EP1363986A1 - Geschirrspulmittel und verfahren zur herstellung derselben - Google Patents

Geschirrspulmittel und verfahren zur herstellung derselben

Info

Publication number
EP1363986A1
EP1363986A1 EP02706745A EP02706745A EP1363986A1 EP 1363986 A1 EP1363986 A1 EP 1363986A1 EP 02706745 A EP02706745 A EP 02706745A EP 02706745 A EP02706745 A EP 02706745A EP 1363986 A1 EP1363986 A1 EP 1363986A1
Authority
EP
European Patent Office
Prior art keywords
weight
acid
copolymer
sulfonic acid
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02706745A
Other languages
English (en)
French (fr)
Other versions
EP1363986B1 (de
Inventor
Christian Nitsch
Bernd Richter
Rolf Bayersdörfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7675893&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1363986(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1363986A1 publication Critical patent/EP1363986A1/de
Application granted granted Critical
Publication of EP1363986B1 publication Critical patent/EP1363986B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0091Dishwashing tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/378(Co)polymerised monomers containing sulfur, e.g. sulfonate

Definitions

  • the present invention relates to cleaning agents for machine dishwashing, in particular those cleaning agents which provide the benefits of cleaning agent and rinse aid in one product, and the production processes for such rinse aid and cleaning agents are further objects of the present invention
  • German patent application DE 100 32 612.9 discloses the use of copolymers of i) unsaturated carboxylic acids, n) monomers containing sulfonic acid groups and IM) optionally further ionic or nonionic monomers in automatic dishwashing detergents and automatic dishwashing agents which contain such polymers are also described there, where the agents can be provided in solid or liquid form, for example as powders, granules, extrudates, tablets, liquids or gels
  • Polymers for the detergent and cleaning agent industries are usually traded in the form of aqueous solutions which have concentrations between 30 and 60% by weight. These solutions can be used directly in the customary processing steps, for example granulation.
  • the sulfonic acid groups described in DE 100 32 612 9 -containing copolymers can only be processed extremely inadequately in this way, since the corresponding solutions are very sticky and make it difficult to form homogeneous, free-flowing mixtures.
  • particulate products into which the polymer has been incorporated from its delivery form tend to clump and thus have low consumer acceptance. while tableted products have problems such as post-curing and poor dissolving properties
  • a process should be provided which enables the copolymers containing sulfonic acid groups to be incorporated into machine dishwashing detergents in any desired amount without the process safety being impaired or the production apparatus being sustainably contaminated.
  • the present invention therefore relates, in a first embodiment, to automatic dishwashing detergents which contain a) 1 to 99.9% by weight of builder (s), b) 0.1 to 70% by weight of copolymers of i) unsaturated carboxylic acids ii) Monomers iii) containing sulfonic acid groups, optionally further ionic or nonionic
  • Monomers contain, wherein they contain the sulfonic acid group-containing copolymer in particulate form.
  • R 1 to R 3 independently of one another are -H -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with -NH 2 , -OH or - COOH substituted alkyl or alkenyl radicals as defined above or represents -COOH or - COOR 4 , where R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
  • Preferred monomers containing sulfonic acid groups are those of the formula II
  • Preferred among these monomers are those of the formulas IIa, Mb and / or IIc,
  • H 2 C CH-X-S0 3 H (Ila),
  • H 2 C C (CH 3 ) -X-S0 3 H (Mb),
  • ionic or nonionic monomers that can be used are, in particular, ethylenically unsaturated compounds.
  • the group iii) content of the polymers used according to the invention is preferably less than 20% by weight, based on the polymer. Polymers to be used with particular preference consist only of monomers of groups i) and ii).
  • the copolymers used according to the invention can contain the monomers from groups i) and ii) and optionally iii) in varying amounts, all representatives from group i) being combined with all representatives from group ii) and all representatives from group iii) can.
  • Particularly preferred polymers have certain structural units, which are described below.
  • automatic dishwashing agents according to the invention are preferred which are characterized in that they contain one or more copolymers which have structural units of the formula III
  • polymers are produced by copolymerization of acrylic acid with an acrylic acid derivative containing sulfonic acid groups. If the sulfonic acid group-containing acrylic acid derivative is copolymerized with methacrylic acid, another polymer is obtained, which can also preferably be incorporated into the agents according to the invention and structural units of the formula IV
  • acrylic acid and / or methacrylic acid can also be copolymerized with methacrylic acid derivatives containing sulfonic acid groups, as a result of which the structural units in the molecule are changed.
  • maleic acid can also be used as a particularly preferred monomer from group i).
  • preferred agents according to the invention are obtained which are characterized in that they contain one or more copolymers, the structural units of the formula VII
  • the sulfonic acid groups in the polymers may be wholly or partly in neutralized form, i.e. that the acidic hydrogen atom of the sulfonic acid group in some or all sulfonic acid groups can be replaced by metal ions, preferably alkali metal ions and in particular by sodium ions.
  • metal ions preferably alkali metal ions and in particular by sodium ions.
  • Combinations of the sulfonated copolymers with heteroatom-containing polymers or copolymers, in particular those with amino or phosphono groups, are also suitable.
  • Agents according to the invention are particularly preferred which additionally contain 0.1 to 30% by weight of homo- and / or copolymeric polycarboxylic acids or their salts and / or heteroatom-containing polymers / copolymers, in particular those with amino or phosphono groups.
  • the combination with polymers and copolymers containing amino and / or phosphono groups is advantageous in builder systems which only partially are phosphate based, e.g. Phosphate / citrate mixing systems.
  • the monomer distribution in the copolymers containing sulfonic acid groups is preferably 5 to 95% by weight of i) or ii), particularly preferably 50 to 90% by weight, of copolymers which contain only monomers from groups i) and ii). Monomer from group i) and 10 to 50% by weight monomer from group ii), in each case based on the polymer.
  • terpolymers those which contain 20 to 85% by weight of monomer from group i), 10 to 60% by weight of monomer from group ii) and 5 to 30% by weight of monomer from group iii) are particularly preferred ,
  • the molecular weight of the copolymers containing sulfonic acid groups can be varied in order to adapt the properties of the polymers to the intended use.
  • Preferred copolymers containing sulfonic acid groups are characterized in that they have molar masses from 2000 to 200,000 gmol "1 , preferably from 4000 to 25,000 gmol " 1 and in particular from 5000 to 15,000 gmol "1 .
  • the copolymers containing sulfonic acid groups described above are used in particulate form. This means that the agents according to the invention contain the copolymers containing sulfonic acid groups in the form of discrete, isolatable particles.
  • These particles can consist entirely of the copolymers containing sulfonic acid groups or can be so-called compounds which additionally contain other substances, for example carrier materials.
  • the decisive factor for the success of the invention is the particulate form, which can only be achieved by adding it as a solid during the manufacturing process (see below).
  • the conventional incorporation of the delivery form of the polymers as a solution leads to a distribution of the copolymers on the surface of all other particles contained in the mixture (comparable to a “coating” of all particles with a copolymer or copolymer solution) and thus to the problems described above in subsequent packaging and storage or when compressed into tablets.
  • “In particulate form” therefore means that the agents according to the invention are a particle mixture (optionally compressed into tablets or phases thereof) from a large number of particles (builders, optional bleaching agents, etc.) in which the copolymers containing sulfonic acid groups form part of the particle matrix.
  • the particles of the copolymers containing sulfonic acid groups contained in the agents meet certain particle size criteria.
  • automatic dishwashing agents according to the invention are preferred in which at least 50% by weight, preferably at least 60% by weight, particularly preferably at least 75% by weight and in particular at least 90% by weight of the particles of the copolymer containing sulfonic acid groups contained in the composition Have particle sizes above 200 microns.
  • the particle sizes or the fulfillment of the particle size criteria can be determined by sieving the polymer particles in a manner known to the person skilled in the art. In other words, for the preferred agents described above, this means that at least 50% by weight, preferably at least 60% by weight, particularly preferably at least 75% by weight and in particular at least 90% by weight of the particles of the Copolymers containing sulfonic acid groups remain on sieves with a mesh size of 200 ⁇ m.
  • the polymer particles are preferably still coarser, so that, for example, at least 50% by weight, preferably at least 50% by weight, particularly preferably at least 60% by weight and in particular at least 80% by weight of the particles of the sulfonic acid group containing copolymers remain on sieves with a mesh size of 400 ⁇ m.
  • the particle size range is also preferably limited at the top: in particularly preferred agents, the polymer has a particle size distribution in which a maximum of 60% by weight, preferably a maximum of 50% by weight and in particular a maximum of 40% by weight of the particles of the copolymer containing sulfonic acid groups contained on average remain on sieves with a mesh size of 800 ⁇ m.
  • Coarse and fine fractions are preferably only present to a minor extent, so that preferred automatic dishwashing detergents are characterized in that a maximum of 20% by weight, preferably a maximum of 15% by weight and in particular a maximum of 10% by weight of the particles of the Copolymer containing sulfonic acid groups have particle sizes below 200 ⁇ m or above 1200 ⁇ m.
  • the particles of the copolymer containing sulfonic acid groups contained in the compositions according to the invention preferably have a certain water content.
  • the success of the invention can be increased still further by the provision of such particles whose water content is controlled. Excessively high water contents of polymer particles can easily be reduced, for example by drying, and in a manner known to the person skilled in the art.
  • the water content of the particles of the copolymer of the sulfonic acid group-containing copolymer contained in the composition is 3 to 12% by weight, preferably 4 to 11% by weight and in particular 5 to 10% by weight, based in each case on the copoly - mer particles.
  • the water content of the polymer particles can be determined in a simple manner by titration according to Karl Fischer.
  • the bulk density of the particles of the copolymer containing sulfonic acid groups contained in the compositions according to the invention is preferably within a certain range. Bulk weight is understood to mean the weight of a loose bed, not the tamped weight.
  • automatic dishwashing agents according to the invention are particularly preferred in which the bulk density of the particles of the copolymer containing sulfonic acid groups contains 550 to 850 g / l, preferably 570 to 800 g / l, particularly preferably 590 to 750 g / l and in particular 600 to 720 g / l.
  • the amounts in which the sulfonic acid group-containing copolymer (s) is / are used are between 0.1 and 70% by weight, in each case based on the total composition.
  • Particularly preferred here are automatic dishwashing agents according to the invention, which are characterized in that they contain the sulfonic acid group-containing copolymer (s) in amounts of 0.25 to 50% by weight, preferably 0.5 to 35% by weight. -%, particularly preferably from 0.75 to 20 wt .-% and in particular from 1 to 15 wt .-%.
  • automatic dishwashing agents according to the invention which additionally contain 2 to 40% by weight, preferably 3 to 30% by weight and in particular 5 to 20% by weight, of one or more ingredients with a melting or softening point below 60 ° C. included, with nonionic surfactant (s) being preferred.
  • Such ingredients with melting or softening points below 60 ° C can come from a variety of substance classes. Many of these ingredients do not show a sharply defined melting point, as is usually the case with pure, crystalline substances, but rather a melting range that may be several degrees Celsius. In the preferred means described above, this is below 60 ° C., this limit not denoting the width of the melting range, but rather only its “location”.
  • the width of the melting range is preferably at least 1 ° C., preferably about 2 to about 3 ° C. ,
  • waxes The properties mentioned above are usually fulfilled by so-called waxes.
  • "Waxing” is understood to mean a number of natural or artificially obtained substances which generally melt above 40 ° C. without decomposition and which are relatively low-viscosity and not stringy even a little above the melting point. They have a strongly temperature-dependent consistency and solubility.
  • the waxes are divided into three groups according to their origin, natural waxes, chemically modified waxes and synthetic waxes.
  • Natural waxes include, for example, vegetable waxes such as candelilla wax, carnauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, or montan wax, animal waxes such as beeswax, shellac wax, walnut, lanolin (wool wax), or broom wax, mineral wax or ozokerite (earth wax), or petrochemical waxes such as petrolatum, paraffin waxes or micro waxes.
  • vegetable waxes such as candelilla wax, carnauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, or montan wax
  • animal waxes such as beeswax, shellac wax, walnut, lanolin (wool wax), or broom wax, mineral wax or ozokerite (earth wax), or
  • the chemically modified waxes include hard waxes such as montan ester waxes, Sassol waxes or hydrogenated jojoba waxes.
  • Synthetic waxes are generally understood to mean polyalkylene waxes or polyalkylene glycol waxes. Compounds from other classes of material which meet the stated requirements with regard to the softening point can also be used as covering materials.
  • suitable synthetic compounds have, for example, higher esters of phthalic acid, in particular dicyclohexyl, which is commercially available under the name Unimoll 66 ® (Bayer AG), proved.
  • synthetically produced waxes from lower carboxylic acids and fatty alcohols for example dimyristyl tartrate, which is sold under the name Cosmacol ® ETLP (Condea) is available.
  • synthetic or partially synthetic esters from lower alcohols with fatty acids from native sources can also be used.
  • Tegin ® 90 Goldschmidt
  • a glycerol monostearate palmitate falls into this class of substances.
  • wax alcohols are also included in the waxes in the context of the present invention, for example.
  • Wax alcohols are higher molecular weight, water-insoluble fatty alcohols with usually about 22 to 40 carbon atoms.
  • the wax alcohols occur, for example, in the form of wax esters of higher molecular fatty acids (wax acids) as the main component of many natural waxes.
  • wax alcohols are lignoceryl alcohol (1-tetracosanol), cetyl alcohol, myristyl alcohol or melissyl alcohol.
  • the coating of the present invention the solid particles coated can optionally also contain wool wax alcohols which are understood to be triterpenoid and steroid alcohols, for example lanolin understood, which is obtainable for example under the trade name Argowax ® (Pamentier & Co).
  • wool wax alcohols which are understood to be triterpenoid and steroid alcohols, for example lanolin understood, which is obtainable for example under the trade name Argowax ® (Pamentier & Co).
  • fatty acid glycol esters or fatty acid alkanolamides but also, if appropriate, water-insoluble or only slightly water-soluble polyalkylene glycol compounds can likewise be used at least in part as part of the casing.
  • waxes described above can be incorporated into the agents at a certain point in the cleaning cycle in order to delay the release of ingredients.
  • So-called “fatty substances” are also suitable for this purpose, which may also have melting or softening points below 60 ° C.
  • fatty substances are understood to mean solids from the group of fatty alcohols, fatty acids and fatty acid derivatives, in particular the fatty acid esters, at normal temperature (20 ° C.).
  • fatty alcohols and fatty alcohol mixtures, fatty acids and fatty acid mixtures, fatty acid esters with alkanols or diols or polyols, fatty acid amides, fatty amines etc. can preferably be used as fatty substances.
  • Preferred detergent components contain as ingredient c) one or more substances from the groups of fatty alcohols, fatty acids and fatty acid esters.
  • fatty alcohols examples include the alcohols 1-hexanol (capro alcohol), 1-heptanol (önanthal alcohol), 1-octanol (caprylic alcohol), 1-nonanol (pelargon alcohol), 1-decanol (capric alcohol), 1-undecanol, which are accessible from native fats and oils , 10-undecen-1-ol, 1-dodecanol
  • Fatty acids are also fatty substances. Technically, most of these are obtained from native fats and oils by hydrolysis. While the alkaline saponification which was carried out in the past century led directly to the alkali salts (soaps), only water is used on an industrial scale to split the fats into glycerol and the free fatty acids. Large-scale processes are, for example, cleavage in an autoclave or continuous high-pressure cleavage.
  • Carboxylic acids which can be used as fatty substances in the context of the present invention are, for example, hexanoic acid (caproic acid), heptanoic acid (enanthic acid), octanoic acid (caprylic acid), nonanoic acid (pelargonic acid), decanoic acid (capric acid), undecanoic acid, etc.
  • fatty acids such as dodecanoic acid (lauric acid), tetradecanoic acid (myristic acid), hexadecanoic acid (palmitic acid), octadecanoic acid (stearic acid), eicosanoic acid (arachic acid), docosanoic acid (behenic acid), tetracosanoic acid (lignoceric acid), hexotanoic acid (hexotonic acid), hexotonic acid (hexotonic acid), hexotanoic acid (hexotonic acid) Melisic acid) and the unsaturated species 9c-hexadecenoic acid (palmitoleic acid), 6c-octadecenoic acid (petroselinic acid), 6t-octadecenoic acid (petroselaidic acid), 9c-octadecenoic acid (oleic acid)
  • fatty acids such as dodecanoic
  • tridecanoic acid pentadecanoic acid, margaric acid, nonadecanoic acid, erucic acid, elaeostearic acid and arachidonic acid can also be used.
  • Such mixtures are for example, coconut oil fatty acid (about 6 wt .-% C 8, 6 wt .-% C 10 48 wt .-% C 12 18 wt .-% C 1, 10 wt .-% C 16, 2 wt .-% C18, 8 wt .-% C 18 - 1 wt .-% C 18 -), palm kernel oil fatty acid (about 4 wt .-% C 8, 5 wt .-% C 10, 50 wt .-% C 12, 15 wt .-% C 14, 7 wt .-% C 16, 2 wt .-% C 18 15 wt .-% C 18 - 1 wt .-% C 18 -), tallow fatty acid (ca.
  • esters of fatty acids with alkanols, diols or polyols can be used as fatty acid esters, fatty acid polyol esters being preferred.
  • Suitable fatty acid polyol esters are monoesters and diesters of fatty acids with certain polyols.
  • the fatty acids which are esterified with the polyols are preferably saturated or unsaturated fatty acids having 12 to 18 carbon atoms, for example lauric acid, myristic acid, palmitic acid or stearic acid, preference being given to using the technically obtained mixtures of the fatty acids, for example those of coconut, Acid mixtures derived from palm kernel or taig fat.
  • acids or mixtures of acids with 16 to 18 carbon atoms are suitable for esterification with the polyhydric alcohols.
  • Suitable polyols which are esterified with the abovementioned fatty acids are sorbitol, trimethylolpropane, neopentyl glycol, ethylene glycol, polyethylene glycols, glycerol and polyglycerols in the context of the present invention.
  • the agents described above are usually only used if certain effects - e.g. the delayed release of ingredients - to be achieved.
  • the agents according to the invention can also contain substances with melting or softening points, which are usually included in the agents in order to improve the performance of the agents.
  • substances are in particular nonionic surfactants.
  • the cleaning agent according to the invention contains nonionic surfactants from the group of the alkoxylated alcohols.
  • nonionic surfactants are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical is linear or preferably in the 2-position May be methyl-branched or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • EO ethylene oxide
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms for example from coconut, palm, tallow or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 2 . ⁇ -alcohols with 3 EO or 4 EO, C 9 .n-alcohol with 7 EO, C 13 . 15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C ⁇ 2 . 18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 . 14 alcohol with 3 EO and C 12 . 18 alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical mean values which, for a specific product, represent a whole or can be a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of this are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • Propoxylated and / or butoxylated nonionic surfactants can preferably be used as further nonionic surfactants, the mixed alkoxylated, advantageously propoxylated and ethoxylated nonionic surfactants being of particular importance.
  • the carbon chain length in the alkyl radical is preferably 8 to 18 carbon atoms, Cg.n-alkyl radicals, C 1 -C 3 -alkyl radicals and C 16 -C 8 -alkyl radicals being of particular importance.
  • Nonionic surfactants which are composed of C 9 .n- or C 12 . 13 oxo alcohols were obtained.
  • the preferred nonionic surfactants use an average of 1 to 20 moles of alkylene oxide (AO) per mole of alcohol, where AO stands for the sum of EO and PO.
  • Particularly preferred nonionic surfactants in this group contain 1 to 5 mol PO and 5 to 15 mol EO.
  • a particularly preferred representative of this group is a C 12 alkoxylated with 2 PO and 15 EO.
  • 20 -Oxo alcohol which is available under the trade name Plurafac ® LF 300 (BASF).
  • preferred nonionic surfactants can also have butylene oxide groups.
  • the alkyl radicals mentioned above, in particular the oxo alcohol radicals, are again preferred here.
  • the number of BO groups in preferred nonionic surfactants is 1, 2, 3, 4 or 5, the total number of alkylene oxide groups preferably being in the range from 10 to 25.
  • An especially preferred representative of this group is available under the trade name Plurafac LF ® 221 (BASF) and can be represented by the formula C. 13 15 -0- (EO) 9 . 1 o (BO) 1 . 2 describe
  • alkyl glycosides of the general formula RO (G) x can also be used as further nonionic surfactants, in which R denotes a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, C atoms and G is the symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; x is preferably 1.2 to 1.4.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl ester.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half of them.
  • surfactants are polyhydroxy fatty acid amides of the formula (IX),
  • RCO stands for an aliphatic acyl radical with 6 to 22 carbon atoms
  • R 1 for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms
  • [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (X)
  • R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms
  • R 2 represents a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms, C 1 -C 4 -alkyl or phenyl radicals being preferred
  • [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated Derivatives of this rest.
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • the automatic dishwashing detergents according to the invention to contain a nonionic surfactant which has a melting point above room temperature.
  • the nonionic surfactant (s) having a melting point above 20 ° C., preferably above 25 ° C., particularly preferably between 25 and 60 ° C. and in particular between 26.6 and 43, 3 ° C, in amounts from 5.5 to 20% by weight, preferably from 6.0 to 17.5% by weight, particularly preferably from 6.5 to 15 and in particular from 7.0 to 12.5% by weight .-%, each based on the total agent.
  • Suitable nonionic surfactants which have melting or softening points in the temperature range mentioned are, for example, low-foaming nonionic surfactants which can be solid or highly viscous at room temperature. If nonionic surfactants which are highly viscous at room temperature are used, it is preferred that they have a viscosity above 20 Pas, preferably above 35 Pas and in particular above 40 Pas. Nonionic surfactants that have a waxy consistency at room temperature are also preferred.
  • Preferred nonionic surfactants to be used at room temperature originate from the groups of the alkoxylated nonionic surfactants, in particular the ethoxylated primary alcohols and mixtures of these surfactants with structurally more complex surfactants such as polyoxypropylene / polyoxyethylene / polyoxypropylene (PO / EO / PO) surfactants.
  • Such (PO / EO / PO) nonionic surfactants are also characterized by good foam control.
  • the nonionic surfactant with a melting point above room temperature is an ethoxylated nonionic surfactant which results from the reaction of a monohydroxyalkanol or alkylphenol having 6 to 20 carbon atoms with preferably at least 12 mol, particularly preferably at least 15 mol, in particular at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol has resulted.
  • Corresponding automatic dishwashing detergents which are characterized in that the nonionic surfactant (s) is / are ethoxylated nonionic surfactant (s), which are made from C 6 . 20 monohydroxyalkanols or C 6 - 2 o-alkylphenols or to C 16. 20 fatty alcohols and more than 12 moles, preferably more than 15 moles and in particular more than 20 moles of ethylene oxide per mole of alcohol are accordingly preferred.
  • a particularly preferred solid at room temperature, non-ionic surfactant is selected from a straight chain fatty alcohol having 16 to 20 carbon atoms (C 16-2 alcohol), a C preferably 18 alcohol and at least 12 mole, preferably at least 15 mol and in particular at least 20 moles of ethylene oxide won. Among these, the so-called “narrow ranks ethoxylates" (see above) are particularly preferred.
  • the nonionic surfactant which is solid at room temperature, preferably additionally has propylene oxide units in the molecule. Such PO units preferably make up up to 25% by weight, particularly preferably up to 20% by weight and in particular up to 15% by weight of the total molar mass of the nonionic surfactant.
  • Automatic dishwashing detergents which contain ethoxylated and propoxylated nonionic surfactants in which the propylene oxide units in the molecule make up up to 25% by weight, preferably up to 20% by weight and in particular up to 15% by weight, of the total molecular weight of the nonionic surfactant preferred embodiments of the present invention.
  • Particularly preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols, which additionally have polyoxyethylene-polyoxypropylene block copolymer units.
  • the alcohol or The alkylphenol part of such nonionic surfactant molecules preferably makes up more than 30% by weight, particularly preferably more than 50% by weight and in particular more than 70% by weight of the total molecular weight of such nonionic surfactants.
  • nonionic surfactants with melting points above room temperature contain 40 to 70% of a polyoxypropylene / polyoxyethylene / polyoxypropylene block polymer blend which contains 75% by weight of an inverted block copolymer of polyoxyethylene and polyoxypropylene with 17 mol of ethylene oxide and 44 mol of propylene oxide and 25% by weight.
  • Nonionic surfactants that may be used with particular preference are available, for example under the name Poly Tergent ® SLF-18 from Olin Chemicals.
  • Another preferred surfactant can be represented by the formula
  • R 1 represents a linear or branched aliphatic hydrocarbon radical having 4 to 18 carbon atoms or mixtures thereof
  • R 2 denotes a linear or branched hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof
  • x denotes values between 0.5 and 1
  • y represents a value of at least 15.
  • Automatic dishwashing detergents which are characterized in that they contain nonionic surfactants of the formula
  • R 1 represents a linear or branched aliphatic hydrocarbon radical having 4 to 18 carbon atoms or mixtures thereof
  • R 2 denotes a linear or branched hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1, 5 and y for a value of at least 15 are therefore preferred.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula
  • R 1 and R 2 represent linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 3 represents H or a methyl, ethyl, n-propyl, isopropyl, n- Butyl, 2-butyl or 2-methyl-2-butyl radical
  • x stands for values between 1 and 30, k and j stand for values between 1 and 12, preferably between 1 and 5. If the value x> 2, each R 3 in the above formula can be different.
  • R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, radicals having 8 to 18 carbon atoms being particularly preferred.
  • H, -CH 3 or -CH 2 CH 3 are particularly preferred for the radical R 3 .
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula can be different if x ⁇ 2.
  • the value 3 for x has been chosen here by way of example and may well be larger, the range of variation increasing with increasing x values and including, for example, a large number (EO) groups combined with a small number (PO) groups, or vice versa ,
  • R 1 , R 2 and R 3 are as defined above and x stands for numbers from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18. Particularly preferred are surfactants in which the radicals R 1 and R 2 have 9 to 14 carbon atoms, R 3 represents H and x assumes values from 6 to 15.
  • automatic dishwashing agents are preferred, the end-capped poly (oxyalkylated) nonionic surfactants of the formula
  • R 0 [CH 2 CH (R 3 ) 0] x [CH 2 ] k CH (OH) [CH 2 ] j OR 2 contain, in which R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic Hydrocarbon radicals having 1 to 30 carbon atoms, R 3 is H or a methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl or 2-methyl-2-butyl radical, x is Values between 1 and 30, k and j stand for values between 1 and 12, preferably between 1 and 5, with surfactants of the type
  • x stands for numbers from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18, are particularly preferred.
  • nonionic surfactants are particularly preferably used in the dishwashing detergents according to the invention.
  • Particular preference is given here to particulate machine dishwashing detergents which comprise a) 1.0 to 4.0% by weight of nonionic surfactants from the group of the alkoxylated alcohols, b) 4.0 to 24.0% by weight of nonionic surfactants from the group of hydroxyl-containing alkoxylated alcohols (“hydroxy mixed ethers”).
  • nonionic surfactants from group a) have already been described in detail above, with C 12 being particularly suitable for machine dishwashing detergents which contain the abovementioned mixtures. 14 fatty alcohols with 5EO and 4PO and C 12 . 18 fatty alcohols with an average of 9 EO have proven to be outstanding. Endgroup-closed nonionic surfactants, in particular C 12, are similarly preferred. 18 -Fatty alcohol-9 EO-butyl ether, can be used.
  • Surfactants from group b) show outstanding rinse aid effects and reduce stress corrosion cracking on plastics. Furthermore, they have the advantageous property that their wetting behavior is constant over the entire usual temperature range.
  • the surfactants from group b) are particularly preferably alkoxylated alcohols containing hydroxyl groups. All of the hydroxy mixed ethers disclosed there are, without exception, preferably present as surfactant from group b) in the dishwasher detergents preferred according to the invention.
  • dishwashing detergents preferred according to the invention vary depending on the desired product and lie preferably within narrow ranges.
  • Particularly preferred automatic dishwashing detergents contain a) 1.5 to 3.5% by weight, preferably 1.75 to 3.0% by weight and in particular 2.0 to 2.5% by weight of nonionic surfactants from the group of alkoxylated alcohols, b) 4.5 to 20.0% by weight, preferably 5.0 to 15.0% by weight and in particular 7.0 to 10.0% by weight of nonionic surfactants from the group of the alkoxylated hydroxyl groups Alcohols ("hydroxy mixed ethers").
  • end-capped surfactants and nonionic surfactants with butyloxy groups can also preferably be used as nonionic surfactants.
  • the first group includes representatives of the formula
  • R 1 is a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical having 1 to 30 C atoms
  • R 2 is a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical having 1 to 30 C atoms, which is optionally substituted with 1, 2, 3, 4 or 5 hydroxyl groups and optionally with further ether groups
  • R 3 for -H or methyl, ethyl, n-propyl, / so-propyl, n-butyl, isobutyl or tert- Butyl stands and x can take values between 1 and 40.
  • R 2 can optionally be alkoxylated, the alkoxy group preferably being selected from ethoxy, propoxy, butyloxy groups and mixtures thereof.
  • Particularly preferred surfactants can be found in the formulas C 9 . 11 (EO) 8 -C (CH 3 ) 2 CH 2 CH 3 , C 11 . 1S (E0) 1 (P0) 6 -C ⁇ 2 . ⁇ 4 , C 9 -n (EO) 8 (CH 2 ) 4 CH 3 describe.
  • R 1 is a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical having 1 to 30, preferably 6 to 20, carbon atoms, a for values between 2 and 30, b for values between 0 and 30 and c represents values between 1 and 30, preferably between 1 and 20.
  • the EO and PO groups in the above formula can also be interchanged, so that surfactants of the general formula
  • R 1 (PO) b (EO) a (BO) c in which R 1 is a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical having 1 to 30, preferably 6 to 20, carbon atoms, a for values between 2 and 30, b for values between 0 and 30 and c for values between 1 and 30, preferably between 1 and 20, can also be used with preference.
  • a particularly preferred surfactant of the formulas C 13 . 15 (EO) 9 . 10 (BO) 1 . 2 is commercially available under the name Plurafac ® LF 221st
  • Another particularly preferred surfactant with 10 EO and 2 BO is available under the trade name Genapol ® 25 EB 102.
  • a surfactant of the formula C 12 can also be used with preference. 13 (EO) 10 (BO) 2 .
  • the nonionic surfactant (s) can be introduced into the agents according to the invention in different ways.
  • the surfactants can be sprayed, for example, in the molten state onto the otherwise ready-made agent or added to the agent in the form of compounds or surfactant preparation forms.
  • the detergents for machine dishwashing according to the invention can contain all builders usually used in washing and cleaning agents, in particular thus zeolites, silicates, carbonates, organic cobuilders and also the phosphates.
  • Suitable crystalline, layered sodium silicates have the general formula NaMSi x 0 2x + 1 H 2 0, where M is sodium or hydrogen, x is a number from 1, 9 to 4 and y is a number from 0 to 20 and preferred values for x 2 , 3 or 4 are.
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 0 5 yH 2 0 are preferred.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compaction or by overdrying.
  • the term "amorphous" is also understood to mean "X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.However, it can very well lead to particularly good builder properties if that Silicate particles in electron diffraction experiments provide washed-out or even sharp diffraction maxima. This is to be interpreted as meaning that the products have microcrystalline regions of the size 10 to a few hundred nm, where values up to max. 50 nm and in particular up to max. 20 nm are preferred. Particularly preferred are compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • Zeolite MAP® commercial product from Crosfield
  • zeolite X and mixtures of A, X and / or P commercial are also suitable available and within the scope of the present invention can preferably be used, for example, also a co-K ⁇ stallisat of zeolite X and zeolite a (ca. 80 wt -% zeolite X) which is marketed by CONDEA Augusta S p a under the brand name VEGOBOND AX ® and through the formula
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution, Coulter Counter measurement method) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water
  • the alkali metal phosphates have particular preference for pentasodium or pentapotassium phosphate (sodium or potassium polyphosphate) ) in the detergent and cleaning agent industry
  • Alkahmetallphosphate is the general term for the alkali metal (especially sodium and potassium) salts of the various phosphoric acids, in which one can distinguish between metaphosphoric acids (HP0 3 ) n and orthophosphoric acid H 3 P0 4 in addition to high molecular weight representatives.
  • the phosphates unite here several advantages in itself They act as alkali carriers, prevent lime deposits on machine parts or lime incrustations in fabrics and also contribute to cleaning performance.
  • Sodium dihydrogen phosphate, NaH 2 P0 4 exists as a dihydrate (density 1, 91 like “3 , melting point 60 °) and as a monohydrate (density 2.04 like “ 3 ). Both salts are white powders, which are very easily soluble in water, lose the water of crystallization when heated and, at 200 ° C, into the weakly acidic diphosphate (disodium hydrogen diphosphate, Na 2 H 2 P 2 0 7 ), at higher temperature in sodium tri-metaphosphate (Na 3 P 3 0 9 ) and Maddrell's salt (see below).
  • NaH 2 P0 4 is acidic; it occurs when phosphoric acid is adjusted to a pH of 4.5 with sodium hydroxide solution and the mash is sprayed.
  • Potassium dihydrogen phosphate primary or monobasic potassium phosphate, potassium biphosphate, KDP
  • KH 2 P0 4 is a white salt with a density of 2.33 "3 , has a melting point of 253 ° [decomposition to form potassium polyphosphate (KP0 3 ) x ] and is light soluble in water.
  • Disodium hydrogen phosphate (secondary sodium phosphate), Na 2 HP0, is a colorless, very easily water-soluble crystalline salt. It exists anhydrous and with 2 mol. (Density 2.066 gladly “3 , water loss at 95 °), 7 mol. (Density 1, 68 gladly “ 3 , melting point 48 ° with loss of 5 H 2 0) and 12 mol. Water ( Density 1, 52 like “3 , melting point 35 ° with loss of 5 H 2 0), becomes anhydrous at 100 ° and changes to diphosphate Na 4 P 2 0 7 when heated.
  • Disodium hydrogenphosphate is lost by neutralizing phosphoric acid with soda solution Using phenolphthalein as an indicator Dipotassium hydrogen phosphate (secondary or dibasic potassium phosphate), K 2 HP0, is an amorphous, white salt that is easily soluble in water.
  • Trisodium phosphate, tertiary sodium phosphate, Na 3 P0 are colorless crystals which, as dodeca- hydrate, have a density of 1.62 "3 and a melting point of 73-76X (decomposition), as deca- hydrate (corresponding to 19-20% P 2 0 5) has a melting point of 100 ° C and in anhydrous form (corresponding to 39-40% P 2 0 5) like to have a density of 2.536 '.
  • 3 trisodium phosphate is readily soluble in water with an alkaline reaction and is accurately by evaporating a solution of 1 mol of disodium phosphate and 1 mol of NaOH.
  • Tripotassium phosphate (tertiary or triphase potassium phosphate), K 3 P0, is a white, deliquescent, granular powder with a density of 2.56 "3 , has a melting point of 1340 ° and is in water with alkaline Easily soluble reaction. It arises, for example, when heating Thomas slag with coal and potassium sulfate. Despite the higher price, the more soluble, therefore highly effective, potassium phosphates are often preferred over corresponding sodium compounds in the cleaning agent industry.
  • Tetrasodium diphosphate (sodium pyrophosphate), Na 4 P 2 0 7 , exists in anhydrous form (density 2.534 like “3 , melting point 988 °, also given 880 °) and as decahydrate (density 1, 815-1, 836 like " 3 , melting point 94 ° with water loss).
  • Na 4 P 2 0 7 is formed by heating disodium phosphate to> 200 ° or by reacting phosphoric acid with soda in a stoichiometric ratio and dewatering the solution by spraying. The decahydrate complexes heavy metal salts and hardness formers and therefore reduces the hardness of the water.
  • Potassium diphosphate (potassium pyrophosphate), KP 2 0 7 , exists in the form of the trihydrate and is a colorless, hygroscopic powder with a density of 2.33 ′′ 3 , which is soluble in water, the pH value being 1% Solution at 25 ° is 10.4.
  • Sodium and potassium phosphates in which one can differentiate cyclic representatives, the sodium or potassium metaphosphates and chain-like types, the sodium or potassium polyphosphates.
  • a large number of names are used in particular for the latter: melt or glow phosphates, Graham's salt, Kurrol's and Maddrell's salt. All higher sodium and potassium phosphates are collectively referred to as condensed phosphates.
  • pentasodium triphosphate Na 5 P 3 O 10 (sodium tripolyphosphate)
  • Approx. 17 g of the salt free from water of crystallization dissolve in 100 g of water at room temperature, approx. 20 g at 60 ° and around 32 g at 100 °; After heating the solution at 100 ° for two hours, hydrolysis produces about 8% orthophosphate and 15% diphosphate.
  • pentasodium triphosphate In the production of pentasodium triphosphate, phosphoric acid is reacted with sodium carbonate solution or sodium hydroxide solution in a stoichiometric ratio and the solution is dewatered by spraying. Similar to Graham's salt and sodium diphosphate, pentasodium triphosphate dissolves many insoluble metal compounds (including lime soaps, etc.). Pentapotassium triphosphate, K 5 P 3 O 10 (potassium tripolyphosphate), is commercially available, for example, in the form of a 50% by weight solution (> 23% P 2 0 5 , 25% K 2 0). The potassium polyphosphates are widely used in the detergent and cleaning agent industry. There are also sodium potassium tripolyphosphates which can likewise be used in the context of the present invention. These occur, for example, when hydrolyzing sodium trimetaphosphate with KOH:
  • these can be used just like sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two; Mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate can also be used according to the invention.
  • Organic cobuilders which can be used in the dishwasher detergents according to the invention are, in particular, polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, other organic cobuilders (see below) and phosphonates. These classes of substances are described below.
  • Usable organic builders are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids being understood to mean those carboxylic acids which carry more than one acid function.
  • these are citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), as long as such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaning agents.
  • Citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures thereof can be mentioned in particular.
  • Polymeric polycarboxylates are also suitable as builders, for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 500 to 70,000 g / mol.
  • the molecular weights given for polymeric polycarboxylates are weight-average molecular weights M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), using a UV detector. The measurement was made against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship to the polymers investigated. This information differs significantly from the molecular weight information, for which polystyrene sulfonic acids are used as standard. The molecular weights measured against polystyrene sulfonic acids are generally significantly higher than the molecular weights given in this document.
  • Suitable polymers are, in particular, polyacrylates, which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates which have molar masses from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, can in turn be preferred from this group. Also suitable are copolymeric polycarboxylates, in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable. Their relative molecular weight, based on free acids, is generally 2,000 to 70,000 g / mol, preferably 20,000 to 50,000 g / mol and in particular 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of (co) polymeric polycarboxylates in the agents is preferably 0.5 to 20% by weight, in particular 3 to 10% by weight.
  • biodegradable polymers composed of more than two different monomer units, for example those which contain salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives as monomers or those which contain salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives as monomers ,
  • copolymers are those which preferably have acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • polymeric aminodicarboxylic acids their salts or their precursor substances.
  • Polyaspartic acids or their salts and derivatives are particularly preferred which, in addition to cobuilder properties, also have a bleach-stabilizing effect.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyolcarboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • Suitable organic builder substances are dextrins, for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary processes, for example acid-catalyzed or enzyme-catalyzed. They are preferably hydrolysis products with average molar masses in the range from 400 to 500,000 g / mol.
  • DE dextrose equivalent
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • a product oxidized at C 6 of the saccharide ring can be particularly advantageous.
  • Ethylenediamine-N, N'-disuccinate (EDDS) is preferably in the form of its sodium or magnesium salts.
  • Glycerol disuccinates and glycerol trisuccinates are also preferred in this context. Suitable amounts for use in formulations containing zeolite and / or silicate are 3 to 15% by weight.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may also be in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • phosphonates are, in particular, hydroxyalkane or aminoalkane phosphonates.
  • hydroxyalkane phosphonates 1-hydroxyethane-1,1-diphosphonate (HEDP) is of particular importance as a cobuilder.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • Preferred aminoalkane phosphonates are ethylenediaminetetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs. They are preferably in the form of the neutral sodium salts, e.g. B.
  • HEDP is preferably used as the builder from the class of the phosphonates.
  • the aminoalkanephosphonates also have a pronounced ability to bind heavy metals. Accordingly, it may be preferred, particularly if the agents also contain bleach, to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • bleaching agents are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 0 2 -supplying peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperic acid or diperdodecanedioic acid.
  • Cleaning agents according to the invention can also contain bleaching agents from the group of organic bleaching agents. Typical organic bleaching agents are the diacyl peroxides, such as dibenzoyl peroxide.
  • organic bleaching agents are peroxy acids, examples of which include alkyl peroxy acids and aryl peroxy acids.
  • Preferred representatives are (a) the peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidanoic acid paprooxyacrylic acid , o-
  • N-nonenyl-amidoperadipinklad Carboxybenzamidoperoxycapronsäure and N- nonenylamidopersuccinates
  • aliphatic and araliphatic peroxydicarboxylic acids such as 1, 12-diperoxycarboxylic acid, 1, 9-diperoxyazelaic acid, Diperocysebacinklare, Diperoxybrassyl- acid, the diperoxyphthalic acids, 2-decyldiperoxybutane-1, 4 -diacid, N, N-terephthaloyl-di (6-aminopercapronic acid) can be used.
  • Chlorine or bromine-releasing substances can also be used as bleaching agents in the cleaning agents according to the invention for machine dishwashing.
  • Suitable chlorine or bromine-releasing materials include, for example, heterocyclic N-bromo- and N-chloramides, for example trichloroisocyanuric acid, tribromoisocyanuric acid, dibromoisocyanuric acid and / or dichloroisocyanuric acid (DICA) and / or their salts with cations such as potassium and sodium.
  • Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydanthoin are also suitable.
  • the bleaches mentioned can also be introduced in whole or in part via the rinse aid particles according to the invention into the automatic dishwasher detergents according to the invention in order to achieve “post-bleaching” in the rinse cycle.
  • bleach activators that support the effect of the bleaching agents have already been mentioned above as a possible ingredient of the rinse aid particles.
  • Known bleach activators are compounds which contain one or more N- or O-acyl groups, such as substances from the class of anhydrides, esters, imides and acylated imidazoles or oximes.
  • Examples are tetraacetylethylene diamine TAED, tetraacetyl methylene diamine TAMD and tetraacetyl hexylene diamine TAHD, but also pentaacetylglucose PAG, 1, 5-diacetyl-2,2-dioxo-hexahydro-1, 3,5-triazine DADHT and isatoic anhydride ISA.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid. Suitable substances are those which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • bleach catalysts can also be incorporated into the rinse aid particles.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo salt complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands as well as Co, Fe, Cu and Ru amine complexes can also be used as bleaching catalysts.
  • Bleach activators from the group of polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl- or isononanoyioxybenzenesulfonate (n-) or iso-N-NOB are preferred -Methyl-morpholinium-acetonitrile-methyl sulfate (MMA), preferably in amounts of up to 10% by weight, in particular 0.1% by weight to 8% by weight, particularly 2 to 8% by weight and particularly preferably 2 to 6 wt .-% based on the total agent used.
  • TAED tetraacetylethylenediamine
  • N-acylimides in particular N-nonanoylsuccinimide (NOSI)
  • acylated phenolsulfonates in
  • Bleach-enhancing transition metal complexes in particular with the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, preferably selected from the group consisting of manganese and / or cobalt salts and / or complexes, particularly preferably cobalt (ammin ) Complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) complexes, the chlorides of cobalt or manganese, of the manganese sulfate are used in customary amounts, preferably in an amount of up to 5% by weight, in particular from 0.0025% by weight to 1% by weight and particularly preferably from 0.01% by weight to 0.25% by weight .-%, each based on the total agent used. But in special cases, more bleach activator can be used.
  • Suitable enzymes in the cleaning agents according to the invention are, in particular, those from the classes of hydrolases such as proteases, esterases, lipases or lipolytically active enzymes, amylases, glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases contribute to the removal of stains such as stains containing protein, fat or starch. Oxidoreductases can also be used for bleaching. Particularly suitable are bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus and Humicola insolens as well as enzymatic active ingredients obtained from their genetically modified variants.
  • hydrolases such as proteases, esterases, lipases or lipolytically active enzymes, amylases, glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases contribute to the removal of stains such as stains containing protein, fat or starch
  • protease and amylase or protease and lipase or lipolytic enzymes for example of protease, amylase and lipase or lipolytic enzymes or protease, lipase or lipolytic enzymes, but especially protease and / or lipase-containing mixtures or mixtures with lipolytically active enzymes of particular interest.
  • Known cutinases are examples of such lipolytically active enzymes.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • Suitable amylases include, in particular, alpha-amylases, isoamylases, pullulanases and pectinases.
  • the enzymes can be adsorbed on carriers or embedded in coating substances to protect them against premature decomposition.
  • the proportion of the enzymes, enzyme mixtures or enzyme granules can be, for example, about 0.1 to 5% by weight, preferably 0.5 to about 4.5% by weight.
  • Dyes and fragrances can be added to the automatic dishwashing agents according to the invention in order to improve the aesthetic impression of the resulting products and, in addition to the performance, to provide the consumer with a visually and sensorially "typical and unmistakable" product.
  • Individual fragrance compounds for example the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type, can be used as perfume oils or fragrances.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalylbenzoate, benzyl formate, ethylmethylphenylglycineate, allylcyclohexyl benzylatepylpionate, allylcyclohexyl propyl pionate.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals with 8-18 C atoms, Citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, the ketones, for example the jonones, ⁇ -isomethylionone and methylcedryl ketone, the alcohols anethole, citronellol, eugenol, geraniol, linalool, phenylol alcohol, the hydrocarbons and the terpins Terpenes like limes and pinene.
  • the aldehydes for example, the linear alkanals with 8-18 C atoms, Citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilia
  • Perfume oils of this type can also contain natural fragrance mixtures such as are obtainable from plant sources, for example pine, citrus, jasmine, patchouly, rose or ylang-ylang oil. Also suitable are muscatel, sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, olibanum oil, gallan oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and sandalwood oil.
  • the fragrances can be incorporated directly into the cleaning agents according to the invention, but it can also be advantageous to apply the fragrances to carriers which increase the adhesion of the perfume to the laundry and ensure a long-lasting fragrance of the textiles due to a slower fragrance release.
  • Cyclodextrins for example, have proven useful as such carrier materials, and the cyclodextrin-perfume complexes can additionally be coated with further auxiliaries. Incorporation of the fragrances into the rinse aid particles according to the invention is also possible and leads to a scent impression when the machine is opened (see above).
  • the agents produced according to the invention can be colored with suitable dyes.
  • Preferred dyes the selection of which is not difficult for the person skilled in the art, have a high storage stability and insensitivity to the other ingredients of the compositions and to light, and no pronounced substantivity to the substrates to be treated with the compositions, such as glass, ceramics or plastic dishes, so as not to stain them.
  • the cleaning agents according to the invention can contain corrosion inhibitors to protect the items to be washed or the machine, silver protection agents in particular being of particular importance in the field of automatic dishwashing.
  • the known substances of the prior art can be used.
  • silver protection agents selected from the group of the triazoles, the benzotriazoles, the bisbenzotriazoles, the aminotriazoles, the alkylaminotriazoles and the transition metal salts or complexes can be used in particular.
  • Benzotriazole and / or alkylaminotriazole are particularly preferably to be used.
  • active chlorine-containing agents are often found in cleaner formulations, which can significantly reduce the corroding of the silver surface.
  • oxygen- and nitrogen-containing organic redox-active compounds such as di- and trihydric phenols, e.g. B. hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, phloroglucin, pyrogallol or derivatives of these classes of compounds.
  • organic redox-active compounds such as di- and trihydric phenols, e.g. B. hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, phloroglucin, pyrogallol or derivatives of these classes of compounds.
  • salt-like and complex-like inorganic compounds such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce are often used.
  • transition metal salts which are selected from the group consisting of manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (ammine) complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) complexes , the chlorides of cobalt or manganese and manganese sulfate.
  • Zinc compounds can also be used to prevent corrosion on the wash ware.
  • the agents according to the invention can be packaged immediately after they are produced and sold as particulate cleaners. However, it is also possible to compress the detergent tablets or individual phases thereof in order to be able to make the compact offer available to the consumer.
  • Automatic dishwashing detergents which are characterized in that they are in the form of a tablet, preferably in the form of a multi-phase tablet, in which the content of the copolymer-containing copolymer in the individual phases is different, are further preferred embodiments of the present invention.
  • Multi-phase tablets are particularly preferred here, the multi-layer tablets being of particular importance because of their relatively simple manufacture.
  • the individual phases of such a shaped body can have different spatial shapes within the scope of the present invention.
  • the simplest possible implementation is in two- or multi-layer tablets, with each layer of the shaped body representing a phase.
  • ring-core tablets coated tablets or combinations of the above-mentioned embodiments are possible, for example.
  • the shaped bodies according to the invention can assume any geometric shape, in particular concave, convex, biconcave, biconvex, cubic, tetragonal, orthorhombic, cylindrical, spherical, segment-like, disk-shaped, tetrahedral, dodecahedral, octahedral, conical, pyramidal, ellipsoidal, five-, seven- and octagonal-prismatic and rhombohedral shapes are preferred. Completely irregular base areas such as arrow or animal shapes, trees, clouds, etc. can also be realized. If the shaped bodies according to the invention have corners and edges, they are preferably rounded. As an additional optical differentiation, an embodiment with rounded corners and beveled (“chamfered”) edges is preferred.
  • moldings which contain the copolymers containing sulfonic acid groups. It has proven useful here to produce base moldings which have one or more cavities and the copolymers containing sulfonic acid groups either already in the base tablet or in a “filling” of the cavity to be introduced later bring. This production method results in preferred multiphase detergent tablets which consist of a base tablet which has a cavity and a part which is at least partially contained in the cavity.
  • the cavity in the pressed part of such shaped bodies according to the invention can have any shape. It can cut through the molded part, i.e. have an opening on different sides, for example on the top and bottom of the molded body, but it can also be a cavity that does not extend through the entire molded body, the opening of which is only visible on one side of the molded body.
  • the shape of the cavity can also be freely selected within wide limits. For reasons of process economy, through holes, the openings of which lie on opposing surfaces of the shaped bodies, and troughs with an opening on one side of the shaped body have proven successful.
  • the cavity has the shape of a through hole, the openings of which are located on two opposing tablet surfaces.
  • the shape of such a through hole can be chosen freely, preference being given to moldings in which the through hole has circular, elliptical, triangular, rectangular, square, pentagonal, hexagonal, heptagonal or octagonal horizontal sections.
  • Completely irregular hole shapes such as arrow or animal shapes, trees, clouds, etc. can also be realized.
  • shaped bodies in the case of angular holes, those with rounded corners and edges or with rounded corners and chamfered edges are preferred.
  • Shaped bodies with a rectangular or square base and circular holes can be produced as well as round shaped bodies with octagonal holes, whereby there are no limits to the variety of possible combinations.
  • molded articles with a hole are particularly preferred in which the molded article base area and the hole cross section have the same geometric shape, for example molded articles with a square base area and a centrally incorporated square hole.
  • the moldings according to the invention can also assume any geometric shape in this embodiment, in particular concave, convex, biconcave, biconvex, cubic, tetragonal, orthorhombic, cylindrical, spherical, cylinder segment-like, disk-shaped, tetrahedral, dodecahedral, octahedral, conical , pyramidal, ellipsoidal, five-, seven- and octagonal-prismatic and rhombohedral shapes are preferred.
  • molded body has corners and edges, these are preferably rounded. As an additional optical differentiation, an embodiment with rounded corners and beveled (“chamfered”) edges is preferred.
  • the shape of the trough can also be chosen freely, preference being given to moldings in which at least one trough has a concave, convex, cubic, tetragonal, orthorhombic, cylindrical, spherical, segment-like, disc-shaped, tetrahedral, dodecahedral, octahedral, conical, pyramidal, ellipsoidal , five-, seven- and octagonal-prismatic and rhombohedral shape can take.
  • Completely irregular trough shapes such as arrow or animal shapes, trees, clouds, etc. can also be realized.
  • troughs with rounded corners and edges or with rounded corners and chamfered edges are preferred.
  • the size of the trough or the through hole in comparison to the entire molded article depends on the intended use of the molded article.
  • the size of the cavity can vary depending on how much more active substance the remaining cavity volume is to be filled with.
  • the base molding has a high specific weight, for example above 1000 kgdm “3 , preferably above 1025 kgdm “ 3 , particularly preferably above 1050 kgdm '3 and in particular above 1100 kgdm “3 .
  • disintegration aids so-called tablet disintegrants
  • tablet disintegrants or accelerators of decay are understood as auxiliary substances which are necessary for rapid disintegration of tablets in water or gastric juice and ensure the release of the pharmaceuticals in absorbable form.
  • Disintegrants based on cellulose are used as preferred disintegrants in the context of the present invention, so that preferred detergent tablets such a disintegrant based on cellulose in amounts of 0.5 to 10% by weight, preferably 3 to 7% by weight and in particular 4 to 6% by weight .-% contain.
  • the agents according to the invention can also contain a gas-developing shower system.
  • the gas-developing shower system can consist of a single substance that releases a gas when it comes into contact with water.
  • magnesium peroxide should be mentioned in particular, which releases oxygen on contact with water.
  • the gas-releasing bubble system in turn consists of at least two components that react with one another to form gas. While a large number of systems are conceivable and executable here, which release nitrogen, oxygen or hydrogen, for example, the bubble system used in the detergent tablets according to the invention can be selected on the basis of both economic and ecological aspects.
  • Preferred effervescent systems consist of alkali metal carbonate and / or hydrogen carbonate and an acidifying agent which is suitable for releasing carbon dioxide from the alkali metal salts in aqueous solution.
  • the alkali metal carbonates or bicarbonates the sodium and potassium salts are clearly preferred over the other salts for reasons of cost.
  • the pure alkali metal carbonates or bicarbonates in question do not have to be used; rather, mixtures of different carbonates and bicarbonates may be preferred for reasons of washing technology.
  • Preferred detergent tablets are 2 to 20% by weight, preferably 3 to 15% by weight and in particular 5 to 10% by weight of an alkali metal carbonate or bicarbonate and 1 to 15, preferably 2 to 12 and in particular 3 to 10, as the effervescent system %
  • an acidifying agent based in each case on the entire molded article, is used.
  • Acidifying agents which release carbon dioxide from the alkali salts in aqueous solution are, for example, boric acid and alkali metal bisulfates, alkali metal dihydrogen phosphates and other inorganic salts.
  • organic acidifying agents are preferably used, citric acid being a particularly preferred acidifying agent.
  • the other solid mono-, oligo- and polycarboxylic acids can also be used in particular. Tartaric acid, succinic acid, malonic acid, adipic acid, maleic acid, fumaric acid, oxalic acid and polyacrylic acid are preferred from this group.
  • Organic sulfonic acids such as amidosulfonic acid can also be used.
  • Sokalan ® DCS commercially available and is also preferably used as an acidifying agent in the context of the present invention Sokalan ® DCS (trademark of BASF), a mixture of succinic acid (max. 31% by weight), glutaric acid (max. 50% by weight) and adipic acid (max. 33% by weight).
  • shaped detergent bodies in which a substance from the group of the organic di-, tri- and oligocarboxylic acids or mixtures thereof are used as the acidifying agent in the effervescent system.
  • a further preferred embodiment of the present invention relates to a method for producing automatic dishwashing detergents, in which a solid polymer preparation form of a copolymer is made
  • Monomers mixed with other raw materials and / or compounds to machine dishwashing detergent Monomers mixed with other raw materials and / or compounds to machine dishwashing detergent.
  • tablets in particular are a preferred embodiment of the present invention.
  • Another object therefore relates to a process for the preparation of detergent tablets for automatic dishwashing, in which a solid polymer preparation form of a copolymer of i) unsaturated carboxylic acids ii) sulfonic acid group-containing monomers iii) optionally further ionic or nonionogenic
  • Monomers are mixed with further raw materials and / or compounds and the mixture is then compressed into tablets or phases thereof.
  • processes according to the invention are preferred in which the mixture of raw materials and / or compounds and solid copolymer preparation form, based on the mixture, 0.1 to 70% by weight, preferably 0, Contains 25 to 50 wt .-%, particularly preferably 0.5 to 35 wt .-%, very particularly preferably 0.75 to 20 wt .-% and in particular 1 to 15 wt .-% of sulfonic acid group-containing copolymers.
  • the solid copolymer preparation form can consist of pure copolymer containing sulfonic acid groups.
  • the solid copolymer preparation form which, in addition to the copolymer containing sulfonic acid groups, contains other ingredients, for example carriers.
  • Processes according to the invention are preferred here in which the solid copolymer preparation form contains the sulfonic acid group-containing copolymer (s) in amounts of more than 50% by weight, preferably more than 60% by weight, particularly preferably of contains more than 75 wt .-% and in particular more than 80 wt .-%, each based on the solid copolymer preparation form.
  • solid copolymer preparation forms can in particular be carrier materials which preferably come from the group of the builders described above. Even when using a solid copolymer preparation which does not consist exclusively of polymers containing sulfonic acid groups (and water), preference is given to those preparation forms which meet certain criteria with regard to particle size, water content and bulk density. For more details, reference can be made here to the description of the agents according to the invention.
  • methods according to the invention are also preferred in which at least 50% by weight, preferably at least 60% by weight, particularly preferably at least 75% by weight and in particular at least 90% by weight of the particles of the solid copolymer preparation form have particle sizes above 200 ⁇ m, wherein particularly preferred methods are characterized in that a maximum of 20 wt .-%, preferably a maximum of 15 wt .-% and in particular a maximum of 10 wt .-% of the particles contained in the solid copolymer preparation particle sizes below 200 microns or above 1200 ⁇ m.
  • the water content of the particles of the solid copolymer preparation form is 3 to 12% by weight, preferably 4 to 11% by weight and in particular 5 to 10% by weight, in each case based on the copolymer -Particle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Table Devices Or Equipment (AREA)

Description

3IN1 GESCHIRRSPULMITTEL UND VERFAHREN ZUR HERSTELLUNG DERSELBEN
Gegenstand der vorliegenden Erfindung sind Reinigungsmittel für das maschinelle Geschirrspulen, insbesondere solche Reinigungsmittel, die den Nutzen von Reinigungsmittel und Klarspuler in einem Produkt bereitstellen sowie die Herstellungsverfahren für solche Klarspul- und Reinigungsmittel sind weitere Gegenstande der vorliegenden Erfindung
Die altere deutsche Patentanmeldung DE 100 32 612.9 offenbart die Verwendung von Copolyme- ren aus i) ungesättigten Carbonsäuren, n) Sulfonsäuregruppen-haltigen Monomeren und IM) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren in maschinellen Geschirrspul- mitteln Klarspulmittel und maschinelle Geschirrspulmittel, die solche Polymere enthalten, werden dort ebenfalls beschrieben, wobei die Mittel in fester oder flussiger Form, z B als Pulver, Granulate, Extrudate, Tabletten, Flüssigkeiten oder Gele bereitgestellt werden können
Üblicherweise werden Polymere für die Wasch- und Reinigungsmittelindustπe in Form wäßriger Losungen gehandelt, welche Konzentrationen zwischen 30 und 60 Gew -% aufweisen Diese Losungen können in den üblichen Verarbeitungsschritten, beispielsweise der Granulation, direkt eingesetzt werden Die in der DE 100 32 612 9 beschriebenen Sulfonsäuregruppen-haltigen Copolymere lassen sich auf diese Weise nur äußerst unzulänglich verarbeiten, da die entsprechenden Lösungen stark klebrig sind und die Bildung homogener, rieselfähiger Gemische erschweren Zudem neigen partikelformige Produkte, in welche das Polymer aus seiner Lieferform eingearbeitet wurde, zu Verklumpung und damit niedriger Verbraucherakzeptanz, während tablettierte Produkte Probleme wie Nachhartung und schlechte Aufloseeigenschaften aufweisen
Dieses Problem wird in Verbraucher- und spülprogrammoptimierten Angebotsformen, welche mehrere herkömmliche Produkte in sich vereinen, noch verstärkt Um beispielsweise Reinigungsmittel-Produkte mit einer Klarspulleistung bereitzustellen, müssen große Mengen nichtioni- scher Tenside eingearbeitet werden Solche Stoffe mit niedrigen Schmelz- und Erweichungspunkten sind ebenfalls nur äußerst schlecht einarbeitbar, so daß die zusätzliche Einarbeitung des Copolymers aus der Lieferform nahezu unmöglich wird Die Einarbeitung größerer Mengen Sul- fonsäuregruppen-haltiger Copolymere ist damit insbesondere in Gegenwart größerer Mengen leichtschmelzender Verbindungen ein Problem, das die Rezepturfreiheit stark einschrankt
Aufgabe der vorliegenden Erfindung war es, ein festes maschinelles Geschirrspülmittel bereitzustellen, das Sulfonsäuregruppen-haltige Copolymere in beliebigen Mengen enthalten kann, ohne daß es zu Produktproblemen wie Verklumpung, Nachhärtung oder schlechten Auflöseeigen- schaften kommt. Zusätzlich sollte ein Verfahren bereitgestellt werden, das die Einarbeitung der Sulfonsäuregruppen-haltigen Copolymere in maschinelle Geschirrspülmittel in beliebigen Mengen ermöglicht, ohne daß die Verfahrenssicherheit beeinträchtigt oder die Produktionsapparate nachhaltig verunreinigt werden.
Es wurde nun gefunden, daß sich die genannten Probleme lösen lassen, wenn die Sulfonsäuregruppen-haltigen Copolymere den Reinigungsmitteln in partikulärer Form beigegeben werden. Besonders vorteilhaft ist dabei überraschenderweise die Einarbeitung der Polymere innerhalb einer bestimmten Partikelgrößenverteilung. Auf diese Weise können hohe Polymermengen auch in Gegenwart großer Mengen leicht schmelz- oder erweichbarer Substanzen in die Reinigungsmittel eingearbeitet werden.
Gegenstand der vorliegenden Erfindung sind daher in einer ersten Ausführungsform maschinelle Geschirrspülmittel, die a) 1 bis 99,9 Gew.-% Gerüststoff(e), b) 0,1 bis 70 Gew.-% an Copolymeren aus i) ungesättigten Carbonsäuren ii) Sulfonsäuregruppen-haltigen Monomeren iii) gegebenenfalls weiteren ionischen oder nichtionogenen
Monomeren, enthalten, wobei sie das Sulfonsäuregruppen-haltige Copolymer in partikulärer Form enthalten.
Es folgt zunächst eine Beschreibung der Sulfonsäuregruppen-haltigen Copolymere und der Monomeren, aus denen sie aufgebaut sind:
Im Rahmen der vorliegenden Erfindung sind ungesättigte Carbonsäuren der Formel I als Monomer bevorzugt,
R1(R2)C=C(R3)COOH (I),
in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder - COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder - COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist. Unter den ungesättigten Carbonsäuren, die sich durch die Formel I beschreiben lassen, sind insbesondere Acrylsäure (R1 = R2 = R3 = H), Methacrylsäure (R1 = R2 = H; R3 = CH3) und/oder Maleinsäure (R1 = COOH; R2 = R3 = H) bevorzugt.
Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel II bevorzugt,
R5(R6)C=C(R7)-X-S03H (II),
in der R5 bis R7 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder - COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder - COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)π- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(0)-NH-C(CH3)2- und -C(0)-NH-CH(CH2CH3)-.
Unter diesen Monomeren bevorzugt sind solche der Formeln lla, Mb und/oder llc,
H2C=CH-X-S03H (lla),
H2C=C(CH3)-X-S03H (Mb),
H03S-X-(R6)C=C(R7)-X-S03H (llc),
in denen R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(0)-NH-C(CH3)2- und -C(0)-NH- CH(CH2CH3)-.
Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1- propansulfonsäure (X = -C(0)NH-CH(CH2CH3) in Formel lla), 2-Acrylamido-2-propansulfonsäure (X = -C(0)NH-C(CH3)2 in Formel lla), 2-Acrylamido-2-methyl-1-propansulfonsäure (X = -C(0)NH- CH(CH3)CH2- in Formel lla), 2-Methacrylamido-2-methyl-1-propansulfonsäure (X = -C(0)NH- CH(CH3)CH2- in Formel Mb), 3-Methacrylamido-2-hydroxy-propansulfonsäure (X = -C(0)NH- CH2CH(OH)CH2- in Formel Mb), Allylsulfonsäure (X = CH2 in Formel lla), Methallylsulfonsäure (X = CH2 in Formel Mb), Allyloxybenzolsulfonsäure (X = -CH2-0-C6H4- in Formel lla), Methallyloxy- benzolsulfonsäure (X = -CH2-0-C6H4- in Formel llb), 2-Hydroxy-3-(2- propenyloxy)propansulfonsäure, 2-Methyl-2-propen1-sulfonsäure (X = CH2 in Formel llb), Styrol- sulfonsäure (X = C6H4 in Formel lla), Vinylsulfonsäure (X nicht vorhanden in Formel lla), 3- Sulfopropylacrylat (X = -C(0)NH-CH2CH2CH2- in Formel lla), 3-Sulfopropylmethacrylat (X = -C(0)NH-CH2CH2CH2- in Formel llb), Sulfomethacrylamid (X = -C(0)NH- in Formel llb), Sulfo- methylmethacrylamid (X = -C(0)NH-CH2- in Formel llb) sowie wasserlösliche Salze der genannten Säuren.
Als weitere ionische oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der erfindungsgemäß verwendeten Polymere an Monomeren der Gruppe iii) weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Gruppen i) und ii).
Die erfindungsgemäß verwendeten Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der Gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.
So sind beispielsweise erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel III
-[CH2-CHCOOH]m-[CH2-CHC(0)-Y-S03H]p- (III),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphati- schen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH- C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppen- haltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäuregruppen-haltige Ac- rylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, das ebenfalls mit Vorzug in die erfindungsgemäßen Mittel inkorporiert werden kann und Struktureinheiten der Formel IV
-[CH2-C(CH3)COOH]m-[CH2-CHC(0)-Y-S03H]p- (IV),
enthält, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphati- schen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffato- men, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH- C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppen- haltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. Copolymere, die Struktureinheiten der Formel V
-[CH2-CHCOOH]m-[CH2-C(CH3)C(0)-Y-S03H]p- (V),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphati- schen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH- C(CH3)2- oder -NH-CH(CH2CH3)- steht, sind mit Vorzug in den erfindungsgemäßen Mitteln enthalten, genau wie auch Copolymere, die Struktureinheiten der Formel VI
-[CH2-C(CH3)COOH]m-[CH2-C(CH3)C(0)-Y-S03H]p- (VI),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphati- schen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -0-(C6H )-, für -NH- C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu erfindungsgemäß bevorzugten Mitteln, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel VII
-[HOOCCH-CHCOOH]m-[CH2-CHC(0)-Y-S03H]p- (VII),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphati- schen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH- C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind und zu Mitteln, welche dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel VIII -[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(0)0-Y-S03H]p- (VIII),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphati- schen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH- C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
In den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. daß das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Entsprechende Verwendungen, die dadurch gekennzeichnet sind, daß die Sulfonsäuregruppen im Copolymer teil- oder vollneutralisiert vorliegen, sind erfindungsgemäß bevorzugt.
Ferner geeignet sind auch Kombinationen der sulfonierten Copolymeren mit heteroatomhaltigen Polymeren bzw. Copolymeren, insbesondere solchen mit Amino- oder Phosphono-Gruppen. Hier sind erfindungsgemäße Mittel besonders bevorzugt, die zusätzlich 0,1 bis 30 Gew.-% homo- und/oder copolymere Polycarbonsäuren bzw. deren Salze und/oder heteroatomhaltige Polyme- ren/Copolymeren, insbesondere solche mit Amino oder Phosphono-Gruppen enthalten. Die Kombination mit amino- und/oder phosphonogruppenhaltigen Polymeren/Copolymeren ist vorteilhaft bei Buildersystemen, welche nur z.T. phosphatbasiert sind, z.B. Phosphat/Citrat-Mischsysteme.
Die Monomerenverteilung in den Sulfonsäuregruppen-haltigen Copolymeren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe i) und 10 bis 50 Gew.-% Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer.
Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.
Die Molmasse der Sulfonsäuregruppen-haltigen Copolymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte Sulfon- säuregruppen-haltige Copolymere sind dadurch gekennzeichnet, daß sie Molmassen von 2000 bis 200.000 gmol"1, vorzugsweise von 4000 bis 25.000 gmol"1 und insbesondere von 5000 bis 15.000 gmol"1 aufweisen. Erfindungsgemäß werden die vorstehend beschriebenen Sulfonsäuregruppen-haltigen Copolymere in partikulärer Form eingesetzt. Dies bedeutet, daß die erfindungsgemäßen Mittel die Sulfonsäuregruppen-haltigen Copolymere in Form diskreter, isolierbarer Partikel enthalten. Diese Partikel können vollständig aus den Sulfonsäuregruppen-haltigen Copolymeren bestehen oder sogenannte Compounds sein, welche zusätzlich andere Stoffe, beispielsweise Trägermaterialien, enthalten. Entscheidend für den Erfolg der Erfindung ist die partikuläre Form, die nur durch eine Zugabe als Feststoff während des Herstellprozesses erreicht wird (siehe unten). Die herkömmliche Einarbeitung der Lieferform der Polymere als Lösung führt zu einer Verteilung der Copolymere auf die Oberfläche aller anderen im Gemisch enthaltenen Partikel (vergleichbar einer „Beschichtung" aller Partikel mit Copolymer bzw. Copolymerlösung) und damit zu den vorstehend beschriebenen Problemen bei nachfolgender Verpackung und Lagerung bzw. bei der Verpressung zu Tabletten.
„In partikulärer Form" bedeutet also, daß die erfindungsgemäßen Mittel ein (gegebenenfalls zu Tabletten oder Phasen hiervon verpreßtes) Teilchengemisch aus einer Partikelvielzahl (Gerüststoffe, optionale Bleichmittel, usw.) sind, in der die Sulfonsäuregruppen-haltigen Copolymere einen Bestandteil der Teilchenmatrix bilden.
In bevorzugten Ausführungsformen der vorliegenden Erfindung genügen die Partikel der in den Mitteln enthaltenen Sulfonsäuregruppen-haltigen Copolymere bestimmten Teilchengrößenkriterien. Hier sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, bei denen mindestens 50 Gew.-%, vorzugsweise mindestens 60 Gew.-%, besonders bevorzugt mindestens 75 Gew.-% und insbesondere mindestens 90 Gew.-% der im Mittel enthaltenen Partikel des Sulfonsäuregruppen-haltigen Copolymers Teilchengrößen oberhalb 200 μm aufweisen.
Die Teilchengrößen bzw. die Erfüllung der Teilchengrößenkriterien läßt sich durch Sieben der Polymerpartikel in dem Fachmann bekannter Weise ermitteln. In anderen Worten heißt dies für die vorstehend beschriebenen bevorzugten Mittel, daß mindestens 50 Gew.-%, vorzugsweise mindestens 60 Gew.-%, besonders bevorzugt mindestens 75 Gew.-% und insbesondere mindestens 90 Gew.-% der im Mittel enthaltenen Partikel des Sulfonsäuregruppen-haltigen Copolymers auf Sieben mit einer Maschenweite von 200 μm liegenbleiben.
Vorzugsweise, sind die Polymerpartikel noch gröber, so daß beispielsweise mindestens 50 Gew.- %, vorzugsweise mindestens 50 Gew.-%, besonders bevorzugt mindestens 60 Gew.-% und insbesondere mindestens 80 Gew.-% der im Mittel enthaltenen Partikel des Sulfonsäuregruppen- haltigen Copolymers auf Sieben mit einer Maschenweite von 400 μm liegenbleiben.
Aber auch nach oben ist der Partikelgrößenbereich vorzugsweise begrenzt: In besonders bevorzugten Mitteln weist das Polymer eine Teilchengrößenverteilung auf, bei der maximal 60 Gew.-%, vorzugsweise maximal 50 Gew.-% und insbesondere maximal 40 Gew.-% der im Mittel enthaltenen Partikel des Sulfonsäuregruppen-haltigen Copolymers auf Sieben mit einer Maschenweite von 800 μm liegenbleiben.
Grob- und Feinanteile liegen bevorzugt nur in untergeordnetem Maße vor, so daß bevorzugte maschinelle Geschirrspülmittel dadurch gekennzeichnet sind, daß maximal 20 Gew.-%, vorzugsweise maximal 15 Gew.-% und insbesondere maximal 10 Gew.-% der im Mittel enthaltenen Partikel des Sulfonsäuregruppen-haltigen Copolymers Teilchengrößen unterhalb 200 μm oder oberhalb 1200 μm aufweisen.
Die erfindungsgemäß in den Mitteln enthaltenen Partikel des Sulfonsäuregruppen-haltigen Copolymers weisen vorzugsweise einen bestimmten Wassergehalt auf. Durch die Bereitstellung solcher in ihrem Wassergehalt kontrollierten Partikel lassen sich die erfindungsgemäßen Erfolge noch weiter steigern. Zu hohe Wassergehalte von Polymerpartikeln können beispielsweise durch Trocknung leicht und in dem Fachmann bekannter Weise erniedrigt werden. In besonders bevorzugten erfindungsgemäßen maschinellen Geschirrspülmitteln beträgt der Wassergehalt der im Mittel enthaltenen Partikel des Sulfonsäuregruppen-haltigen Copolymers 3 bis 12 Gew.-%, vorzugsweise 4 bis 11 Gew.-% und insbesondere 5 bis 10 Gew.-%, jeweils bezogen auf die Copoly- mer-Partikel. Der Wassergehalt der Polymerpartikel kann dabei in einfacher Weise durch Titration nach Karl Fischer bestimmt werden.
Auch das Schüttgewicht der erfindungsgemäß in den Mitteln enthaltenen Partikel des Sulfonsäuregruppen-haltigen Copolymers liegt vorzugsweise innerhalb eines bestimmten Bereichs. Unter Schüttgewicht ist dabei das Gewicht einer losen Schüttung zu verstehen, also nicht das Stampfgewicht. Hier sind erfindungsgemäße maschinelle Geschirrspülmittel besonders bevorzugt, bei denen das Schüttgewicht der im Mittel enthaltenen Partikel des Sulfonsäuregruppen-haltigen Copolymers 550 bis 850 g/l, vorzugsweise 570 bis 800 g/l, besonders bevorzugt 590 bis 750 g/l und insbesondere 600 bis 720 g/l, beträgt.
Die Mengen, in denen das/die Sulfonsäuregruppen-haltige(n) Copolymer(e) eingesetzt wird/werden, liegen zwischen 0,1 und 70 Gew.-%, jeweils bezogen auf das gesamte Mittel. Besonders bevorzugt sind hier erfindungsgemäße maschinelle Geschirrspülmittel, die dadurch gekennzeichnet sind, daß sie das/die Sulfonsäuregruppen-haltige(n) Copolymer(e) in Mengen von 0,25 bis 50 Gew.-%, vorzugsweise von 0,5 bis 35 Gew.-%, besonders bevorzugt von 0,75 bis 20 Gew.-% und insbesondere von 1 bis 15 Gew.-% enthalten.
Besonders deutlich treten die erfindungsgemäßen Vorteile hervor, wenn die erfindungsgemäßen Mittel „klebrige" Stoffe enthalten, insbesondere also solche Stoffe, die unterhalb der Anwen- dungstemperatur der Mittel schmelzen bzw. erweichen und so bei der Herstellung, beim Transport und bei der Lagerung zu den eingangs erwähnten Problemen führen können. Hier sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, die zusätzlich 2 bis 40 Gew.-%, vorzugsweise 3 bis 30 Gew.-% und insbesondere 5 bis 20 Gew.-% eines oder mehrerer Inhaltsstoffe mit einem Schmelz- bzw. Erweichungspunkt unterhalb von 60°C enthalten, wobei nichtionische(s) Tensid(e) bevorzugt ist/sind.
Solche Inhaltsstoffe mit Schmelz- bzw. Erweichungspunkten unterhalb von 60°C können aus einer Vielzahl von Substanzklassen stammen. Viele dieser Inhaltsstoffe zeigen keinen scharf definierten Schmelzpunkt, wie er üblicherweise bei reinen, kristallinen Substanzen auftritt, sondern einen unter Umständen mehrere Grad Celsius umfassenden Schmelzbereich. Dieser liegt bei den vorstehend beschriebenen bevorzugten Mitteln unterhalb von 60°C, wobei diese Grenze nicht die Breite des Schmelzbereichs bezeichnet, sondern nur sein „Lage". Vorzugsweise beträgt die Breite des Schmelzbereichs wenigstens 1 °C, vorzugsweise etwa 2 bis etwa 3°C.
Die oben genannten Eigenschaften werden in der Regel von sogenannten Wachsen erfüllt. Unter "Wachsen" wird eine Reihe natürlicher oder künstlich gewonnener Stoffe verstanden, die in der Regel über 40°C ohne Zersetzung schmelzen und schon wenig oberhalb des Schmelzpunktes verhältnismäßig niedrigviskos und nicht fadenziehend sind. Sie weisen eine stark temperaturabhängige Konsistenz und Löslichkeit auf. Nach ihrer Herkunft teilt man die Wachse in drei Gruppen ein, die natürlichen Wachse, chemisch modifizierte Wachse und die synthetischen Wachse.
Zu den natürlichen Wachsen zählen beispielsweise pflanzliche Wachse wie Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, oder Montanwachs, tierische Wachse wie Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), oder Bürzelfett, Mineralwachse wie Ceresin oder Ozokerit (Erdwachs), oder petrochemische Wachse wie Petrolatum, Paraffin wachse oder Mikrowachse.
Zu den chemisch modifizierten Wachsen zählen beispielsweise Hartwachse wie Montanesterwachse, Sassolwachse oder hydrierte Jojobawachse.
Unter synthetischen Wachsen werden in der Regel Polyalkylenwachse oder Polyalkylenglycolwachse verstanden. Als Hüllmaterialien einsetzbar sind auch Verbindungen aus anderen Stoffklassen, die die genannten Erfordernisse hinsichtlich des Erweichungspunkts erfüllen. Als geeignete synthetische Verbindungen haben sich beispielsweise höhere Ester der Phthalsäure, insbesondere Dicyclohexylphthalat, das kommerziell unter dem Namen Unimoll® 66 (Bayer AG) erhältlich ist, erwiesen. Geeignet sind auch synthetisch hergestellte Wachse aus niederen Carbonsäuren und Fettalkoholen, beispielsweise Dimyristyl Tartrat, das unter dem Namen Cosmacol® ETLP (Condea) erhältlich ist. Umgekehrt sind auch synthetische oder teilsynthetische Ester aus niederen Alkoholen mit Fettsäuren aus nativen Quellen einsetzbar. In diese Stoffklasse fällt beispielsweise das Tegin ® 90 (Goldschmidt), ein Glycerinmonostearat-palmitat.
Ebenfalls zu den Wachsen im Rahmen der vorliegenden Erfindung werden beispielsweise die sogenannten Wachsalkohole gerechnet. Wachsalkohole sind höhermolekulare, wasserunlösliche Fettalkohole mit in der Regel etwa 22 bis 40 Kohlenstoffatomen. Die Wachsalkohole kommen beispielsweise in Form von Wachsestern höhermolekularer Fettsäuren (Wachssäuren) als Hauptbestandteil vieler natürlicher Wachse vor. Beispiele für Wachsalkohole sind Lignocerylalkohol (1- Tetracosanol), Cetylalkohol, Myristylalkohol oder Melissylalkohol. Die Umhüllung der erfindungsgemäß umhüllten Feststoffpartikel kann gegebenenfalls auch Wollwachsalkohole enthalten, worunter man Triterpenoid- und Steroidalkohole, beispielsweise Lanolin, versteht, das beispielsweise unter der Handelsbezeichnung Argowax® (Pamentier & Co) erhältlich ist. Ebenfalls zumindest anteilig als Bestandteil der Umhüllung einsetzbar sind im Rahmen der vorliegenden Erfindung Fettsäureglycehnester oder Fettsäurealkanolamide aber gegebenenfalls auch wasserunlösliche oder nur wenig wasserlösliche Polyalkylenglycolverbindungen.
Die vorstehend beschriebenen wachse können zur verzögerten Freisetzung von Inhaltsstoffen zu einem bestimmten Zeitpunkt im Reinigungsgang in die Mittel inkorporiert werden. Hierzu eignen sich beispielsweise auch sogenannte „Fettstoffe", die ebenfalls Schmelz- bzw. Erweichungspunkte unterhalb von 60°C aufweisen können.
Unter Fettstoffen werden im Rahmen dieser Anmeldung bei Normaltemperatur (20 °C) feste Stoffe aus der Gruppe der Fettalkohole, der Fettsäuren und der Fettsäurederivate, insbesondere der Fettsäureester, verstanden. Als Fettstoffe lassen sich erfindungsgemäß bevorzugt Fettalkohole und Fettalkoholgemische, Fettsäuren und Fettsäuregemische, Fettsäureester mit Alkanolen bzw. Diolen bzw. Polyolen, Fettsäureamide, Fettamine usw. einsetzen.
Bevorzugte Reinigungsmittelkomponenten enthalten als Inhaltsstoff c) einen oder mehrere Stoffe aus den Gruppen der Fettalkohole, der Fettsäuren und der Fettsäureester.
Als Fettalkohole werden beispielsweise die aus nativen fetten und Ölen zugänglichen Alkohole 1- Hexanol (Capronalkohol), 1-Heptanol (önanthalkohol), 1-Octanol (Caprylalkohol), 1-Nonanol (Pelargonalkohol) , 1-Decanol (Caprinalkohol), 1-Undecanol, 10-Undecen-1-ol, 1-Dodecanol
(Laurylalkohol), 1-Tridecanol, 1-Tetradecanol (Myristylalkohol), 1-Pentadecanol, 1-Hexadecanol (Cetylalkohol), 1-Heptadecanol, 1-Octadecanol (Stearylalkohol), 9-cis-Octadecen-1-ol (Oleylalko- hol), 9-trans-Octadecen-1-ol (Erucylalkohol), 9-cis-Octadecen-1 ,12-diol (Ricinolalkohol), all-cis- 9,12-Octadecadien-1-ol (Linoleylalkohol), all-cis-9,12,15-Octadecatrien-1-ol (Linolenylalkohol), 1- Nonadecanol, 1-Eicosanol (Arachidylalkohol), 9-cis-Eicosen-1-ol (Gadoleylalkohol), 5,8,11 ,14-Eicosatetraen-1-ol, 1-Heneicosanol, 1-Docosanol (Behenylalkohol), 1-3-cis-Docosen-1-
01 (Erucylalkohol), 1-3-trans-Docosen-1-ol (Brassidylalkohol) sowie Mischungen dieser Alkohole eingesetzt. Erfindungsgemäß sind auch Guerbetalkohole und Oxoalkohole, beispielsweise Oxoalkohole oder Mischungen aus C12.18-Alkoholen mit C12.14-Alkoholen problemlos als Fettstoffe einsetzbar. Selbstverständlich können aber auch Alkoholgemische eingesetzt werden, beispielsweise solche wie die durch Ethylenpolymerisation nach Ziegler hergestellten C16.18-Alkohole. Spezielle Beispiele für Alkohole, die als Komponente c) eingesetzt werden können, sind die bereits obengenannten Alkohole sowie Laurylalkohol, Palmityl- und Stearylalkohol und Mischungen derselben.
Auch Fettsäuren sind Fettstoffe. Diese werden technisch größtenteils aus nativen Fetten und Ölen durch Hydrolyse gewonnen. Während die bereits im vergangenen Jahrhundert durchgeführte alkalische Verseifung direkt zu den Alkalisalzen (Seifen) führte, wird heute großtechnisch zur Spaltung nur Wasser eingesetzt, das die Fette in Glycerin und die freien Fettsäuren spaltet. Großtechnisch angewendete Verfahren sind beispielsweise die Spaltung im Autoklaven oder die kontinuierliche Hochdruckspaltung. Im Rahmen der vorliegenden Erfindung als Fettstoff einsetzbare Carbonsäuren sind beispielsweise Hexansäure (Capronsäure), Heptansäure (Önanthsäure), Octansäure (Caprylsäure), Nonansäure (Pelargonsäure), Decansäure (Caprinsäure), Undecan- säure usw.. Bevorzugt ist im Rahmen der vorliegenden Verbindung der Einsatz von Fettsäuren wie Dodecansäure (Laurinsäure), Tetradecansäure (Myristinsäure), Hexadecansäure (Palmitin- säure), Octadecansäure (Stearinsäure), Eicosansäure (Arachinsäure), Docosansäure (Behensäu- re), Tetracosansäure (Lignocerinsäure), Hexacosansäure (Cerotinsäure), Triacotansäure (Melis- sinsäure) sowie der ungesättigten Sezies 9c-Hexadecensäure (Palmitoleinsäure), 6c- Octadecensäure (Petroselinsäure), 6t-Octadecensäure (Petroselaidinsäure), 9c-Octadecensäure (ölsäure), 9t-Octadecensäure (Elaidinsäure), 9c,12c-Octadecadiensäure (Linolsäure), 9t,12t- Octadecadiensäure (Linolaidinsäure) und 9c,12c,15c-Octadecatreinsäure (Linolensäure). Selbstverständlich sind auch Tridecansäure, Pentadecansäure, Margarinsäure, Nonadecansäure, Eru- casäure, Elaeostearinsäure und Arachidonsäure einsetzbar. Aus Kostengründen ist es bevorzugt, nicht die reinen Spezies einzusetzen, sondern technische Gemische der einzelnen Säuren, wie sie aus der Fettspaltung zugänglich sind. Solche Gemische sind beispielsweise Koskosölfettsäure (ca. 6 Gew.-% C8, 6 Gew.-% C10, 48 Gew.-% C12, 18 Gew.-% C1 , 10 Gew.-% C16, 2 Gew.-% C18, 8 Gew.-% C18-, 1 Gew.-% C18 -), Palmkernölfettsäure (ca. 4 Gew.-% C8, 5 Gew.-% C10, 50 Gew.-% C12, 15 Gew.-% C14, 7 Gew.-% C16, 2 Gew.-% C18, 15 Gew.-% C18-, 1 Gew.-% C18 -), Taigfettsäure (ca. 3 Gew.-% C14, 26 Gew.-% C16, 2 Gew.-% C16-, 2 Gew.-% C17, 17 Gew.-% C18, 44 Gew.-% Cι8-, 3 Gew.-% C18-, 1 Gew.-% C18 - ), gehärtete Taigfettsäure (ca. 2 Gew.-% Cι4, 28 Gew.-% C16,
2 Gew.-% C17, 63 Gew.-% C18, 1 Gew.-% C18 ), technische ölsäure (ca. 1 Gew.-% Cι2, 3 Gew.-% C14, 5 Gew.-% C16, 6 Gew.-% C16-, 1 Gew.-% C17, 2 Gew.-% C18, 70 Gew.-% C18-, 10 Gew.-% C18-, 0,5 Gew.-% Cι8-), technische Palmitin/Stearinsäure (ca. 1 Gew.-% C12, 2 Gew.-% C14, 45 Gew.-% C16, 2 Gew.-% C17, 47 Gew.-% C18, 1 Gew.-% C18 ) sowie Sojabohnenölfettsäure (ca. 2 Gew.-% C14, 15 Gew.-% C16, 5 Gew.-% C18, 25 Gew.-% C18-, 45 Gew.-% C18-, 7 Gew.-% C18 )■
Als Fettsäureester lassen sich die Ester von Fettsäuren mit Alkanolen, Diolen oder Polyolen einsetzen, wobei Fettsäurepolyolester bevorzugt sind. Als Fettsäurepolyolester kommen Mono- bzw. Diester von Fettsäuren mit bestimmten Polyolen in Betracht. Die Fettsäuren, die mit den Polyolen verestert werden, sind vorzugsweise gesättigte oder ungesättigte Fettsäuren mit 12 bis 18 C- Atomen, beispielsweise Laurinsäure, Myristinsäure, Palmitinsäure oder Stearinsäure, wobei bevorzugt die technisch anfallenden Gemische der Fettsäuren verwendet werden, beispielsweise die von Kokos-, Palmkern- oder Taigfett abgeleiteten Säuregemische. Insbesondere Säuren oder Gemische von Säuren mit 16 bis 18 C-Atomen wie beispielsweise Taigfettsäure sind zur Veresterung mit den mehrwertigen Alkoholen geeignet. Als Polyole, die mit den vorstehend genannten Fettsäuren verestert werden, kommen im Rahmen der vorliegenden Erfindung Sorbitol, Tri- methylolpropan, Neopentylglycol, Ethylenglycol, Polyethylenglycole, Glycerin und Polyglycerine in Betracht.
Die vorstehend beschriebenen Inhaltsstoffe werden im Regelfall nur dann eingesetzt, wenn bestimmte Wirkungen - z.B. die verzögerte Freisetzung von Inhaltsstoffen - damit erzielt werden sollen. Die erfindungsgemäßen Mittel können aber auch Stoffe mit Schmelz- oder Erweichungspunkten enthalten, welche im Regelfall in den Mitteln enthalten sind, um die Leistung der Mittel zu verbessern. Solche Stoffe sind insbesondere nichtionische Tenside.
Als Tenside werden in maschinellen Geschirrspülmitteln üblicherweise lediglich schwachschäumende nichtionische Tenside eingesetzt.
In besonders bevorzugten Ausführungsformen der vorliegenden Erfindung enthält das erfindungsgemäße Reinigungsmittel nichtionische Tenside aus der Gruppe der alkoxylierten Alkohole. Als solche nichtionischen Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxy- lierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C- Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise Cι2. π-Alkohole mit 3 EO oder 4 EO, C9.n-Alkohol mit 7 EO, C13.15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, Cι2.18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12.14-Alkohol mit 3 EO und C12.18-Alkohol mit 5 EO. Die angegebenen Ethoxy- lierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Ten- siden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Als weitere nichtionischen Tenside können vorzugsweise propoxylierte und/oder butoxylierte Ni- otenside eingesetzt werden, wobei den gemischt alkoxylierten, vorteilhafterweise propoxylierten und ethoxylierten Niotensiden, besondere Bedeutung zukommt. Auch bei diesen Niotensiden beträgt die C-Kettenlänge im Alkylrest vorzugsweise 8 bis 18 C-Atome, wobei Cg.n-Alkylresten, Cι23-Alkylresten sowie C168-Alkylresten besondere Bedeutung zukommt. Dabei sind insbesondere Niotenside bevorzugt, welche aus C9.n- oder C12.13-Oxoalkoholen gewonnen wurden. Bei den bevorzugten Niotensiden werden durchschnittlich 1 bis 20 Mol Alkylenoxid (AO) pro Mol Alkohol eingesetzt, wobei AO für die Summe aus EO und PO steht. Besonders bevorzugte Niotenside dieser Gruppe enthalten 1 bis 5 Mol PO und 5 bis 15 Mol EO. Ein besonders bevorzugter Vertreter dieser Gruppe ist ein mit 2 PO und 15 EO alkoxylierter C12.20-Oxoalkohol, der unter dem Handelsnamen Plurafac® LF 300 (BASF) erhältlich ist.
Anstelle von PO-Gruppen oder in Ergänzung hierzu können bevorzugte Niotenside auch Butyle- noxidgruppen aufweisen. Hier sind die vorstehend genannten Alkylreste, insbesondere die Oxoal- koholreste, wiederum bevorzugt. Die Zahl der BO-Gruppen beträgt in bevorzugten Niotensiden 1 , 2, 3, 4 oder 5, wobei die Gesamtzahl an Alkylenoxidgruppen vorzugsweise im Bereich von 10 bis 25 liegt. Ein besonders bevorzugter Vertreter dieser Gruppe ist unter dem Handelsnamen Plurafac® LF 221 (BASF) erhältlich und läßt sich durch die Formel C13.15-0-(EO)9.1o(BO)1.2 beschreiben
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Mono- glykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1 ,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäureal- kylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester. Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (IX),
R1
I
R-CO-N-[Z] (IX)
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (X),
R1-0-R2
I
R-CO-N-[Z] (X)
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C^-Alkyl- oder Phe- nylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden. Es ist bei den erfindungsgemäßen Reinigungsmitteln für das maschinelle Geschirrspülen besonders bevorzugt, daß sie ein nichtionisches Tensid enthalten, das einen Schmelzpunkt oberhalb Raumtemperatur aufweist. Hier sind maschinelle Geschirrspülmittel bevorzugt, die nichtioni- sche(s) Tensid(e) mit einem Schmelzpunkt oberhalb von 20°C, vorzugsweise oberhalb von 25°C, besonders bevorzugt zwischen 25 und 60°C und insbesondere zwischen 26,6 und 43,3°C, in Mengen von 5,5 bis 20 Gew.-%, vorzugsweise von 6,0 bis 17,5 Gew.-%, besonders bevorzugt von 6,5 bis 15 und insbesondere von 7,0 bis 12,5 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.
Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden bei Raumtemperaturhochviskose Niotenside eingesetzt, so ist bevorzugt, daß diese eine Viskosität oberhalb von 20 Pas, vorzugsweise oberhalb von 35 Pas und insbesondere oberhalb 40 Pas aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.
Bevorzugt als bei Raumtemperatur feste einzusetzende Niotenside stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropy- len/Polyoxyethylen/Polyoxypropylen (PO/EO/PO)-Tenside. Solche (PO/EO/PO)-Niotenside zeichnen sich darüber hinaus durch gute Schaumkontrolle aus.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tensid mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C-Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervorgegangen ist. Entsprechende maschinelle Geschirrspülmittel, die dadurch gekennzeichnet sind, daß das/die Niotensid(e) ethoxylierte(s) Niotensid(e) ist/sind, das/die aus C6.20-Monohydroxyalkanolen oder C6-2o-Alkylphenolen oder C16. 20-Fettalkoholen und mehr als 12 Mol, vorzugsweise mehr als 15 Mol und insbesondere mehr als 20 Mol Ethylenoxid pro Mol Alkohol gewonnen wurde(n), sind demnach bevorzugt.
Ein besonders bevorzugtes bei Raumtemperatur festes, einzusetzendes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C16-2o-Alkohol), vorzugsweise einem C18-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten „narrow ränge etho- xylates" (siehe oben) besonders bevorzugt. Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise zusätzlich Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Maschinelle Geschirrspülmittel, die ethoxylierte und propoxylierte Niotenside enthalten, bei denen die Propylenoxideinheiten im Molekül bis zu 25 Gew.-%, bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids ausmachen, sind bevorzugte Ausführungsformen der vorliegenden Erfindung. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkoholbzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus.
Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen- Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block-Copolymers von Polyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan.
Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind beispielsweise unter dem Namen Poly Tergent® SLF-18 von der Firma Olin Chemicals erhältlich.
Ein weiter bevorzugtes Tensid läßt sich durch die Formel
R10[CH2CH(CH3)0]x[CH2CH20]y[CH2CH(OH)R2]
beschreiben, in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1 ,5 und y für einen Wert von mindestens 15 steht. Maschinelle Geschirrspülmittel, die dadurch gekennzeichnet sind, daß sie nichtionische Tenside der Formel
R10[CH2CH(CH3)0]x[CH2CH20]y[CH2CH(OH)R2]
enthalten, in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1 ,5 und y für einen Wert von mindestens 15 steht, sind daher bevorzugt.
Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Po- ly(oxyalkylierten) Niotenside der Formel
R10[CH2CH(R3)0]x[CH2]kCH(OH)[CH2]jOR2
in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x > 2 ist, kann jedes R3 in der obenstehenden Formel unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder -CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
Wie vorstehend beschrieben, kann jedes R3 in der obenstehenden Formel unterschiedlich sein, falls x ≥ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylenoxid- (R3 = H) oder Propylenoxid- (R3 = CH3) Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)- Gruppen einschließt, oder umgekehrt.
Insbesondere bevorzugte endgruppenverschlossenen Poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so daß sich die vorstehende Formel zu
R10[CH2CH(R3)0]xCH2CH(OH)CH2OR2
vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesonders von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt. Zusammenfassend sind maschinelle Geschirrspülmittel bevorzugt, die endgruppenverschlossene Poly(oxyalkylierten) Niotenside der Formel
R 0[CH2CH(R3)0]x[CH2]kCH(OH)[CH2]jOR2 enthalten, in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen, wobei Tenside des Typs
R10[CH2CH(R3)0]xCH2CH(OH)CH2OR2
in denen x für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18 steht, besonders bevorzugt sind.
Mit besonderem Vorzug werden Mischungen unterschiedlicher Niotenside in den erfindungsgemäßen Geschirrspülmitteln eingesetzt. Besonders bevorzugt sind hierbei teilchenförmige maschinelle Geschirrspülmittel, die einen Gehalt von a) 1 ,0 bis 4,0 Gew.-% nichtionischer Tenside aus der Gruppe der alkoxylierten Alkohole, b) 4,0 bis 24,0 Gew.-% nichtionischer Tenside aus der Gruppe der hydroxylgruppenhaltigen alkoxylierten Alkohole („Hydroxymischether"). aufweisen.
Die nichtionischen Tenside aus der Gruppe a) wurden bereits weiter oben ausführlich beschrieben, wobei sich für die maschinellen Geschirrspülmittel, welche die vorstehend genannten Mischungen enthalten, besonders C12.14-Fettalkohole mit 5EO und 4PO und C12.18-Fettalkohole mit durchschnittlich 9 EO als herausragend erwiesen haben. Mit ähnlichem Vorzug sind auch endgruppenverschlossene Niotenside, insbesondere C12.18-Fettalkohol-9 EO-Butylether, einsetzbar.
Tenside aus der Gruppe b) zeigen herausragende Klarspüleffekte und mindern die Spannungsrißkorrosion an Kunststoffen. Weiterhin besitzen sie die Vorteilhafte Eigenschaft, daß ihr Netzverhalten über den gesamten üblichen Temperaturbereich hinweg konstant ist. Besonders bevorzugt sind die Tenside aus der Gruppe b) hydroxylgruppenhaltige alkoxylierte Alkohole. Sämtliche dort offenbarten Hydroxymischether sind ausnahmslos mit Vorzug als Tensid aus der Gruppe b) in den erfindungsgemäß bevorzugten Geschirrspülmitteln enthalten.
Die Mengen, in denen die Tenside aus den Gruppen a) und b) in erfindungsgemäß bevorzugten Geschirrspülmitteln enthalten sein können, variieren je nach gewünschtem Produkt und liegen vorzugsweise innerhalb engerer Bereiche. Besonders bevorzugte maschinelle Geschirrspülmittel enthalten a) 1 ,5 bis 3,5 Gew.-%, vorzugsweise 1,75 bis 3,0 Gew.-% und insbesondere 2,0 bis 2,5 Gew.-% nichtionischer Tenside aus der Gruppe der alkoxylierten Alkohole, b) 4,5 bis 20,0 Gew.-%, vorzugsweise 5,0 bis 15,0 Gew.-% und insbesondere 7,0 bis 10,0 Gew.-% nichtionischer Tenside aus der Gruppe der hydroxylgruppenhaltigen alkoxylierten Alkohole („Hydroxymischether").
Bevorzugt sind im Rahmen der vorliegenden Erfindung als nichtionische Tenside auch endgruppenverschlossene Tenside sowie Niotenside mit Butyloxygruppen einsetzbar. Zur ersten Gruppe gehören dabei insbesondere Vertreter der Formel
R10[CH2CH(R3)0]xR2,
in der R1 für einen linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder aromatischen Kohlenwasserstoffrest mit 1 bis 30 C-Atomen, R2 für einen linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder aromatischen Kohlenwasserstoffrest mit 1 bis 30 C-Atomen, welcher optional mit 1 , 2, 3, 4 oder 5 Hydroxygruppen sowie optional mit weiteren Ethergruppen substituiert ist, R3 für -H oder Methyl, Ethyl, n-Propyl, /so-Propyl, n-Butyl, iso- Butyl oder tert-Butyl steht und x Werte zwischen 1 und 40 annehmen kann. R2 kann optional al- koxyliert sein, wobei die Alkoxygruppe vorzugsweise ausgewählt ist aus Ethoxy-, Propoxy-, Butyloxygruppen und deren Mischungen.
Bevorzugt sind hierbei Tenside der vorstehend genannten Formel, in denen R1 für einen Cg-n oder Cn.is-Alkylrest steht, R3 = H ist und x einen Wert von 8 bis 15 annimmt, während R2 vorzugsweise für einen geradkettigen oder verzweigten gesättigten Alkrest steht. Besonders bevorzugte Tenside lassen sich durch die Formeln C9.11(EO)8-C(CH3)2CH2CH3, C11.1S(E0)1 (P0)6-Cι24, C9-n(EO)8(CH2)4CH3 beschreiben.
Geeignet sind weiterhin gemischtalkoxylierte Tenside, wobei solche bevorzugt sind, die Butyloxygruppen aufweisen. Solche Tenside lassen sich durch die Formel
R1(EO)a(PO)b(BO)c
beschreiben, in der R1 für einen linearen oder verzweigten, gesättigten oder ungesättigten, a- liphatischen oder aromatischen Kohlenwasserstoffrest mit 1 bis 30, vorzugsweise 6 bis 20 C- Atomen, a für Werte zwischen 2 und 30, b für Werte zwischen 0 und 30 und c für Werte zwischen 1 und 30, vorzugsweise zwischen 1 und 20, steht. Alternativ können die EO- und PO-Gruppen in der vorstehenden Formel auch vertauscht sein, so daß Tenside der allgemeinen Formel
R1(PO)b(EO)a(BO)c , in der R1 für einen linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder aromatischen Kohlenwasserstoffrest mit 1 bis 30, vorzugsweise 6 bis 20 C-Atomen, a für Werte zwischen 2 und 30, b für Werte zwischen 0 und 30 und c für Werte zwischen 1 und 30, vorzugsweise zwischen 1 und 20, steht, ebenfalls mit Vorzug einsetzbar sind.
Besonders bevorzugte Vertreter aus dieser Gruppe von Tensiden lassen sich durch die Formeln C9.11(PO)3(EO)13(BO)15, C9.11(PO)3(EO)13(BO)6, C9.11(PO)3(EO)13(BO)3, C9.11(EO)13(BO)6, C9. „(EOMBO),, C9.n(PO)(EO)13(BO)3, C9.11(EO)8(BO)3, C9.11(EO)8(BO)2, C12.15(EO)7(BO)2, C9. n(EO)8(BO)2, C9.n(EO)8(BO) beschreiben. Ein besonders bevorzugtes Tensid der Formeln C13. 15(EO)9.10(BO)1.2 ist kommerziell unter den Namen Plurafac® LF 221 erhältlich. Ein weiteres besonders bevorzugtes Tensid mit 10 EO und 2 BO ist unter dem Handelsnamen Genapol® 25 EB 102 verfügbar. Mit Vorzug einsetzbar ist auch ein Tensid der Formel C12.13(EO)10(BO)2.
Die Einbringung des/der nichtionischen Tensid(s/e) in die erfindungsgemäßen Mittel kann auf unterschiedliche Art erfolgen. Die Tenside können beispielsweise in geschmolzenem Zustand auf das ansonsten fertig konfektionierte Mittel aufgesprüht werden oder dem Mittel in Form von Com- pounds oder Tensid-Zubereitungsformen zugegeben werden.
Es folgt eine Beschreibung der weiteren Inhaltsstoffe, die in den erfindungsgemäßen maschinellen Geschirrspülmitteln enthalten sein können, wobei die Gerüststoffe als zwingender Inhaltsstoff a) eine besonders wichtige Rolle einnehmen.
Die wichtigsten Inhaltsstoffe von maschinellen Geschirrspülmitteln sind Gerüststoffe In den erfindungsgemäßen Reinigungsmitteln für das maschinelle Geschirrspülen können dabei alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und auch die Phosphate.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSix02x+1 H20, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate Na2Si205 yH20 bevorzugt.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na20 : Si02 von 1 :2 bis 1 :3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen Die Löseverzögerung gegenüber herkömmlichen amorphen Natπumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflachenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Ubertrocknung hervorgerufen worden sein Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden Dies heißt, daß die Silikate bei Röntgenbeugungsexpenmenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften fuhren, wenn die Silikatpartikel bei Elektronenbeugungsexpen- menten verwaschene oder sogar scharfe Beugungsmaxima liefern Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Große 10 bis einige Hundert nm aufweisen, wobei Werte bis max 50 nm und insbesondere bis max 20 nm bevorzugt sind Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und ubertrock- nete röntgenamorphe Silikate
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kπstallisat aus Zeolith X und Zeolith A (ca 80 Gew -% Zeolith X), das von der Firma CONDEA Augusta S p A unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa20 (1-n)K20 Al203 (2 - 2,5)Sι02 (3,5 - 5,5) H20
beschrieben werden kann Geeignete Zeo the weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung, Meßmethode Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew -%, insbesondere 20 bis 22 Gew -% an gebundenem Wasser
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alka metallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw Pentakaliumtπphosphat (Natrium- bzw Kali- umtπpolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung
Alkahmetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphor- säuren (HP03)n und Orthophosphorsäure H3P04 neben hohermolekularen Vertretern unterscheiden kann Die Phosphate vereinen dabei mehrere Vorteile in sich Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2P04, existiert als Dihydrat (Dichte 1 ,91 gern"3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gern"3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P207), bei höherer Temperatur in Natiumtri- metaphosphat (Na3P309) und Maddrellsches Salz (siehe unten), übergehen. NaH2P04 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2P04, ist ein weißes Salz der Dichte 2,33 gern"3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KP03)x] und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HP0 , ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gern"3, Wasserverlust bei 95°), 7 Mol. (Dichte 1 ,68 gern"3, Schmelzpunkt 48° unter Verlust von 5 H20) und 12 Mol. Wasser (Dichte 1 ,52 gern"3, Schmelzpunkt 35° unter Verlust von 5 H20), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P207 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HP0 , ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3P0 , sind farblose Kristalle, die als Dodeca- hydrat eine Dichte von 1 ,62 gern"3 und einen Schmelzpunkt von 73-76X (Zersetzung), als Deca- hydrat (entsprechend 19-20% P205) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P205) eine Dichte von 2,536 gern'3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3P0 , ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gern"3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P207, existiert in wasserfreier Form (Dichte 2,534 gern"3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1 ,815-1 ,836 gern"3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alka- lischer Reaktion lösliche Kristalle. Na4P207 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpy- rophosphat), K P207, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gern"3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2P04 bzw. des KH2P04 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Gra- hamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H20 kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(0)(ONa)-0]n-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakali- umtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.- %igen Lösung (> 23% P205, 25% K20) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkali- umtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaP03)3 + 2 KOH - Na3K2P3O10 + H20
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natri- umkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripo- lyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natrium- kaliumtripolyphosphat sind erfindungsgemäß einsetzbar. Als organische Cobuilder können in den erfindungsgemäßen maschinellen Geschirrspülmitteln insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipin- säure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwir- kung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Po- lystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein. Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acryl- säure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäu- ren bzw. deren Salze und Derivate, die neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehy- den mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Glu- consäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose- Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch söge- nannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccha- ridrings zur Carbonsäurefunktion zu oxidieren. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisucci- nat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydro- xyalkanphosphonaten ist das 1-Hydroxyethan-1 ,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylen- phosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
Neben den Gerüststoffen sind insbesondere Stoffe aus den Gruppen der Tenside (siehe oben), der Bleichmittel, der Bleichaktivatoren, der Enzyme, der Polymere sowie der Färb- und Duftstoffe wichtige Inhaltsstoffe von Reinigungsmitteln. Wichtige Vertreter aus den genannten Substanzklassen werden nachstehend beschrieben.
Unter den als Bleichmittel dienenden, in Wasser H202 liefernden Verbindungen haben das Natri- umperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citrat- perhydrate sowie H202 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Pero- xophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Erfindungsgemäße Reinigungsmittel können auch Bleichmittel aus der Gruppe der organischen Bleichmittel enthalten. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesiummonoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε- Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-
Carboxybenzamidoperoxycapronsäure, N-nonenyl-amidoperadipinsäure und N- nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1 ,12-Diperoxycarbonsäure, 1 ,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassyl- säure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1 ,4-disäure, N,N-Terephthaloyl-di(6- aminopercapronsäue) können eingesetzt werden.
Als Bleichmittel in den erfindungsgemäßen Reinigungsmitteln für das maschinelle Geschirrspülen können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N- Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natri um in Betracht. Hydantoinverbindungen, wie 1 ,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.
Auch die genannten Bleichmittel können zur Erzielung einer „Nachbleiche" im Klarspülgang ganz oder teilweise über die erfindungsgemäßen Klarspülerpartikel in die erfindungsgemäßen maschinellen Geschirrspülmittel eingebracht werden.
Bleichaktivatoren, die die Wirkung der Bleichmittel unterstützen, wurden bereits weiter oben als möglicher Inhaltsstoff der Klarspülerpartikel erwähnt. Bekannte Bleichaktivatoren sind Verbindungen, die eine oder mehrere N- bzw. O-Acylgruppen enthalten, wie Substanzen aus der Klasse der Anhydride, der Ester, der Imide und der acylierten Imidazole oder Oxime. Beispiele sind Tetraa- cetylethylendiamin TAED, Tetraacetylmethylendiamin TAMD und Tetraacetylhexylendiamin TAHD, aber auch Pentaacetylglucose PAG, 1 ,5-Diacetyl-2,2-dioxo-hexahydro-1 ,3,5-triazin DADHT und Isatosäureanhydrid ISA.
Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylen- diamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl-2,4-dioxohexahydro-1 ,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyioxybenzolsulfonat (n- bzw. iso- NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran, n-Methyl- Morpholinium-Acetonitril-Methylsulfat (MMA), sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaace- tylglukose (PAG), Pentaacetylfructose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Hydrophil substituierte Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Klarspülerpartikel eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod- iganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Bevorzugt werden Bleichaktivatoren aus der Gruppe der mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyioxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), vorzugsweise in Mengen bis 10 Gew.-%, insbesondere 0,1 Gew.-% bis 8 Gew.-%, besonders 2 bis 8 Gew.-% und besonders bevorzugt 2 bis 6 Gew.-% bezogen auf das gesamte Mittel, eingesetzt.
Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, bevorzugt ausgewählt aus der Gruppe der Mangan und/oder Cobalt- salze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Co- balt(acetat)-Komplexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans, des Mangansulfats werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 5 Gew.-%, insbesondere von 0,0025 Gew.-% bis 1 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,25 Gew.-%, jeweils bezogen auf das gesamte Mittel, eingesetzt. Aber in spezielle Fällen kann auch mehr Bleichaktivator eingesetzt werden.
Als Enzyme kommen in den erfindungsgemäßen Reinigungsmitteln insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen zur Entfernung von Anschmutzungen wie protein-, fett- oder stärkehaltigen Verfleckungen bei. Zur Bleiche können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha- Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen.
Die Enzyme können an Trägerstoffe adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,5 bis etwa 4,5 Gew.-% betragen.
Färb- und Duftstoffe können den erfindungsgemäßen maschinellen Geschirrspülmitteln zugesetzt werden, um den ästhetischen Eindruck der entstehenden Produkte zu verbessern und dem Verbraucher neben der Leistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethyl- benzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglyci- nat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-lsomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galba- numöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Die Duftstoffe können direkt in die erfindungsgemäßen Reinigungsmittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können. Auch eine Inkorporation der Duftstoffe in die erfindungsgemäßen Klar- spülerpartikel ist möglich und führt zu einem Dufteindruck beim Öffnen der Maschine (siehe o- ben).
Um den ästhetischen Eindruck der erfindungsgemäß hergestellten Mittel zu verbessern, kann es (oder Teile davon) mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber den mit den Mitteln zu behandelnden Substraten wie Glas, Keramik oder Kunststoffgeschirr, um diese nicht anzufärben.
Die erfindungsgemäßen Reinigungsmittel können zum Schütze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei besonders Silberschutzmittel im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylami- notriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochi- non, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)- Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
Die erfindungsgemäßen Mittel können direkt nach ihrer Herstellung verpackt und als teilchenför- mige Reiniger verkauft werden. Es ist aber auch möglich, die Mittel zu Reinigungsmitteltabletten oder einzelnen Phasen hiervon zu verpressen, um dem Verbraucher die kompakte Angebotsform zur Verfügung stellen zu können. Maschinelle Geschirrspülmittel, die dadurch gekennzeichnet sind, daß sie in Form einer Tablette, vorzugsweise in Form einer mehrphasigen Tablette, bei der Gehalt der einzelnen Phasen an Sulfonsäuregruppen-haltigem Copolymer unterschiedlich ist, vorliegen, sind weitere bevorzugte Ausführungsformen der vorliegenden Erfindung.
Hier sind insbesondere mehrphasige Tabletten bevorzugt, wobei den Mehrschichttabletten aufgrund ihrer relativ einfachen Herstellbarkeit besondere Bedeutung zukommt. Die einzelnen Phasen eines solchen Formkörpers können im Rahmen der vorliegenden Erfindung unterschiedliche Raumformen aufweisen. Die einfachste Realisierungsmöglichkeit liegt dabei in zwei- oder mehrschichtigen Tabletten, wobei jede Schicht des Formkörpers eine Phase darstellt. Es ist aber erfindungsgemäß auch möglich, mehrphasige Formkörper herzustellen, in denen einzelne Phasen die Form von Einlagerungen in (eine) andere Phase(n) aufweisen. Neben sogenannten "Ring-Kern- Tabletten" sind dabei beispielsweise Manteltabletten oder Kombinationen der genannten Ausführungsformen möglich.
Die erfindungsgemäßen Formkörper können jedwede geometrische Form annehmen, wobei insbesondere konkave, konvexe, bikonkave, bikonvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Formen bevorzugt sind. Auch völlig irreguläre Grundflächen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Weisen die erfindungsgemäßen Formkörper Ecken und Kanten auf, so sind diese vorzugsweise abgerundet. Als zusätzliche optische Differenzierung ist eine Ausführungsform mit abgerundeten Ecken und abgeschrägten („an- gefasten") Kanten bevorzugt.
Anstelle des Schichtaufbaus lassen sich auch Formkörper herstellen, die die Sulfonsäuregruppen-haltigen Copolymere beinhalten. Hier hat es sich bewährt, Basisformkörper herzustellen, welche eine oder mehrere Kavität(en) aufweisen und die Sulfonsäuregruppen-haltigen Copolymere entweder bereits in die Basistablette oder in eine später einzubringende „Füllung" der Kavirtät einzubringen. Durch dieses Herstellungsverfahren ergeben sich bevorzugte mehrphasige Reinigungsmittelformkörper, die aus einem Basisformkörper, welcher eine Kavität aufweist, und einem mindestens teilweise in der Kavität enthaltenen Teil bestehen.
Die Kavität im verpreßten Teil solcher erfindungsgemäßen Formkörper kann dabei jedwede Form aufweisen. Sie kann den Formkörper durchteilen, d.h. eine Öffnung an verschiedenen Seiten, beispielsweise an Ober- und Unterseite des Formkörpers aufweisen, sie kann aber auch eine nicht durch den gesamten Formkörper gehende Kavität sein, deren Öffnung nur an einer Formkörperseite sichtbar ist. Auch die Form der Kavität kann in weiten Grenzen frei gewählt werden. Aus Gründen der Verfahrensökonomie haben sich durchgehende Löcher, deren Öffnungen an einander gegenüberliegenden Flächen der Formkörper liegen, und Mulden mit einer Öffnung an einer Formkörperseite bewährt. In bevorzugten Wasch- und Reinigungsmittelformkörpern weist die Kavität die Form eines durchgehenden Loches auf, dessen Öffnungen sich an zwei gegenüberliegenden Formkörperflächen befinden. Die Form eines solchen durchgehenden Lochs kann frei gewählt werden, wobei Formkörper bevorzugt sind, in denen das durchgehende Loch kreisrunde, ellipsenförmige, dreieckige, rechteckige, quadratische, fünfeckige, sechseckige, siebeneckige oder achteckige Horizontalschnitte aufweist. Auch völlig irreguläre Lochformen wie Pfeiloder Tierformen, Bäume, Wolken usw. können realisiert werden. Wie auch bei den Formkörpern sind im Falle von eckigen Löchern solche mit abgerundeten Ecken und Kanten oder mit abgerundeten Ecken und angefasten Kanten bevorzugt.
Die vorstehend genannten geometrischen Realisierungsformen lassen sich beliebig miteinander kombinieren. So können Formkörper mit rechteckiger oder quadratischer Grundfläche und kreisrunden Löchern ebenso hergestellt werden wie runde Formkörper mit achteckigen Löchern, wobei der Vielfalt der Kombinationsmöglichkeiten keine Grenzen gesetzt sind. Aus Gründen der Verfahrensökonomie und des ästhetischen Verbraucherempfindens sind Formkörper mit Loch besonders bevorzugt, bei denen die Formkörpergrundfläche und der Lochquerschnitt die gleiche geometrische Form haben, beispielsweise Formkörper mit quadratischer Grundfläche und zentral eingearbeitetem quadratischem Loch. Besonders bevorzugt sind hierbei Ringformkörper, d.h. kreisrunde Formkörper mit kreisrundem Loch.
Wenn das o.g. Prinzip des an zwei gegenüberliegenden Formkörperseiten offenen Lochs auf eine Öffnung reduziert wird, gelangt man zu Muldenformkörpern. Erfindungsgemäße Wasch- und Reinigungsmittelformkörper, bei denen die Kavität die Form einer Mulde aufweist, sind ebenfalls bevorzugt. Wie bei den „Lochformkörpern" können die erfindungsgemäßen Formkörper auch bei dieser Ausführungsform jedwede geometrische Form annehmen, wobei insbesondere konkave, konvexe, bikonkave, bikonvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Formen bevorzugt sind. Auch völlig irreguläre Grundflächen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Weist der Formkörper Ecken und Kanten auf, so sind diese vorzugsweise abgerundet. Als zusätzliche optische Differenzierung ist eine Ausführungsform mit abgerundeten Ecken und abgeschrägten („angefasten") Kanten bevorzugt.
Auch die Form der Mulde kann frei gewählt werden, wobei Formkörper bevorzugt sind, in denen mindestens eine Mulde eine konkave, konvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Form annehmen kann. Auch völlig irreguläre Muldenformen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Wie auch bei den Formkörpern sind Mulden mit abgerundeten Ecken und Kanten oder mit abgerundeten Ecken und angefasten Kanten bevorzugt.
Die Größe der Mulde oder des durchgehenden Loches im Vergleich zum gesamten Formkörper richtet sich nach dem gewünschten Verwendungszweck der Formkörper. Je nachdem, mit wieviel weiterer Aktivsubstanz das verbleibende Hohlvolumen befüllt werden soll, kann die Größe der Kavität variieren.
Der Basisformkörper besitzt in bevorzugten Ausführungsformen der vorliegenden Erfindung ein hohes spezifisches Gewicht, beispielsweise oberhalb von 1000 kgdm"3 , vorzugsweise oberhalb von 1025 kgdm"3, besonders bevorzugt oberhalb von 1050 kgdm'3 und insbesondere oberhalb von 1100 kgdm"3.
Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbo- nat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyr- rolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate. Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Reinigungsmittelformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten.
Die erfindungsgemäßen Mittel können darüber hinaus ein gasentwickelndes Brausesystem enthalten. Das gasentwickelnde Brausesystem kann aus einer einzigen Substanz bestehen, die bei Kontakt mit Wasser ein Gas freisetzt. Unter diesen Verbindungen ist insbesondere das Magnesiumperoxid zu nennen, das bei Kontakt mit Wasser Sauerstoff freisetzt. Üblicherweise besteht das gasfreisetzende Sprudelsystem jedoch seinerseits aus mindestens zwei Bestandteilen, die miteinander unter Gasbildung reagieren. Während hier eine Vielzahl von Systemen denk- und ausführbar ist, die beispielsweise Stickstoff, Sauerstoff oder Wasserstoff freisetzen, wird sich das in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern eingesetzte Sprudelsystem sowohl anhand ökonomischer als auch anhand ökologischer Gesichtspunkte auswählen lassen. Bevorzugte Brausesysteme bestehen aus Alkalimetallcarbonat und/oder -hydrogencarbonat sowie einem Acidifizierungsmittel, das geeignet ist, aus den Alkalimetallsalzen in wäßrige Lösung Kohlendioxid freizusetzen.
Bei den Alkalimetallcarbonaten bzw. -hydrogencarbonaten sind die Natrium- und Kaliumsalze aus Kostengründen gegenüber den anderen Salzen deutlich bevorzugt. Selbstverständlich müssen nicht die betreffenden reinen Alkalimetallcarbonate bzw. -hydrogencarbonate eingesetzt werden; vielmehr können Gemische unterschiedlicher Carbonate und Hydrogencarbonate aus waschtechnischem Interesse bevorzugt sein.
In bevorzugten Reinigungsmittelformkörpern werden als Brausesystem 2 bis 20 Gew.-%, vorzugsweise 3 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% eines Alkalimetallcarbonats oder -hydrogencarbonats sowie 1 bis 15, vorzugsweise 2 bis 12 und insbesondere 3 bis 10 Gew.-% eines Acidifizierungsmittels, jeweils bezogen auf den gesamten Formkörper, eingesetzt.
Als Acidifizierungsmittel, die aus den Alkalisalzen in wäßriger Lösung Kohlendioxid freisetzen, sind beispielsweise Borsäure sowie Alkalimetallhydrogensulfate, Alkalimetalldihydro- genphosphate und andere anorganische Salze einsetzbar. Bevorzugt werden allerdings organische Acidifizierungsmittel verwendet, wobei die Citronensäure ein besonders bevorzugtes Acidifizierungsmittel ist. Einsetzbar sind aber auch insbesondere die anderen festen Mono-, Oligo- und Polycarbonsäuren. Aus dieser Gruppe wiederum bevorzugt sind Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.-%).
Bevorzugt sind im Rahmen der vorliegenden Erfindung Reingungsmittelformkörper, bei denen als Acidifizierungsmittel im Brausesystem ein Stoff aus der Gruppe der organischen Di-, Tri- und Oli- gocarbonsäuren bzw. Gemische aus diesen eingesetzt werden.
Eine weitere bevorzugte Ausführungsform der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung von maschinellen Geschirrspülmitteln, bei dem man eine feste Polymer- Zubereitungsform eines Copolymers aus
i) ungesättigten Carbonsäuren ii) Sulfonsäuregruppen-haltigen Monomeren iii) gegebenenfalls weiteren ionischen oder nichtionogenen
Monomeren mit weiteren Rohstoffen und/oder Compounds zum maschinellen Geschirrspülmittel vermischt.
Bezüglich bevorzugter chemischer bzw. physikalischer Parameter der festen Polymer- Zubereitungsform kann auf die vorstehenden Ausführungen verwiesen werden. Wie bereits weiter oben erwähnt, sind insbesondere Tabletten ein bevorzugte Ausführungsform der vorliegenden Erfindung. Ein weiterer Gegenstand betrifft daher ein Verfahren zur Herstellung von Reinigungsmitteltabletten für das maschinelle Geschirrspülen, bei dem man eine feste Polymer- Zubereitungsform eines Copolymers aus i) ungesättigten Carbonsäuren ii) Sulfonsäuregruppen-haltigen Monomeren iii) gegebenenfalls weiteren ionischen oder nichtionogenen
Monomeren mit weiteren Rohstoffen und/oder Compounds vermischt und die Mischung anschließend zu Tabletten oder Phasen hiervon verpreßt.
Unabhängig davon, ob teilchenförmige oder tablettierte Mittel hergestellt werden, sind erfindungsgemäße Verfahren bevorzugt, bei denen die Mischung aus Rohstoffen und/oder Compounds sowie fester Copolymer-Zubereitungsform, bezogen auf die Mischung, 0,1 bis 70 Gew.-%, vorzugsweise 0,25 bis 50 Gew.-%, besonders bevorzugt 0,5 bis 35 Gew.-%, ganz besonders bevorzugt 0,75 bis 20 Gew.-% und insbesondere 1 bis 15 Gew.-% an Sulfonsäuregruppen-haltigen Copolymeren enthält. Die feste Copolymer-Zubereitungsform kann aus reinem Sulfonsäuregruppen-haltigen Copolymer bestehen. Es ist aber auch möglich, erfindungsgemäß eine feste Copolymer-Zubereitungsform einzusetzen, welche neben dem Sulfonsäuregruppen-haltigen Copolymer andere Inhaltsstoffe, beispielsweise Trägerstoffe, enthält. Hier sind erfindungsgemäße Verfahren bevorzugt, bei denen die feste Copolymer-Zubereitungsform das/die Sulfonsäuregruppen-haltige(n) Copolymer(e) in Mengen von mehr als 50 Gew.-%, vorzugsweise von mehr als 60 Gew.-%, besonders bevorzugt von mehr als 75 Gew.-% und insbesondere von mehr als 80 Gew.-%, jeweils bezogen auf die feste Copolymer-Zubereitungsform, enthält.
Weitere Inhaltsstoffe in solchen festen Copolymer-Zubereitungsformen können insbesondere Trägermaterialien sein, die vorzugsweise aus der Gruppe der vorstehend beschriebenen Gerüststoffe stammen. Auch beim Einsatz einer festen Copolymer-Zubereitungsform, welche nicht ausschließlich aus Sulfonsäuregruppen-haltigen Polymeren (und Wasser) besteht, sind solche Zubereitungsformen bevorzugt, die bestimmten Kriterien hinsichtlich Partikelgröße, Wassergehalt und Schüttgewicht genügen. Für nähere Ausführungen kann hier auf die Beschreibung der erfindungsgemäßen Mittel verwiesen werden.
Zusammenfassend sind auch erfindungsgemäße Verfahren bevorzugt, bei denen mindestens 50 Gew.-%, vorzugsweise mindestens 60 Gew.-%, besonders bevorzugt mindestens 75 Gew.-% und insbesondere mindestens 90 Gew.-% der Partikel der festen Copolymer-Zubereitungsform Teilchengrößen oberhalb 200 μm aufweisen, wobei besonders bevorzugte Verfahren dadurch gekennzeichnet sind, daß maximal 20 Gew.-%, vorzugsweise maximal 15 Gew.-% und insbesondere maximal 10 Gew.-% der im Mittel enthaltenen Partikel der festen Copolymer-Zubereitungsform Teilchengrößen unterhalb 200 μm oder oberhalb 1200 μm aufweisen. Hinsichtlich des Wassergehalts sind erfindungsgemäße Verfahren bevorzugt, bei denen der Wassergehalt der Partikel der festen Copolymer-Zubereitungsform 3 bis 12 Gew.-%, vorzugsweise 4 bis 11 Gew.-% und insbesondere 5 bis 10 Gew.-%, jeweils bezogen auf die Copolymer-Partikel, beträgt.

Claims

Patentansprüche:
1. Maschinelles Geschirrspülmittel, enthaltend a) 1 bis 99,9 Gew.-% Gerüststoff(e), b) 0,1 bis 70 Gew.-% an Copolymeren aus i) ungesättigten Carbonsäuren ii) Sulfonsäuregruppen-haltigen Monomeren iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren, dadurch gekennzeichnet, daß es das Sulfonsäuregruppen-haltige Copolymer in partikulärer
Form enthält.
2. Maschinelles Geschirrspülmittel nach Anspruch 1 , dadurch gekennzeichnet, daß mindestens 50 Gew.-%, vorzugsweise mindestens 60 Gew.-%, besonders bevorzugt mindestens 75 Gew.-% und insbesondere mindestens 90 Gew.-% der im Mittel enthaltenen Partikel des Sulfonsäuregruppen-haltigen Copolymers Teilchengrößen oberhalb 200 μm aufweisen.
3. Maschinelles Geschirrspülmittel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß maximal 20 Gew.-%, vorzugsweise maximal 15 Gew.-% und insbesondere maximal 10 Gew.-% der im Mittel enthaltenen Partikel des Sulfonsäuregruppen-haltigen Copolymers Teilchengrößen unterhalb 200 μm oder oberhalb 1200 μm aufweisen.
4. Maschinelles Geschirrspülmittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Wassergehalt der im Mittel enthaltenen Partikel des Sulfonsäuregruppen-haltigen Copolymers 3 bis 12 Gew.-%, vorzugsweise 4 bis 11 Gew.-% und insbesondere 5 bis 10 Gew.-%, jeweils bezogen auf die Copolymer-Partikel, beträgt.
5. Maschinelles Geschirrspülmittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Schüttgewicht der im Mittel enthaltenen Partikel des Sulfonsäuregruppen-haltigen Copolymers 550 bis 850 g/l, vorzugsweise 570 bis 800 g/l, besonders bevorzugt 590 bis 750 g/l und insbesondere 600 bis 720 g/l, beträgt.
6. Maschinelles Geschirrspülmittel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß es das/die Sulfonsäuregruppen-haltige(n) Copolymer(e) in Mengen von 0,25 bis 50 Gew.-%, vorzugsweise von 0,5 bis 35 Gew.-%, besonders bevorzugt von 0,75 bis 20 Gew.-% und insbesondere von 1 bis 15 Gew.-% enthält.
7. Maschinelles Geschirrspülmittel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß es zusätzlich 2 bis 40 Gew.-%, vorzugsweise 3 bis 30 Gew.-% und insbesondere 5 bis 20 Gew.-% eines oder mehrerer Inhaltsstoffe mit einem Schmelz- bzw. Erweichungspunkt unterhalb von 60°C enthält, wobei nichtionische(s) Tensid(e) bevorzugt ist/sind.
8. Maschinelles Geschirrspülmittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es in Form einer Tablette, vorzugsweise in Form einer mehrphasigen Tablette, bei der Gehalt der einzelnen Phasen an Sulfonsäuregruppen-haltigem Copolymer unterschiedlich ist, vorliegt.
9. Verfahren zur Herstellung von maschinellen Geschirrspülmitteln, dadurch gekennzeichnet, daß man eine feste Polymer-Zubereitungsform eines Copolymers aus i) ungesättigten Carbonsäuren ii) Sulfonsäuregruppen-haltigen Monomeren iii) gegebenenfalls weiteren ionischen oder nichtionogenen
Monomeren mit weiteren Rohstoffen und/oder Compounds zum maschinellen Geschirrspülmittel vermischt.
10. Verfahren zur Herstellung von Reinigungsmitteltabletten für das maschinelle Geschirrspülen, dadurch gekennzeichnet, daß man eine feste Polymer-Zubereitungsform eines Copolymers aus i) ungesättigten Carbonsäuren ii) Sulfonsäuregruppen-haltigen Monomeren iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren mit weiteren Rohstoffen und/oder Compounds vermischt und die Mischung anschließend zu
Tabletten oder Phasen hiervon verpreßt.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Mischung aus Rohstoffen und/oder Compounds sowie fester Copolymer-Zubereitungsform, bezogen auf die Mischung, 0,1 bis 70 Gew.-%, vorzugsweise 0,25 bis 50 Gew.-%, besonders bevorzugt 0,5 bis 35 Gew.-%, ganz besonders bevorzugt 0,75 bis 20 Gew.-% und insbesondere 1 bis 15 Gew.- % an Sulfonsäuregruppen-haltigen Copolymeren enthält.
12. Verfahren nach einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, daß die feste Copolymer-Zubereitungsform das/die Sulfonsäuregruppen-haltige(n) Copolymer(e) in Mengen von mehr als 50 Gew.-%, vorzugsweise von mehr als 60 Gew.-%, besonders bevorzugt von mehr als 75 Gew.-% und insbesondere von mehr als 80 Gew.-%, jeweils bezogen auf die feste Copolymer-Zubereitungsform, enthält.
13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß mindestens 50 Gew.-%, vorzugsweise mindestens 60 Gew.-%, besonders bevorzugt mindestens 75 Gew.-% und insbesondere mindestens 90 Gew.-% der Partikel der festen Copolymer- Zubereitungsform Teilchengrößen oberhalb 200 μm aufweisen.
14. Verfahren nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß maximal 20 Gew.-%, vorzugsweise maximal 15 Gew.-% und insbesondere maximal 10 Gew.-% der im Mittel enthaltenen Partikel der festen Copolymer-Zubereitungsform Teilchengrößen unterhalb 200 μm oder oberhalb 1200 μm aufweisen.
15. Verfahren nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, daß der Wassergehalt der Partikel der festen Copolymer-Zubereitungsform 3 bis 12 Gew.-%, vorzugsweise 4 bis 11 Gew.-% und insbesondere 5 bis 10 Gew.-%, jeweils bezogen auf die Copolymer- Partikel, beträgt.
EP02706745A 2001-03-01 2002-02-20 "3 in 1" GESCHIRRSPÜLMITTEL UND VERFAHREN ZUR HERSTELLUNG DERSELBEN Revoked EP1363986B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10109799 2001-03-01
DE10109799A DE10109799A1 (de) 2001-03-01 2001-03-01 3in1-Geschirrspülmittel und Verfahren zur Herstellung derselben
PCT/EP2002/001757 WO2002070640A1 (de) 2001-03-01 2002-02-20 '3in1' geschirrspülmittel und verfahren zur herstellung derselben'

Publications (2)

Publication Number Publication Date
EP1363986A1 true EP1363986A1 (de) 2003-11-26
EP1363986B1 EP1363986B1 (de) 2005-12-14

Family

ID=7675893

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02706745A Revoked EP1363986B1 (de) 2001-03-01 2002-02-20 "3 in 1" GESCHIRRSPÜLMITTEL UND VERFAHREN ZUR HERSTELLUNG DERSELBEN

Country Status (6)

Country Link
US (1) US6903058B2 (de)
EP (1) EP1363986B1 (de)
AT (1) ATE312900T1 (de)
DE (2) DE10109799A1 (de)
ES (1) ES2254651T3 (de)
WO (1) WO2002070640A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196531A1 (de) 2008-12-05 2010-06-16 Dalli-Werke GmbH & Co. KG Polymer beschichtete Reinigungsmitteltablette
EP2392638A1 (de) 2010-06-04 2011-12-07 Dalli-Werke GmbH & Co. KG Partikelzusammensetzung mit geringer Hygroskopie und mit einem oder mehr aminopolycarboxylat-chelatbildenden Verbindungen
EP2392639A1 (de) 2010-06-04 2011-12-07 Dalli-Werke GmbH & Co. KG Mischung aus einem Tensid mit einer Festverbindung zur Verbesserung der Spülleistung von automatischen Geschirrspülmitteln
EP3075832A1 (de) 2015-03-30 2016-10-05 Dalli-Werke GmbH & Co. KG Mangan-aminosäure-verbindungen in reinigungszusammensetzungen

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034402B1 (en) * 2000-06-28 2006-04-25 Intel Corporation Device with segmented ball limiting metallurgy
DE10258870B4 (de) * 2002-12-17 2005-04-07 Henkel Kgaa Grossvolumige Reinigungsmittelformkörper
US20050202995A1 (en) * 2004-03-15 2005-09-15 The Procter & Gamble Company Methods of treating surfaces using surface-treating compositions containing sulfonated/carboxylated polymers
US20050202996A1 (en) * 2004-03-15 2005-09-15 The Procter & Gamble Company Surface-treating compositions containing sulfonated/carboxylated polymers
DE102004048590A1 (de) * 2004-04-27 2005-11-24 Henkel Kgaa Reinigungsmittel mit Klarspül-Sulfopolymer und einer speziellen α-Amylase
DE102004048591A1 (de) * 2004-04-27 2005-11-24 Henkel Kgaa Reinigungsmittel mit Klarspültensid und einer speziellen α-Amylase
DE102004025816A1 (de) * 2004-05-24 2005-12-22 Budich International Gmbh Maschinenreiniger, insbesondere für 3in1-Geschirrspülmaschinen
US20070015674A1 (en) 2005-06-30 2007-01-18 Xinbei Song Low phosphate automatic dishwashing detergent composition
DE102005041347A1 (de) * 2005-08-31 2007-03-01 Basf Ag Reinigungsformulierungen für die maschinelle Geschirrreinigung enthaltend hydrophil modifizierte Polycarboxylate
DE102005041349A1 (de) * 2005-08-31 2007-03-01 Basf Ag Reinigungsformulierungen für die maschinelle Geschirrreinigung enthaltend hydrophil modifizierte Polycarboxylate
US20070059402A1 (en) * 2005-09-13 2007-03-15 Cryovac, Inc. Carbon monoxide modified atmosphere packaging having a time temperature indicator
GB0522658D0 (en) 2005-11-07 2005-12-14 Reckitt Benckiser Nv Composition
GB0625586D0 (en) * 2006-12-21 2007-01-31 Reckitt Benckiser Nv Composition
DE102007006629A1 (de) * 2007-02-06 2008-08-07 Henkel Ag & Co. Kgaa Reinigungsmittel
DE102007006628A1 (de) 2007-02-06 2008-08-07 Henkel Ag & Co. Kgaa Reinigungsmittel
EP2025741B1 (de) * 2007-08-16 2012-04-18 The Procter & Gamble Company Herstellungsverfahren für eine Reinigungszusammensetzung
ES2402940T3 (es) * 2007-08-16 2013-05-10 The Procter & Gamble Company Proceso para fabricar una composición detergente
JP5503545B2 (ja) * 2007-11-09 2014-05-28 ザ プロクター アンド ギャンブル カンパニー モノカルボン酸単量体、ジカルボン酸単量体、およびスルホン酸基含有単量体を含む洗浄用組成物
CA2720346C (en) * 2008-03-31 2015-05-05 The Procter & Gamble Company Automatic dishwashing composition containing a sulfonated copolymer
GB201019988D0 (en) * 2010-11-25 2011-01-05 Reckitt Benckiser Nv Composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3711296A1 (de) * 1987-04-03 1988-10-13 Basf Ag Verwendung von alkoxylierten, carboxylgruppen enthaltenden polymerisaten in waschmitteln
DE3743739A1 (de) * 1987-12-23 1989-07-06 Basf Ag Wasserloesliche polymerisate enthaltende geschirrspuelmittel
DE4008696A1 (de) * 1990-03-17 1991-09-19 Basf Ag Verfahren zur herstellung von homo- und copolymerisaten monoethylenisch ungesaettigter dicarbonsaeuren und ihre verwendung
DE19516957C2 (de) * 1995-05-12 2000-07-13 Stockhausen Chem Fab Gmbh Wasserlösliche Copolymere und Verfahren zu ihrer Herstellung und ihre Verwendung
US6210600B1 (en) * 1996-12-23 2001-04-03 Lever Brothers Company, Division Of Conopco, Inc. Rinse aid compositions containing scale inhibiting polymers
US5958855A (en) * 1998-03-20 1999-09-28 Colgate Palmolive Company Powdered automatic dishwashing tablets
DE19934704A1 (de) * 1999-07-23 2001-01-25 Henkel Kgaa Wasch- und Reinigungsmittelformkörper mit Dispersionsmitteln
DE10032612A1 (de) 2000-07-07 2002-02-14 Henkel Kgaa Klarspülmittel II

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02070640A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196531A1 (de) 2008-12-05 2010-06-16 Dalli-Werke GmbH & Co. KG Polymer beschichtete Reinigungsmitteltablette
EP2392638A1 (de) 2010-06-04 2011-12-07 Dalli-Werke GmbH & Co. KG Partikelzusammensetzung mit geringer Hygroskopie und mit einem oder mehr aminopolycarboxylat-chelatbildenden Verbindungen
EP2392639A1 (de) 2010-06-04 2011-12-07 Dalli-Werke GmbH & Co. KG Mischung aus einem Tensid mit einer Festverbindung zur Verbesserung der Spülleistung von automatischen Geschirrspülmitteln
EP3075832A1 (de) 2015-03-30 2016-10-05 Dalli-Werke GmbH & Co. KG Mangan-aminosäure-verbindungen in reinigungszusammensetzungen

Also Published As

Publication number Publication date
DE10109799A1 (de) 2002-09-05
US6903058B2 (en) 2005-06-07
ATE312900T1 (de) 2005-12-15
US20040116319A1 (en) 2004-06-17
EP1363986B1 (de) 2005-12-14
DE50205275D1 (de) 2006-01-19
WO2002070640A1 (de) 2002-09-12
ES2254651T3 (es) 2006-06-16

Similar Documents

Publication Publication Date Title
EP1363986B1 (de) "3 in 1" GESCHIRRSPÜLMITTEL UND VERFAHREN ZUR HERSTELLUNG DERSELBEN
EP1299513B1 (de) Maschinelles geschirrspülmittel
DE19944416A1 (de) Klarspülmittel
WO2005108537A1 (de) REINIGUNGSMITTEL KLARSPÜLTENSID UND EINER SPEZIELLEN α-AMYLASE
WO2003016444A2 (de) Maschinelles geschirrspülmittel mit verbessertem glaskorrosionsschutz
DE102007019457A1 (de) Maschinengeschirrspülmittel mit ausgezeichneter Klarspülleistung
DE10032612A1 (de) Klarspülmittel II
DE10245260A1 (de) Verfahren zur Herstellung umhüllter Wasch- oder Reinigungsmittel-Portionen
EP1213344A2 (de) Maschinelle Geschirrspülmittel und Klarspüler mit Geruchsabsorber
DE19959875A1 (de) Preßverfahren für mehrphasige Formkörper
EP1409625B1 (de) Maschinelle geschirrspülmittel mit tensiden bestimmten diffusionskoeffizientens
EP1409624B1 (de) Maschinelle geschirrspülmittel mit tensiden niederer dynamischer oberflächenspannung
EP1103599A1 (de) Teilchenförmiger Klarspüler und maschinelle Geschirrspülmittel
WO2000060046A1 (de) Maschinelle geschirrspülmittel mit teilchenförmigem klarspüler
EP1340807B1 (de) Formkörper mit nachträglicher Tensiddosierung
DE20019913U1 (de) Klarspülmittel II
EP1340808B1 (de) Parfümierte Reinigungsmittelformkörper
DE10360842A1 (de) Waschmittelsystem mit verzögerter Färbemittelwirkung
DE10062007B4 (de) Feste waschaktive Zubereitung mit verbessertem Einspülverhalten
DE19957504A1 (de) Reinigungsmittelkomponente
EP1173538B1 (de) Leistungsgesteigerte reinigungsmitteltabletten für das maschinelle geschirrspülen
DE10148354B4 (de) Rückstandsfreie Waschmittel und Verfahren zu ihrer Herstellung
DE10164137A1 (de) Mittel enthaltender Formkörper mit erhöhter Lagerstabilität
EP1195429B1 (de) Maschinelles Geschirreinigungsverfahren und maschinelle Geschirrspülmittel mit verbessertem Korrosionsschutz
DE10060534A1 (de) Klarspülmittel III

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030822

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50205275

Country of ref document: DE

Date of ref document: 20060119

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060314

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060314

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060515

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060503

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2254651

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26 Opposition filed

Opponent name: DALLI-WERKE GMBH & CO. KG

Effective date: 20060913

Opponent name: ROHM AND HAAS COMPANY

Effective date: 20060911

Opponent name: RECKITT BENCKISER (UK) LIMITED

Effective date: 20060913

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20060914

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: DALLI-WERKE GMBH & CO. KG

Effective date: 20060913

Opponent name: ROHM AND HAAS COMPANY

Effective date: 20060911

Opponent name: UNILEVER N.V.

Effective date: 20060914

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20060914

Opponent name: RECKITT BENCKISER (UK) LIMITED

Effective date: 20060913

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 20060228

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20060914

Opponent name: RECKITT BENCKISER (UK) LIMITED

Effective date: 20060913

Opponent name: DALLI-WERKE GMBH & CO. KG

Effective date: 20060913

Opponent name: ROHM AND HAAS COMPANY

Effective date: 20060911

Opponent name: UNILEVER N.V.

Effective date: 20060914

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HENKEL AG & CO. KGAA

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: UNILEVER N.V.

Effective date: 20060914

Opponent name: THE PROCTER & GAMBLE COMPANY

Effective date: 20060914

Opponent name: RECKITT BENCKISER (UK) LIMITED

Effective date: 20060913

Opponent name: DALLI-WERKE GMBH & CO. KG

Effective date: 20060913

Opponent name: ROHM AND HAAS COMPANY

Effective date: 20060911

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 50205275

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 50205275

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110216

Year of fee payment: 10

Ref country code: AT

Payment date: 20110126

Year of fee payment: 10

Ref country code: IT

Payment date: 20110216

Year of fee payment: 10

Ref country code: FR

Payment date: 20110218

Year of fee payment: 10

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110315

Year of fee payment: 10

Ref country code: GB

Payment date: 20110216

Year of fee payment: 10

27W Patent revoked

Effective date: 20110427

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20110427

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 50205275

Country of ref document: DE

Effective date: 20111013