EP1360429A1 - Beschreibung - Google Patents

Beschreibung

Info

Publication number
EP1360429A1
EP1360429A1 EP02706604A EP02706604A EP1360429A1 EP 1360429 A1 EP1360429 A1 EP 1360429A1 EP 02706604 A EP02706604 A EP 02706604A EP 02706604 A EP02706604 A EP 02706604A EP 1360429 A1 EP1360429 A1 EP 1360429A1
Authority
EP
European Patent Office
Prior art keywords
brake
disc
piston
friction
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02706604A
Other languages
English (en)
French (fr)
Other versions
EP1360429B1 (de
Inventor
Dietmar Baumann
Herbert Vollert
Hanniel Schmidt
Frieder Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1360429A1 publication Critical patent/EP1360429A1/de
Application granted granted Critical
Publication of EP1360429B1 publication Critical patent/EP1360429B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/02Fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/02Fluid-pressure mechanisms
    • F16D2125/10Plural pistons interacting by fluid pressure, e.g. hydraulic force amplifiers using different sized pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/40Screw-and-nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2127/00Auxiliary mechanisms
    • F16D2127/08Self-amplifying or de-amplifying mechanisms

Definitions

  • the invention relates to a disc brake according to the preamble of claim 1.
  • disc brakes are actuated hydraulically. They have a brake caliper in which two friction brake linings lie on both sides of a brake disk arranged between them.
  • a hydraulically actuated friction brake lining piston is slidably received transversely to the brake disk, with which a friction brake lining can be pressed against the brake disk.
  • the other friction brake lining can also be pressed against the other side of the brake disc by a friction brake lining piston (so-called fixed caliper).
  • fixed caliper friction brake lining piston
  • a number of electromechanically actuated disc brakes are also known, in which a friction brake lining can be pressed against a brake disc by means of an electric motor via a rotation / translation conversion gear.
  • An example of such an electromechanically actuated disc brake is disclosed in WO 96/03 301.
  • the known disc brake has an electric motor with which a friction brake lining can be pressed against a brake disc by means of a spindle drive as a rotation / translation conversion gear.
  • the electric motor and the spindle drive form an actuating device of the known disc brake, which are accommodated in a brake caliper designed as a floating caliper.
  • the known electromechanically actuated disc brakes generally have the disadvantage that they are large and heavy in comparison to hydraulically actuated disc brakes due to the electric motor and the rotary / translation conversion gear. Because of their size, the known electromechanically actuated disc brakes are difficult to accommodate within a rim of a vehicle wheel, where disc brakes are usually arranged. The high weight of the electromechanically actuated disc brakes affects driving behavior and road holding of a vehicle in particular because the disc brake is one of the so-called unsprung masses, which should be kept low for good driving behavior and good road holding. Another disadvantage of electromechanically actuated disc brakes is the high current consumption of their electric motor and the associated high load on an on-board electrical system of a vehicle equipped with the brake.
  • Brake shoe of a drum brake is known.
  • the running brake shoe a drum brake is pressed against the brake drum by the rotating brake drum! additionally pressed against the brake drum, which increases the braking force.
  • the disc brake according to the invention with the features of claim 1 has a multiple brake cylinder which is arranged on the side of the brake disc and is movable in a secant direction of the brake disc.
  • the brake cylinder can, for example, be displaceably guided in the secant direction of the brake disk by means of a sliding guide or the like. It is also possible for the brake cylinder to be rotatable about an imaginary axis of rotation which is offset radially inwards or outwards with respect to the brake cylinder.
  • the brake cylinder is movable on an arc of a circle which runs at least in one or more points in a secant direction of the brake disc and which is to be regarded as a sufficient approximation to the secant direction in the sense of the invention.
  • the brake cylinder therefore does not have to be movably guided on an imaginary straight line.
  • the term multiple brake cylinder has been chosen because the brake cylinder of the disc brake according to the invention has at least two pistons slidably received in it.
  • the multiple brake cylinder of the disc brake according to the invention has a friction brake lining piston which is displaceable transversely or at least approximately transversely to the brake disc. Hydraulic pressurization displaces the friction brake lining piston in the direction of the brake disk, as is known from hydraulically actuated disk brakes, and presses a friction brake lining arranged between it and the brake disk against the brake disk, as a result of which a braking force is generated in a manner known per se.
  • the brake cylinder of the disc brake has a brake support piston which is slidably received in the brake cylinder in one direction of movement of the brake cylinder.
  • the brake support piston is supported on a stationary abutment, for example on a brake caliper of the disc brake.
  • the friction brake lining piston and the brake support piston communicate with one another, for example, by means of a hydraulic fluid enclosed in the brake cylinder with a constant volume.
  • the disc brake To actuate the disc brake according to the invention, its brake cylinder is displaced in a direction of rotation of the brake disc and in the direction of the stationary abutment of the brake support piston.
  • the brake support piston which is supported on the abutment is displaced from the abutment into the brake cylinder which is moved towards the abutment.
  • the brake support piston displaced into the brake cylinder displaces hydraulic fluid and thereby displaces the friction brake lining piston out of the brake cylinder.
  • the friction brake lining piston is displaced in the direction of the brake disk and presses the friction brake lining arranged between it and the brake disk against the brake disk, as a result of which the friction brake lining brakes the brake disk.
  • the rotating brake disc exerts a frictional force in the secant direction on the friction brake lining pressed against it, which transmits the frictional force to the brake cylinder via the friction brake lining piston.
  • the frictional force exerted by the rotating brake disc on the friction brake lining pressed against it thus displaces the brake cylinder in the direction of the stationary abutment, which thereby presses the brake support piston more strongly into the brake cylinder.
  • the pressure force exerted by the brake support piston on the friction brake lining piston and thus the pressing force of the friction brake lining against the brake disc are increased, ie the braking force of the disc brake according to the invention is increased.
  • the invention Disc brake thus has a braking force support, the braking force generated by pressing the friction brake lining against the brake disc is only partly applied by an external actuating force with which the multiple brake cylinder is moved in the direction of the stationary abutment, and the rest is the braking force in the manner described generated by the frictional force exerted by the rotating brake disc on the friction brake pad pressed against it.
  • the braking force amplification of the disk brake according to the invention reduces an actuating force to be applied to actuate it.
  • the disk brake according to the invention can be made smaller and lighter due to its braking force amplification.
  • Another advantage of the disc brake according to the invention is an achievable increase in its dynamics, ie a reduction in the application and release time, due to the reduced actuation force and the possible reduction in its weight.
  • the multiple brake cylinder of the disc brake according to the invention has two
  • Brake support pistons which are slidably received in opposite directions in the brake cylinder and which are supported against one another in opposite directions, fixed abutments.
  • Brake support pistons can be arranged coaxially in the brake cylinder, they can also be arranged laterally offset, for example next to one another. A push-out path of the two brake support pistons is limited; they cannot be moved out of the brake cylinder beyond a basic position when the disc brake is not actuated. The actuation of the
  • Disc brake is carried out as described above for claim 1 by moving the brake cylinder in the direction of rotation of the brake disc in the direction of an abutment.
  • the second brake support piston is braking not active, it remains in its basic position due to its extension path and limits the volume in the brake cylinder. If, for example, the direction of rotation of the brake disk is reversed during reverse travel, the brake cylinder is displaced in the direction of the abutment of the second brake support piston in order to actuate the disk brake. This direction of displacement is due to the reverse direction of rotation of the brake disc its direction of rotation.
  • the disc brake according to the invention has braking force support for both directions of the brake disc, the disc brake being independent of the direction of rotation.
  • the braking force support can be selected differently for the two directions of rotation of the brake disc by selecting piston surfaces of different sizes for the brake support pistons. Due to the piston surfaces of the two brake support pistons having the same size, the braking force support of the disc brake according to the invention is the same for both directions of rotation of the brake disc (claim 3).
  • the height of the braking force assistance can be selected by selecting piston areas of the brake assistance piston and the friction brake lining piston that are different or of the same size (claim 4). According to claim 5, the piston area of the brake support piston is smaller than the piston area of the friction brake lining piston, as a result of which the brake force support increases.
  • the disc brake according to the invention is provided in particular for electromechanical actuation by means of an electric motor (claim 7). Due to the brake force support, a small and light electric motor with low moving masses can be selected. Likewise, a rotary / translational conversion gear can be of light construction.
  • the braking force support of the disc brake according to the invention enables a reduction in the movable masses available for its actuation, the disc brake thereby having increased dynamics. Furthermore, a comparatively weak electric motor is sufficient, which has a reduced current consumption and reduces an electrical system of a vehicle equipped with the disc brake according to the invention.
  • claim 8 provides an elastic mass that transmits the movement of the brake assist piston to the friction brake lining piston.
  • An elastic mass has the advantage that there is no need to seal the pistons and that there is no fear of loss of hydraulic fluid.
  • the invention is explained in more detail below with reference to an embodiment shown in the drawing.
  • the single figure shows a disc brake according to the invention in a sectional view looking radially from the outside onto a brake disc.
  • the drawing is to be understood as a schematic and simplified representation.
  • the disk brake 10 according to the invention shown in the drawing has a brake caliper 12 in which two friction brake pads 16, 18 lie on both sides of a brake disk 20 arranged between them.
  • the brake caliper 12 is designed as a so-called floating caliper, it is displaceable transversely to the brake disc 20.
  • the friction brake pad 16 shown on the left in the drawing is fixed recorded in the brake caliper 12, the friction brake pad 18 shown on the right in the drawing is movable. Due to the sectional view, the brake caliper 12 appears in two parts. In fact, the brake caliper is in one piece, it overlaps the brake disc 20 on its circumference.
  • the movable friction brake lining 18 has a friction brake lining piston 22 which is accommodated in a multiple brake cylinder 24 so as to be displaceable transversely to the brake disk 20.
  • the multiple brake cylinder 24 has two brake support pistons 26 which are arranged in the brake cylinder 24 opposite one another on the same axis. The two brake support pistons 26 are slidably received in the brake cylinder 24 transversely to the friction brake lining piston 22 and thus parallel to the brake disc 20.
  • the Bremsunterstutzungskolben 26 are shown in the drawing in their basic position at 'dissolved disc brake 10th
  • the brake support pistons 26 communicate with the friction brake lining piston 22 by means of a hydraulic fluid (brake fluid) 30.
  • the hydraulic fluid 30 is enclosed with a limited and fixed volume in the multiple brake cylinder 24 between the pistons 22, 26.
  • the brake support pistons 26 have a smaller diameter than the friction brake lining piston 22 and thus have smaller piston areas. As a result, there is a force transmission from the brake support piston 26 to the friction brake lining piston 22.
  • the friction brake lining piston 22 has a return spring 32.
  • this is designed as a helical tension spring, it is arranged in the brake cylinder 24 and has one end in the friction brake lining piston 22 and another end on Brake cylinder 24 hooked.
  • the return spring 32 lifts the friction brake lining 18 from the brake disk 20 when the disk brake 10 is not actuated.
  • the brake support pistons 26 On their outer sides, the brake support pistons 26 have rollers 34 with which they are supported on an inner side of the brake caliper 12.
  • the brake caliper 12 forms a stationary abutment 36 for the brake support pistons 26, the abutments 36 of the two brake support pistons 26 facing each other and thus facing each other.
  • the two brake support pistons 26 can be moved towards one another and thus in opposite directions in the brake cylinder 24.
  • the multiple brake cylinder 24 is arranged on a side of the movable friction brake lining 18 facing away from the brake disk 20 and thus on the side of the brake disk 20.
  • the brake cylinder 24 is slidably and thus in the same direction as the Bremsunterstutzungskolben 26 parallel to the brake disc 20 and in a secant direction of the brake disc 20 in the 'caliper 12th
  • the brake cylinder 24 is supported by rollers 38 against an inside of the brake caliper 12.
  • the brake cylinder 24 is penetrated by a spindle 40 which can be driven in rotation with an electric motor 42 flanged on the outside of the brake caliper 12.
  • the spindle 40 is arranged parallel to the brake disc 20 and in the direction of displacement of the brake cylinder 24.
  • a nut 44 is placed on the spindle 40, via which the actuating force can be transmitted axially to the brake cylinder 24.
  • the nut 44 is secured against rotation in a recess in the brake cylinder 24.
  • the spindle 40 and the nut 44 form a spindle drive 40, 44, via which the brake cylinder 24 can be displaced in parallel and in a secant direction to the brake disk 20 by means of the electric motor 42.
  • the brake disk 20 rotates in the direction of the arrow 46, ie downward in the drawing.
  • the multiple brake cylinder 24 is displaced in the direction of rotation of the brake disc 20 by energizing its electric motor 42 via the spindle drive 40, 44.
  • the brake cylinder 24 is thus shifted downward in the drawing.
  • the front brake support piston 26, which is supported on its abutment 36, is displaced into the brake cylinder 24 by the displacement of the brake cylinder 24 and displaces hydraulic fluid.
  • the other brake support piston 26 is prevented from moving out of the brake cylinder 24 by its extension path 28 and therefore does not move 1 in the brake cylinder 24. Due to its displacement, the brake support piston 26 in the displacement direction of the brake cylinder 24 displaces hydraulic fluid in the direction of the friction brake lining piston 22 which is thereby displaced out of the brake cylinder 24 in the direction of the brake disc 20. The friction brake lining piston 22 presses the movable friction brake lining 18 against the side of the brake disk 20 facing it.
  • the movable friction brake lining 18 resting on the brake disk 20 displaces the brake caliper 12 designed as a floating caliper transversely to the brake disk 20 and the brake caliper 12 presses the fixed one Friction brake pad 16 against the other side of the brake disc 20.
  • the brake disc 20 is braked.
  • the rotating brake disk 20 exerts a frictional force on the movable friction brake lining 18 pressed against it, which is directed in the direction of rotation or secant of the brake disk 20.
  • the frictional force exerted by the rotating brake disc 20 on the movable friction brake lining 18 is directed parallel to the direction of displacement of the brake cylinder 24.
  • the frictional force is from the movable friction brake pad 18 on the Friction brake lining piston 22 is transferred to the brake cylinder 24 and presses the brake cylinder 24 in addition to the force exerted on it by the spindle drive 40, 44 in the direction of the abutment 36, which is located in front of the brake cylinder 24 in the direction of rotation of the brake disc 20 and displacement direction of the brake cylinder 24.
  • the abutment 36 thereby presses the brake support piston 26, which is at the front in the displacement direction of the brake cylinder 24, into the brake cylinder 24, as a result of which a pressure of the hydraulic fluid 30 increases, which increases the pressure force of the friction brake lining 18 against the brake disc 20 via the friction brake lining piston 22.
  • the pressing force of the friction brake lining 18 against the brake disk 20 and thus a braking force of the disk brake 10 according to the invention is thus increased by the frictional force exerted by the rotating brake disk 20 on the movable friction brake lining 18 pressed against it.
  • a level of the brake force support depends, among other things, on a friction factor between the brake disc 20 and the friction brake lining 18 and on a ratio of the piston areas of the brake support piston 26 and the friction brake lining piston 22.
  • the height of the brake support can be selected by selecting the piston diameter.
  • the multiple brake cylinder 24 is actuated by energizing the electric motor 42 via the spindle drive 40, 44 in the opposite direction to the actuation of the disc brake 10 in the opposite direction as described above, i.e. again in the direction of rotation of the brake disc 20.
  • the friction brake pad 18 is pressed on and the brake support is carried out in the same way as described above, but the other is effective Brake support piston 26, which is now located in the direction of displacement of the brake cylinder 24 at the front.
  • the brake support is therefore independent of a direction of rotation of the brake disc 20. Different diameters of the two brake support pistons 26 allow a different level of brake support to be selected for the two directions of rotation of the brake disc 20, that is to say, for example, a different level of brake support for forward and reverse travel.
  • the multiple brake cylinder 24 of the disc brake 10 can contain an elastic mass which transmits a pressure f exerted by one of the two brake support pistons 26 when the brake cylinder 24 is displaced to the friction brake lining piston 22.
  • elastic masses are silicone, elastomer or EPDM (ethylene-propylene-diene elastomer).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

Die Erfindung betrifft eine elektromechanische Scheibenbremse (10). Zur Erzielung einer Bremsunterstützung schlägt die Erfindung vor, die Scheibenbremse (10) mit einem Mehrfach-Bremszylinder (24) auszubilden, der in einer Sekantenrichtung einer Bremsscheibe (20) verschieblich ist und der einen Reibbremsbelagkolben (22), der quer zur bremsscheibe (20) verschieblich ist, sowie zwei einander gegenüberliegend angeordnete Bremsunterstützungskolben (26), die parallel zur Bremsscheibe (20) verschieblich sind, aufweist die sich an ortsfesten Widerlagern (36), beispielsweise einer Innenseite eines Bremssattels (12) der Scheibenbremse (10) abstützen. Zum Betätigen der Scheibenbremse (10) wird der Mehrfach-Bremszylinder (24) in Drehrichtung (46) der Bremsscheibe (20) verschoben, wodurch der in Verschieberichtung vordere Bremsunterstützungskolben (26) in den Bremszylinder (24) einfährt und über den Reibbremsbelagkolben (22) den Reibbremsbelag (18) gegen die Bremsscheibe (20) drückt. Eine von der drehenden Bremsscheibe (20) auf den Reibbremsbelag (18) ausgeübte Reibungskraft drückt den Mehrfach-Bremszylinder (24) zusätzlich in seiner Verschieberichtung und verstärkt dadurch einen vom Bremsunterstützungskolben (26) auf den Reibbremsbelagkolben (22) ausgeübten Druck, wodurch sich die Bremskraft erhöht.

Description

Scheibenbremse
Beschreibung
Stand der Technik
Die Erfindung betrifft eine Scheibenbremse gemäß dem Oberbegriff des Anspruchs 1.
Herkömmliche und jedenfalls derzeit üblicherweise verwendete Scheibenbremsen sind hydraulisch betätigt. Sie weisen einen Bremssattel auf, in dem zwei Reibbremsbeläge beiderseits einer zwischen ihnen angeordneten Bremsscheibe einliegen. Im Bremssattel ist ein hydraulisch beaufschlagbarer Reibbremsbelagkolben quer zur Bremsscheibe verschieblich aufgenommen, mit dem ein Reibbremsbelag gegen die Bremsscheibe drückbar ist. Der andere Reibbremsbelag kann ebenfalls durch einen Reibbremsbelagkolben gegen die andere Seite der Bremsscheibe drückbar sein (sog. Festsattel). Auch ist es bekannt, den Bremssattel als sog. Schwimmsattel quer zur Bremsscheibe verschieblich auszubilden. Durch Andrücken des einen Reibbremsbelags gegen die eine Seite der Bremsscheibe wird der Bremssattel quer zur Bremsscheibe verschoben und drückt den anderen Reibbremsbelag gegen die andere Seite der Bremsscheibe. Durch das Andrücken der beiden Reibbremsbeläge wird die Bremsscheibe gebremst.
Auch ist inzwischen eine Anzahl elektromechanisch betätigter Scheibenbremsen bekannt, bei denen ein Reibbremsbelag mittels eines Elektromotors über ein Rotations/Translations-Umsetzungsgetriebe gegen eine Bremsscheibe drückbar ist. Ein Beispiel einer solchen elektromechanisch betätigten Scheibenbremse ist in der WO 96/03 301 offenbart. Die bekannte Scheibenbremse weist einen Elektromotor auf, mit dem über einen Spindeltrieb als Rotations/Translations- Umsetzungsgetriebe ein Reibbremsbelag gegen eine Bremsscheibe drückbar ist. Der Elektromotor und der Spindeltrieb bilden eine Betätigungseinrichtung der bekannten Scheibenbremse, die in einem als Schwimmsattel ausgebildeten Bremssattel untergebracht sind. Die bekannten elektromechanisch betätigten Scheibenbremsen haben allgemein den Nachteil, dass sie im Vergleich mit hydraulisch betätigten Scheibenbremsen auf Grund des Elektromotors und des Rotations/Translations-Umsetzungsgetriebes groß bauen und schwer sind. Auf Grund ihrer Größe sind die bekannten elektromechanisch betätigten Scheibenbremsen schlecht innerhalb einer Felge eines Fahrzeugrades unterbringbar, wo Scheibenbremsen üblicherweise angeordnet sind. Das hohe Gewicht der elektromechanisch betätigten Scheibenbremsen beeinträchtigt Fahrverhalten und Straßenlage eines Fahrzeugs insbesondere deshalb, weil die Scheibenbremse zu den sog. ungefederten Massen zählt, die für ein gutes Fahrverhalten und eine gute Straßenlage niedrig gehalten werden sollen. Weiter Nachteil elektromechanisch betätigter Scheibenbremsen ist eine hohe Stromaufnahme ihres Elektromotors und eine damit verbundene hohe Belastung eines elektrischen Bordnetzes eines mit der Bremse ausgerüsteten Fahrzeugs.
Den bekannten hydraulisch und elektromechanisch betätigten Scheibenbremsen gemeinsam ist der Nachteil, dass sie keine Bremskraftunterstützung aufweisen, vergleichbar der Bremskraftuπterstützung, wie sie von der sog. auflaufenden
Bremsbacke einer Trommelbremse bekannt ist. Die auflaufende Bremsbacke einer Trommelbremse wird beim Andrücken gegen die Bremstrommel von der drehenden Bremstromme! zusätzlich gegen die Bremstrommel gedrückt, wodurch sich die Bremskraft erhöht.
Vorteile der Erfindung
Die erfindungsgemäße Scheibenbremse mit den Merkmalen des Anspruch 1 weist einen Mehrfach-Bremszylinder auf, der seitlich der Bremsscheibe angeordnet und in einer Sekantenrichtung der Bremsscheibe beweglich ist. Der Bremszylinder kann beispielsweise mittels einer Schiebeführung oder dgl. in der Sekantenrichtung der Bremsscheibe verschiebbar geführt sein. Ebenso ist es möglich, denn Bremszylinder drehbar um eine gedachte Drehachse zu lagern, die bezüglich des Bremszylinders radial nach innen oder nach außen versetzt ist. Durch eine solche Drehlagerung ist der Bremszylinder auf einer Kreisbogenbahn beweglich, die zumindest in einem oder mehreren Punkten in einer Sekantenrichtung der Bremsscheibe verläuft und die als ausreichende Annäherung an die Sekantenrichtung im Sinne der Erfindung angesehen werden soll. Der Bremszylinder muss also nicht auf einer gedachten Geraden beweglich geführt sein.
Der Begriff Mehrfach-Bremszylinder ist gewählt worden, weil der Bremszylinder der erfindungsgemäßen Scheibenbremse mindestens zwei in ihm verschieblich aufgenommene Kolben aufweist. Der Mehrfach-Bremszylinder der erfindungsgemäßen Scheibenbremse weist einen Reibbremsbelagkolben auf, der quer oder zumindest näherungsweise quer zur Bremsscheibe verschieblich ist. Durch eine hydraulische Druckbeaufschlagung wird der Reibbremsbelagkolben wie von hydraulisch betätigten Scheibenbremsen bekannt in Richtung der Bremsscheibe verschoben und drückt einen zwischen ihm und der Bremsscheibe angeordneten Reibbremsbelag gegen die Bremsscheibe, wodurch in an sich bekannter Weise eine Bremskraft erzeugt wird. Außer dem Reibbremsbelagkolben weist der Bremszylinder der erfindungsgemäßen Scheibenbremse einen Bremsunterstutzungskolben auf, der in einer Bewegungsrichtung des Bremszylinders verschieblich im Bremszylinder aufgenommen ist. Der Bremsunterstutzungskolben stützt sich an einem ortsfesten Widerlager, beispielsweise an einem Bremssattel der Scheibenbremse ab. Der Reibbremsbelagkolben und der Bremsunterstutzungskolben kommunizieren miteinander beispielsweise durch eine im Bremszylinder mit konstantem Volumen eingeschlossene Hydraulikflüssigkeit.
Zum Betätigen der erfindungsgemäßen Scheibenbremse wird deren Bremszylinder in einer Drehrichtung der Bremsscheibe und in Richtung des ortsfesten Widerlagers des Bremsunterstutzungskolben verschoben. Der sich an dem Widerlager abstützende Bremsunterstutzungskolben wird vom Widerlager in den auf das Widerlager zu bewegten Bremszylinder verschoben. Der in den Bremszylinder hinein verschobene Bremsunterstutzungskolben verdrängt Hydraulikflüssigkeit und verschiebt dadurch den Reibbremsbelagkolben aus dem Bremszylinder heraus. Der Reibbremsbelagkolben wird in Richtung der Bremsscheibe verschoben und drückt den zwischen ihm und der Bremsscheibe angeordneten Reibbremsbelag gegen die Bremsscheibe, wodurch der Reibbremsbelag die Bremsscheibe bremst.
Die drehende Bremsscheibe übt eine Reibungskraft in Sekantenrichtung auf den gegen sie gedrückten Reibbremsbelag aus, der die Reibungskraft über den Reibbremsbelagkolben auf den Bremszylinder überträgt. Die von der drehenden Bremsscheibe auf den gegen sie gedrückten Reibbremsbelag ausgeübte Reibungskraft verschiebt also den Bremszylinder in Richtung des ortsfesten Widerlagers, das dadurch den Bremsunterstutzungskolben stärker in den Bremszylinder hinein drückt. Die vom Bremsunterstutzungskolben auf den Reibbremsbelagkolben ausgeübte Druckkraft und damit die Andruckkraft des Reibbremsbelags gegen die Bremsscheibe werden erhöht, d.h. die Bremskraft der erfindungsgemäßen Scheibenbremse wird vergrößert. Die erfindungsgemäße Scheibenbremse weist somit eine Bremskraftunterstützung auf, die durch Andrücken des Reibbremsbelags gegen die Bremsscheibe erzeugte Bremskraft wird nur zum Teil durch eine äußere Betätigungskraft aufgebracht, mit der der Mehrfach-Bremszylinder in Richtung des ortsfesten Widerlagers bewegt wird, zum übrigen Teil wird die Bremskraft in beschriebener Weise durch die von der drehenden Bremsscheibe auf den gegen sie gedrückten Reibbremsbelag ausgeübte Reibungskraft erzeugt. Durch die Bremskraftverstärkuπg der erfindungsgemäßen Scheibenbremse ist eine zu ihrer Betätigung aufzubringende Betätigungskraft verringert, des weiteren kann die erfindungsgemäße Scheibenbremse auf Grund ihrer Bremskraftverstärkung kleiner und leichter aufgebildet werden. Weiterer Vorteil der erfindungsgemäßen Scheibenbremse ist eine erreichbare Steigerung ihrer Dynamik, also einer Verkürzung der Zuspann- und Lösezeit, durch die verringerte Betätigungskraft und die mögliche Verringerung ihres Gewichts.
Die Unteransprüche haben vorteilhafte Ausgestaltungen und Weiterbildungen der im Anspruch 1 angegebenen Erfindung zum Gegenstand.
In bevorzugter Ausgestaltung gemäß Anspruch 2 weist der Mehrfach- Bremszylinder der erfindungsgemäßen Scheibenbremse zwei
Bremsunterstutzungskolben auf, die in entgegengesetzten Richtungen verschieblich im Bremszylinder aufgenommen sind und die sich aneinander entgegengerichteten ortsfesten Widerlagern abstützen. Die beiden
Bremsunterstutzungskolben können gleichachsig im Bremszylinder angeordnet sein, sie können auch seitlich versetzt beispielsweise nebeneinander angeordnet sein. Ein Ausschiebeweg der beiden Bremsunterstutzungskolben ist begrenzt, sie lassen sich nicht über eine Grundstellung bei nicht betätigter Scheibenbremse hinweg aus dem Bremszylinder heraus verschieben. Die Betätigung der
Scheibenbremse erfolgt wie vorstehend zu Anspruch 1 beschrieben durch Bewegen des Bremszylinders in Drehrichtung der Bremsscheibe in Richtung des einen Widerlagers. Der zweite Bremsunterstutzungskolben ist bei der Bremsung nicht aktiv, er verbleibt durch seine Ausschiebewegbegrenzung in seiner Grundstellung und begrenzt das Volumen im Bremszylinder. Ist beispielsweise bei Rückwärtsfahrt die Drehrichtung der Bremsscheibe umgekehrt, wird zur Betätigung der Scheibenbremse der Bremszylinder in Richtung des Widerlagers des zweiten Bremsunterstützungskolbens verschoben. Diese Verschieberichtung ist durch die umgekehrte Drehrichtung der Bremsscheibe wieder deren Drehrichtung. Die Bremsung bei umgekehrter Drehrichtung der Bremsscheibe erfolgt in gleicher, zu Anspruch 1 beschriebener Weise mit dem zweiten Bremsunterstutzungskolben, der erste Bremsunterstutzungskolben ist diesem Fall nicht aktiv, sondern liegt an seiner Ausschiebewegbegrenzung an. Durch das Vorsehen zweier, in entgegengesetzten Richtungen verschieblicher Bremsunterstutzungskolben weist die erfindungsgemäße Scheibenbremse für beide Orehrichtungen der Bremsscheibe eine Bremskraftunterstützung auf, die Scheibenbremse ist drehrichtungsunabhängig.
Die Bremskraftunterstützung kann durch Wahl unterschiedlich großer Kolbenflächen der Bremsunterstutzungskolben für die beiden Drehrichtungen der Bremsscheibe unterschiedlich gewählt sein. Durch gleich große Kolbenflächen der beiden Bremsunterstutzungskolben ist die Bremskraftunterstützung der erfindungsgemäßen Scheibenbremse für beide Drehrichtungen der Bremsscheibe gleich (Anspruch 3).
Durch Wahl unterschiedlich oder auch gleich großer Kolbenflächen des Bremsunterstützungskolbens und des Reibbremsbelagkolbens lässt sich die Höhe der Bremskraftunterstützung wählen (Anspruch 4). Gemäß Anspruch 5 ist die Kolbeπfläche des Bremsunterstützungskolbens kleiner als die Kolbenfläche des Reibbremsbelagkolbens, wodurch sich die Bremskraftunterstützung vergrößert.
Die erfindungsgemäße Scheibenbremse ist insbesondere zu einer elektro- mechanischen Betätigung mittels eines Elektromotors vorgesehen (Anspruch 7). Auf Grund der Bremskraftunterstützung kann ein klein bauender und leichter Elektromotor mit geringen bewegten Massen gewählt werden. Ebenso kann ein Rotations/Translations-Umsetzungsgetriebe leicht bauend ausgebildet sein. Die Bremskraftunterstützung der erfindungsgemäßen Scheibenbremse ermöglicht eine Verringerung der zu ihrer Betätigung vorhandenen, beweglichen Massen, die Scheibenbremse weist dadurch eine erhöhte Dynamik auf. Des weiteren genügt ein vergleichsweise leistungsschwacher Elektromotor, der eine verringerte Stromaufnahme aufweist und ein elektrisches Bordnetz eines mit der erfindungsgemäßen Scheibenbremse ausgerüsteten Fahrzeugs verringert.
Anstelle einer Hydraulikflüssigkeit sieht Anspruch 8 eine elastische Masse vor, die die Bewegung des Bremsunterstützungskolbens auf den Reibbremsbelagkolben überträgt. Eine elastische Masse hat den Vorteil, dass eine Abdichtung der Kolben entbehrlich und dass ein Verlust von Hydraulikflüssigkeit nicht zu befürchten ist.
Zeichnung
Die Erfindung wird nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Die einzige Figur zeigt eine erfindungsgemäße Scheibenbremse in Schnittdarstellung mit Blickrichtung radial von außen auf eine Bremsscheibe. Die Zeichnung ist als schematisierte und vereinfachte Darstellung zu verstehen.
Beschreibung des Ausführungsbeispiels
Die in der Zeichnung dargestellte, erfindungsgemäße Scheibenbremse 10 weist einen Bremssattel 12 auf, in dem zwei Reibbremsbeläge 16, 18 beiderseits einer zwischen ihnen angeordneten Bremsscheibe 20 einliegen. Der Bremssattel 12 ist als sog. Schwimmsattel ausgebildet, er ist quer zur Bremsscheibe 20 verschieblich. Der in der Zeichnung links dargestellte Reibbremsbelag 16 ist fest im Bremssattel 12 aufgenommen, der in der Zeichnung rechts dargestellte Reibbremsbelag 18 ist beweglich. Durch die Schnittdarstellung erscheint der Bremssattel 12 zweiteilig. Tatsächlich ist der Bremssattel einstückig, er übergreift die Bremsscheibe 20 an deren Umfang.
Der bewegliche Reibbremsbelag 18 weist einen Reibbremsbelagkolben 22 auf, der quer zur Bremsscheibe 20 verschiebbar in einem Mehrfach-Bremszylinder 24 aufgenommen ist. Der Mehrfach-Bremszylinder 24 weist außer dem Reibbremsbelagkolben 22 zwei Bremsunterstutzungskolben 26 auf, die gleichachsig einander gegenüberliegend im Bremszylinder 24 angeordnet sind. Die beiden Bremsunterstutzungskolben 26 sind quer zum Reibbremsbelagkolben 22 und damit parallel zur Bremsscheibe 20 verschieblich im Bremszylinder 24 aufgenommen. Eine Ausschiebewegbegrenzung' 28 in Form eines radial nach innen stehenden Ringbundes des Bremszylinders 24 auf Außenseiten der Bremsunterstutzungskolben 26 verhindert, dass sich die Bremsunterstutzungskolben 26 über eine Grundstellung' hinweg nach außen aus dem Bremszylinder 24 hinaus verschieben. Die Bremsunterstutzungskolben 26 sind in der Zeichnung in ihrer Grundstellung bei ' gelöster Scheibenbremse 10 dargestellt. Die Bremsunterstutzungskolben 26 kommunizieren mittels einer Hydraulikflüssigkeit (Bremsflüssigkeit) 30 mit dem Reibbremsbelagkolben 22. Die Hydraulikflüssigkeit 30 ist mit begrenztem und festem Volumen im Mehrfach- Bremszylinder 24 zwischen den Kolben 22, 26 eingeschlossen. Die Bremsunterstutzungskolben 26 weisen einen kleineren Durchmesser als der Reibbremsbelagkolben 22 und somit kleinere Kolbenflächen auf. Es findet dadurch eine Kraftübersetzung von den Bremsunterstutzungskolben 26 zum Reibbremsbelagkolben 22 statt.
Der Reibbremsbelagkolben 22 weist eine Rückstellfeder 32 auf. Diese ist im dargestellten und beschriebenen Ausführungsbeispiel der Erfindung als Schraubenzugfeder ausgebildet, sie ist im Bremszylinder 24 angeordnet und mit einem Ende in den Reibbremsbelagkolben 22 und mit einem anderen Ende am Bremszylinder 24 eingehängt. Die Rückstellfeder 32 hebt den Reibbremsbelag 18 bei nicht betätigter Scheibenbremse 10 von der Bremsscheibe 20 ab.
An ihren Außenseiten weisen die Bremsunterstutzungskolben 26 Rollen 34 auf, mit denen sie sich an einer Innenseite des Bremssattels 12 abstützen. Der Bremssattel 12 bildet ein ortsfestes Widerlager 36 für die Bremsunterstutzungskolben 26, wobei die Widerlager 36 der beiden Bremsunterstutzungskolben 26 einander zugewandt und damit einander entgegen gerichtet sind. Die beiden Bremsunterstutzungskolben 26 sind auf einander .zu und damit in entgegengesetzten Richtungen im Bremszylinder 24 verschieblich.
Der Mehrfach-Bremszylinder 24 ist auf einer der Bremsscheibe 20 abgewandten Seite des beweglichen Reibbremsbelags 18 und damit seitlich der Bremsscheibe 20 abgeordnet. Der Bremszylinder 24 ist in der gleichen Richtung wie die Bremsunterstutzungskolben 26 und damit parallel zur Bremsscheibe 20 und in einer Sekantenrichtung zur Bremsscheibe 20 im ' Bremssattel 12 verschieblich. Auf einer der Bremsscheibe 20 abgewandten-' Rückseite stützt sich der Bremszylinder 24 über Rollen 38 gegen eine Innenseite des Bremssattels 12 ab.
Der Bremszylinder 24 wird von einer Spindel 40 durchsetzt, die mit einem außen am Bremssattel 12 angeflanschten Elektromotor 42 rotierend antreibbar ist. Die Spindel 40 ist parallel zur Bremsscheibe 20 und in Verschieberichtung des Bremszylinders 24 angeordnet. Auf die Spindel 40 ist eine Mutter 44 aufgesetzt über die die Betätigungskraft axial auf den Bremszylinder 24 übertragen werden kann. Die Mutter 44 liegt verdrehgesichert in einer Aussparung des Bremszylinders 24 ein. Die Spindel 40 und die Mutter 44 bilden einen Spindeltrieb 40,44, über den mittels des Elektromotors 42 der Bremszylinder 24 parallel und in einer Sekantenrichtung zur Bremsscheibe 20 verschiebbar ist. Zur Erläuterung der Funktion der erfindungsgemäßen Scheibenbremse 10 wird nachfolgend angenommen, dass sich die Bremsscheibe 20 in Richtung des Pfeils 46, d.h. in der Zeichnung nach unten, dreht. Zum Betätigen der Scheibenbremse 10 wird durch Bestromen ihres Elektromotors 42 über den Spindeltrieb 40, 44 der Mehrfach-Bremszylinder 24 in Drehrichtung der Bremsscheibe 20 verschoben. Bei der angenommenen Drehrichtung der Bremsscheibe 20 in Richtung des Pfeils 46 wird der Bremszylinder 24 in der Zeichnung also nach unten verschoben. Der in Verschieberichtung des Bremszylinders 24 vordere Bremsunterstutzungskolben 26, der sich an seinem Widerlager 36 abstützt, wird durch die Verschiebung des Bremszylinders 24 in diesen hinein verschoben und verdrängt Hydraulikflüssigkeit. Der andere Bremsunterstutzungskolben 26 wird von seiner Ausschiebewegbegrenzung 28 an einer Verschiebung aus dem Bremszylinder 24 heraus gehindert und bewegt sich1 infolge dessen nicht im Bremszylinder 24. Durch seine Verschiebung verdrängt der in Ver- Schieberichtung des Bremszylinders 24 vordere Bremsunterstutzungskolben 26 Hydraulikflüssigkeit in Richtung des Reibbremsbelagkolbens 22, der dadurch in Richtung der .Bremsscheibe 20 aus dem Bremszylinder 24 heraus verschoben wird. Dabei drückt der Reibbremsbelagkolben 22 den beweglichen Reibbremsbelag 18 gegen die ihm zugewandte Seite der Bremsscheibe 20. In an sich bekannter Weise verschiebt der an der Bremsscheibe 20 anliegende bewegliche Reibbremsbelag 18 den als Schwimmsattel ausgebildeten Bremssattel 12 quer zur Bremsscheibe 20 und der Bremssattel 12 drückt den festen Reibbremsbelag 16 gegen die andere Seite der Bremsscheibe 20. Die Bremsscheibe 20 wird gebremst.
Die drehende Bremsscheibe 20 übt eine Reibungskraft auf den gegen sie gedrückten beweglichen Reibbremsbelag 18 aus, die in Dreh- oder Sekantenrichtung der Bremsscheibe 20 gerichtet ist. Die von der drehenden Bremsscheibe 20 auf den beweglichen Reibbremsbelag 18 ausgeübte Reibungskraft ist parallel zur Verschieberichtung des Bremszylinders 24 gerichtet. Die Reibungskraft wird vom beweglichen Reibbremsbelag 18 über den Reibbremsbelagkolben 22 auf den Bremszylinder 24 übertragen und drückt den Bremszylinder 24 zusätzlich zu der vom Spindeltrieb 40, 44 auf ihn ausgeübten Kraft in Richtung des Widerlagers 36, das sich in Drehrichtung der Bremsscheibe 20 und Verschieberichtuπg des Bremszylinders 24 vor dem Bremszylinder 24 befindet. Das Widerlager 36 drückt dadurch den in Verschieberichtung des Bremszylinder 24 vorderen Bremsunterstutzungskolben 26 stärker in den Bremszylinder 24 hinein, wodurch sich ein Druck der Hydraulikflüssigkeit 30 erhöht, der über den Reibbremsbelagkolben 22 die Andruckkraft des Reibbremsbeiags 18 gegen die Bremsscheibe 20 vergrößert. Die Andruckkraft des Reibbremsbelags 18 gegen die Bremsscheibe 20 und damit eine Bremskraft der erfindungsgemäßen Scheibenbremse 10 wird also durch die von der drehenden Bremsscheibe 20 auf den gegen sie gedrückten beweglichen Reibbremsbelag 18 ausgeübte Reibungskraft vergrößert. Die Andruckkraft des Reibbremsbelags 18 gegen die Bremsscheibe 20 wird infolgedessen nur teilweise vom Elektromotor 42 über den Spindeltrieb 40, 44 und zum übrigen Teil durch die von der drehenden Bremsscheibe 20 auf den gegen sie gedrückten beweglichen Reibbremsbelag 18 ausgeübten ' Reibungskraft aufgebracht, die erfindungsgemäße Scheibenbremse 10 weist folglich eine Bremskraftunterstützung auf. Eine Höhe der Bremskraftunterstützung ist abhängig unter anderem von einem Reibfaktor zwischen der Bremsscheibe 20 und dem Reibbremsbelag 18 und von einem Verhältnis der Kolbenflächen der Bremsunterstutzungskolben 26 und des Reibbremsbelagkolbens 22. Durch Wahl der Kolbendurchmesser lässt sich die Höhe der Bremsunterstützung wählen.
Dreht die Bremsscheibe 20 in entgegengesetzter Richtung (Rückwärtsfahrt), wird zur Betätigung der Scheibenbremse 10 der Mehrfach-Bremszylinder 24 durch Bestromen des Elektromotors 42 über den Spindeltrieb 40, 44 in entgegengesetzter Richtung wie vorstehend beschrieben, also wieder in Drehrichtung der Bremsscheibe 20 verschoben. Das Andrücken des Reibbremsbelags 18 und die Bremsunterstützung erfolgen in gleicher Weise wie vorstehend beschrieben, wirksam ist allerdings der andere Bremsunterstutzungskolben 26, der sich nunmehr in Verschieberichtung des Bremszylinders 24 vorn befindet. Die Bremsunterstützung ist dadurch unabhängig von einer Drehrichtung der Bremsscheibe 20. Durch unterschiedliche Durchmesser der beiden Bremsunterstutzungskolben 26 kann eine unterschiedliche hohe Bremsunterstützung für die beiden Drehrichtungen der Bremsscheibe 20, also beispielsweise eine unterschiedlich hohe Bremsunterstützung für Vorwärts- und Rückwärtsfahrt gewählt werden.
Anstatt der Hydraulikflüssigkeit 30 kann der Mehrfach-Bremszylinder 24 der erfindungsgemäßen Scheibenbremse 10 eine elastische Masse enthalten, die einen von einem der beiden Bremsunterstutzungskolben 26 beim Verschieben des Bremszylinders 24 ausgeübten Druck fauf den Reibbremsbelagkolbeπ 22 überträgt. Beispiele für solche elastische Massen sind Silicon, Elastomer oder EPDM (Ethylen-Propylen-Dien-Elastomer).

Claims

Patentansprüche
1. Scheibenbremse, mit einem Reibbremsbelag, der gegen eine Bremsscheibe drückbar ist, dadurch gekennzeichnet, dass die
Scheibenbremse (10) einen Mehrfach-Bremszylinder (24) aufweist, der seitlich der Bremsscheibe (20) angeordnet und der in einer Sekantenrichtung der Bremsscheibe (20) beweglich ist, dass in dem Bremszylinder (24) ein Reibbremsbelagkolben (22) quer zur Bremsscheibe (20) verschieblich aufgenommen ist, mit dem der Reibbremsbelag (18) gegen die Bremsscheibe (20) drückbar ist, dass in dem Bremszylinder (24) ein Bremsunterstutzungskolben (26) in Bewegungsrichtung des Bremszylinders (24) verschieblich aufgenommen ist, der sich an einem ortsfesten Widerlager (28) abstützt, und dass der Reibbremsbelagkolben (22) und der Bremsunterstutzungskolben (26) miteinander kommunizieren.
2. Scheibenbremse nach Anspruch 1 , dadurch gekennzeichnet, dass der Bremszylinder (24) zwei Bremsunterstutzungskolben (26) aufweist, die in entgegengesetzten Richtungen verschieblich im Bremszylinder (24) aufgenommen sind und die sich an einander entgegengerichteten
Widerlagern (36) abstützen, und dass die beiden Bremsunterstutzungskolben (26) eine Ausschiebewegbegrenzung (28) aufweisen.
3. Scheibenbremse nach Anspruch 2, dadurch gekennzeichnet, dass die Bremsunterstutzungskolben (26) gleich große Kolbenflächen aufweisen.
4. Scheibenbremse nach Anspruch 1 , dadurch gekennzeichnet, dass der Bremsunterstutzungskolben (26) eine Kolbenfläche anderer Größe als der
Reibbremsbelagkolben (22) aufweist.
5. Scheibenbremse nach Anspruch 4, dadurch gekennzeichnet, dass die Kolbenfläche des Bremsunterstützungskolbens (26) kleiner als die Kolbenfläche des Reibbremsbelagkolbens (22) ist.
6. Scheibenbremse nach Anspruch 1, dadurch gekennzeichnet, dass die Scheibenbremse (10) eine Rückstellfeder (32) für den Reibbremsbelagkolben (22) aufweist.
7. Scheibenbremse nach Anspruch 1 , dadurch gekennzeichnet, dass die Scheibenbremse (10) einen Elektromotor (42) zum Bewegen des Bremszylinders (24) in der Sekantenrichtung der Bremsscheibe (20) aufweist.
8. Scheibenbremse nach Anspruch 1 , dadurch gekennzeichnet, dass der Bremszylinder (24) eine elastische Masse anstelle einer Hydraulikflüssigkeit aufweist.
EP02706604A 2001-02-07 2002-01-19 Scheibenbremse Expired - Lifetime EP1360429B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10105540A DE10105540A1 (de) 2001-02-07 2001-02-07 Scheibenbremse
DE10105540 2001-02-07
PCT/DE2002/000162 WO2002063177A1 (de) 2001-02-07 2002-01-19 Beschreibung

Publications (2)

Publication Number Publication Date
EP1360429A1 true EP1360429A1 (de) 2003-11-12
EP1360429B1 EP1360429B1 (de) 2004-10-13

Family

ID=7673164

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02706604A Expired - Lifetime EP1360429B1 (de) 2001-02-07 2002-01-19 Scheibenbremse

Country Status (5)

Country Link
US (1) US6926126B2 (de)
EP (1) EP1360429B1 (de)
JP (1) JP4170761B2 (de)
DE (2) DE10105540A1 (de)
WO (1) WO2002063177A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7730965B2 (en) 2002-12-13 2010-06-08 Weatherford/Lamb, Inc. Retractable joint and cementing shoe for use in completing a wellbore
US7938201B2 (en) 2002-12-13 2011-05-10 Weatherford/Lamb, Inc. Deep water drilling with casing
USRE42877E1 (en) 2003-02-07 2011-11-01 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
DE10347792A1 (de) * 2003-10-14 2005-05-12 Bosch Gmbh Robert Radbremse
US20050216160A1 (en) * 2004-03-23 2005-09-29 Delphi Technologies Inc. Method for detecting electric-mechanical-brake pad drag and/or calculating actuator efficiency
DE102005049786A1 (de) * 2005-10-18 2007-04-19 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Scheibenbremse mit elektromotorischem Aktuator, vorzugsweise in selbstverstärkender Bauart
DE102008061347B3 (de) * 2008-12-10 2010-04-01 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Scheibenbremse mit elektromotorischem Aktuator in selbstverstärkender Bauart
ES2551655B1 (es) * 2015-07-10 2016-06-20 Lucio Antonio ORTEGA MORENO Mecanismo dosificador progresivo de la frenada

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1370811A (fr) * 1963-07-18 1964-08-28 Ferodo Sa Perfectionnements apportés aux freins à disque et applications analogues
US3277982A (en) * 1964-11-23 1966-10-11 Gen Motors Corp Self-energizing disc brake
FR1518748A (fr) * 1967-01-16 1968-03-29 Ferodo Sa Frein à disque et installation de freinage notamment de véhicules automobiles, comportant de tels freins
DE1808123A1 (de) * 1968-11-09 1970-05-27 Porsche Kg Selbstverstaerkende Servo-Bremseinrichtung fuer Scheibenbremsanlagen,insbesondere fuer Zweikreisscheibenbremsanlagen von Kraftfahrzeugen
SE344036B (de) * 1969-11-19 1972-03-27 E Gelhaar
FR2146160B1 (de) * 1971-07-22 1975-10-10 Millon Auguste
DE3441128A1 (de) * 1984-11-10 1986-05-15 FAG Kugelfischer Georg Schäfer KGaA, 8720 Schweinfurt Hydraulische bremsanlage mit hilfskraftunterstuetzung
DE3525007A1 (de) * 1985-07-12 1987-01-15 Knorr Bremse Ag Zuspannzylinder fuer reibungsbremsen
FR2648098A1 (fr) * 1989-06-09 1990-12-14 Mebtoul Ali Frein auto-assiste a repartition de pression independante sur chaque roue et entrainant un systeme anti-blocage en cas de necessite
US5036960A (en) * 1990-05-17 1991-08-06 General Motors Corporation Apparatus and method of automotive brake with booster piston
DE19511287B4 (de) * 1994-07-21 2004-05-06 Continental Teves Ag & Co. Ohg Elektromechanische betätigbare Scheibenbremse
DE19511811B4 (de) * 1995-03-30 2005-10-06 Lucas Industries P.L.C., Solihull Elektronisch steuerbare Bremsanlage für Landfahrzeuge und Verfahren zu deren Betrieb

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02063177A1 *

Also Published As

Publication number Publication date
DE10105540A1 (de) 2002-08-29
EP1360429B1 (de) 2004-10-13
JP4170761B2 (ja) 2008-10-22
WO2002063177A1 (de) 2002-08-15
US20040112693A1 (en) 2004-06-17
JP2004518094A (ja) 2004-06-17
DE50201287D1 (de) 2004-11-18
US6926126B2 (en) 2005-08-09

Similar Documents

Publication Publication Date Title
EP1322872B1 (de) Scheibenbremse mit verstellbarer linearführung des bremsbelags
DE102012217275A1 (de) Scheibenbremsvorrichtung
EP1337764B1 (de) Scheibenbremse mit selbstverstärkender wirkung
EP0953785A2 (de) Elektromechanische Bremse mit Selbstverstärkung
DE102020208077A1 (de) Elektrische feststellbremse mit einem eine drehmomentbegrenzungsvorrichtung umfassendes getriebe
EP1307666B1 (de) Scheibenbremse
WO2004099644A1 (de) Fahrzeugbremse und verfahren zum betätigen einer fahrzeugbremse
EP1360429B1 (de) Scheibenbremse
DE102011086152A1 (de) Bremseinrichtung
WO2007115900A1 (de) Selbstverstärkende elektromechanische teilbelagscheibenbremse
EP2002141B1 (de) Selbstverstärkende scheibenbremse und verfahren zu deren ansteuerung
DE3441128A1 (de) Hydraulische bremsanlage mit hilfskraftunterstuetzung
EP2002140B1 (de) Selbstverstärkende scheibenbremse und verfahren zu deren ansteuerung
EP0416412A1 (de) Bremse, insbesondere Scheibenbremse
DE10321159A1 (de) Scheibenbremse mit mechanischer Selbstverstärkung
DE10218112A1 (de) Fahrzeugbremse
WO2000069695A1 (de) Radantrieb für ein mobilfahrzeug
DE10104739C1 (de) Scheibenbremse
EP1920167B1 (de) Selbstverstärkende reibungsbremse
DE2322592A1 (de) Trommelbremse, insbesondere fuer kraftfahrzeuge
EP0412540B1 (de) Hydraulisch und mechanisch betätigbare Trommelbremse
DE10058042A1 (de) Radantrieb
DE3234338C2 (de)
DE19519877C1 (de) Hydraulisch betätigte Feststellbremse für Kraftfahrzeuge
DE10240592A1 (de) Schaltbare Bremse oder Kupplung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030908

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KELLER, FRIEDER

Inventor name: SCHMIDT, HANNIEL

Inventor name: VOLLERT, HERBERT

Inventor name: BAUMANN, DIETMAR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50201287

Country of ref document: DE

Date of ref document: 20041118

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050203

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090123

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130207

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50201287

Country of ref document: DE

Effective date: 20130912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140325

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50201287

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801