, the sample is kept at this temperature for 10 minutes before starting the measurement.
  • Figure 2 Proton conductivity of the untreated and treated membranes between 25-160 ° C.
  • uniaxial tensile tests are carried out on strip-shaped tensile specimens.
  • a Zwick test machine equipped with a 100 N load cell and a heated oven is used for this.
  • the clamping length between the jaws is 10 cm and the pull-off speed is set at 50 mm / min.
  • the deformation is determined directly via the traverse path.
  • the tensile tests on membranes doped with phosphoric acid are carried out at 100.degree.
  • To automatically calculate the stress the sample cross-section of each sample is determined and entered before the start of the test.
  • To determine an average of modulus of elasticity tensile strength, elongation at break and fracture energy (toughness), at least 5 measurements are carried out on each membrane.
  • Figure 3 Results of uniaxial tensile tests with treated and untreated membranes An untreated membrane shows an elongation at break of 55%, while a membrane according to the invention has an elongation at break in the range from 58% to 75%.
  • Table 1 Results of tensile tests of membranes after different washing procedures in comparison with an untreated membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Energy (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

Die vorliegende Erfindung betrifft eine mit Säure dotierte Polymermembran auf Basis von Polyazolen, ein Verfahren zur Herstellung derselben sowie ihre Verwendung. Die erfindungsgemässe mit Säure dotierte Polymermembran kann aufgrund ihrer hervorragenden mechanischen Eigenschaften vielfältig eingesetzt werden und eignet sich insbesondere als Polymer-Elektrolyt-Membran (PEM) in sogenannten PEM-Brennstoffzellen.

Description

Beschreibung
Polymermembran, Verfahren zu deren Herstellung sowie deren Verwendung
Beschreibung
Die vorliegende Erfindung betrifft eine mit Säure dotierte Polymermembran auf Basis von Polyazolen, ein Verfahren zur Herstellung derselben sowie ihre Verwendung.
Die erfindungsgemäße mit Säure dotierte Polymermembran kann aufgrund ihrer hervorragenden chemischen, thermischen und mechanischen Eigenschaften vielfältig eingesetzt werden und eignet sich insbesondere als Polymer-Elektrolyt- Membran (PEM) in sogenannten PEM-Brennstoffzellen.
Mit Säure dotierte Polyazol-Membranen für den Einsatz in PEM-Brennstoffzellen sind bereits bekannt. Die basischen Polyazol-Membranen werden mit konzentrierter Phosphorsäure oder Schwefelsäure dotiert und wirken als Protonenleiter und Separatoren in sogenannten Polymerelektrolyt-Membran-Brennstoffzellen (PEM- Brennstoffzellen).
Bedingt durch die hervorragenden Eigenschaften des Polyazol-Polymeren können derartige Polymerelektrolytmembran - zu Membran-Elektroden-Einheit (MEE) verarbeitet - bei Dauerbetriebstemperaturen oberhalb 100°C insbesondere oberhalb 120°C in Brennstoffzellen eingesetzt werden. Diese hohe Dauerbetriebstemperatur erlaubt es die Aktivität der in der Membran-Elektroden-Einheit (MEE) enthaltenen Katalysatoren auf Edelmetallbasis zu erhöhen. Insbesondere bei der Verwendung von sogenannten Reformaten aus Kohlenwasserstoffen sind im Reformergas deutliche Mengen an Kohlenmonoxid enthalten, die überlicherweise durch eine aufwendige Gasaufbereitung bzw. Gasreinigung entfernt werden müssen. Durch die Möglichkeit die Betriebstemperatur zu erhöhen, können deutlich höhere Konzentrationen an CO-Verunreinigungen dauerhaft toleriert werden.
Durch Einsatz von Polymer-Elektrolyt-Membranen auf Basis von Polyazol-Polymeren kann zum einen auf die aufwendige Gasaufbereitung bzw. Gasreinigung teilweise verzichtet werden und andererseits die Katalysatorbeladung in der Membran- Elektroden-Einheit reduziert werden. Beides ist für einen Masseneinsatz von PEM- Brennstoffzellen unabdingbare Voraussetzung, da ansonsten die Kosten für ein PEM-Brennstoffzellen-System zu hoch sind.
Die bislang bekannten mit Säure dotierte Polymermembran auf Basis von Polyazolen zeigen bereits ein günstiges Eigenschaftsprofil. Aufgrund der für PEM- Brennstoffzellen angestrebten Anwendungen, insbesondere im Automobil- und Stationärbereich, sind diese insgesamt jedoch noch zu verbessern. Darüber hinaus haben die bislang bekannten Polymermembranen einen hohen Gehalt an Dimethylacetamid (DMAc), der mittels bekannter Trocknungsmethoden nicht vollständig entfernt werden kann.
So zeigen die bislang bekannten Polymermembran auf Basis von Polyazolen nach ihrer Dotierung mit Säure noch - für den obigen Einsatzzweck - unzureichende mechanische Eigenschaften. Diese mechanische Instabilität zeigt sich in einem geringen E-Modul, einer geringen Reißfestigkeit und einer niedrigen Bruchzähigkeit.
Aufgabe der vorliegenden Erfindung ist mit Säure dotierte Polymermembranen auf Basis von Polyazolen bereitzustellen, die einerseits verbesserte mechanische Eigenschaften aufweisen und andererseits die Vorteile der Polymermembran auf Basis von Polyazolen aufweisen und eine Betriebstemperatur oberhalb von 100°C ohne zusätzliche Brenngasbefeuchtung ermöglichen.
Wir haben nun gefunden, daß eine spezielle Nachbehandlung der zur Dotierung mit Säure vorgesehenen Folie auf Basis von Polyazolen überraschenderweise zu dotierten Polymermembranen mit verbesserten mechanischen Eigenschaften führt, wobei die gute Protonenleitfähigkeit erhalten bzw. ebenfalls verbessert wird. Zusätzlich werden durch die Nachbehandlung organische Restbestandteile wie Dimethylacetamid (DMAc) aus der Membran entfernt, die ansonsten Verringerung der Katalysatoraktivität bewirken.
Gegenstand der vorliegenden Erfindung ist eine dotierte Polymermembran auf Basis von Polyazolen erhältlich durch ein Verfahren umfassend die Schritte A) Gießen einer Folie unter Verwendung einer Lösung von Polymeren auf Basis von Polyazolen in einem polaren, aprotischen organischen Lösungsmittel
B) Trocknung der in Schritt A) gebildeten Folie bis sie selbsttragend ist
C) Behandlung der gemäß Schritt B) erhaltenen Folie mit einer Behandlungs- Flüssigkeit bei einer Temperatur zwischen Raumtemperatur und Siedetemperatur der Behandlungs-Flüssigkeit
D) Trocknung und/oder Abtupfen der gemäß Schritt C) behandelten Folie zum Entfernen der Behandlungs-Flüssigkeit aus Schritt C),
E) Dotierung der gemäß Schritt D) behandelten Folie mit einem Dotierungsmittel.
Herstellung von Polymer-Lösungen auf Basis von Polyazolen ist im Stand der Technik eingehend beschrieben. So beschreibt EP-A-0816415 ein Verfahren zum Lösen von Polymeren auf Basis von Polyazolen unter Verwendung von N,N- Dimethylacetamid als polares, aprotisches Lösungsmittel bei Temperaturen oberhalb 260°C. Ein wesentlich schonenderes Verfahren zur Herstellung von Lösungen auf Basis von Polyazolen ist in der deutschen Patentanmeldung 10052237.8 offenbart.
Als Polymere auf Basis von Polyazolen werden Polymere enthaltend wiederkehrende Azoleinheiten der allgemeinen Formel (I) und/oder (II)
worin
Ar gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar1 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar2 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
X gleich oder verschieden ist und für Sauerstoff, Schwefel oder eine Aminogruppe, die ein Wasserstoffatom, eine 1- 20 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte Alkyl- oder Alkoxygruppe, oder eine Arylgruppe als weiteren Rest trägt
Bevorzugte aromatische oder heteroaromatische Gruppen leiten sich von Benzol, Naphthalin, Biphenyl, Diphenylether, Diphenylmethan, Diphenyldimethylmethan, Bisphenon, Diphenylsulfon, Chinolin, Pyridin, Bipyridin, Anthracen und Phenanthren, die gegebenenfalls auch substituiert sein können, ab.
Dabei ist das Substitionsmuster von Ar1 beliebig, im Falle vom Phenylen beispielsweise kann Ar1 ortho-, meta- und para-Phenylen sein. Besonders bevorzugte Gruppen leiten sich von Benzol und Biphenylen, die gegebenenfalls auch substituiert sein können, ab.
Bevorzugte Alkylgruppen sind kurzkettige Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, wie z. B. Methyl-, Ethyl-, n- oder i-Propyl- und t-Butyl-Gruppen.
Bevorzugte aromatische Gruppen sind Phenyl- oder Naphthyl-Gruppen. Die Alkylgruppen und die aromatischen Gruppen können substituiert sein.
Bevorzugte Substituenten sind Halogenatome wie z. B. Fluor, Aminogruppen oder kurzkettige Alkylgruppen wie z. B. Methyl- oder Ethylgruppen.
Sofern im Rahmen der vorliegenden Erfindung Polyazole mit wiederkehrenden Einheiten der Form (I) eingesetzt werden, sollen die Reste X innerhalb einer wiederkehrenden Einheit gleich sein.
Die erfindungsgemäß eingesetzten Polyazole können grundsätzlich auch unterschiedliche wiederkehrende Einheiten aufweisen, die sich beispielsweise in ihrem Rest X unterscheiden. Vorzugsweise jedoch weist es nur gleiche Reste X in einer wiederkehrenden Einheit auf.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das Polymer enthaltend wiederkehrende Azoleinheiten ein Copolymer, das mindestens zwei Einheiten der Formel (I) und/oder (II) enthält, die sich voneinander unterscheiden.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das Polymer enthaltend wiederkehrende Azoleinheiten ein Polyazol, das nur Einheiten der Formel (I) und/oder (II) enthält.
Die Anzahl der wiederkehrende Azoleinheiten im Polymer ist vorzugsweise eine ganze Zahl größer gleich 10. Besonders bevorzugte Polymere enthalten mindestens 100 wiederkehrende Azoleinheiten.
Im Rahmen der vorliegenden Erfindung werden Polymere enthaltend wiederkehrenden Benzimidazoleinheiten bevorzugt eingesetzt. Ein Beispiel eines äußerst zweckmäßigen Polymers enthaltend wiederkehrende Benzimidazoleinheiten wird durch Formel (III) wiedergegeben:
wobei n eine ganze Zahl größer gleich 10, vorzugsweise größer gleich 100 ist.
Das Gießen einer Polymerfolie aus einer Polymerlösung gemäß Schritt A) erfolgt mittels an sich bekannter Maßnahmen die aus dem Stand der Technik bekannt sind.
Die Trocknung der Folie in Schritt B) erfolgt bei Temperaturen zwischen Raumtemperatur und 300°C. Die Trocknung erfolgt unter Normaldruck oder reduziertem Druck. Die Trocknungsdauer ist von der Dicke der Folie abhängig und beträgt zwischen 10 Sekunden und 24 Stunden. Die gemäß Schritt B) getrocknete Folie ist anschließend selbsttragend und kann weiterverarbeitet werden. Die Trocknung erfolgt mittels in der Folienindustrie üblichen Trocknungsverfahren.
Mit Hilfe der in Schritt B) durchgeführten Trocknung wird das polare, aprotische organische Lösungsmittel weitestgehend entfernt. So beträgt der Restgehalt an polarem, aprotischen organischen Lösungsmittel üblicherweise zwischen 10 - 23%. Eine weitere Absenkung des Rest-Lösemittelgehalten auf unter 2 Gew.-% läßt sich durch eine Erhöhung der Trocknungstemperatur und Trocknungsdauer erzielen, wobei jedoch die nachfolgende Dotierung der Folie, beispielsweise mit Phosphorsäure, deutlich verzögert wird. Somit ist ein Gehalt von Restlösemittel von 5-15% zur Reduktion der Dotierungszeit sinnvoll.
Die Behandlung der gemäß Schritt B) getrockneten Folie mittels einer Behandlungs- Flüssigkeit erfolgt im Temperaturbereich zwischen Raumtemperatur (20°C) und der Siedetemperatur der Behandlungs-Flüssigkeit bei Normaldruck.
Als Behandlungs-Flüssigkeit im Sinne der Erfindung und im Sinne von Schritt C) werden bei Raumtemperatur [d.h. 20°C] flüssig vorliegende Lösungsmittel ausgewählt aus der Gruppe der Alkohole, Ketone, Alkane (aliphatische und cycloaliphatische), Ether (aliphatische und cycloaliphatische), Ester, Carbonsäuren, wobei die vorstehenden Gruppenmitglieder halogeniert sein können, Wasser, anorganischen Säuren (wie z.B. H3PO4, H2SO4) und Gemische derselben eingesetzt.
Vorzugsweise werden C1-C10 Alkohole, C2-C5 Ketone, C1-C10-Alkane (aliphatische und cycloaliphatische), C2-C6-Ether (aliphatische und cycloaliphatische), C2-C5 Ester, C1-C3 Carbonsäuren, Dichlormethan, Wasser, anorganischen Säuren (wie z.B. H3PO4, H2SO4) und Gemische derselben eingesetzt.
Mit Hilfe der in Schritt D) durchgeführten Trocknung kann die gemäß Schritt C) eingeschleuste Behandlungs-Flüssigkeit entfernt werden. Die Trocknung erfolgt in Abhängigkeit vom Partial-Dampfdruck der gewählten Behandlungs-Fiüssigkeit. Üblicherweise erfolgt die Trocknung bei Normaldruck und Temperaturen zwischen 20°C und 200°C. Eine schonendere Trocknung kann auch im Vakuum erfolgen. Anstelle der Trocknung kann in die Membran in Schritt D) auch abgetupft und somit von überschüssiger Behandlungs-Flüssigkeit befreit werden. Die Reihenfolge ist unkritisch.
Gemäß Schritt E) wird die Dotierung der gemäß Schritt C) oder D) erhaltenen Folie durchgeführt. Hierzu wird die Folie mit einem Dotierungsmittel benetzt oder in diesem eingelegt. Als Dotierungsmittel für die erfindungsgemäßen Polymermembranen werden Säuren vorzugsweise alle bekannten Lewis- und Bransted-Säuren, insbesondere anorganische Lewis- und Bransted-Säuren eingesetzt. Neben diesen vorstehend genannten Säure ist auch der Einsatz von Polysäuren möglich, insbesondere Isopolysäuren und Heteropolysäuren sowie von Mischungen verschiedener Säuren. Dabei bezeichnen im Sinne der vorliegenden Erfindung Heteropolysäuren anorganische Polysäuren mit mindestens zwei verschiedenen Zentralatomen, die aus jeweils schwachen, mehrbasischen Sauerstoff-Säuren eines Metalls (vorzugsweise Cr, Mo, V, W) und eines Nichtmetalls (vorzugsweise As, I, P, Se, Si, Te) als partielle gemischte Anhydride entstehen. Zu ihnen gehören unter anderen die 12-Molybdatophosphorsäure und die 12-Wolframatophosphorsäure.
Erfindungsgemäß besonders bevorzugte Dotierungsmittel sind Schwefelsäure und Phosphorsäure. Ein ganz besonders bevorzugtes Dotierungsmittel ist Phosphorsäure (H3PO4).
Die erfindungsgemäßen Polymermembranen sind dotiert. Im Rahmen der vorliegenden Erfindung bezeichnen dotierte Polymermembranen solche Polymermembranen, die aufgrund der Gegenwart von Dotierungsmitteln eine erhöhte Protonenleitfähigkeit im Vergleich mit den nicht dotierten Polymermembranen zeigen.
Verfahren zur Herstellung von dotierten Polymermembran sind bekannt. In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden sie erhalten, indem man eine Folie des betreffenden Polymeren über eine geeignete Zeit, vorzugsweise 5 Minuten - 96 Stunden, besonders bevorzugt 1 - 72 Stunden, bei Temperaturen zwischen Raumtemperatur und 100°C und gegebenenfalls erhöhtem Druck mit konzentrierter Säure, vorzugsweise mit hochkonzentrierter Phosphorsäure benetzt.
Über den Dotierungsgrad kann die Leitfähigkeit der erfindungsgemäßen Polymermembran beeinflußt werden. Dabei nimmt die Leitfähigkeit mit steigender Konzentration an Dotierungsmittel solange zu, bis ein maximaler Wert erreicht ist. Erfindungsgemäß wird der Dotierungsgrad angegeben als Mol Säure pro Mol Wiederholungseinheit des Polymers. Im Rahmen der vorliegenden Erfindung ist ein Dotierungsgrad zwischen 3 und 15, insbesondere zwischen 6 und 12, bevorzugt.
Die erfindungsgemäße Polymermembran weist verbesserte Materialeigenschaften gegenüber den bisher bekannten dotierten Polymermembranen auf. Insbesondere besitzen sie sehr gute mechanische Eigenschaften und zeigen im Vergleich mit unbehandelten Membranen bessere Leistung.
Die erfindungsgemäßen Polymermembranen zeigen eine gegenüber unbehandelten Membranen verbesserte Protonenleitfähigkeit.
Zu möglichen Einsatzgebieten der erfindungsgemäßen, dotierten Polymermembranen gehören unter anderem die Verwendung in Brennstoffzellen, bei der Elektrolyse, in Kondensatoren und in Batteriesystemen. Aufgrund ihres Eigenschaftsprofils werden die dotierten Polymermembranen vorzugsweise in Brennstoffzellen verwendet.
Die vorliegende Erfindung betrifft auch eine Membran-Elektroden-Einheit, die mindestens eine erfindungsgemäße Polymermembran aufweist. Für weitere Informationen über Membran-Elektroden-Einheiten wird auf die Fachliteratur, insbesondere auf die Patente US-A-4,191 ,618, US-A-4,212,714 und US-A-4,333,805 verwiesen. Die in den vorstehend genannten Literaturstellen [US-A-4,191,618, US-A- 4,212,714 und US-A-4,333,805] enthaltene Offenbarung hinsichtlich des Aufbaues und der Herstellung von Membran-Elektroden-Einheiten ist auch Bestandteil der Beschreibung. Nachfolgend wird die Erfindung durch Beispiele und Vergleichsbeispiel eingehender erläutert, ohne daß die Erfindung auf diese Beispiele beschränkt werden soll.
Beispiele:
Unbehandelter Film:
Die Filme wurden unbehandelt in 85 %-ige H3PO496 h lang eingelegt. Aus dem Film werden vor der Dotierung mit H3PO der H2O- und Restlösemittelgehalt mit Karl Fischer (KF)-Titration bestimmt. Mittels einer Mettler-Toledo Apparatur wird per KF- Titration der Wassergehalt in der Folie wie folgt direkt bestimmt. Die Probe, die sich in einem geschlossenen Probengläschen befindet wird auf 250°C aufgeheizt und bei dieser Temperatur getrocknet. Das so freigesetzte Gas wird direkt in ein geschlossenes Titrationsgefäss geleitet und mit Karl-Fischer [KF] Reagens analysiert. Neben der Bestimmung des Wassergehaltes wird durch gravimetrische Bestimmung des Gewichtes vor und nach dem Trocknen der Restlösemittelgehalt -• bestimmt.
Waschen mit H2O und anschließend thermisches Trocknen:
Die Filme wurden in kochendem Wasser 1h lang ausgekocht. Dann wurde das Wasserbad gewechselt und eine weitere Stunde gekocht. Anschließend wurden die Filme mit frischem Wasser gespült und schließlich 3h lang bei 160°C getrocknet. H2O- und Restlösemittelgehalt wurden aus dem behandelten Film mit KF-Titration bestimmt. Die Membrane wurden durch 96 h lange Dotierung der Filme in 85 %-ige H3PO4 erhalten.
Waschen mit H2O:
Die Filme wurden in kochendem Wasser 1h lang ausgekocht. Dann wird das Wasserbad gewechselt und eine weitere Stunde gekocht und anschließend wurden die Filme mit einem Tuch abgetupft und feucht weiter verwendet. Aus dem Film wurden H2O- und Restlösemittelgehalt mit KF-Titration bestimmt. Die Membrane wurden in 85 %-ige H3PO496 h lang dotiert. Waschen mit Methanol:
Die Filme wurden in Methanol vorgelegt und 2h lang (ab dem Kochen des Methanols) im Rückfluß gekocht. Die Filme wurden herausgeholt und zuerst 1 Minute lang an der Luft dann bei 100°C unter Vakuum im Trockenschrank 2h lang getrocknet. Aus dem Film wurden H2O- und organische Restlösemittel-Gehalt mit KF-Titration bestimmt. Die Membrane wurden in 85 %-ige H3PO4 96 h lang dotiert.
Waschen mit Aceton:
Die Filme wurden in Aceton vorgelegt und 2h lang (ab dem Kochen des Acetons) im Rückfluß gekocht. Dann wurden die Filme zuerst 1 Minute lang an der Luft bei RT anschließend bei 100°C unter Vakuum im Trockenschrank 2h lang getrocknet. Aus dem Film wurden H2O- und Restlösemittelgehalt mit KF-Titration bestimmt. Die Membrane wurden in 85 %-ige H3PO4 96 h lang dotiert.
Figur 1 zeigt das Ergebnis der KF-Titration. Durch Waschen mit Wasser entfernt man vollständig das organsiche Restlösemittel. Mit Aceton bzw. mit Methanol reduziert man den organischen Restlösemittelgehalt von 16,6% auf 3,7 bzw. 2,3 %.
unbehandelt mit H20 mit H20 mit Methanol mit Aceton gewaschen gewaschen gewaschen gewaschen und thermisch getrocknet
Figur 1 : KF-Titrationsergebnisse vom unbehandelten und behandelten FilmenPatentansprüche Figur 2 zeigt bereits bei Raumtemperatur eine um 10 % verbesserte Protonenleitfähigkeit, welcher bei erhöhter Temperatur erhalten bzw. weiter verbessert ist.
Die spezifische Leitfähigkeit wird mittels Impedanzspektroskopie in einer 4-Pol- Anordnung im potentiostatischen Modus und unter Verwendung von Platinelektroden (Draht, 0,25 mm Durchmesser) gemessen. Der Abstand zwischen den stromabnehmenden Elektroden beträgt 2 cm. Das erhaltene Spektrum wird mit einem einfachen Modell bestehend aus einer parallelen Anordnung eines Ohm'schen Widerstandes und eines Kapazitators ausgewertet. Der Probenquerschnitt der phosphorsäuredotierten Membran wird unmittelbar vor der Probenmontage gemessen. Zur Messung der Temperaturabhängigkeit wird die Messzelle in einem Ofen auf die gewünschte Temperatur gebracht und über eine in unmittelbarer Probennähe positioniertes Pt-100 Thermoelement geregelt. Nach Erreichen der Temperatur wird die Probe vor dem Start der Messung 10 Minuten auf dieser Temperatur gehalten.
Figur 2: Protonenleitfähigkeit der unbehandelten und behandelten Membranen zwischen 25-160 °C. Zur Bestimmung der mechanischen Eigenschaften werden uniaxiale Zugversuche an streifenförmigen Zugproben durchgeführt. Dazu wird eine Zwick-Testmaschine ausgerüstet mit einer 100 N Kraftmessdose und einem beheizbaren Ofen verwendet. Die Einspannlänge zwischen den Klemmbacken beträgt 10 cm und die Abzuggeschwindigkeit ist auf 50 mm/min festgesetzt. Die Deformation wird direkt über den Traversenweg bestimmt. Die Zugversuche an phosphorsäuredotierten Membranen werden bei 100°C durchgeführt. Zur automatischen Berechnung der Spannung wird der Probenquerschnitt jeder Probe vor Versuchsbeginn bestimmt und eingegeben. Zur Bestimmung eines Mittelwertes von E-Modul, Zugfestigkeit, Bruchdehnung und Bruchenergie (Zähigkeit) werden von jeder Membran mindestens 5 Messungen durchgeführt.
Die Ergebnisse der Zugversuche mit den erfindungsgemäßen Polymermembranen gegenüber unbehandelten Membranen sind in Figur 3 exemplarisch aufgezeigt. Daraus ist ersichtlich, dass eine mit Wasser gewaschene Membran die höchste Bruchdehnung und höchste Bruchspannung aufweist.
10 20 30 40 50 60 70 80
Dehnung [%]
Figur 3: Ergebnisse uniaxialer Zugversuche mit behandelten und unbehandelten Membranen Eine unbehandelte Membran zeigt eine Reissdehnung von 55% während eine erfindungsgemäße Membran eine Bruchdehnung im Bereich von 58% bis zu 75% aufweist.
Die Ergebnisse der Zugversuche sind in Tabelle 1 zusammengefasst.
Tabelle 1 : Ergebnisse der Zugversuche von Membranen nach unterschiedlichen Waschprozeduren im Vergleich mit einer unbehandelten Membran.

Claims

Patentansprüche
1. Dotierte Polymermembran auf Basis von Polyazolen erhältlich durch ein Verfahren umfassend die Schritte
A) Gießen einer Folie unter Verwendung einer Lösung von Polymeren auf Basis von Polyazolen in einem polaren, aprotischen organischen Lösungsmittel
B) Trocknung der in Schritt A) gebildeten Folie bis sie selbsttragend ist
C) Behandlung der gemäß Schritt B) erhaltenen Folie mit einer Behandlungs- Flüssigkeit bei einer Temperatur zwischen Raumtemperatur und Siedetemperatur der Behandlungs-Flüssigkeit
D) Trocknung und/oder Abtupfen der gemäß Schritt C) behandelten Folie zum Entfernen der Behandlungs-Flüssigkeit aus Schritt C),
E) Dotierung der gemäß Schritt D) behandelten Folie mit einem Dotierungsmittel.
2. Polymermembran gemäß Anspruch 1 , dadurch gekennzeichnet, daß sie protonenleitend ist.
3. Polymermembran gemäß Anspruch 1 , dadurch gekennzeichnet, daß das Polymer auf Basis von Polyazolen wiederkehrende Azoleinheiten der allgemeinen Formel (I) und/oder (II)
worin
Ar gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar1 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar2 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
X gleich oder verschieden ist und für Sauerstoff, Schwefel oder eine Aminogruppe, die ein Wasserstoffatom, eine 1- 20 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte Alkyl- oder Alkoxygruppe, oder eine Arylgruppe als weiteren Rest trägt, enthält.
4. Polymermembran gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Polymer enthaltend wiederkehrende Azoleinheiten ein Copolymer ist, daß mindestens zwei Einheiten der Formel (I) und/oder (II) enthält, die sich voneinander unterscheiden.
5. Polymermembran gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Polyazol nur Einheiten der Formel (I) und/oder (II) enthält.
6. Polymermembran gemäß Anspruch 1 , dadurch gekennzeichnet, daß das Polyazol ein Polymer enthaltend wiederkehrende Benzimidazoleinheiten der Formel (IM)
wobei n eine ganze Zahl größer gleich 10, vorzugsweise größer gleich 100 ist, ist.
7. Polymermembran gemäß Anspruch 1 , dadurch gekennzeichnet, daß der Dotierungsgrad zwischen 3 und 15 Mol Säure pro Mol Wiederholungseinheit des Polymers beträgt.
8. Membran-Elektroden-Einheit, die mindestens eine Polymermembran gemäß einem der Ansprüche 1 bis 7 und mindestens eine Elektrode aufweist.
9. Polymerelektrolyt-Brennstoffzelle die mindestens eine Membran-Elektroden- Einheit gemäß Anspruch 8 aufweist.
EP02748325A 2001-03-01 2002-03-01 Polymermembran, verfahren zu deren herstellung sowie deren verwendung Withdrawn EP1368845A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10109829 2001-03-01
DE10109829A DE10109829A1 (de) 2001-03-01 2001-03-01 Polymermembran, Verfahren zu deren Herstellung sowie deren Verwendung
PCT/EP2002/002216 WO2002071518A1 (de) 2001-03-01 2002-03-01 Polymermembran, verfahren zu deren herstellung sowie deren verwendung

Publications (1)

Publication Number Publication Date
EP1368845A1 true EP1368845A1 (de) 2003-12-10

Family

ID=7675913

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02748325A Withdrawn EP1368845A1 (de) 2001-03-01 2002-03-01 Polymermembran, verfahren zu deren herstellung sowie deren verwendung

Country Status (7)

Country Link
US (3) US20040247974A1 (de)
EP (1) EP1368845A1 (de)
JP (1) JP4532828B2 (de)
CN (1) CN100367552C (de)
CA (1) CA2439541A1 (de)
DE (1) DE10109829A1 (de)
WO (1) WO2002071518A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2843743A1 (de) 2013-09-02 2015-03-04 Basf Se Membran-Elektroden-Einheiten für Hochtemperatur -Brennstoffzellen mit einer verbesserten Stabilität
US9825320B2 (en) 2013-04-16 2017-11-21 Basf Se Process for the manufacture of membrane electrode units

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10109829A1 (de) * 2001-03-01 2002-09-05 Celanese Ventures Gmbh Polymermembran, Verfahren zu deren Herstellung sowie deren Verwendung
DE10117686A1 (de) 2001-04-09 2002-10-24 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10117687A1 (de) 2001-04-09 2002-10-17 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10144815A1 (de) 2001-09-12 2003-03-27 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10209419A1 (de) * 2002-03-05 2003-09-25 Celanese Ventures Gmbh Verfahren zur Herstellung einer Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
DE10213540A1 (de) * 2002-03-06 2004-02-19 Celanese Ventures Gmbh Lösung aus Vinylphosphonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylphosphaonsäure und deren Anwendung in Brennstoffzellen
EP1483316B1 (de) * 2002-03-06 2007-09-19 Pemeas GmbH PROTONENLEITENDE ELEKTROLYTMEMBRAN MIT GERINGER METHANOLDURCHLÄSSIGKEIT UND DEREN ANWENDUNG IN BRENNSTOFFZELLEN
US20050118478A1 (en) * 2002-03-06 2005-06-02 Joachim Kiefer Mixture comprising sulphonic acid containing vinyl, polymer electrolyte membrane comprising polyvinylsulphonic acid and the use thereof in fuel cells
DK1518282T3 (da) 2002-04-25 2011-01-03 Basf Fuel Cell Res Gmbh Flerlagselektrolytmembran
DE10228657A1 (de) 2002-06-27 2004-01-15 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10230477A1 (de) 2002-07-06 2004-01-15 Celanese Ventures Gmbh Funktionalisierte Polyazole, Verfahren zu ihrer Herstellung sowie ihre Verwendung
CN100544104C (zh) 2002-08-02 2009-09-23 巴斯夫燃料电池有限责任公司 包括含有磺酸基团的聚合物的质子导电聚合物膜及其在燃料电池中的应用
DE10239701A1 (de) 2002-08-29 2004-03-11 Celanese Ventures Gmbh Polymerfolie auf Basis von Polyazolen und deren Verwendung
DE10242708A1 (de) 2002-09-13 2004-05-19 Celanese Ventures Gmbh Protonenleitende Membranen und deren Verwendung
DE10246459A1 (de) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen
DE10246373A1 (de) * 2002-10-04 2004-04-15 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Sulfonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen
DE10258580A1 (de) 2002-12-16 2004-06-24 Celanese Ventures Gmbh Hochmolekular Polyazole
CN1309750C (zh) * 2003-06-27 2007-04-11 厦门大学 一种固体有机电解质及其制备方法
DE10331365A1 (de) * 2003-07-11 2005-02-10 Celanese Ventures Gmbh Asymmetrische Polymermembran, Verfahren zu deren Herstellung sowie deren Verwendung
US7834131B2 (en) 2003-07-11 2010-11-16 Basf Fuel Cell Gmbh Asymmetric polymer film, method for the production and utilization thereof
WO2005011039A2 (de) * 2003-07-27 2005-02-03 Pemeas Gmbh Protonenleitende membran und deren verwendung
DE102004008628A1 (de) 2004-02-21 2005-09-08 Celanese Ventures Gmbh Membran-Elektroden-Einheit mit hoher Leistung und deren Anwendung in Brennstoffzellen
JP4821946B2 (ja) * 2004-03-22 2011-11-24 東洋紡績株式会社 電解質膜及びその製造方法
JP2007537317A (ja) 2004-05-14 2007-12-20 ペミアス ゲーエムベーハー 異方性造形体、異方性造形体の製造方法および使用
DE102004034139A1 (de) 2004-07-15 2006-02-02 Pemeas Gmbh Verfahren zur Herstellung von Membran-Elektroden-Einheiten
EP1624511A1 (de) 2004-08-05 2006-02-08 Pemeas GmbH Membran-Elektroden-Einheiten und Brennstoffzellen mit erhöhter Lebensdauer
EP1624512A2 (de) 2004-08-05 2006-02-08 Pemeas GmbH Membran-Elektrodeneinheiten mit langer Lebensdauer
DE102005038195A1 (de) * 2005-08-12 2007-02-15 Pemeas Gmbh Verbesserte Membran-Elektrodeneinheiten und Brennstoffzellen mit langer Lebensdauer
DE102005058578A1 (de) 2005-12-08 2007-06-28 Sartorius Ag Membranen aus Polyazolen, Verfahren zu ihrer Herstellung und Brennstoffzellen unter Verwendung derartiger Membranen
DE102006036019A1 (de) * 2006-08-02 2008-02-07 Pemeas Gmbh Membran-Elektroden-Einheit und Brennstoffzellen mit erhöhter Leistung
US7989116B2 (en) * 2007-05-08 2011-08-02 Toyota Motor Engineering & Manufacturing North America, Inc. Electrolyte utilizing a lewis acid/bronstead acid complex
US20110033759A1 (en) * 2008-04-11 2011-02-10 Basf Se Method for operating a fuel cell
EP2131433A1 (de) 2008-06-05 2009-12-09 Reinz-Dichtungs-Gmbh Elektrochemische Zelle und Verfahren zur ihrer Herstellung
EP2228857A1 (de) 2009-03-06 2010-09-15 Basf Se Verbesserte Membran-Elektrodeneinheiten
US20120107712A1 (en) 2009-07-16 2012-05-03 Basf Se Method for operating a fuel cell, and a corresponding fuel cell
DE112010002928A5 (de) 2009-07-16 2012-08-30 Basf Se Verfahren zum Betrieb einer Brennstoffzelle
DE112010002924A5 (de) 2009-07-16 2012-11-29 Basf Se Verfahren zum Betrieb einer Brennstoffzelle und zugehörige Brennstoffzelle
US9048478B2 (en) 2010-04-22 2015-06-02 Basf Se Polymer electrolyte membrane based on polyazole
US20110311901A1 (en) * 2010-05-31 2011-12-22 Basf Se Mechanically stabilized polyazoles
US9812725B2 (en) 2012-01-17 2017-11-07 Basf Se Proton-conducting membrane and use thereof
US20130183603A1 (en) 2012-01-17 2013-07-18 Basf Se Proton-conducting membrane, method for their production and their use in electrochemical cells
US8753426B2 (en) * 2012-08-03 2014-06-17 Air Products And Chemicals, Inc. Polymers, polymer membranes and methods of producing the same
EP2869382B1 (de) 2013-10-30 2018-12-12 Basf Se Verbesserte Membranelektrodenanordnungen
DK180599B1 (en) * 2020-01-20 2021-10-14 Blue World Technologies Holding ApS Apparatus and process for making acid-doped proton exchange membranes

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3541199A (en) * 1968-10-23 1970-11-17 Celanese Corp Process for improving the tensile properties of polybenzimidazole fiber or yarn
US4191618A (en) * 1977-12-23 1980-03-04 General Electric Company Production of halogens in an electrolysis cell with catalytic electrodes bonded to an ion transporting membrane and an oxygen depolarized cathode
US4212714A (en) * 1979-05-14 1980-07-15 General Electric Company Electrolysis of alkali metal halides in a three compartment cell with self-pressurized buffer compartment
US4333805A (en) * 1980-05-02 1982-06-08 General Electric Company Halogen evolution with improved anode catalyst
US4927909A (en) * 1987-09-18 1990-05-22 Hoechst Celanese Corp. Fabrication of high performance polybenzimidazole films
US4842740A (en) * 1988-08-05 1989-06-27 Hoechst Celanese Corporation Membranes prepared from blend of polybenzimidazole with polyarylates
US5403675A (en) * 1993-04-09 1995-04-04 Maxdem, Incorporated Sulfonated polymers for solid polymer electrolytes
US5599639A (en) * 1995-08-31 1997-02-04 Hoechst Celanese Corporation Acid-modified polybenzimidazole fuel cell elements
JP3607004B2 (ja) * 1996-07-05 2005-01-05 クラリアント インターナショナル リミテッド ポリベンゾイミダゾール系化合物の溶液およびその製法
ATE215107T1 (de) * 1996-10-01 2002-04-15 Celanese Ventures Gmbh Verfahren zur herstellung von polymerfolien für verwendung in brennstoffzellen
JP4398522B2 (ja) * 1997-05-22 2010-01-13 バスフ・ヒュエル・セル・ゲーエムベーハー 燃料電池用高分子電解質膜の製造方法及び燃料電池
GB9828204D0 (en) * 1998-12-21 1999-02-17 Smithkline Beecham Plc Process
JP2000195528A (ja) * 1998-12-25 2000-07-14 Aventis Res & Technol Gmbh & Co Kg 高分子電解質膜の製造方法及び燃料電池
JP2000281819A (ja) * 1999-01-27 2000-10-10 Aventis Res & Technol Gmbh & Co Kg 架橋高分子膜の製造方法及び燃料電池
JP3968625B2 (ja) * 2000-11-13 2007-08-29 東洋紡績株式会社 ホスホン酸含有ポリアゾール
DE10109829A1 (de) * 2001-03-01 2002-09-05 Celanese Ventures Gmbh Polymermembran, Verfahren zu deren Herstellung sowie deren Verwendung
DE10129458A1 (de) * 2001-06-19 2003-01-02 Celanese Ventures Gmbh Verbesserte Polymerfolien auf Basis von Polyazolen
US6645293B2 (en) * 2002-03-07 2003-11-11 Illinois Institute Of Technology Molecular crystals of controlled size

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02071518A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9825320B2 (en) 2013-04-16 2017-11-21 Basf Se Process for the manufacture of membrane electrode units
EP2843743A1 (de) 2013-09-02 2015-03-04 Basf Se Membran-Elektroden-Einheiten für Hochtemperatur -Brennstoffzellen mit einer verbesserten Stabilität
US9997791B2 (en) 2013-09-02 2018-06-12 Basf Se Membrane electrode units for high temperature fuel cells with improved stability

Also Published As

Publication number Publication date
DE10109829A1 (de) 2002-09-05
CN1494745A (zh) 2004-05-05
US20100164148A1 (en) 2010-07-01
CA2439541A1 (en) 2002-09-12
US20080280182A1 (en) 2008-11-13
JP2005512271A (ja) 2005-04-28
JP4532828B2 (ja) 2010-08-25
US8168105B2 (en) 2012-05-01
US20040247974A1 (en) 2004-12-09
CN100367552C (zh) 2008-02-06
WO2002071518A1 (de) 2002-09-12

Similar Documents

Publication Publication Date Title
EP1368845A1 (de) Polymermembran, verfahren zu deren herstellung sowie deren verwendung
EP1404745B1 (de) Polymerfolien auf basis von polyazolen
DE10144815A1 (de) Protonenleitende Membran und deren Verwendung
DE10117686A1 (de) Protonenleitende Membran und deren Verwendung
EP2009728B1 (de) Verfahren zur Herstellung eines sulfonierten Poly(1,3,4-oxadiazol)-Polymers
EP1337319B1 (de) Neue membranen für den einsatz in brennstoffzellen mit einer verbesserten mechanik
DE60020915T2 (de) Polymere Kompositmembran und Verfahren zu ihrer Herstellung
DE69930474T2 (de) Festpolymerelektrolyte
DE10117687A1 (de) Protonenleitende Membran und deren Verwendung
EP1373379B1 (de) Verfahren zur herstellung einer membran aus verbrücktem polymer und brennstoffzelle
DE10140147A1 (de) Verfahren zur Herstellung einer Blend-Membran aus verbrücktem Polymer und Brennstoffzelle
DE10010001A1 (de) Neue Blendpolymermembranen zum Einsatz in Brennstoffzellen
EP1550174A2 (de) Protonenleitende membran und deren verwendung
EP1722435A1 (de) Polymermembran für eine Membran-Elektroden-Einheit und Verfahren zur Herstellung derselben
DE10155543C2 (de) Protonenleitende Elektrolytmembran, Verfahren zu ihrer Herstellung und deren Verwendung
WO2005007725A1 (de) Asymmetrische polymerfolie, verfahren zu deren herstellung sowie deren verwendung
WO2012140047A1 (de) Polymere auf der basis von polyazolen
EP1527123B1 (de) Verfahren zur behandlung von polyazolfolien
DE10155545A1 (de) Protonenleitende polymere Elektrolytmembran, Verfahren zu ihrer Herstellung und die Membran enthaltende Brennstoffzelle
WO2011154269A1 (de) Polymerfilme auf der basis von polyazolen
WO2012025380A1 (de) Poröse polymerfilme auf der basis von stickstoffhaltigen aromatischen polymeren
DE112007001581T5 (de) Aromatisches Blockpolymer, Verfahren zur Zersetzung desselben und Analyseverfahren unter Verwendung des Zersetzungsverfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031001

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: UENSAL, OEMER

Inventor name: BAURMEISTER, JOCHEN

Inventor name: KIEFER, JOACHIM

Inventor name: JORDT, FRAUKE

Inventor name: KRAUS, WERNER

Inventor name: PAWLIK, JUERGEN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PEMEAS GMBH

17Q First examination report despatched

Effective date: 20050630

17Q First examination report despatched

Effective date: 20050630

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF FUEL CELL GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF FUEL CELL RESEARCH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131001