EP1366477B1 - Verfahren zur branderkennung - Google Patents
Verfahren zur branderkennung Download PDFInfo
- Publication number
- EP1366477B1 EP1366477B1 EP02706665A EP02706665A EP1366477B1 EP 1366477 B1 EP1366477 B1 EP 1366477B1 EP 02706665 A EP02706665 A EP 02706665A EP 02706665 A EP02706665 A EP 02706665A EP 1366477 B1 EP1366477 B1 EP 1366477B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alarm
- sensor
- signal
- fire
- alarm threshold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/18—Prevention or correction of operating errors
- G08B29/185—Signal analysis techniques for reducing or preventing false alarms or for enhancing the reliability of the system
- G08B29/188—Data fusion; cooperative systems, e.g. voting among different detectors
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/18—Prevention or correction of operating errors
- G08B29/20—Calibration, including self-calibrating arrangements
Definitions
- the invention is based on a method for Fire detection according to the genus of the independent Claim.
- Fire detectors react to changes in the environment. To include such brand-based changes occurring smoke, an increase in temperature and at a Fire gases. For detection of these parameters become scattered light sensors for smoke detection, Temperature sensors for temperature rise and gas sensors used for gas detection. At the gas sensors are both chemical and physical gas sensors possible. In a fire detector are derived from such sensors Sensor signals cyclically detected by a Evaluation. A fire is then detected if a predetermined alarm threshold by the sensor signal is exceeded.
- disturbing influences that can lead to false alarms. These include cigarette smoke, disconebel, dust and electromagnetic interference.
- the inventive method for fire detection with the Features of the independent claim has in contrast the advantage that the alarm threshold depending on Signal parameters derived from the sensor signals will be determined. This is an adaptation to Situations possible, which may be a false alarm can cause. So it's a fade out of this Situations possible.
- the sensitivity can a fire alarm by adjusting the alarm threshold increases when situations arise which are to indicate a fire, such as a steady rise in one Smoke.
- the inventive method is beyond easy to implement on a microcontroller and means only a small amount of computation.
- the alarm threshold for a Alarm interval must be exceeded in order to fire detect.
- Scattered smoke detector which has a labyrinth
- the problem is that in a breeze dust in the maze is whirled up and to an increased sensor signal of the Scattered smoke detector leads.
- the alarm interval it is possible that within the alarm interval, the sensor signal under the Alarm threshold drops and thus not detected on a fire becomes.
- electromagnetic interference are Short-term effects and are caused by the use of a Alarm interval hidden. Welding can only be done for a short time to produce a smoke, which as a fire of Scattered smoke detector is detected.
- the alarm interval also adaptive depending on the signal parameters determine. This will be especially such situations defused, which determines a very high alarm threshold will not be too late to detect a fire. Because in Such situations are accompanied by a very high alarm threshold then reached a fire relatively late and if then In addition, the alarm interval is relatively long is, so the fire alarm is relatively late deductible. This can then be compensated by a shorter alarm interval become. Even with a steady rise in smoke can be so adaptive be responded by a short alarm interval as this is on Indicates a developing fire.
- both for the Alarm interval as well as for the alarm threshold upper and Lower limits are defined, depending on the Conditions and the detector used are adjustable. This also increases security against the change in the Alarm threshold or the alarm interval, so that through the Environmental influences an alarm threshold does not sink too low or not too high. The same goes for the Alarm interval.
- the determination of the alarm interval or the Alarm threshold is due to the setting of parameters the local conditions adaptable. These include For example, weighting factors used in the calculation the alarm threshold or the alarm interval from the Signal parameters are used.
- the Slew rate of the sensor signal and noise used of the sensor signal are advantageously the Slew rate of the sensor signal and noise used of the sensor signal.
- the slew rate of the Sensor signal is through the use of two digital Lowpasses with different time constants and one subsequent difference formation from the sensor signal calculated. This difference is in fact a measure of the Slew rate.
- the noise is on the other hand from the Sensor signal and smoothed sensor signal data calculated.
- the quiescent value is advantageously tracked. Lie advantageously at least two different ones Sensor signals before, then it is possible to send a sensor signal to Plausibilmaschine the other sensor signal to use. This also increases the security against false alarms. there is also a link of the sensor signals possible, the for example, can be done by a correlation.
- a device for Implementation of the method according to the invention is present, the is designed as a fire alarm and in particular as Scattered light smoke detector.
- a communication line For example, a bus, it can be a Signal processing level of the fire detector with Connect playback means or a central office.
- FIG. 1 shows a block diagram of the invention Contraption.
- the sensors 1, 2 and 3 are connected to a Evaluation circuit 4 connected, the sensor signals of the three sensors 1, 2 and 3 detected.
- the thus detected Sensor signals are then sent to a signal processing stage 5 transferred, which has a microcontroller to from the Sensor signals to calculate signal parameters and the Compare sensor signals with an alarm threshold.
- a communication line 7 are then to a Playback device 6, which may also be a control center, transmit the result of the signal processing stage.
- a sensor type is here a scattered light sensor used in a labyrinth a Measuring chamber, in which a light source is arranged and a light receiver, wherein the light receiver only light Receives when smoke enters the measuring chamber through the labyrinth enters and so light from the light source in the Light receiver scatters.
- gas sensors as sensors use, for example, resistive gas sensors, the one Change resistance depending on adsorbed gas, in addition then semiconductor sensors can be used. Or it is the use of an electrochemical cell possible in Depending on the gas occurring gives off a current.
- This current is proportional to the gas concentration.
- a Temperature sensor can be used here because at one Fire high temperatures occur is the use of a such sensor suitable to detect a fire.
- the evaluation circuit 4 comprises a measuring amplifier, filter and an analog-to-digital converter, and then the sensor signals as digital signals to the signal processing stage 5 to hand over.
- the signal processing stage 5 has a simple microcontroller that comes with a memory is connected to place intermediate results there and also permanent values that are stored there from there too load. On the microcontroller are then functions, such as digital low-pass filters or digital high-pass filters implemented. It is possible, but also a digital one Signal processor to use.
- the communication line 7 can be designed as a bus to the fire detector, by the sensors 1, 2 and 3, the evaluation circuit 4 and the Signal processing stage 5 is realized with a Central 6 to connect. There is then displayed whether a Alarm is present, a fault of the fire alarm or no Alarm is present. It is possible, here also only simple Rendering means such as a visual display directly to the Fire alarm is assigned, or even an acoustic Playback as a speaker to use.
- the signal processing stage 5 derives from the sensor signals Signal parameters. To the signal parameters, here are derived, the slew rate counts. The Slew Rate describes how fast that is Sensor signal rises. It is nothing more than that Slope of the sensor signal. Another signal parameter is the noise of the sensor signal. This noise is through a difference of the raw sensor signal and a smoothed sensor signal won. It can also be a subsequent squaring done to a noise power to determine and a moving average over the so calculated noise or noise power be formed. It is also possible the sensor signals over to cache for a certain period of time, for example, the last 64 readings, and then that Frequency spectrum to calculate. Outweighs one low-frequency noise, then that's an indication a fire. High frequency noise indicates a Disturbance out.
- the alarm threshold and the alarm interval is calculated.
- the sensor signal then becomes then compared with the changed alarm threshold and, if the alarm threshold is exceeded, It is checked if this crossing continues until the Alarm interval has expired.
- This review of Sensor signals are cyclical. Becomes one Alarm detected or detected fault or none Alarm is detected, this is then correspondingly to the Rendering means 6 transmitted.
- FIG. 2 is a diagram of an example of the invention Dependence of the alarm threshold and the alarm interval of the slew rate.
- the Slew rate is plotted on the abscissa, while on the left ordinate the alarm threshold is shown and on the right ordinate the Alarm interval.
- the curve 9 describes the alarm threshold. It is up to a value of about 25 Slew rate constant. Here lies the lower one Limit for the alarm threshold.
- the alarm threshold rises then linear depending on the slew rate up to a slew rate of about 225 at. From this value, the upper limit for the Alarm threshold at a value for the alarm threshold of reached about 310. For higher rise values than 225 the alarm threshold remains at the value of 310.
- the lower curve 8 represents an example of the calculation the alarm interval depending on the Slew rate.
- the alarm interval remains a value of 10 constant up to a value of Slew rate of about 40. From this value of Slew rate, the alarm interval increases linearly to a value of 60, which is at a value of Slew rate of 240 is reached. At higher Values as 240 from the slew rate remains that Alarm interval constant at 60. Here is the upper one Limit reached for alarm interval.
- the determination of the alarm threshold or the alarm interval in Dependence on the noise is here dependent on the noise power made. The higher the smoking power the higher the alarm threshold and the longer it will be Alarm interval.
- FIG. 3 is a flow chart of the invention Process illustrated.
- method step 10 are from the sensors 1 to 3 generates the sensor signals.
- Step 11 the sensor signals from the Evaluation circuit 4 detected, here referred to as Reception.
- the signal processing stage passes 5 of the sensor signals from the evaluation circuit. 4 amplified and digitized, the signal parameters Slew rate and noise. This will be like shown above, digital low-pass filters used. These digital low pass filters are on a microcontroller in the signal processing stage 5 implemented.
- step 13 these signal parameters are used Slew rate and noise the alarm threshold calculated.
- step 14 it is now determined whether the sensor signal now above the calculated alarm threshold lies. If that is not the case then it will be in Process step 15 detects that there is no alarm and this is transmitted to the playback device 6. But it is the alarm threshold has been exceeded, then in Method step 16 checks whether this alarm threshold also for the alarm interval is continuously exceeded. If this is not the case, then in method step 17 found that there is no alarm and in Method step 18 is performed by the reproduction device 6 indicates that a failure has occurred. Has been however, in method step 16 it is recognized that the Alarm threshold continuously for the whole time of Alarm interval has been exceeded, then in Step 19 an alarm detected. This will then indicated by the playback device 6.
- Slew rate and noise are also different Signal parameters possible, for example, the integrated Sensor signal, a correlation of different Sensor signals, so a cross-correlation and others Links from the sensor signals. It is still possible to use a fixed alarm interval and only the Alert threshold always new depending on the Determine signal parameters. The reverse is true possible to use a fixed alarm threshold and that Alarm interval depending on the signal parameters to calculate.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fire-Detection Mechanisms (AREA)
- Fire Alarms (AREA)
Abstract
Description
Claims (10)
- Verfahren zur Branderkennung, wobei ein Brand anhand eines Überschreitens einer Alarmschwelle (9) durch wenigstens ein Sensorsignal erkannt wird, wobei die Alarmschwelle (9) in Abhängigkeit von dem wenigstens einen Sensorsignal abgeleiteten Signalparametern bestimmt wird, dadurch gekennzeichnet, dass auf einen Brand erkannt wird, sofern die Alarmschwelle (9) für ein Alarmintervall (8) überschritten wird und dass das Alarmintervall (8) in Abhängigkeit von den Signalparametern bestimmt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass für die Alarmschwelle (9) und/oder das Alarmintervall (8) jeweils eine Ober- und eine Untergrenze in Abhängigkeit von einstellbaren Parametern bestimmt werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Bestimmung der Alarmschwelle (9) und des Alarmintervalls (8) durch Einstellung beeinflusst wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als die Signalparameter eine Anstiegsgeschwindigkeit und ein Rauschen des wenigstens einen Sensorsignals verwendet werden.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei wenigstens zwei unterschiedlichen Sensorsignalen Signalparameter durch eine Verknüpfung der Sensorsignale erzeugt werden.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das wenigstens eine Sensorsignal von einem Streulichtsensor erzeugt wird.
- Vorrichtung, wobei die Vorrichtung wenigstens einen Sensor (1 bis 3) zur Erzeugung wenigstens eines Sensorsignals, eine Auswerteschaltung (4) zur Erfassung der Sensorsignale, eine Signalverarbeitungsstufe (5) zur Verarbeitung der Sensorsignale und Wiedergabemittel (6) zur Darstellung eines Verarbeitungsergebnisses aufweist,
gekennzeichnet durchMittel, die einen Brand anhand eines Überschreitens einer Alarmschwelle (9) durch das wenigstens eine Sensorsignal erkennen, undMittel, welche die Alarmschwelle (9) in Abhängigkeit von dem wenigstens einen Sensorsignal abgeleiteten Signalparametern bestimmen, undMittel, die auf einen Brand erkennen, sofern die Alarmschwelle (9) für ein. Alarmintervall (8) überschritten wird, undMittel, die das Alarmintervall (8) in Abhängigkeit von den Signalparametern bestimmen. - Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Signalverarbeitungsstufe (5) mit den Wiedergabemitteln (6) über eine Kommunikationsleitung (7) verbindbar ist.
- Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der wenigstens eine Sensor (1 bis 3) ein Streulichtsensor ist.
- Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass der Streulichtsensor ein Labyrinth mit einer Meßkammer aufweist, in der eine Lichtquelle und ein Lichtempfänger angeordnet sind.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10109362 | 2001-02-27 | ||
DE10109362A DE10109362A1 (de) | 2001-02-27 | 2001-02-27 | Verfahren zur Branderkennung |
PCT/DE2002/000404 WO2002069297A1 (de) | 2001-02-27 | 2002-02-05 | Verfahren zur branderkennung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1366477A1 EP1366477A1 (de) | 2003-12-03 |
EP1366477B1 true EP1366477B1 (de) | 2005-06-15 |
Family
ID=7675625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02706665A Expired - Lifetime EP1366477B1 (de) | 2001-02-27 | 2002-02-05 | Verfahren zur branderkennung |
Country Status (4)
Country | Link |
---|---|
US (1) | US6856252B2 (de) |
EP (1) | EP1366477B1 (de) |
DE (2) | DE10109362A1 (de) |
WO (1) | WO2002069297A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015112105A1 (de) * | 2015-07-24 | 2017-01-26 | Infineon Technologies Ag | Sensorvorrichtung, Auswertungsvorrichtung und entsprechende Systeme und Verfahren |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6958689B2 (en) * | 2001-09-21 | 2005-10-25 | Rosemount Aerospace Inc. | Multi-sensor fire detector with reduced false alarm performance |
US7333129B2 (en) | 2001-09-21 | 2008-02-19 | Rosemount Aerospace Inc. | Fire detection system |
US7068177B2 (en) * | 2002-09-19 | 2006-06-27 | Honeywell International, Inc. | Multi-sensor device and methods for fire detection |
DE10328376B3 (de) * | 2003-06-24 | 2005-02-17 | Siemens Ag | Verfahren zur Erhöhung der Fehlalarmsicherheit in einer Brandmeldeeinrichtung sowie Brandmeleeinrichtung zur Durchführung dieses Verfahrens |
DE102004034904A1 (de) | 2004-07-19 | 2006-04-20 | Airbus Deutschland Gmbh | Rauchwarnsystem |
JP3950135B2 (ja) * | 2004-11-26 | 2007-07-25 | 株式会社日立製作所 | ガス検知システム |
WO2006086515A2 (en) * | 2005-02-08 | 2006-08-17 | Forward Threat Control | Sensor and transmission control circuit in adaptive interface package |
US7242289B1 (en) * | 2005-02-23 | 2007-07-10 | Sprint Communications Company L.P. | Method and system for synthetically reproducing a random process |
JP4740744B2 (ja) * | 2006-01-12 | 2011-08-03 | 能美防災株式会社 | 防災システム |
US7969896B2 (en) * | 2006-08-29 | 2011-06-28 | Cisco Technology, Inc. | Method and system for providing connectivity outage detection for MPLS core networks based on service level agreement |
US7642924B2 (en) * | 2007-03-02 | 2010-01-05 | Walter Kidde Portable Equipment, Inc. | Alarm with CO and smoke sensors |
EP2093731A1 (de) * | 2008-02-19 | 2009-08-26 | Siemens Aktiengesellschaft | Linearer optischer Rauchmelder mit mehreren Teilstrahlen |
US8547238B2 (en) * | 2010-06-30 | 2013-10-01 | Knowflame, Inc. | Optically redundant fire detector for false alarm rejection |
DE102011089064A1 (de) * | 2011-12-19 | 2013-06-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Sensorsystem und Verfahren zur Erfassung einer Messgröße |
WO2014203070A1 (en) * | 2013-06-20 | 2014-12-24 | David Denoon-Stevens | Fire detecting system |
DE102013222499A1 (de) | 2013-11-06 | 2015-05-07 | Robert Bosch Gmbh | Gefahrenmeldeanlage |
US9729357B1 (en) * | 2016-02-05 | 2017-08-08 | Advoli Limited | System for transmitting control signals over twisted pair cabling using common mode of transformer |
US10339090B2 (en) | 2016-05-23 | 2019-07-02 | Advoli Limited | System for implementing MXM on a PCI card |
CN108877172B (zh) * | 2018-06-26 | 2019-07-12 | 深圳市中电数通智慧安全科技股份有限公司 | 一种错误报警分析方法、装置及终端设备 |
CN111931612A (zh) * | 2020-07-24 | 2020-11-13 | 东风商用车有限公司 | 一种基于图像处理的室内火焰识别方法及设备 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4195286A (en) * | 1978-01-06 | 1980-03-25 | American District Telegraph Company | Alarm system having improved false alarm rate and detection reliability |
CH669859A5 (de) | 1986-06-03 | 1989-04-14 | Cerberus Ag | |
US4881060A (en) | 1988-11-16 | 1989-11-14 | Honeywell Inc. | Fire alarm system |
US5369397A (en) | 1989-09-06 | 1994-11-29 | Gaztech International Corporation | Adaptive fire detector |
US5084696A (en) | 1991-01-24 | 1992-01-28 | Aritech Corporation | Signal detection system with dynamically adjustable detection threshold |
GB2274333B (en) * | 1993-01-07 | 1996-12-11 | Hochiki Co | Smoke detecting apparatus capable of detecting both smoke and fine particles |
US5592147A (en) | 1993-06-14 | 1997-01-07 | Wong; Jacob Y. | False alarm resistant fire detector with improved performance |
US5691704A (en) * | 1996-01-29 | 1997-11-25 | Engelhard Sensor Technologies, Inc. | Practical and improved fire detector |
US5552763A (en) | 1993-11-10 | 1996-09-03 | Simplex Time Recorder Company | Fire alarm system with sensitivity adjustment |
US5612674A (en) | 1995-01-05 | 1997-03-18 | Pittway Corporation | High sensitivity apparatus and method with dynamic adjustment for noise |
CN1209896A (zh) | 1996-01-29 | 1999-03-03 | 恩格尔哈德传感器技术公司 | 动态地调整火灾探测判据的方法 |
US5831537A (en) * | 1997-10-27 | 1998-11-03 | Slc Technologies, Inc. | Electrical current saving combined smoke and fire detector |
US5969437A (en) * | 1997-12-16 | 1999-10-19 | Kalidon Technology, Inc. | Dual powered, smoke detector activated flashlight |
DE19839047A1 (de) | 1998-06-22 | 2000-01-05 | Martin Daumer | Verfahren und Vorrichtung zur Drifterkennung |
-
2001
- 2001-02-27 DE DE10109362A patent/DE10109362A1/de not_active Ceased
-
2002
- 2002-02-05 DE DE50203409T patent/DE50203409D1/de not_active Expired - Lifetime
- 2002-02-05 US US10/332,254 patent/US6856252B2/en not_active Expired - Lifetime
- 2002-02-05 WO PCT/DE2002/000404 patent/WO2002069297A1/de active IP Right Grant
- 2002-02-05 EP EP02706665A patent/EP1366477B1/de not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015112105A1 (de) * | 2015-07-24 | 2017-01-26 | Infineon Technologies Ag | Sensorvorrichtung, Auswertungsvorrichtung und entsprechende Systeme und Verfahren |
US10228403B2 (en) | 2015-07-24 | 2019-03-12 | Infineon Technologies Ag | Sensor device, evaluation device and corresponding systems and methods |
DE102015112105B4 (de) * | 2015-07-24 | 2020-02-06 | Infineon Technologies Ag | Sensorvorrichtung, Auswertungsvorrichtung und entsprechende Systeme und Verfahren |
US10641809B2 (en) | 2015-07-24 | 2020-05-05 | Infineon Technologies Ag | Sensor device, evaluation device and corresponding systems and methods |
Also Published As
Publication number | Publication date |
---|---|
EP1366477A1 (de) | 2003-12-03 |
DE10109362A1 (de) | 2002-09-19 |
DE50203409D1 (de) | 2005-07-21 |
WO2002069297A1 (de) | 2002-09-06 |
US6856252B2 (en) | 2005-02-15 |
US20040090335A1 (en) | 2004-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1366477B1 (de) | Verfahren zur branderkennung | |
US6229439B1 (en) | System and method of filtering | |
EP1022700B1 (de) | Streulichtbrandmelder | |
DE69636022T2 (de) | Feuermeldesystem mit Unterscheidung von Rauchpartikeln | |
DE10011411C2 (de) | Bildgebender Brandmelder | |
EP1389331B1 (de) | Selbstansaugende brandmeldeeinrichtung | |
EP1630758B1 (de) | Streulicht-Rauchmelder | |
US5831524A (en) | System and method for dynamic adjustment of filtering in an alarm system | |
EP2603907B1 (de) | Auswerten von streulichtsignalen bei einem optischen gefahrenmelder sowie ausgeben einer staub- / dampf-warnung oder eines brandalarms | |
WO2005069242A1 (de) | Brandmelder mit mehreren untersuchungsvolumina | |
EP2574938B1 (de) | Verfahren zur Isolationsfehlerüberwachung mit dynamischem Ansprechverhalten | |
DE69918981T2 (de) | Druckwandler und system zur überwachung des öffnens/schliessens einer tür | |
DE69327558T2 (de) | Feuer-Detektierungsverfahren | |
DE19840873A1 (de) | Verfahren und Vorrichtung zur automatischen Waldbranderkennung | |
DE2900444C2 (de) | ||
CN106056831B (zh) | 基于计算机处理的烟雾报警控制方法及其系统 | |
DE19622806A1 (de) | Verfahren und Vorrichtung zum Erfassen eines Feuers mit verschiedenen Arten von Feuersensoren | |
CN1038622C (zh) | 用于火情的早期检测的火警系统 | |
DE10104861B4 (de) | Verfahren zur Branderkennung | |
EP2053574A1 (de) | Rauchmelder mit Teilchenunterdrückung | |
DE102006013610B4 (de) | Einrichtung zum Erfassen und Signalisieren eines Lecks in einer gebäudeseitig verlegten Rohrleitung | |
DE69411195T2 (de) | Sirenendetektor | |
EP1884904A1 (de) | Bestimmung der Gefahrenart mittels mindestens zwei Signalen | |
DE102013208533A1 (de) | Brandmelder | |
DE29512841U1 (de) | Optischer, temperaturgesteuerter Brandmelder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030929 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SIBER, BERND Inventor name: PFEFFERSEDER, ANTON Inventor name: HENSEL, ANDREAS Inventor name: OPPELT, ULRICH |
|
17Q | First examination report despatched |
Effective date: 20031217 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: SCINTILLA AG, DIREKTION Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50203409 Country of ref document: DE Date of ref document: 20050721 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050923 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060316 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20170217 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20180221 Year of fee payment: 17 Ref country code: CH Payment date: 20180221 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180222 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180205 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 50203409 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210420 Year of fee payment: 20 |