EP1365110A1 - Process and apparatus for operating a steam power plant, especially in a partial load range - Google Patents

Process and apparatus for operating a steam power plant, especially in a partial load range Download PDF

Info

Publication number
EP1365110A1
EP1365110A1 EP02011279A EP02011279A EP1365110A1 EP 1365110 A1 EP1365110 A1 EP 1365110A1 EP 02011279 A EP02011279 A EP 02011279A EP 02011279 A EP02011279 A EP 02011279A EP 1365110 A1 EP1365110 A1 EP 1365110A1
Authority
EP
European Patent Office
Prior art keywords
steam
carrying component
pressure
turbine
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02011279A
Other languages
German (de)
French (fr)
Other versions
EP1365110B1 (en
Inventor
Thorsten Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DK02011279T priority Critical patent/DK1365110T3/en
Priority to AT02011279T priority patent/ATE420274T1/en
Priority to DE50213199T priority patent/DE50213199D1/en
Priority to EP02011279A priority patent/EP1365110B1/en
Priority to US10/440,410 priority patent/US6915635B2/en
Publication of EP1365110A1 publication Critical patent/EP1365110A1/en
Application granted granted Critical
Publication of EP1365110B1 publication Critical patent/EP1365110B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • F01D19/02Starting of machines or engines; Regulating, controlling, or safety means in connection therewith dependent on temperature of component parts, e.g. of turbine-casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature

Definitions

  • Plants for generating electrical energy are typically used for operation a certain power, the nominal power, so designed that optimum performance can be achieved when operating the system
  • Operating conditions of the numerous system components for example with regard to wear and tear Frictional forces and losses, noise, exhaust gas behavior and efficiency.
  • the problem mentioned occurs particularly in power plants great performance, which runs as steam power plants and which are equipped with a steam boiler, which one is operated in natural or forced circulation.
  • the above Power plants usually include thick-walled drums for steam separation.
  • the material is particularly important the steam separator drum if the load changes too quickly at risk due to the temperature gradients that occur, so that power plants of this type have been operating so far are designed in a fixed-pressure mode to pressure and / or Temperature fluctuations caused by the steam separator drum to avoid exposure.
  • the invention is therefore based on the object of an improved Method and an apparatus for operating a Steam power plant, particularly in the partial load range.
  • the invention is based on the consideration that in particular constant throttling in the partial load range Turbine valves and the associated loss of efficiency can be avoided if care is taken to ensure that in particular the tensions which arise in the material of the adjust the steam-carrying component, do not become too large, but at the same time the upper mechanical load limit of the Material of the steam-carrying component is used.
  • the method according to the invention is, inter alia, too big Safety distance of actually in the material of the steam-carrying Component prevailing mechanical stresses waived the maximum permissible mechanical stresses, in order to lose too much efficiency to avoid.
  • the inside and outside temperature the steam-carrying component can be achieved the spatial temperature distribution of the success according to the invention the steam-carrying component and then the reference voltage determine which one size for the current existing mechanical stresses in the material the steam-carrying component.
  • the material limit stress can be determined, which has an upper mechanical load limit of the steam-carrying Component describes.
  • mechanical engineering and / or materials science a number of methods for determining such Material limit stress, mostly the material used as well as the spatial design of the considered, under mechanical Tensions, component play a role.
  • the maximum permissible Vapor pressure determined which in the current operating state predominate in the steam-carrying component without excessive use and / or Damage must be feared. So it is going out from the upper load limit (material limit stress) corresponding maximum vapor pressure determined, see above that when the steam-carrying component is acted upon with this maximum vapor pressure no risk of damage to the steam-carrying component.
  • This maximum allowable Vapor pressure is then, for example, by means of a control device e.g. by means of a turbine regulator, at least the steam valve is actuated accordingly.
  • the internal pressure and the mentioned temperatures of the steam-carrying component continuously, measured cyclically, for example, described in step 4 of the method according to the invention.
  • Throttling the at least one steam valve temporarily compared to the prior art, where throttling during the entire operating time of the power plant is provided in the partial load range. This is particularly so therefore possible because of the ongoing measurements mentioned in all current operating conditions, the voltage relationships mentioned the steam-carrying component are known, so if the difference between the material limit stress and the comparative stress reduced, the throttling can be withdrawn since the result of reducing the difference mentioned Limit steam pressure setpoint increases, which means the withdrawal the throttling of the at least one steam valve allowed.
  • a steam power plant which comprises a thick-walled boiler, in sliding pressure operation with the turbine valves fully open and / or with a full application of the Steam turbine operated; compared to known methods from the prior art in particular permanent loss of efficiency during part-load operation as well as a special and complex design of the Turbine with a control device for partial loading avoided.
  • Such methods should also be used in the method according to the invention be included, in which those determined in steps 2 to 5 Sizes based on the respective geometry of the steam-carrying Component not only during the operation of the steam power plant be determined "online”, e.g. in advance Form of parameterized families of curves (at least the Internal pressure, the inside and outside temperature as parameters used) and then saved during operation the current parameter values at least for the internal pressure, the inside and outside temperature of the intervention on the steam valve from the curve groups mentioned above is derived.
  • the steam-carrying component is advantageously a steam separation drum.
  • the Steam turbine at least two turbine stages, in particular one high pressure and one low pressure stage.
  • Such steam turbines are used particularly in power plants greater power used in the process steam to utilize the energy contained in the steam turbine as well as possible.
  • step valve charged with steam
  • step valve is then connected with the steam valve in step 4 of the invention Proceedings set.
  • the invention comprises at least the steam turbine of the steam power plant two actuators for supplying steam to the turbine.
  • step 4 of the method according to the invention the limit steam pressure setpoint by setting both Valves accomplished, so that better control behavior the steam turbine with regard to the limit steam pressure setpoint to be set compared to setting just one valve is achieved.
  • a mathematical calculation can be carried out in a computer Model stored at least the steam-carrying component be, by means of which from the quantities measured in step 1 of the internal pressure, the internal and the external temperature the reference stress in the material (material) of the steam-carrying Component and its temporal course is calculated, which results from the pressure load, the temperature difference and possibly the actual spatial distribution of the mechanical stress in the material of the steam-carrying component.
  • a simulation can, for example, by means of a digital process can be realized, the aforementioned Sizes read in in a time step process and are processed.
  • the limit steam pressure setpoint can be determined, which is usually a turbine controller is supplied according to a control algorithm that adjusts the turbine valve (s).
  • Limit steam pressure setpoint and its course over time are determined be, for example, in the simulation calculation based on the measured internal pressure of the steam-carrying Component this current value of the internal pressure gradually is purely mathematically increased until the resultant (initially theoretical) reference stress the value of the material limit stress reached or at least comes close. The way The determined limit steam pressure setpoint can then be set so that no damage to the steam-carrying component must be feared.
  • the inside temperature can e.g. by direct measurement using one sensor or indirectly by deriving from another physical quantities (e.g. boiling state and pressure of the filling medium the steam-carrying component).
  • another physical quantities e.g. boiling state and pressure of the filling medium the steam-carrying component.
  • the steam-carrying component is advantageously a steam separation drum.
  • the steam turbine has at least two turbine stages, in particular a high pressure and a low pressure stage.
  • the steam turbine is advantageously at least by means of a step valve with steam, whereby by means of the step valve of at least one turbine step, especially the low pressure stage, steam can be supplied and wherein the at least one step valve in connection with the Steam valve is adjustable by means of the control stage.
  • the limit steam pressure setpoint by means of is particularly advantageous a simulation calculation.
  • the device according to the invention mentioned and its preferred Embodiments serve in particular for execution the previously described method according to the invention and all of its embodiments.
  • the figure shows a steam power plant 1, which is a steam turbine 5 and comprises at least one steam-carrying component 7.
  • the latter is formed in the present exemplary embodiment as a steam separator drum.
  • the generation of live steam for the steam turbine 5 is indicated through a heating surface H, by means of which a flow medium by the action of hot, for example Gas heated and fed as live steam to the steam turbine 5 is.
  • the steam turbine 5 has two turbine stages different Operating pressure on, namely a high pressure stage HD and a low pressure stage ND.
  • the steam turbine 5 is supplied with operating steam by means of a steam valve 10, in particular live steam.
  • a steam valve 10 for generation of electrical energy is the steam turbine 5
  • Steam power plant 1 coupled to a generator G via a shaft.
  • the steam-carrying component 7 in terms of amount exposed to large temperature gradients possibly due to the influence of the occurring mechanical stresses at risk.
  • the measured values measured by the named sensors are transmitted to a computer C, which has a computing level RS1, a comparison stage CS and a control stage RS2 includes.
  • a calculation program runs in the calculation stage RS1 by means of which of the above-mentioned measured values is a spatial temperature distribution the steam-carrying component and one Comparative voltage Vs is calculated, which is a parameter for the mechanical load on the steam-carrying component 7 is in the current operating state. From the field of mechanical engineering and / or materials science are several calculation methods known, especially so-called "voltage hypotheses".
  • the comparison voltage Vs determined by the computing stage RS1 and a material limit stress Mgs are applied to the comparison stage Passed to CS.
  • the material limit stress Mgs is a parameter for a maximum permissible mechanical load on the material (Material) of the vapor-carrying component 7 by mechanical Tensions. Quantitative values for such material limit stresses of the various for steam-carrying components Materials used can be found in particular in the literature material science and / or mechanical engineering.
  • the comparison voltage Vs with the material limit voltage Mgs shows that the comparison voltage Vs in a current Operating state is greater than the material limit stress Mgs, for example with a mechanical Overload and / or premature material fatigue steam-carrying component 7 must be counted, so comes across the comparison result mentioned in the control stage RS2 stored calculation algorithm, by means of which the current operating parameters of the steam-carrying Component 7, in particular from its measured internal pressure, their measured internal temperature and their measured Outside temperature, a limit steam pressure setpoint Gd determined becomes.
  • the limit steam pressure setpoint Gd is a measure of how high that in a current operating situation on the steam-carrying Component 7 acting vapor pressure may be maximum without an overload and / or damage to the steam-carrying Component 7 fear.
  • the limit steam pressure setpoint Gd can be determined, for example, in a simulation calculation become.
  • the limit steam pressure setpoint Gd is set by means of control stage RS2 the steam valve 10 and a possibly existing step valve 12 can be adjusted until approximately the calculated limit vapor pressure setpoint Gd is established.
  • the current value for the limit steam pressure setpoint Gd is dependent from the current operating state of the steam power plant, see above that especially when the transition processes subside in the event of a load change (e.g. the temperature difference subsides in the material of the steam-carrying component 7 at / after a load change) the value for the limit steam pressure setpoint Gd gradually increased.
  • the invention can be outlined as follows:
  • the internal pressure Pi, as well as the internal temperature Ti and in the external area the external temperature Ta be determined in at least one component 7 carrying steam.
  • the above-mentioned values now change, so that under certain circumstances the mechanical stresses which act on the steam-carrying component 7 become intolerably large. Therefore, a spatial temperature distribution and a comparison voltage Vs of the vapor-carrying component 7 are determined at least from the values Pi, Ti, Ta and compared with a material limit stress Mgs of the material of the vapor-carrying component 7.
  • the comparison voltage Vs is greater than the material limit voltage Mgs, where a limit steam pressure setpoint Gd is determined and at least one steam valve 10 is set such that the steam pressure on the steam-carrying component 7 corresponds approximately to this limit steam pressure setpoint Gd.
  • the method according to the invention results in an automatic reduction of the mentioned throttling, so that the efficiency of the steam power plant 1, in particular in the partial load range, is increased.
  • a device 2 according to the invention is used to carry out the method according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The method involves determining at least one internal pressure and internal and external temperature of at least one steam carrying component during operation, determining a spatial temperature distribution, deriving a comparison stress for the steam-carrying component, comparing with an upper mechanical load stress, determining a limiting steam pressure desired value if the comparison stress is higher and setting a steam valve accordingly. The method involves determining at least one internal pressure and at least one internal and external temperature of at least one steam carrying component (7) during operation, determining a spatial temperature distribution, deriving a comparison stress (Vs) for the steam-carrying component, comparing with an upper mechanical load stress (Mgs) and determining a limiting steam pressure desired value (Gd) if the comparison stress is higher and setting a steam valve (10) accordingly. AN Independent claim is also included for a device for operating a steam power plant, especially in partial load mode.

Description

Anlagen zum Erzeugen von elektrischer Energie, insbesondere Dampfkraftwerke, werden üblicherweise für einen Betrieb mit einer bestimmten Leistung, der Nennleistung, ausgelegt, so dass sich beim Betrieb der Anlage mit dieser Leistung optimale Betriebsbedingungen der zahlreichen Anlagenkomponenten ergeben, beispielsweise im Hinblick auf Verschleiß, auftretende Reibungskräfte und -Verluste, Geräuschentwicklung, Abgasverhalten und Wirkungsgrad.Plants for generating electrical energy, in particular Steam power plants are typically used for operation a certain power, the nominal power, so designed that optimum performance can be achieved when operating the system Operating conditions of the numerous system components, for example with regard to wear and tear Frictional forces and losses, noise, exhaust gas behavior and efficiency.

Bei bekannten Kraftwerksanlagen besteht oftmals das Problem, dass anforderungsbedingte Laständerungen während des Betriebs der Kraftwerksanlage nicht beliebig schnell durchgeführt werden können. Beispielsweise ist die Laständerungsgeschwindigkeit von Dampfkraftwerken durch die sich in einer oder mehreren Kraftwerkskomponenten einstellenden Temperaturveränderungen infolge einer Laständerung beschränkt, insbesondere durch die Temperaturveränderungen in dickwandigen Anlagenkomponenten, bei welchem die genannten Temperatureffekte besonders deutlich ausgeprägt sind . Derartige Temperaturveränderungen wirken sich u.a. deswegen nachteilig auf eine gewünschte möglichst hohe Laständerungsgeschwindigkeit aus, da die auftretenden Temperaturgradienten zusätzlich zu den in der oder den betroffenen Anlagenkomponenten vorherrschenden, beispielsweise im Betrieb verursachten, mechanischen Spannungen weitere mechanische Spannungen im Material, aus welchem die Anlagenkomponente gefertigt ist, erzeugen. Diese zusätzlichen Spannungen, verursacht durch die genannten Temperaturgradienten, tragen zur Ermüdung des Werkstoffs bei, so dass dessen Festigkeit abnehmen kann oder auch eine Beschädigung der Anlagenkomponente zu befürchten ist. In known power plants, there is often the problem that demand-related load changes during operation the power plant cannot be carried out as quickly as desired can. For example, the rate of load change of steam power plants through which one or more Temperature changes setting power plant components limited due to a change in load, in particular by the temperature changes in thick-walled system components, at which the temperature effects mentioned are particularly are clearly pronounced. Such temperature changes inter alia therefore disadvantageous to a desired one if possible high load rate of change because the occurring Temperature gradients in addition to those in or prevailing system components, for example mechanical stresses caused during operation mechanical stresses in the material from which the system component is produced. These extra tensions, caused by the temperature gradients mentioned, contribute to the fatigue of the material, so that its strength can decrease or damage to the system components is to be feared.

Das genannte Problem tritt insbesondere bei Kraftwerksanlagen großer Leistung auf, welche als Dampfkraftwerke ausgeführt sind und welche mit einem Dampfkessel ausgerüstet sind, welcher im Natur- oder Zwangsumlauf betrieben wird. Die genannten Kraftwerksanlagen umfassen in der Regel dickwandige Trommeln zur Dampfabscheidung. Dabei ist insbesondere das Material der Dampfabscheidetrommel bei einer zu schnellen Laständerung infolge der dabei auftretenden Temperaturgradienten gefährdet, so dass bisher derartige Kraftwerksanlagen zum Betrieb in Festdruck-Fahrweise ausgelegt sind, um Druckund/oder Temperaturschwankungen, welchen die Dampfabscheidetrommel ausgesetzt ist, zu vermeiden. Derartige aus dem Stand der Technik bekannte Kraftwerksanlagen werden daher im Teillastbereich mittels einer Androsselung der Turbinenventile und/oder durch eine nur teilweise Beaufschlagung einer ersten Turbinenstufe mit Betriebsdampf betrieben, so dass dadurch die Druckverhältnisse im Teillastbereich vergleichbar sind mit den Druckverhältnissen im Nennlastbereich und sich so die gewünschte Festdruck-Fahrweise ergibt.The problem mentioned occurs particularly in power plants great performance, which runs as steam power plants and which are equipped with a steam boiler, which one is operated in natural or forced circulation. The above Power plants usually include thick-walled drums for steam separation. The material is particularly important the steam separator drum if the load changes too quickly at risk due to the temperature gradients that occur, so that power plants of this type have been operating so far are designed in a fixed-pressure mode to pressure and / or Temperature fluctuations caused by the steam separator drum to avoid exposure. Such from the State of the art power plants are therefore in Partial load range by throttling the turbine valves and / or by only partially charging one first turbine stage operated with process steam, so that the pressure ratios in the partial load range are comparable are with the pressure ratios in the nominal load range and themselves so the desired fixed pressure driving style results.

Eine derartige Androsselung der Turbinenventile, welche während der gesamten Betriebszeit im Teillastbereich notwendig ist, bedingt einen nennenswerten Wirkungsgradverlust der Kraftwerksanlage verglichen mit dem erzielbaren Wirkungsgrad dieser Anlage im Nennlastbereich.Such throttling of the turbine valves, which during of the total operating time in the partial load range is due to a significant loss of efficiency Power plant compared to the achievable efficiency this system in the nominal load range.

Wenn die erste Turbinenstufe für einen Betrieb der Kraftwerksanlage im Teillastbereich nur mit einem Teil des Betriebsdampfes beaufschlagt wird (teilweise Beaufschlagung), so erfordert dies eine besondere und aufwendige Bauweise der Turbine, bei welcher dann eine Regeleinrichtung, beispielsweise ein Regelrad, vorhanden sein muss, um die Möglichkeit einer Teilbeaufschlagung zu realisieren. Eine derartige Bauweise der Turbine ist konstruktiv sehr aufwendig und oftmals betriebstechnisch anfällig. When the first turbine stage for operation of the power plant in the partial load range only with part of the operating steam is acted upon (partially acted upon), so this requires a special and complex construction of the Turbine, in which case a control device, for example a control wheel, must be in place for the possibility to implement a partial loading. Such a construction the turbine is structurally very complex and often operationally vulnerable.

Der Erfindung liegt daher die Aufgabe zugrunde, ein verbessertes Verfahren sowie eine Vorrichtung zum Betrieb einer Dampfkraftanlage, insbesondere im Teillastbereich, anzugeben.The invention is therefore based on the object of an improved Method and an apparatus for operating a Steam power plant, particularly in the partial load range.

Dabei sollen insbesondere die genannten Nachteile aus dem Stand der Technik überwunden werden, wie z.B. der dabei auftretende erhebliche Wirkungsgradverlust.In particular, the disadvantages mentioned from the State of the art, e.g. the one that occurs significant loss of efficiency.

Bezüglich des Verfahrens wird die Aufgabe erfindungsgemäß gelöst durch ein Verfahren zum Betrieb einer Dampfkraftanlage mit mindestens einer Dampfturbine, wobei die Dampfkraftanlage mindestens eine dampfführende Komponente aufweist und die Dampfturbine mittels mindestens eines Dampfventils mit Dampf, insbesondere mit Frischdampf, beaufschlagt wird, mit folgenden Schritten:

  • 1. Während des Betriebs der Dampfkraftanlage werden mindestens ein Innendruck sowie mindestens eine Innen- und mindestens eine Außentemperatur der dampfführenden Komponente ermittelt.
  • 2. Aus der mindestens einen Innen- und der mindestens einen Außentemperatur wird eine räumliche Verteilung der Temperatur der dampfführenden Komponente ermittelt.
  • 3. Aus dem Innendruck, und der räumlichen Verteilung der Temperatur wird eine Vergleichsspannung ermittelt, welche die mechanische Spannung beschreibt, welcher die dampfführende Komponente im aktuellen Betriebszustand unterliegt.
  • 4. Die Vergleichsspannung wird verglichen mit einer Materialgrenzspannung, welche eine obere Grenze für die mechanische Belastbarkeit der dampfführenden Komponente beschreibt, und
  • 5. Falls die Vergleichsspannung größer ist als die Materialgrenzspannung, wird ein Grenzdampfdrucksollwert ermittelt, welcher einen maximal zulässigen Dampfdruck beschreibt, mittels welchem die dampfführende Komponente im aktuellen Betriebszustand ohne Schadensrisiko beaufschlagbar ist, und das mindestens eine Dampfventil derart eingestellt, dass der von der Dampfturbine an die dampfführende Komponente gelieferte Dampf mit einem Druck auf die dampfführende Komponente einwirkt, welcher etwa dem Grenzdampfdrucksollwert entspricht.
  • With regard to the method, the object is achieved according to the invention by a method for operating a steam power plant with at least one steam turbine, the steam power plant having at least one steam-carrying component and the steam turbine being supplied with steam, in particular with live steam, by means of at least one steam valve, with the following steps:
  • 1. At least one internal pressure and at least one inside and at least one outside temperature of the steam-carrying component are determined during the operation of the steam power plant.
  • 2. A spatial distribution of the temperature of the steam-carrying component is determined from the at least one inside temperature and the at least one outside temperature.
  • 3. From the internal pressure and the spatial distribution of the temperature, a reference stress is determined, which describes the mechanical stress to which the steam-carrying component is subject in the current operating state.
  • 4. The reference stress is compared with a material limit stress, which describes an upper limit for the mechanical strength of the steam-carrying component, and
  • 5. If the reference voltage is greater than the material limit voltage, a limit steam pressure setpoint is determined, which describes a maximum permissible steam pressure, by means of which the steam-carrying component can be acted upon in the current operating state without risk of damage, and the at least one steam valve is set such that it starts from the steam turbine the steam-carrying component acts on the steam-carrying component at a pressure which corresponds approximately to the limit steam pressure setpoint.
  • Die Erfindung geht dabei von der Überlegung aus, dass insbesondere im Teillastbereich eine ständige Androsselung der Turbinenventile und der damit verbundene Wirkungsgradverlust vermieden werden kann, wenn dafür Sorge getragen wird, dass insbesondere die Spannungen, welche sich im Material der dampfführenden Komponente einstellen, nicht zu groß werden, aber gleichzeitig die obere mechanische Belastungsgrenze des Materials der dampfführenden Komponente ausgenutzt wird. Beim erfindungsgemäßen Verfahren wird also u.a. auf einen zu großen Sicherheitsabstand der tatsächlich im Material der dampfführenden Komponente vorherrschenden mechanischen Spannungen von den maximal zulässigen mechanischen Spannungen verzichtet, um dadurch insbesondere einen zu großen Wirkungsgradverlust zu vermeiden.The invention is based on the consideration that in particular constant throttling in the partial load range Turbine valves and the associated loss of efficiency can be avoided if care is taken to ensure that in particular the tensions which arise in the material of the adjust the steam-carrying component, do not become too large, but at the same time the upper mechanical load limit of the Material of the steam-carrying component is used. At the The method according to the invention is, inter alia, too big Safety distance of actually in the material of the steam-carrying Component prevailing mechanical stresses waived the maximum permissible mechanical stresses, in order to lose too much efficiency to avoid.

    Aus den Messungen des Innendrucks, der Innen- und Außentemperatur der dampfführenden Komponente lässt sich zur Erreichung des erfindungsgemäßen Erfolgs die räumliche Temperaturverteilung der dampfführenden Komponente und anschließend die Vergleichsspannung ermitteln, welche eine Größe für die aktuell vorliegenden mechanischen Spannungen im Material (Werkstoff) der dampfführenden Komponente ist.From the measurements of the internal pressure, the inside and outside temperature the steam-carrying component can be achieved the spatial temperature distribution of the success according to the invention the steam-carrying component and then the reference voltage determine which one size for the current existing mechanical stresses in the material the steam-carrying component.

    Ausgehend von dem Werkstoff, aus welchem die dampfführende Komponente hergestellt ist, und der Geometrie der dampfführenden Komponente ist die Materialgrenzspannung bestimmbar, welche eine obere mechanische Belastungsgrenze der dampfführenden Komponente beschreibt. In der einschlägigen Fachliteratur des Maschinenbaus und/oder der Werkstoffkunde finden sich eine Reihe von Methoden zur Bestimmung einer derartigen Materialgrenzspannung, wobei meist der verwendete Werkstoff sowie die räumliche Ausgestaltung des betrachteten, unter mechanischen Spannungen stehenden, Bauteils eine Rolle spielen.Based on the material from which the steam-carrying Component is made, and the geometry of the steam-carrying Component, the material limit stress can be determined, which has an upper mechanical load limit of the steam-carrying Component describes. In the relevant specialist literature mechanical engineering and / or materials science a number of methods for determining such Material limit stress, mostly the material used as well as the spatial design of the considered, under mechanical Tensions, component play a role.

    Wenn nun beim erfindungsgemäßen Verfahren festgestellt wird, dass die obere mechanische Belastungsgrenze der dampfführenden Komponente überschritten ist, so wird der maximal zulässige Dampfdruck ermittelt, welcher im aktuellen Betriebszustand maximal in der dampfführenden Komponente vorherrschen darf, ohne dass eine übermäßige Beanspruchung und/oder eine Beschädigung befürchtet werden muss. Es wird also ausgehend von der oberen Belastungsgrenze (Materialgrenzspannung) ein dazu korrespondierender maximaler Dampfdruck ermittelt, so dass bei einer Beaufschlagung der dampfführenden Komponente mit diesem maximalen Dampfdruck kein Schadensrisiko für die dampfführende Komponente besteht. Dieser maximal zulässige Dampfdruck wird dann beispielsweise mittels einer Regelungseinrichtung z.B. mittels eines Turbinenreglers, eingestellt, wobei mindestens das Dampfventil entsprechend betätigt wird.If it is now determined in the method according to the invention, that the upper mechanical load limit of the steam carrying Component is exceeded, the maximum permissible Vapor pressure determined, which in the current operating state predominate in the steam-carrying component without excessive use and / or Damage must be feared. So it is going out from the upper load limit (material limit stress) corresponding maximum vapor pressure determined, see above that when the steam-carrying component is acted upon with this maximum vapor pressure no risk of damage to the steam-carrying component. This maximum allowable Vapor pressure is then, for example, by means of a control device e.g. by means of a turbine regulator, at least the steam valve is actuated accordingly.

    Da beim erfindungsgemäßen Verfahren bevorzugt während des gesamten Betriebs der Dampfkraftanlage der Innendruck und die genannten Temperaturen der dampfführenden Komponente laufend, beispielsweise zyklisch, gemessen werden, ist die erfindungsgemäße, im Schritt 4 des erfindungsgemäßen Verfahrens beschriebene. Androsselung des mindestens einen Dampfventils vorübergehend im Vergleich zum Stand der Technik, wo eine Androsselung während der gesamten Betriebszeit der Kraftwerksanlage im Teillastbereich vorgesehen ist. Dies ist insbesondere deshalb möglich, da wegen der genannten laufenden Messungen in jedem aktuellen Betriebszustand die genannten Spannungsverhältnisse der dampfführenden Komponente bekannt sind, so dass, wenn sich während des Betriebs die Differenz zwischen der Materialgrenzspannung und der Vergleichspannung verringert, die Androsselung zurück genommen werden kann, da der sich bei einer Verringerung der genannten Differenz ergebende Grenzdampfdrucksollwert steigt, was die genannte Rücknahme der Androsselung des mindestens einen Dampfventils erlaubt.Since in the method according to the invention preferably during the entire Operation of the steam power plant the internal pressure and the mentioned temperatures of the steam-carrying component continuously, measured cyclically, for example, described in step 4 of the method according to the invention. Throttling the at least one steam valve temporarily compared to the prior art, where throttling during the entire operating time of the power plant is provided in the partial load range. This is particularly so therefore possible because of the ongoing measurements mentioned in all current operating conditions, the voltage relationships mentioned the steam-carrying component are known, so if the difference between the material limit stress and the comparative stress reduced, the throttling can be withdrawn since the result of reducing the difference mentioned Limit steam pressure setpoint increases, which means the withdrawal the throttling of the at least one steam valve allowed.

    Zusammenfassend lässt sich sagen, dass beim erfindungsgemäßen Verfahren die Androsselung der Turbinenventile vorübergehend ist und entsprechend den sich ausgleichenden Temperaturen, welche von den Messungen im Schritt 1 erfasst sind, zurückgenommen wird.In summary, it can be said that in the case of the invention Process the throttling of the turbine valves temporarily and according to the balancing temperatures, which are covered by the measurements in step 1 are withdrawn becomes.

    Mittels des erfindungsgemäßen Verfahrens kann beispielsweise eine Dampfkraftanlage, welche einen dickwandigen Kessel umfasst, im Gleitdruckbetrieb mit vollständig geöffneten Turbinenventilen und/oder mit einer vollen Beaufschlagung der Dampfturbine betrieben werden; im Vergleich zu bekannten Verfahren aus dem Stand der Technik werden dabei insbesondere permanente Wirkungsgradverluste während eines Teillastbetriebs sowie eine besondere und aufwendige Ausgestaltung der Turbine mit einer Regeleinrichtung für Teilbeaufschlagung vermieden.By means of the method according to the invention, for example a steam power plant, which comprises a thick-walled boiler, in sliding pressure operation with the turbine valves fully open and / or with a full application of the Steam turbine operated; compared to known methods from the prior art in particular permanent loss of efficiency during part-load operation as well as a special and complex design of the Turbine with a control device for partial loading avoided.

    Vom erfindungsgemäßen Verfahren sollen auch solche Verfahren umfasst sein, bei denen die in den Schritten 2 bis 5 ermittelten Größen anhand der jeweiligen Geometrie der dampfführenden Komponente nicht erst während des Betriebs der Dampfkraftanlage "online" ermittelt werden, sondern z.B. vorab in Form von parametrisierten Kurvenscharen (wobei zumindest der Innendruck, die Innen- und die Außentemperatur als Parameter verwendet sind) gespeichert und dann während des Betriebs anhand der aktuellen Parameterwerte mindestens für den Innendruck, die Innen-, sowie der Außentemperatur der Stelleingriff auf das Dampfventil aus den oben genannten Kurvenscharen abgeleitet wird.Such methods should also be used in the method according to the invention be included, in which those determined in steps 2 to 5 Sizes based on the respective geometry of the steam-carrying Component not only during the operation of the steam power plant be determined "online", e.g. in advance Form of parameterized families of curves (at least the Internal pressure, the inside and outside temperature as parameters used) and then saved during operation the current parameter values at least for the internal pressure, the inside and outside temperature of the intervention on the steam valve from the curve groups mentioned above is derived.

    Vorteilhaft ist die dampfführende Komponente eine Dampfabscheidetrommel. The steam-carrying component is advantageously a steam separation drum.

    Bei dieser Ausführungsform der Erfindung sind die Vorteile des erfindungsgemäßen Verfahren besonders gut nutzbar, da Dampfabscheidetrommeln, insbesondere von Kraftwerksanlagen hoher Leistung, dickwandig ausgeführt sind, was bei einer Laständerung zu besonders großen mechanischen Spannungen infolge der sich ergebenden Temperaturdifferenzen in den dicken Wänden der Dampfabscheidetrommel führt. Diese Spannungen werden mittels des erfindungsgemäßen Verfahrens, insbesondere zu Beginn eines Laständerungsvorgangs, dadurch vermieden, dass eine große Androsselung des mindestens einen Dampfventils eingestellt wird, welche aber im Folgenden mit den sich reduzierenden Spannungen infolge der sich ausgleichenden Temperaturen automatisch zurückgenommen wird.The advantages of this embodiment of the invention are of the method according to the invention can be used particularly well since Steam separator drums, in particular of power plants high performance, thick-walled, what a Change in load due to particularly large mechanical stresses the resulting temperature differences in the thick Walls of the steam separator drum leads. These tensions will by means of the method according to the invention, in particular to Start of a load change process by avoiding that a large throttling of the at least one steam valve is set, but which in the following with the reducing Tensions due to the balancing temperatures is automatically withdrawn.

    In einer weiteren Ausführungsform der Erfindung weist die Dampfturbine mindestens zwei Turbinenstufen auf, insbesondere eine Hochdruck- und eine Niederdruckstufe.In a further embodiment of the invention, the Steam turbine at least two turbine stages, in particular one high pressure and one low pressure stage.

    Derartige Dampfturbinen werden insbesondere bei Kraftwerksanlagen größerer Leistung eingesetzt, um die im Betriebsdampf der Dampfturbine enthaltene Energie möglichst gut auszunutzen.Such steam turbines are used particularly in power plants greater power used in the process steam to utilize the energy contained in the steam turbine as well as possible.

    Wird eine derartige Dampfturbine eingesetzt, so wird diese weiterhin vorteilhaft mittels mindestens eines Stufenventils mit Dampf beaufschlagt, wobei mittels des Stufenventils mindestens einer Turbinenstufe Dampf zuleitbar ist, insbesondere der Niederdruckstufe. Dieses Stufenventil wird dann in Verbindung mit dem Dampfventil in Schritt 4 des erfindungsgemäßen Verfahrens eingestellt. Bei dieser Ausführungsform der Erfindung umfasst die Dampfturbine der Dampfkraftanlage mindestens zwei Stellorgane zur Zuleitung von Dampf an die Turbine. Im Schritt 4 des erfindungsgemäßen Verfahrens wird nun der Grenzdampfdrucksollwert mittels der Einstellung beider Ventile bewerkstelligt, so dass ein besseres Regelverhalten der Dampfturbine hinsichtlich des einzustellenden Grenzdampfdrucksollwerts im Vergleich zur Einstellung nur eines Ventils erreicht wird.If such a steam turbine is used, it will furthermore advantageously by means of at least one step valve charged with steam, at least by means of the step valve a turbine stage steam can be supplied, in particular the low pressure stage. This step valve is then connected with the steam valve in step 4 of the invention Proceedings set. In this embodiment the The invention comprises at least the steam turbine of the steam power plant two actuators for supplying steam to the turbine. In step 4 of the method according to the invention the limit steam pressure setpoint by setting both Valves accomplished, so that better control behavior the steam turbine with regard to the limit steam pressure setpoint to be set compared to setting just one valve is achieved.

    In einer besonders bevorzugten Ausführungsform der Erfindung wird der Grenzdampfdrucksollwert mittels einer Simulationsrechnung ermittelt.In a particularly preferred embodiment of the invention becomes the limit steam pressure setpoint using a simulation calculation determined.

    Dabei kann beispielsweise in einem Rechner ein mathematisches Modell mindestens der dampfführenden Komponente abgespeichert sein, mittels welchem aus den in Schritt 1 gemessenen Größen des Innendrucks, der Innen- und der Außentemperatur die Vergleichsspannung im Material (Werkstoff) der dampfführenden Komponente sowie deren zeitlicher Verlauf berechnet wird, welche sich ergibt aus der Druckbelastung, der Temperaturdifferenz und ggf. der tatsächlichen räumlichen Verteilung der mechanischen Spannung im Material der dampfführenden Komponente. Eine derartige Simulation kann beispielsweise mittels eines digitalen Verfahrens realisiert werden, wobei die genannten Größen in einem Zeitschrittverfahren eingelesen und verarbeitet werden. In der genannten Simulation kann weiterhin, beispielsweise mittels des genannten mathematischen Modells der dampfführenden Komponente, der Grenzdampfdrucksollwert ermittelt werden, welcher üblicherweise einem Turbinenregler zugeführt wird, der entsprechend eines Regelalgorithmus das oder die Turbinenventile einstellt.For example, a mathematical calculation can be carried out in a computer Model stored at least the steam-carrying component be, by means of which from the quantities measured in step 1 of the internal pressure, the internal and the external temperature the reference stress in the material (material) of the steam-carrying Component and its temporal course is calculated, which results from the pressure load, the temperature difference and possibly the actual spatial distribution of the mechanical stress in the material of the steam-carrying component. Such a simulation can, for example, by means of a digital process can be realized, the aforementioned Sizes read in in a time step process and are processed. In the simulation mentioned, for example by means of the mathematical model mentioned the steam-carrying component, the limit steam pressure setpoint can be determined, which is usually a turbine controller is supplied according to a control algorithm that adjusts the turbine valve (s).

    Dabei kann beispielsweise mittels des mathematischen Modells der dampfführenden Komponente rechnerisch der benötigte Grenzdampfdrucksollwert sowie dessen zeitlicher Verlauf ermittelt werden, indem beispielsweise in der Simulationsrechnung ausgehend vom gemessenen Innendruck der dampfführenden Komponente dieser aktuelle Wert des Innendrucks schrittweise rein rechnerisch erhöht wird, bis die sich dabei ergebende (zunächst theoretische) Vergleichsspannung den Wert der Materialgrenzspannung erreicht oder zumindest nahe kommt. Der so ermittelte Grenzdampfdrucksollwert kann dann eingestellt werden, so dass keine Beschädigung der dampfführenden Komponente befürchtet werden muss.Here, for example, by means of the mathematical model the required component of the steam-carrying component Limit steam pressure setpoint and its course over time are determined be, for example, in the simulation calculation based on the measured internal pressure of the steam-carrying Component this current value of the internal pressure gradually is purely mathematically increased until the resultant (initially theoretical) reference stress the value of the material limit stress reached or at least comes close. The way The determined limit steam pressure setpoint can then be set so that no damage to the steam-carrying component must be feared.

    Bezüglich der Vorrichtung wird die Aufgabe erfindungsgemäß gelöst durch eine Vorrichtung zum Betrieb einer Dampfkraftanlage mit mindestens einer Dampfturbine, wobei die Dampfkraftanlage mindestens eine dampfführende Komponente aufweist und die Dampfturbine mittels mindestens eines Dampfventils mit Dampf, insbesondere mit Frischdampf, beaufschlagbar ist, umfassend folgende Komponenten:

    • ein Innendrucksensor, mittels welchem der Druck innerhalb der dampfführenden Komponente ermittelbar ist,
    • Mittel zur Ermittlung der Temperatur innerhalb der dampfführenden Komponente,
    • ein Außentemperatursensor, mittels welchem die Temperatur im Außenbereich der dampfführenden Komponente ermittelbar ist,
    • eine Rechenstufe, welcher die ermittelten Werte des Innendrucks, sowie der Innen- und Außentemperatur zugeführt sind und mittels welcher eine räumliche Verteilung der Temperatur der dampfführenden Komponente sowie eine Vergleichsspannung ermittelbar ist, welch die mechanische Spannung beschreibt, welcher die dampfführende Komponente im aktuellen Betriebszustand unterliegt,
    • eine Vergleichsstufe, mittels welcher die Vergleichsspannung vergleichbar ist mit einer Materialgrenzspannung, welche eine obere Grenze für die mechanische Belastbarkeit der dampfführenden Komponente beschreibt, und
    • eine Regelstufe, mittels welcher falls die Vergleichsspannung größer ist als die Materialgrenzspannung, ein Grenzdampfdrucksollwert ermittelbar ist, welcher einen maximal zulässigen Dampfdruck beschreibt, mittels welchem die dampfführende Komponente im aktuellen Betriebszustand ohne Schadensrisiko beaufschlagbar ist, und mittels welcher das mindestens eine Dampfventil derart einstellbar ist, dass der von der Dampfturbine an die dampfführende Komponente gelieferte Dampf mit einem Druck auf die dampfführende Komponente einwirkt, welcher etwa dem Grenzdampfdrucksollwert entspricht.
    With regard to the device, the object is achieved according to the invention by a device for operating a steam power plant with at least one steam turbine, the steam power plant having at least one steam-carrying component and the steam turbine having steam, in particular live steam, at least one steam valve, comprising the following components:
    • an internal pressure sensor, by means of which the pressure within the steam-carrying component can be determined,
    • Means for determining the temperature within the steam-carrying component,
    • an outside temperature sensor, by means of which the temperature in the outside area of the steam-carrying component can be determined,
    • a computing stage to which the determined values of the internal pressure and the inside and outside temperature are supplied and by means of which a spatial distribution of the temperature of the steam-carrying component and a reference voltage can be determined, which describes the mechanical stress to which the steam-carrying component is subject in the current operating state,
    • a comparison stage, by means of which the comparison stress is comparable with a material limit stress, which describes an upper limit for the mechanical strength of the steam-carrying component, and
    • a control stage, by means of which a limit steam pressure setpoint can be determined if the reference stress is greater than the material limit stress, which describes a maximum permissible vapor pressure, by means of which the steam-carrying component can be acted upon in the current operating state without risk of damage, and by means of which the at least one steam valve can be set in this way, that the steam supplied to the steam-carrying component by the steam turbine acts on the steam-carrying component at a pressure which corresponds approximately to the limit steam pressure setpoint.

    Die Innentemperatur kann z.B. durch direkte Messung mittels eines Sensors oder indirekt mittels Ableitung aus anderen physikalischen Größen (z.B. Siedezustand und Druck des Füllmediums der dampfführenden Komponente).The inside temperature can e.g. by direct measurement using one sensor or indirectly by deriving from another physical quantities (e.g. boiling state and pressure of the filling medium the steam-carrying component).

    Vorteilhaft ist die dampfführende Komponente eine Dampfabscheidetrommel.The steam-carrying component is advantageously a steam separation drum.

    In einer weiteren vorteilhaften Ausgestaltung der Erfindung weist die Dampfturbine mindestens zwei Turbinenstufen auf, insbesondere eine Hochdruck- und eine Niederdruckstufe.In a further advantageous embodiment of the invention the steam turbine has at least two turbine stages, in particular a high pressure and a low pressure stage.

    Dabei ist die Dampfturbine vorteilhaft weiterhin mittels mindestens eines Stufenventils mit Dampf beaufschlagbar, wobei mittels des Stufenventils mindestens einer Turbinenstufe, insbesondere der Niederdruckstufe, Dampf zuleitbar ist und wobei das mindestens eine Stufenventil in Verbindung mit dem Dampfventil mittels der Regelstufe einstellbar ist.The steam turbine is advantageously at least by means of a step valve with steam, whereby by means of the step valve of at least one turbine step, especially the low pressure stage, steam can be supplied and wherein the at least one step valve in connection with the Steam valve is adjustable by means of the control stage.

    Besonders vorteilhaft ist der Grenzdampfdrucksollwert mittels einer Simulationsrechnung ermittelt.The limit steam pressure setpoint by means of is particularly advantageous a simulation calculation.

    Die genannte erfindungsgemäße Vorrichtung sowie deren bevorzugte Ausführungsformen dienen insbesondere zur Ausführung des vorher beschriebenen erfindungsgemäßen Verfahrens und all seiner Ausführungsformen.The device according to the invention mentioned and its preferred Embodiments serve in particular for execution the previously described method according to the invention and all of its embodiments.

    Alle im Zusammenhang mit dem erfindungsgemäßen Verfahren dargestellten Ausführungen und Erläuterungen sind ohne Weiteres in analoger Weise auf die erfindungsgemäße Vorrichtung übertragbar und werden hier nicht wiederholt. All shown in connection with the inventive method Explanations and explanations are straightforward can be transferred in an analogous manner to the device according to the invention and will not be repeated here.

    Im Folgenden wird ein Ausführungsbeispiel der Erfindung näher dargestellt.An exemplary embodiment of the invention is described in more detail below shown.

    Die Figur zeigt eine Dampfkraftanlage 1, welche eine Dampfturbine 5 und mindestens eine dampfführende Komponente 7 umfasst. Letztere ist im vorliegenden Ausführungsbeispiel ausgebildet als Dampfabscheidetrommel.The figure shows a steam power plant 1, which is a steam turbine 5 and comprises at least one steam-carrying component 7. The latter is formed in the present exemplary embodiment as a steam separator drum.

    In der schematischen Darstellung der Figur sind keine Einzelheiten der Dampferzeugung gezeichnet, insbesondere wurde auf eine detaillierte Darstellung der Dampferzeugung mit einem Dampfkessel und weiterer Komponenten verzichtet.There are no details in the schematic representation of the figure of steam generation, in particular was drawn on a detailed representation of the steam generation with a Steam boiler and other components dispensed with.

    Die Erzeugung von Frischdampf für die Dampfturbine 5 ist angedeutet durch eine Heizfläche H, mittels welcher ein Strömungsmedium durch die Einwirkung beispielsweise von heißem Gas aufgeheizt und als Frischdampf der Dampfturbine 5 zuleitbar ist.The generation of live steam for the steam turbine 5 is indicated through a heating surface H, by means of which a flow medium by the action of hot, for example Gas heated and fed as live steam to the steam turbine 5 is.

    Die Dampfturbine 5 weist zwei Turbinenstufen unterschiedlichen Betriebsdrucks auf, nämlich eine Hochdruckstufe HD und eine Niederdruckstufe ND.The steam turbine 5 has two turbine stages different Operating pressure on, namely a high pressure stage HD and a low pressure stage ND.

    Mittels eines Dampfventils 10 wird der Dampfturbine 5 Betriebsdampf, insbesondere Frischdampf, zugeführt. Zur Erzeugung von elektrischer Energie ist die Dampfturbine 5 der Dampfkraftanlage 1 über eine Welle an einen Generator G gekoppelt.The steam turbine 5 is supplied with operating steam by means of a steam valve 10, in particular live steam. For generation of electrical energy is the steam turbine 5 Steam power plant 1 coupled to a generator G via a shaft.

    Insbesondere bei einer Laständerung während des Betriebs der Dampfkraftanlage ist die dampfführende Komponente 7 einem betragsmäßig großem Temperaturgradienten ausgesetzt und ist möglicherweise durch eine Einwirkung der dabei auftretenden mechanischen Spannungen gefährdet.Especially when there is a change in load during the operation of the Steam power plant is the steam-carrying component 7 in terms of amount exposed to large temperature gradients possibly due to the influence of the occurring mechanical stresses at risk.

    Um einerseits eine Überbeanspruchung von Anlagenkomponenten der Dampfkraftanlage, insbesondere der dampfführenden Komponente 7, zu vermeiden und um andererseits einen möglichst großen Wirkungsgrad der Dampfkraftanlage 1 auch während eines Übergangs auf Teillastbetrieb und im Teillastbetrieb sicher zu stellen, ist eine erfindungsgemäße Vorrichtung 2 vorgesehen.On the one hand, an overuse of system components the steam power plant, in particular the steam-carrying component 7, to avoid and on the other hand, if possible great efficiency of the steam power plant 1 even during a Transition to part-load operation and in part-load operation safe a device 2 according to the invention is provided.

    Diese umfasst einen im Inneren der dampfführenden Komponente 7 angeordneten Drucksensor SPi, sowie einen ebenfalls in ihrem Inneren angeordneten Temperatursensor STi und einen im Außenbereich der dampfführenden Komponente 7 angeordneten Temperatursensor STa.This includes one inside the steam-carrying component 7 arranged pressure sensor SPi, and also in their Inside arranged temperature sensor STi and one in Arranged outside the steam-carrying component 7 Temperature sensor STa.

    Mittels der genannten Sensoren wird der im Inneren der dampfführenden Komponente herrschenden Innendruck, die Innentemperatur, sowie die Temperatur im Außenbereich der dampfführenden Komponente 7 gemessen. Diese Messwerte lassen einen Rückschluss auf die mechanische Belastung des Materials der dampfführenden Komponente 7 in einem aktuellen Betriebszustand zu. Die von den genannten Sensoren gemessenen Messwerte werden an einen Rechner C übermittelt, welcher eine Rechenstufe RS1, eine Vergleichsstufe CS sowie eine Regelstufe RS2 umfasst.Using the sensors mentioned, the inside of the steam-carrying Component prevailing internal pressure, the internal temperature, as well as the outside temperature of the steam-carrying Component 7 measured. These measurements leave a conclusion on the mechanical stress on the material steam-carrying component 7 in a current operating state to. The measured values measured by the named sensors are transmitted to a computer C, which has a computing level RS1, a comparison stage CS and a control stage RS2 includes.

    In der Rechenstufe RS1 läuft ein Berechnungsprogramm ab, mittels welchem aus den genannten Messwerten eine räumliche Temperaturverteilung der dampfführenden Komponente sowie eine Vergleichsspannung Vs berechnet wird, welche eine Kenngröße für die mechanische Belastung der dampfführenden Komponente 7 im aktuellen Betriebszustand ist. Aus dem Bereich des Maschinenbaus und/oder der Werkstoffkunde sind dazu mehrere Berechnungsmethoden bekannt, insbesondere so genannte "Spannungshypothesen".A calculation program runs in the calculation stage RS1 by means of which of the above-mentioned measured values is a spatial temperature distribution the steam-carrying component and one Comparative voltage Vs is calculated, which is a parameter for the mechanical load on the steam-carrying component 7 is in the current operating state. From the field of mechanical engineering and / or materials science are several calculation methods known, especially so-called "voltage hypotheses".

    Die von der Rechenstufe RS1 ermittelte Vergleichsspannung Vs und eine Materialgrenzspannung Mgs werden an die Vergleichsstufe CS übergeben. The comparison voltage Vs determined by the computing stage RS1 and a material limit stress Mgs are applied to the comparison stage Passed to CS.

    Die Materialgrenzspannung Mgs ist dabei eine Kenngröße für eine maximal zulässige mechanische Belastung des Materials (Werkstoffs) der dampfführenden Komponente 7 durch mechanische Spannungen. Quantitative Werte für derartige Materialgrenzspannungen der verschiedenen für dampfführende Komponenten verwendeten Werkstoffe können insbesondere aus der Literatur zur Werkstoffkunde und/oder Maschinenbau ermittelt werden.The material limit stress Mgs is a parameter for a maximum permissible mechanical load on the material (Material) of the vapor-carrying component 7 by mechanical Tensions. Quantitative values for such material limit stresses of the various for steam-carrying components Materials used can be found in particular in the literature material science and / or mechanical engineering.

    Falls ein durch die Vergleichsstufe CS durchgeführter Vergleich der Vergleichsspannung Vs mit der Materialgrenzspannung Mgs ergibt, dass die Vergleichsspannung Vs in einem aktuellen Betriebszustand größer ist als die Materialgrenzspannung Mgs, dass also beispielsweise mit einer mechanischen Überlastung und/oder frühzeitigen Materialermüdungen der dampfführenden Komponente 7 gerechnet werden muss, so stößt das genannte Vergleichsergebnis einen in der Regelstufe RS2 gespeicherten Berechnungsalgorithmus an, mittels welchem aus den aktuell vorliegenden Betriebskenngrößen der dampfführenden Komponente 7, insbesondere aus deren gemessenem Innendruck, deren gemessener Innentemperatur sowie deren gemessener Außentemperatur, ein Grenzdampfdrucksollwert Gd ermittelt wird.If a comparison carried out by the comparison stage CS the comparison voltage Vs with the material limit voltage Mgs shows that the comparison voltage Vs in a current Operating state is greater than the material limit stress Mgs, for example with a mechanical Overload and / or premature material fatigue steam-carrying component 7 must be counted, so comes across the comparison result mentioned in the control stage RS2 stored calculation algorithm, by means of which the current operating parameters of the steam-carrying Component 7, in particular from its measured internal pressure, their measured internal temperature and their measured Outside temperature, a limit steam pressure setpoint Gd determined becomes.

    Der Grenzdampfdrucksollwert Gd ist ein Maß dafür, wie hoch der in einer aktuellen Betriebssituation auf die dampfführende Komponente 7 einwirkende Dampfdruck maximal sein darf, ohne eine Überlastung und/oder Beschädigung der dampfführenden Komponente 7 befürchten zu müssen. Der Grenzdampfdrucksollwert Gd kann beispielsweise in einer Simulationsrechnung ermittelt werden.The limit steam pressure setpoint Gd is a measure of how high that in a current operating situation on the steam-carrying Component 7 acting vapor pressure may be maximum without an overload and / or damage to the steam-carrying Component 7 fear. The limit steam pressure setpoint Gd can be determined, for example, in a simulation calculation become.

    Der Grenzdampfdrucksollwert Gd wird eingestellt, indem mittels der Regelstufe RS2 das Dampfventil 10 sowie ein ggf. vorhandenes Stufenventil 12 derart eingestellt werden, bis sich in etwa der berechnete Grenzdampfdrucksollwert Gd einstellt. The limit steam pressure setpoint Gd is set by means of control stage RS2 the steam valve 10 and a possibly existing step valve 12 can be adjusted until approximately the calculated limit vapor pressure setpoint Gd is established.

    Der aktuelle Wert für den Grenzdampfdrucksollwert Gd ist abhängig vom aktuellen Betriebszustand der Dampfkraftanlage, so dass sich insbesondere beim Abklingen der Übergangsvorgänge bei einer Laständerung (beispielsweise das Abklingen der Temperaturdifferenz im Werkstoff der dampfführenden Komponente 7 bei/nach einer Laständerung) der Wert für den Grenzdampfdrucksollwert Gd allmählich erhöht.The current value for the limit steam pressure setpoint Gd is dependent from the current operating state of the steam power plant, see above that especially when the transition processes subside in the event of a load change (e.g. the temperature difference subsides in the material of the steam-carrying component 7 at / after a load change) the value for the limit steam pressure setpoint Gd gradually increased.

    Dies bedeutet, dass die zunächst wegen der zu Beginn der Laständerung auftretenden hohen Spannungen eingestellte hohe Androsselung der Turbinenventile 10 und 12 (infolge des in dieser aktuellen Betriebssituation berechneten niedrigen Ausgangswert für den Grenzdampfdrucksollwert Gd) automatisch (allmählich) wieder zurückgenommen wird, da - wie bereits erwähnt - der Grenzdampfdrucksollwert Gd sich beim Vorgang der Laständerung und danach infolge der sich abbauenden Temperaturspannungen im Material der dampfführenden Komponente 7 erhöht, die Druckbelastung der dampfführenden Komponente 7 daher ebenfalls erhöht werden kann und deshalb die Androsselung der Turbinenventile 10 und 12 zurückgenommen wird.This means that initially because of the beginning of the Load changes occurring high voltages set high Throttling of the turbine valves 10 and 12 (due to the in this current operating situation calculated low initial value for the limit steam pressure setpoint Gd) automatically (gradually) withdrawn because - as already mentioned - The limit steam pressure setpoint Gd during the process of Load change and then due to the decreasing temperature tensions increased in the material of the vapor-carrying component 7, the pressure load of the steam-carrying component 7 therefore can also be increased and therefore the throttling the turbine valves 10 and 12 is withdrawn.

    In dieser nur temporären Androsselung der Turbinenventile 10 und 12, insbesondere während und/oder nach einer Laständerung der Dampfkraftanlage 1, liegt ein wichtiger Vorteil des erfindungsgemäßen Verfahrens sowie der Vorrichtung, welcher im Vergleich zum Stand der Technik einen erhöhten Wirkungsgrad während des Betriebs der Dampfkraftanlage 1 erlaubt.In this only temporary throttling of the turbine valves 10 and 12, especially during and / or after a load change the steam power plant 1 is an important advantage of the invention Method and the device, which in An increased efficiency compared to the prior art allowed during the operation of the steam power plant 1.

    Zusammengefasst lässt sich die Erfindung folgendermaßen umreißen:In summary, the invention can be outlined as follows:

    Es wird vorgeschlagen, dass während des Betriebs einer Dampfturbine 5 einer Dampfkraftanlage 1 in mindestens einer dampfführenden Komponente 7 der Innendruck Pi, sowie die Innentemperatur Ti und in deren Außenbereich die Außentemperatur Ta ermittelt werden. Infolge einer Änderung des Betriebszustands, insbesondere bei einer Laständerung, verändern sich nun die o.g. Werte, so dass unter Umständen die mechanischen Spannungen, die dabei auf die dampfführende Komponente 7 einwirken, untolerierbar groß werden.
    Daher wird mindestens aus den Werten Pi, Ti, Ta eine räumliche Temperaturverteilung sowie eine Vergleichsspannung Vs der dampfführenden Komponente 7 ermittelt und mit einer Materialgrenzspannung Mgs des Werkstoffs der dampfführenden Komponente 7 verglichen.
    Falls die Vergleichsspannung Vs größer ist als die Materialgrenzspannung Mgs, wo wird ein Grenzdampfdrucksollwert Gd ermittelt und mindestens ein Dampfventil 10 derart eingestellt, dass der Dampfdruck auf die dampfführende Komponente 7 etwa diesem Grenzdampfdrucksollwert Gd entspricht.
    Mittels des erfindungsgemäßen Verfahrens ergibt sich eine automatische Reduzierung der genannten Androsselung, so dass der Wirkungsgrad der Dampfkraftanlage 1, insbesondere im Teillastbereich, erhöht ist.
    Eine erfindungsgemäße Vorrichtung 2 dient zur Durchführung des erfindungsgemäßen Verfahrens.
    It is proposed that, during the operation of a steam turbine 5 of a steam power plant 1, the internal pressure Pi, as well as the internal temperature Ti and in the external area the external temperature Ta be determined in at least one component 7 carrying steam. As a result of a change in the operating state, in particular in the case of a change in load, the above-mentioned values now change, so that under certain circumstances the mechanical stresses which act on the steam-carrying component 7 become intolerably large.
    Therefore, a spatial temperature distribution and a comparison voltage Vs of the vapor-carrying component 7 are determined at least from the values Pi, Ti, Ta and compared with a material limit stress Mgs of the material of the vapor-carrying component 7.
    If the comparison voltage Vs is greater than the material limit voltage Mgs, where a limit steam pressure setpoint Gd is determined and at least one steam valve 10 is set such that the steam pressure on the steam-carrying component 7 corresponds approximately to this limit steam pressure setpoint Gd.
    The method according to the invention results in an automatic reduction of the mentioned throttling, so that the efficiency of the steam power plant 1, in particular in the partial load range, is increased.
    A device 2 according to the invention is used to carry out the method according to the invention.

    Claims (10)

    Verfahren zum Betrieb einer Dampfkraftanlage (1) mit mindestens einer Dampfturbine (5), wobei die Dampfkraftanlage (1) mindestens eine dampfführende Komponente (7) aufweist und die Dampfturbine (5) mittels mindestens eines Dampfventils (10) mit Dampf, insbesondere mit Frischdampf, beaufschlagt wird,
    gekennzeichnet durch folgende Schritte: a) während des Betriebs der Dampfkraftanlage (1) werden mindestens ein Innendruck (Pi) sowie mindestens eine Innen-(Ti) und mindestens eine Außentemperatur (Ta) der dampfführenden Komponente (7) ermittelt, b) aus der mindestens einen Innen- und der mindestens einen Außentemperatur wird eine räumliche Verteilung der Temperatur der dampfführenden Komponente ermittelt. c) aus dem Innendruck (Pi), der Innen- (Ti) und Außentemperatur (Ta) wird eine Vergleichsspannung (Vs) ermittelt, welche die mechanische Spannung beschreibt, welcher die dampfführende Komponente (7) im aktuellen Betriebszustand unterliegt, d) die Vergleichsspannung (Vs) wird verglichen mit einer Materialgrenzspannung (Mgs), welche eine obere Grenze für die mechanische Belastbarkeit der dampfführenden Komponente (7) beschreibt, e) falls die Vergleichsspannung (Vs) größer ist als die Materialgrenzspannung (Mgs), wird ein Grenzdampfdrucksollwert (Gd) ermittelt, welcher einen maximal zulässigen Dampfdruck beschreibt, mittels welchem die dampfführende Komponente (7) im aktuellen Betriebszustand ohne Schadensrisiko beaufschlagbar ist, und das mindestens eine Dampfventil (10) derart eingestellt, dass der von der Dampfturbine (5) an die dampfführende Komponente (7) gelieferte Dampf mit einem Druck auf die dampfführende Komponente (7) einwirkt, welcher etwa dem Grenzdampfdrucksollwert (Gd) entspricht.
    Method for operating a steam power plant (1) with at least one steam turbine (5), the steam power plant (1) having at least one steam-carrying component (7) and the steam turbine (5) with steam, in particular with live steam, using at least one steam valve (10), is acted upon
    characterized by the following steps: a) at least one internal pressure (Pi) and at least one internal (Ti) and at least one external temperature (Ta) of the steam-carrying component (7) are determined during the operation of the steam power plant (1), b) a spatial distribution of the temperature of the steam-carrying component is determined from the at least one inside temperature and the at least one outside temperature. c) from the internal pressure (Pi), the internal (Ti) and external temperature (Ta), a comparison voltage (Vs) is determined, which describes the mechanical stress to which the steam-carrying component (7) is subject in the current operating state, d) the comparison stress (Vs) is compared with a material limit stress (Mgs), which describes an upper limit for the mechanical strength of the steam-carrying component (7), e) if the comparison voltage (Vs) is greater than the material limit voltage (Mgs), a limit steam pressure setpoint (Gd) is determined, which describes a maximum permissible steam pressure, by means of which the steam-carrying component (7) can be acted on in the current operating state without risk of damage, and that at least one steam valve (10) is set such that the steam supplied by the steam turbine (5) to the steam-carrying component (7) acts on the steam-carrying component (7) with a pressure which corresponds approximately to the limit steam pressure setpoint (Gd).
    Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die dampfführende Komponente (7) eine Dampfabscheidetrommel ist.
    Method according to claim 1,
    characterized in that
    the steam-carrying component (7) is a steam separation drum.
    Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Dampfturbine (5) mindestens zwei Turbinenstufen, insbesondere eine Hochdruck- (HD) und eine Niederdruckstufe (ND), aufweist.
    Method according to claim 1 or 2,
    characterized in that
    the steam turbine (5) has at least two turbine stages, in particular a high pressure (HD) and a low pressure stage (LP).
    Verfahren nach Anspruch 3,
    dadurch gekennzeichnet, dass
    die Dampfturbine (5) weiterhin mittels mindestens eines Stufenventils (12), mittels welchem mindestens einer Turbinenstufe, insbesondere der Niederdruckstufe (ND), Dampf zuleitbar ist, mit Dampf beaufschlagt wird und das mindestens eine Stufenventil (12) in Verbindung mit dem Dampfventil (10) in Schritt d) eingestellt wird.
    Method according to claim 3,
    characterized in that
    the steam turbine (5) is further supplied with steam by means of at least one step valve (12), by means of which steam can be supplied to at least one turbine step, in particular the low pressure step (LP), and the at least one step valve (12) in connection with the steam valve (10 ) is set in step d).
    Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass
    der Grenzdampfdrucksollwert (Gd) mittels einer Simulationsrechnung ermittelt wird.
    Method according to one of claims 1 to 4,
    characterized in that
    the limit steam pressure setpoint (Gd) is determined using a simulation calculation.
    Vorrichtung (2)zum Betrieb einer Dampfkraftanlage (1) mit mindestens einer Dampfturbine (5), wobei die Dampfkraftanlage (1) mindestens eine dampfführende Komponente (7) aufweist und die Dampfturbine (5) mittels mindestens eines Dampfventils (10) mit Dampf, insbesondere mit Frischdampf, beaufschlagbar ist,
    gekennzeichnet durch einen Innendrucksensor (SPi), mittels welchem der Druck (Pi) innerhalb der dampfführenden Komponente (7) ermittelbar ist, Mittel (STi) zur Ermittlung einer Innentemperatur (Ti) der dampfführenden Komponente (7), einen Außentemperatursensor (STa), mittels welchem die Temperatur (Ta) im Außenbereich der dampfführenden Komponente (7) ermittelbar ist, eine Rechenstufe (RS1), welcher die ermittelten Werte des Innendrucks (Pi), sowie der Innen- (Ti) und Außentemperatur (Ta)zugeführt sind und mittels welcher eine räumliche Verteilung der Temperatur der dampfführenden Komponente sowie eine Vergleichsspannung (Vs) ermittelbar ist, welche die mechanische Spannung beschreibt, welcher die dampfführende Komponente (7) im aktuellen Betriebszustand unterliegt, eine Vergleichsstufe (CS), mittels welcher die Vergleichsspannung (Vs) vergleichbar ist mit einer Materialgrenzspannung (Mgs), welche eine obere Grenze für die mechanische Belastbarkeit der dampfführenden Komponente (7) beschreibt, und eine Regelstufe (RS2), mittels welcher, falls die Vergleichsspannung (Vs) größer ist als die Materialgrenzspannung (Mgs), ein Grenzdampfdrucksollwert (Gd) ermittelbar ist, welcher einen maximal zulässigen Dampfdruck beschreibt, mittels welchem die dampfführende Komponente (7) im aktuellen Betriebszustand ohne Schadensrisiko beaufschlagbar ist, und mittels welcher das mindestens eine Dampfventil (10) derart einstellbar ist, dass der von der Dampfturbine (5) an die dampfführende Komponente (7) gelieferte Dampf mit einem Druck auf die dampfführende Komponente (7) einwirkt, welcher etwa dem Grenzdampfdrucksollwert (Gd) entspricht.
    Device (2) for operating a steam power plant (1) with at least one steam turbine (5), the steam power plant (1) having at least one steam-carrying component (7) and the steam turbine (5) by means of at least one steam valve (10) with steam, in particular with live steam, can be charged,
    marked by an internal pressure sensor (SPi), by means of which the pressure (Pi) within the steam-carrying component (7) can be determined, Means (STi) for determining an internal temperature (Ti) of the steam-carrying component (7), an outside temperature sensor (STa), by means of which the temperature (Ta) in the outside area of the steam-carrying component (7) can be determined, a computing stage (RS1) to which the determined values of the internal pressure (Pi) as well as the inside (Ti) and outside temperature (Ta) are fed and by means of which a spatial distribution of the temperature of the steam-carrying component and a reference voltage (Vs) can be determined, which describes the mechanical tension to which the steam-carrying component (7) is subject in the current operating state, a comparison stage (CS), by means of which the comparison voltage (Vs) is comparable with a material limit voltage (Mgs), which describes an upper limit for the mechanical load capacity of the steam-carrying component (7), and a control stage (RS2), by means of which, if the comparison voltage (Vs) is greater than the material limit voltage (Mgs), a limit steam pressure setpoint (Gd) can be determined, which describes a maximum permissible steam pressure, by means of which the steam-carrying component (7) in the current operating state can be acted on without risk of damage, and by means of which the at least one steam valve (10) can be set such that the steam supplied by the steam turbine (5) to the steam-carrying component (7) acts on the steam-carrying component (7) with a pressure which is approximately corresponds to the limit steam pressure setpoint (Gd).
    Vorrichtung (2) nach Anspruch 6,
    dadurch gekennzeichnet, dass
    die dampfführende Komponente (7) eine Dampfabscheidetrommel ist.
    Device (2) according to claim 6,
    characterized in that
    the steam-carrying component (7) is a steam separation drum.
    Vorrichtung (2) nach Anspruch 6 oder 7,
    dadurch gekennzeichnet, dass
    die Dampfturbine (5) mindestens zwei Turbinenstufen, insbesondere eine Hochdruck- (HD) und eine Niederdruckstufe (ND), aufweist.
    Device (2) according to claim 6 or 7,
    characterized in that
    the steam turbine (5) has at least two turbine stages, in particular a high pressure (HD) and a low pressure stage (LP).
    Vorrichtung (2) nach Anspruch 8,
    dadurch gekennzeichnet, dass
    die Dampfturbine (5) weiterhin mittels mindestens eines Stufenventils (12), mittels welchem mindestens einer Turbinenstufe, insbesondere der Niederdruckstufe (ND), Dampf zuleitbar ist, mit Dampf beaufschlagbar ist und das mindestens eine Stufenventil (12) in Verbindung mit dem Dampfventil (10) mittels der Regelstufe (RS2) einstellbar ist.
    Device (2) according to claim 8,
    characterized in that
    the steam turbine (5) can also be supplied with steam by means of at least one step valve (12), by means of which steam can be supplied to at least one turbine step, in particular the low-pressure step (LP), and the at least one step valve (12) in connection with the steam valve (10 ) can be set using the control stage (RS2).
    Vorrichtung (2) nach einem der Ansprüche 6 bis 9,
    dadurch gekennzeichnet, dass
    der Grenzdampfdrucksollwert (Gd) mittels einer Simulationsrechnung ermittelt ist.
    Device (2) according to one of claims 6 to 9,
    characterized in that
    the limit steam pressure setpoint (Gd) is determined using a simulation calculation.
    EP02011279A 2002-05-22 2002-05-22 Process and apparatus for operating a steam power plant, especially in a partial load range Expired - Lifetime EP1365110B1 (en)

    Priority Applications (5)

    Application Number Priority Date Filing Date Title
    DK02011279T DK1365110T3 (en) 2002-05-22 2002-05-22 Method and apparatus for operating a steam power plant, especially in the part load area
    AT02011279T ATE420274T1 (en) 2002-05-22 2002-05-22 METHOD AND DEVICE FOR OPERATING A STEAM POWER PLANT, PARTICULARLY IN THE PARTIAL LOAD RANGE
    DE50213199T DE50213199D1 (en) 2002-05-22 2002-05-22 Method and device for operating a steam power plant, in particular in the partial load range
    EP02011279A EP1365110B1 (en) 2002-05-22 2002-05-22 Process and apparatus for operating a steam power plant, especially in a partial load range
    US10/440,410 US6915635B2 (en) 2002-05-22 2003-05-19 Method and device for operating a steam power plant, in particular in the part-load range

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP02011279A EP1365110B1 (en) 2002-05-22 2002-05-22 Process and apparatus for operating a steam power plant, especially in a partial load range

    Publications (2)

    Publication Number Publication Date
    EP1365110A1 true EP1365110A1 (en) 2003-11-26
    EP1365110B1 EP1365110B1 (en) 2009-01-07

    Family

    ID=29286133

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02011279A Expired - Lifetime EP1365110B1 (en) 2002-05-22 2002-05-22 Process and apparatus for operating a steam power plant, especially in a partial load range

    Country Status (5)

    Country Link
    US (1) US6915635B2 (en)
    EP (1) EP1365110B1 (en)
    AT (1) ATE420274T1 (en)
    DE (1) DE50213199D1 (en)
    DK (1) DK1365110T3 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1707757A3 (en) * 2005-03-16 2008-12-03 Kabushiki Kaisha Toshiba Turbine starting controller and turbine starting control method

    Families Citing this family (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1653050A1 (en) * 2004-10-29 2006-05-03 Siemens Aktiengesellschaft Method of determining a characteristic value reflecting the state of fatigue of a component
    US7632059B2 (en) * 2006-06-29 2009-12-15 General Electric Company Systems and methods for detecting undesirable operation of a turbine
    DE102012107980A1 (en) * 2012-08-29 2014-03-06 M-S Consulting und Beteiligungs GmbH Power plant for the use of heat energy contained in steam and method for controlling it
    JP5397560B1 (en) * 2013-04-05 2014-01-22 富士電機株式会社 Method and apparatus for safe operation of extraction steam turbine power generation facility
    CN108915788B (en) * 2018-09-11 2024-01-09 山东国电发电工程有限公司 Low-pressure shaft seal optimization control system and method for condensing steam turbine

    Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4215552A (en) * 1977-02-09 1980-08-05 Alsthom-Atlantique Method for the operation of a power generating assembly
    US4320625A (en) * 1980-04-30 1982-03-23 General Electric Company Method and apparatus for thermal stress controlled loading of steam turbines
    JPS59226211A (en) * 1983-06-08 1984-12-19 Hitachi Ltd Controlling method of thermal power plant
    JPH09317404A (en) * 1996-05-23 1997-12-09 Toshiba Corp Steam turbine starting controller

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3928972A (en) * 1973-02-13 1975-12-30 Westinghouse Electric Corp System and method for improved steam turbine operation
    US5018356A (en) * 1990-10-10 1991-05-28 Westinghouse Electric Corp. Temperature control of a steam turbine steam to minimize thermal stresses
    US5333457A (en) * 1991-10-07 1994-08-02 Westinghouse Electric Corporation Operation between valve points of a partial-arc admission turbine
    US5136848A (en) * 1991-10-07 1992-08-11 Westinghouse Electric Corp. Method for predicting the optimum transition between constant and sliding pressure operation
    US5191764A (en) * 1992-06-09 1993-03-09 Westinghouse Electric Corp. Governor valve positioning to overcome partial-arc admission limits
    US5621654A (en) * 1994-04-15 1997-04-15 Long Island Lighting Company System and method for economic dispatching of electrical power
    WO1998021451A1 (en) * 1996-11-08 1998-05-22 Siemens Aktiengesellschaft Turbine control device and method for regulating the load alternation process in a turbine

    Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4215552A (en) * 1977-02-09 1980-08-05 Alsthom-Atlantique Method for the operation of a power generating assembly
    US4320625A (en) * 1980-04-30 1982-03-23 General Electric Company Method and apparatus for thermal stress controlled loading of steam turbines
    JPS59226211A (en) * 1983-06-08 1984-12-19 Hitachi Ltd Controlling method of thermal power plant
    JPH09317404A (en) * 1996-05-23 1997-12-09 Toshiba Corp Steam turbine starting controller

    Non-Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Title
    PATENT ABSTRACTS OF JAPAN vol. 009, no. 103 (M - 377) 8 May 1985 (1985-05-08) *
    PATENT ABSTRACTS OF JAPAN vol. 1998, no. 04 31 March 1998 (1998-03-31) *

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1707757A3 (en) * 2005-03-16 2008-12-03 Kabushiki Kaisha Toshiba Turbine starting controller and turbine starting control method
    US7980053B2 (en) 2005-03-16 2011-07-19 Kabushiki Kaisha Toshiba Turbine starting controller and turbine starting control method

    Also Published As

    Publication number Publication date
    DK1365110T3 (en) 2009-04-20
    DE50213199D1 (en) 2009-02-26
    US20030230088A1 (en) 2003-12-18
    EP1365110B1 (en) 2009-01-07
    ATE420274T1 (en) 2009-01-15
    US6915635B2 (en) 2005-07-12

    Similar Documents

    Publication Publication Date Title
    DE3116340C3 (en)
    EP2359058B1 (en) Method of operating a waste heat steam generator
    DE112013001671B4 (en) Method and apparatus for safety operation of a steam extraction turbine, which is used for a power plant
    EP1934434B1 (en) Method for warming-up a steam turbine
    EP2614303B1 (en) Method for operating a combined gas and steam turbine system, gas and steam turbine system for carrying out said method, and corresponding control device
    EP2255076B1 (en) Method for regulating a boiler and control circuit for a boiler
    CH617494A5 (en)
    EP1797284B1 (en) Method and module for a predicted start-up of steam turbines
    WO2001092689A1 (en) Method and device for operating a steam turbine comprising several no-load or light-load phases
    DE102019219505B4 (en) Condensate and feed water system of a steam power plant and method of operation therefor
    EP1365110B1 (en) Process and apparatus for operating a steam power plant, especially in a partial load range
    EP2606205A2 (en) Steam turbine with reheating
    EP1426564B1 (en) Method and device for controlling the output of a combined heat and power plant
    EP0410111B1 (en) Heat recovery boiler for a gas and steam turbine plant
    EP2537075B1 (en) Method for regulating a valve
    EP3469190B1 (en) Power plant with heat reservoir
    EP3330644B1 (en) Refrigeration system and a method for regulating a refrigeration system
    EP3375990B1 (en) Model-based monitoring of the operational state of an expansion machine
    WO2007031535A2 (en) Method for determining the current maximum output of a power station plant and control device
    EP2676072B1 (en) Method for operating a once-through steam generator
    EP3280884B1 (en) Method for cooling a steam turbine
    WO2016188671A1 (en) Water/steam circuit of a gas and steam turbine system
    DE2427923A1 (en) CONTROL DEVICE FOR A STEAM TURBINE ARRANGEMENT WITH BYPASS
    EP3827200A1 (en) Feedwater control for a forced-flow waste-heat steam generator
    DE19616178C2 (en) Method for loading and unloading the high pressure part of a steam turbine operated with a duo steam boiler block

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20030407

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50213199

    Country of ref document: DE

    Date of ref document: 20090226

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20090107

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20090107

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20090418

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20090407

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20090608

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20090107

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    BERE Be: lapsed

    Owner name: SIEMENS A.G.

    Effective date: 20090531

    26N No opposition filed

    Effective date: 20091008

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090522

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20090408

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090522

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20090107

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20090107

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20150511

    Year of fee payment: 14

    Ref country code: DK

    Payment date: 20150520

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20150514

    Year of fee payment: 14

    Ref country code: FR

    Payment date: 20150513

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20150803

    Year of fee payment: 14

    Ref country code: DE

    Payment date: 20150720

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50213199

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    Effective date: 20160531

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20160522

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160531

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160522

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20170131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160531

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20161201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160531

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160522