EP1359377B1 - brûleur catalytique - Google Patents

brûleur catalytique Download PDF

Info

Publication number
EP1359377B1
EP1359377B1 EP03100949A EP03100949A EP1359377B1 EP 1359377 B1 EP1359377 B1 EP 1359377B1 EP 03100949 A EP03100949 A EP 03100949A EP 03100949 A EP03100949 A EP 03100949A EP 1359377 B1 EP1359377 B1 EP 1359377B1
Authority
EP
European Patent Office
Prior art keywords
swirl generator
catalyst
burner
catalysts
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03100949A
Other languages
German (de)
English (en)
Other versions
EP1359377A1 (fr
Inventor
Jaan Hellat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1359377A1 publication Critical patent/EP1359377A1/fr
Application granted granted Critical
Publication of EP1359377B1 publication Critical patent/EP1359377B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/78Cooling burner parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones

Definitions

  • the invention relates to a catalytic burner on or for a combustion chamber, in particular a power plant, with the features of the preamble of claim 1.
  • a catalytic burner which has a ring-shaped arranged and flowed through in the burner operation catalyst as well as a traversed in the burner operation swirl generator.
  • the swirl generator is designed as an axial swirl generator, which is flowed through in the axial direction and thereby acts on the flow with a swirl.
  • the axial swirl generator is arranged concentrically within the catalyst so that catalyst and swirl generator are flowed through in parallel.
  • Another catalytic burner of this kind is from the EP 0 810 405 A2 known, in which the swirl generator is designed as a radial swirl generator, which between a radially outer inflow space and a radially inward lying, axially leading to the combustion chamber outflow space is arranged.
  • the swirl generator is designed as a radial swirl generator, which between a radially outer inflow space and a radially inward lying, axially leading to the combustion chamber outflow space is arranged.
  • two radial swirl generators are provided which lead to a primary combustion zone. This is followed by a secondary combustion zone, followed by a homogeneous combustion zone. Between the secondary combustion zone and the homogeneous combustion zone, a catalyst is arranged which forms a catalytic combustion zone.
  • a burner which has a radial swirl generator.
  • This has a plurality of rectilinear swirler channels, which are each inclined relative to the radial direction in the circumferential direction and connect an inflow space with a discharge space.
  • the present invention is concerned with the problem of providing for a catalytic burner of the type mentioned in an improved embodiment, in particular, the stability of the combustion in the combustion chamber is increased.
  • the invention is based on the general idea of using a radial swirl generator for impinging the burner flow with a swirl, ie a swirl generator, which is flowed through radially and thereby generates an axially emerging swirl flow.
  • a swirl generator which is flowed through radially and thereby generates an axially emerging swirl flow.
  • the flow resistance is smaller in a radial swirl generator than in one axial swirl generator. Accordingly, the burner according to the invention results in a smaller pressure drop, which is of particular advantage here, since the flow through the catalyst or catalysts is always accompanied by a pressure drop.
  • the radial swirl generator has a plurality of rectilinear swirler channels, which are each inclined relative to the radial direction in the circumferential direction and connect a radially outer inflow space with a radially inner outflow space.
  • This construction has a relatively low flow resistance.
  • the rectilinear swirl generator channels have a constant cross section along their longitudinal direction, which makes it possible, in particular, to use particularly simple and thus inexpensive catalysts in the swirl generator channels.
  • conventional monolith catalysts with straight and parallel catalyst channels or cells can be used. This makes it possible to use standard components, which is particularly inexpensive.
  • monolith catalysts it is also possible to use catalysts which are produced from zig-zag folded or wave-shaped metal sheets by multilayer folding, layering or winding.
  • the catalysts are integrated according to the invention in the radial swirl generator, resulting in a particularly compact design for the burner according to the invention.
  • a burner 1 is connected according to the invention to a combustion chamber 2, in the combustion chamber 3 in the burner operation hot combustion exhaust gases are generated, which are supplied in a preferred embodiment of a gas turbine of a power plant.
  • the burner 1 contains a catalyst arrangement 4, consisting of a plurality of catalysts 5, which are flowed through in the burner operation. Accordingly, it is a catalytic burner 1.
  • This burner 1 also contains a swirl generator 6, which is designed as a radial swirl generator, ie, the swirl generator 6 is flowed through radially, here radially from outside to inside, where it imparting a twist to the flow.
  • the radial swirl generator 6 is arranged between a radially outer inflow space 7 and a radially inner outflow space 8.
  • the swirl generator 6 and the catalyst arrangement 4 are arranged concentrically to a longitudinal axis 9 of the burner 1.
  • the outflow chamber 8 leads in the axial direction, ie parallel to the longitudinal axis 9 to the combustion chamber 2 and thus connects the outflow side of the swirl generator 6 with the combustion chamber.
  • a transition 10 between the discharge chamber 8 and the combustion chamber 3 has here a cross-sectional widening 11, which may be formed in particular jump-like.
  • this cross-sectional widening 11 the swirl flow generated in the burner 1 can practically burst open in the combustion chamber 3, whereby a first swirl system 12 is generated on the one hand in the region of the cross-sectional widening 11 and, on the other hand, a central second swirl system 13 is generated in the combustion chamber 3.
  • a central recirculation zone 14 is generated in the combustion chamber 2, which anchors and stabilizes a flame front 15 in the combustion chamber 2 in the so-called "plenum", ie in the vicinity of the burner 1.
  • the radial swirler 6 has a plurality of swirler channels 16 which are each inclined in the same manner with respect to a radial direction extending from the central longitudinal axis 9 in the circumferential direction. This orientation of the swirl generator channels 16 results in the flow through the desired swirl.
  • the swirl generator channels 16 are aligned tangentially to an outlet cross section 17, through which the gas flow from the outflow chamber 8 enters the combustion chamber 3.
  • the swirl generator channels 16 are rectilinear and formed with a constant in their longitudinal direction cross-section.
  • the individual catalysts 5 consist of ceramic monoliths, which are catalytically coated in a suitable manner. It is likewise possible to build up the catalysts 5 by means of a stack or a winding of corrugated or zig-zag-folded sheet metal webs, which are likewise activated catalytically by a suitable coating.
  • the catalysts 5 each contain a plurality of unspecified catalyst channels, each parallel to and parallel to the swirl generator channels 16.
  • the catalysts 5 or the catalyst arrangement 4 are integrated into the swirl generator 6. Of particular importance is that in this structure, the guided through the catalysts 5 flow is applied simultaneously with the desired twist.
  • the design of the burner 1 is carried out so that in the burner operation, at least in the outflow chamber 8, the flow velocity is greater than a turbulent flame velocity with which the flame front 15 would like to spread to the burner 1.
  • the burner 1 is designed so that in burner operation, a residence time of the flow in the discharge chamber 8 is smaller than a time delay until the self-ignition of the flowing into the outflow chamber 8, partially reacted hot fuel-oxidizer mixture.
  • the hot gas generation provided for the combustion chamber 3 can be kept away from the outflow space 8.
  • the embodiment of the burner 1 shown there comprises a primary injection device 18, which has a plurality of injectors 19 which are connected to a common ring line 20 for fuel supply.
  • the ring line is supplied with fuel via a fuel supply line 25.
  • the primary injection device 18, in burner operation conducts upstream of the catalyst arrangement 4 and thus upstream of the swirl generator 6, fuel into the inflow space 7, in which the injectors 19 are arranged.
  • the primary injector 18 for each swirler channel 16 has a separate injector 19 which injects or injects the fuel directly into the respective swirl generator channel 16.
  • an inlet section 21 may be formed, which serves as a mixing space.
  • a secondary injection device 22 which serves for the introduction of fuel downstream of the catalyst arrangement 4 into the outflow space 8.
  • this secondary injection device 22 has a central, that is aligned coaxially to the longitudinal axis 9 injector 23, which is expediently designed or oriented so that it injects or injects the fuel substantially parallel to the longitudinal axis 9 in the direction of the combustion chamber 2 in the discharge chamber 8 ,
  • the secondary injection device 22 may have a plurality of injectors 23.
  • the injector or injectors 23 of the secondary injection device 22 can also be arranged eccentrically to the longitudinal axis 9.
  • a lateral injection of the secondary fuel into the outflow space 8 may be expedient.
  • the secondary injection device 22 By means of the secondary injection device 22, sufficient combustion in the combustion chamber 2 can be realized for starting the burner 1 or for transient operating states. Such a "pilot operation" is required, for example, when the catalysts 5 have not yet reached a sufficiently high operating temperature.
  • the injectors 19 introduce the fuel virtually radially into the inflow space 7 or into the inlet sections 21 of the swirl generator channels 16, respectively Fig. 5 to 8 Embodiments in which the injectors 19 inject or inject the fuel virtually axially into the inflow space 7.
  • the Fig. 5 and 7 show a nearly exclusively axial injection, while at Fig. 6 the fuel is injected inclined to the longitudinal axis, so that the introduced fuel also receives a radial component.
  • the injection takes place outside of the swirl generator channels 16, but the gas flow entering the swirl generator channels 16 entrains the fuel and deflects it into the inlet sections 21.
  • the mixing devices 24 are arranged in the inlet sections 21 of the swirl generator channels 16.
  • each catalyst 5 or each injector 19 is associated with such a mixing device 24.
  • each swirl generator channel 16 at least one catalyst 5 is arranged
  • the show FIGS. 9 and 10 an embodiment in which a catalyst 5 is arranged in the circumferential direction only in each second swirl generator channel 16.
  • overheating of the catalysts 5 or of the swirl generator 6 can likewise be avoided.
  • an embodiment which has two primary injection devices 18 and 18 ' is particularly expedient, with the first primary injection device 18 supplying fuel to those swirl generator channels 16, in each of which one of the catalysts 5 is arranged.
  • the second primary injector 18 'supplies the other swirl generator channels 16 in which no catalyst 5 is disposed.
  • the remaining fuel which is required for the after-reaction in the combustion chamber 2, can then be introduced into the other swirl generator channels 16 via the second primary injection device 18 ', bypassing the catalysts 5.
  • By the spin of the flow results in the discharge chamber 8 an intensive mixing of the partial flows before they enter together into the combustion chamber 2.
  • each second swirl generator channel 16 is equipped with a catalyst 5, in another embodiment, a different distribution of the catalysts 5 to the swirl generator channels 16 can be realized.
  • each swirl generator channel 16 two consecutively arranged catalysts 5a and 5b provided. Between the successive catalysts 5a and 5b, a mixing zone 26 may be provided.
  • the two catalysts 5a and 5b differ in their catalytic activity.
  • the upstream catalyst 5a may have a higher activity to start the combustion reaction while the downstream catalyst 5b has a lower activity to avoid overheating of the catalyst 5b.
  • a wall 27 of the discharge chamber 8 can be protected against overheating.
  • This is expediently carried out in the form of an active cooling and / or in the form of a passive thermal protection.
  • a wall 27 of the discharge chamber 8 is realized by blowing cooling gas film cooling 28 along the wall 27.
  • the thermally loaded wall 27 is provided with a heat protection layer 29, which prevents the heat arising in the outflow chamber 8 from the wall 27.
  • the embodiment according to Fig. 14 becomes the wall 27 between the swirl generator 6 and the combustion chamber 2 by means of a cooling 30 actively cooled. For example, the cooling takes place by the application of the wall 27 with cooling gas.

Claims (13)

  1. Brûleur catalytique sur une ou pour une chambre de combustion (2), notamment une centrale électrique,
    - comprenant au moins un catalyseur (5) parcouru par un écoulement pendant le fonctionnement du brûleur, et un générateur de tourbillons (6) parcouru par l'écoulement pendant le fonctionnement du brûleur,
    - le générateur de tourbillons étant réalisé sous forme de générateur de tourbillons radial (6) qui est disposé entre un espace d'afflux (7) situé radialement à l'extérieur et un espace de sortie (8) situé radialement à l'intérieur, conduisant axialement à la chambre de combustion (2),
    caractérisé en ce que
    - le générateur de tourbillons radial (6) présente plusieurs canaux générateurs de tourbillons rectilignes (16) qui sont chacun inclinés par rapport à la direction radiale dans la direction périphérique et qui relient l'espace d'afflux (7) à l'espace de sortie (8),
    - en ce qu'au moins dans certains des canaux générateurs de tourbillons (16), est disposé à chaque fois au moins un catalyseur (5).
  2. Brûleur selon la revendication 1,
    caractérisé en ce
    qu'au moins dans certains des canaux générateurs de tourbillons (16), sont disposés à chaque fois au moins deux catalyseurs (5a, 5b), qui se distinguent l'un de l'autre notamment en ce qui concerne l'activité catalytique.
  3. Brûleur selon la revendication 1 ou 2,
    caractérisé en ce que
    les catalyseurs (5 ; 5a, 5b) disposés dans les canaux générateurs de tourbillons (16) présentent à chaque fois une pluralité de canaux de catalyseur s'étendant parallèlement les uns aux autres et au canal générateur de tourbillons (16) associé.
  4. Brûleur selon la revendication 3,
    caractérisé en ce
    qu'au moins dans le cas de certains catalyseurs (5), certains des canaux de catalyseur sont réalisés de manière catalytiquement active, tandis que les autres canaux de catalyseur sont réalisés de manière catalytiquement inactive.
  5. Brûleur selon l'une quelconque des revendications 1 à 4,
    caractérisé en ce que
    pour l'introduction du carburant dans l'espace d'afflux (7) en amont du catalyseur (5) ou des catalyseurs (5), on prévoit au moins un dispositif d'injection primaire (18).
  6. Brûleur selon la revendication 5,
    caractérisé en ce que
    le dispositif d'injection primaire (18) présente pour chaque canal générateur de tourbillons (16) au moins un injecteur (19) pour introduire du carburant dans le canal générateur de tourbillons associé (16).
  7. Brûleur selon la revendication 5 ou 6,
    caractérisé en ce que
    le dispositif d'injection primaire (18) pour l'introduction de carburant présente plusieurs injecteurs (19), au moins un dispositif de mélange (24) étant disposé entre les injecteurs (19) et le catalyseur (5) ou les catalyseurs (5).
  8. Brûleur selon la revendication 7,
    caractérisé en ce que
    dans chaque canal générateur de tourbillons (16), dans lequel est disposé au moins un catalyseur (5 ; 5a, 5b), est disposé un tel dispositif de mélange (24).
  9. Brûleur selon l'une quelconque des revendications 5 à 8,
    caractérisé en ce que
    - deux dispositifs d'injection primaires (18, 18') indépendants l'un de l'autre sont prévus,
    - en ce que seulement dans certains des canaux générateurs de tourbillons (16) est disposé à chaque fois au moins un catalyseur (5), tandis que dans les autres canaux générateurs de tourbillons (16) n'est disposé aucun catalyseur (5),
    - en ce que l'un des dispositifs d'injection primaires (18) sert à l'introduction de carburant dans les canaux générateurs de tourbillon (16) munis des catalyseurs (5), tandis que l'autre dispositif d'injection primaire (18') sert à l'introduction de carburant dans les autres canaux générateurs de tourbillons (16).
  10. Brûleur selon l'une quelconque des revendications 1 à 9,
    caractérisé en ce
    qu'un dispositif d'injection secondaire (22) est prévu pour l'introduction de carburant en aval du catalyseur (5) ou des catalyseurs (5) dans l'espace de sortie (8) et/ou dans la chambre de combustion (2).
  11. Brûleur selon la revendication 10,
    caractérisé en ce que
    le dispositif d'injection secondaire (22) est réalisé de telle sorte qu'il introduise le carburant centralement dans la direction de la chambre de combustion (2) dans l'espace de sortie (8).
  12. Brûleur selon l'une quelconque des revendications 1 à 11,
    caractérisé en ce
    qu'une paroi (27) de l'espace de sortie (8) est refroidie et/ou protégée thermiquement.
  13. Procédé pour faire fonctionner un brûleur selon l'une quelconque des revendications 1 à 12,
    caractérisé en ce que
    le brûleur (1) est conçu de telle sorte
    - que pendant le fonctionnement du brûleur, au moins dans l'espace de sortie (8), la vitesse d'écoulement soit supérieure à la vitesse de flamme turbulente et/ou
    - que pendant le fonctionnement du brûleur, la durée de séjour de l'écoulement dans l'espace de sortie (8) soit inférieure au retard jusqu'à l'auto-allumage du mélange carburant-oxydant chaud ayant en partie réagi et affluant dans l'espace de sortie (8).
EP03100949A 2002-05-02 2003-04-08 brûleur catalytique Expired - Fee Related EP1359377B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH7372002 2002-05-02
CH7372002 2002-05-02

Publications (2)

Publication Number Publication Date
EP1359377A1 EP1359377A1 (fr) 2003-11-05
EP1359377B1 true EP1359377B1 (fr) 2010-09-01

Family

ID=28796663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03100949A Expired - Fee Related EP1359377B1 (fr) 2002-05-02 2003-04-08 brûleur catalytique

Country Status (3)

Country Link
US (1) US7047746B2 (fr)
EP (1) EP1359377B1 (fr)
DE (1) DE50313028D1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3940705B2 (ja) * 2003-06-19 2007-07-04 株式会社日立製作所 ガスタービン燃焼器及びその燃料供給方法
EP1510761A1 (fr) * 2003-08-13 2005-03-02 Siemens Aktiengesellschaft Procédé de combustion d'un combustible fluide ainsi que brûleur, en particulier de turbine à gaz, pour la mise en oeuvre du procédé
US7096671B2 (en) * 2003-10-14 2006-08-29 Siemens Westinghouse Power Corporation Catalytic combustion system and method
KR101244759B1 (ko) * 2004-06-18 2013-03-19 엑손모빌 업스트림 리서치 캄파니 확장형 용량의 액화 천연 가스 플랜트
JP2008503605A (ja) * 2004-06-18 2008-02-07 エクソンモービル アップストリーム リサーチ カンパニー 炭化水素流体処理プラントの設計
GB2429516B (en) * 2005-08-27 2010-12-29 Siemens Ind Turbomachinery Ltd An apparatus for modifying the content of a gaseous fuel
US7841180B2 (en) * 2006-12-19 2010-11-30 General Electric Company Method and apparatus for controlling combustor operability
DE102007043626A1 (de) 2007-09-13 2009-03-19 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenmagerbrenner mit Kraftstoffdüse mit kontrollierter Kraftstoffinhomogenität
US8225613B2 (en) * 2009-09-09 2012-07-24 Aurora Flight Sciences Corporation High altitude combustion system
US9134031B2 (en) 2012-01-04 2015-09-15 General Electric Company Combustor of a turbomachine including multiple tubular radial pathways arranged at multiple circumferential and axial locations
EP3062019B1 (fr) 2015-02-27 2018-11-21 Ansaldo Energia Switzerland AG Procédé et dispositif de stabilisation de flamme dans un brûleur d'un moteur à combustion stationnaire
EP3098514A1 (fr) * 2015-05-29 2016-11-30 Siemens Aktiengesellschaft Agencement de chambre de combustion
TWI557414B (zh) 2015-08-04 2016-11-11 財團法人工業技術研究院 電子電路監測系統及電子電路監測方法
EP3159609A1 (fr) * 2015-10-21 2017-04-26 Siemens Aktiengesellschaft Chambre de combustion pour turbine à gaz

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943705A (en) * 1974-11-15 1976-03-16 Westinghouse Electric Corporation Wide range catalytic combustor
DE3474714D1 (en) * 1983-12-07 1988-11-24 Toshiba Kk Nitrogen oxides decreasing combustion method
JPS61276627A (ja) 1985-05-30 1986-12-06 Toshiba Corp ガスタ−ビン燃焼器
US5000004A (en) * 1988-08-16 1991-03-19 Kabushiki Kaisha Toshiba Gas turbine combustor
US5202303A (en) * 1989-02-24 1993-04-13 W. R. Grace & Co.-Conn. Combustion apparatus for high-temperature environment
JPH06235519A (ja) * 1993-02-08 1994-08-23 Toshiba Corp ガスタービン用燃焼器
US5452574A (en) * 1994-01-14 1995-09-26 Solar Turbines Incorporated Gas turbine engine catalytic and primary combustor arrangement having selective air flow control
AU681271B2 (en) * 1994-06-07 1997-08-21 Westinghouse Electric Corporation Method and apparatus for sequentially staged combustion using a catalyst
JP3196549B2 (ja) * 1995-01-09 2001-08-06 株式会社日立製作所 燃料改質装置を備えた発電システム
GB9611235D0 (en) * 1996-05-30 1996-07-31 Rolls Royce Plc A gas turbine engine combustion chamber and a method of operation thereof
JP3619626B2 (ja) * 1996-11-29 2005-02-09 株式会社東芝 ガスタービン燃焼器の運転方法
GB2333832A (en) * 1998-01-31 1999-08-04 Europ Gas Turbines Ltd Multi-fuel gas turbine engine combustor

Also Published As

Publication number Publication date
US20030205048A1 (en) 2003-11-06
EP1359377A1 (fr) 2003-11-05
US7047746B2 (en) 2006-05-23
DE50313028D1 (de) 2010-10-14

Similar Documents

Publication Publication Date Title
EP1359377B1 (fr) brûleur catalytique
EP1255080B1 (fr) Brûleur catalytique
EP2116766B1 (fr) Brûleur avec lance à combustible
DE69724502T2 (de) Gasturbinenbrennkammer
EP1532400B1 (fr) Procede et dispositif pour faire bruler un melange combustible-oxydant
EP2010757B1 (fr) Aube de turbine
DE69823749T2 (de) Vergaser mit multiplen Verwirbelungsvorrichtungen
EP1497589B1 (fr) Chambre de combustion avec oxydation sans flamme
DE69729505T2 (de) Arbeitsweise einer Gasturbinenbrennkammer
DE60128513T2 (de) Verfahren und Vorrichtung zur Verminderung der Emissionen in einer Brennkammer mit einer Wirbelmischvorrichtung
DE69828916T2 (de) Emissionsarmes Verbrennungssystem für Gasturbinentriebwerke
EP1151184B1 (fr) Systeme de gaz d'echappement comportant au moins une surface de guidage
DE2730791C2 (de) Brennkammer für Gasturbinentriebwerke
EP1532394A1 (fr) Bruleur hybride et procede d'utilisation correspondant
DE3217674A1 (de) Combustor fuer eine gasturbine
CH708992A2 (de) Brennstoffinjektor mit Vormisch-Pilotdüse.
DE4426351A1 (de) Brennkammer
EP0481111B1 (fr) Chambre de combustion pour turbine à gaz
DE102007062896A1 (de) Mittelkörper für Mischeranordnung einer Gasturbinentriebwerks-Brennkammer
DE112014004695B4 (de) Brennstoffeinspritzvorrichtung für eine Gasturbine
DE2555085A1 (de) Brennkammer und verfahren zum erzeugen einer emissionsarmen verbrennung
EP1251314A2 (fr) Brûleur catalytique
CH702737A2 (de) Brennkammer mit zwei Brennräumen.
EP0889289B1 (fr) Système de turbine à gaz et méthode d'exploitation
EP1446610A1 (fr) Procede de combustion destine notamment a un procede de production de courant electronique et/ou de chaleur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17P Request for examination filed

Effective date: 20040428

AKX Designation fees paid

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20090710

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50313028

Country of ref document: DE

Date of ref document: 20101014

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50313028

Country of ref document: DE

Effective date: 20110606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313028

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313028

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170419

Year of fee payment: 15

Ref country code: DE

Payment date: 20170419

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313028

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50313028

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180408