EP1343388A4 - STABILIZER FOR BEVERAGE EMULSIONS - Google Patents
STABILIZER FOR BEVERAGE EMULSIONSInfo
- Publication number
- EP1343388A4 EP1343388A4 EP01998235A EP01998235A EP1343388A4 EP 1343388 A4 EP1343388 A4 EP 1343388A4 EP 01998235 A EP01998235 A EP 01998235A EP 01998235 A EP01998235 A EP 01998235A EP 1343388 A4 EP1343388 A4 EP 1343388A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- beverage
- composition
- propylene glycol
- glycol alginate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000839 emulsion Substances 0.000 title claims abstract description 128
- 235000013361 beverage Nutrition 0.000 title claims abstract description 127
- 239000003381 stabilizer Substances 0.000 title claims abstract description 35
- 235000010409 propane-1,2-diol alginate Nutrition 0.000 claims abstract description 94
- HDSBZMRLPLPFLQ-UHFFFAOYSA-N Propylene glycol alginate Chemical compound OC1C(O)C(OC)OC(C(O)=O)C1OC1C(O)C(O)C(C)C(C(=O)OCC(C)O)O1 HDSBZMRLPLPFLQ-UHFFFAOYSA-N 0.000 claims abstract description 90
- 239000000770 propane-1,2-diol alginate Substances 0.000 claims abstract description 90
- 239000000203 mixture Substances 0.000 claims abstract description 87
- 238000000034 method Methods 0.000 claims abstract description 31
- 229920000881 Modified starch Polymers 0.000 claims abstract description 25
- 235000019426 modified starch Nutrition 0.000 claims abstract description 25
- 239000004368 Modified starch Substances 0.000 claims abstract description 24
- 238000001035 drying Methods 0.000 claims abstract description 15
- 230000032050 esterification Effects 0.000 claims abstract description 11
- 238000005886 esterification reaction Methods 0.000 claims abstract description 11
- 239000006185 dispersion Substances 0.000 claims abstract description 7
- 239000000796 flavoring agent Substances 0.000 claims description 75
- 235000019634 flavors Nutrition 0.000 claims description 75
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 42
- 235000020357 syrup Nutrition 0.000 claims description 28
- 239000006188 syrup Substances 0.000 claims description 28
- 239000012071 phase Substances 0.000 claims description 24
- 239000003795 chemical substances by application Substances 0.000 claims description 22
- 239000007787 solid Substances 0.000 claims description 19
- 239000002253 acid Substances 0.000 claims description 14
- 235000003599 food sweetener Nutrition 0.000 claims description 14
- 239000003765 sweetening agent Substances 0.000 claims description 14
- 229920002261 Corn starch Polymers 0.000 claims description 13
- 239000008346 aqueous phase Substances 0.000 claims description 12
- 239000007864 aqueous solution Substances 0.000 claims description 12
- 235000019759 Maize starch Nutrition 0.000 claims description 10
- 238000001694 spray drying Methods 0.000 claims description 10
- 235000013305 food Nutrition 0.000 claims description 9
- 150000001720 carbohydrates Chemical class 0.000 claims description 8
- 235000014633 carbohydrates Nutrition 0.000 claims description 8
- 238000002485 combustion reaction Methods 0.000 claims description 7
- 230000001804 emulsifying effect Effects 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 13
- 239000000047 product Substances 0.000 description 68
- 229920002472 Starch Polymers 0.000 description 63
- 235000019698 starch Nutrition 0.000 description 61
- 239000008107 starch Substances 0.000 description 61
- 239000003921 oil Substances 0.000 description 51
- 235000019198 oils Nutrition 0.000 description 51
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 27
- 238000003860 storage Methods 0.000 description 17
- 235000010443 alginic acid Nutrition 0.000 description 15
- 229920000615 alginic acid Polymers 0.000 description 15
- 244000215068 Acacia senegal Species 0.000 description 13
- 229920000084 Gum arabic Polymers 0.000 description 12
- 235000010489 acacia gum Nutrition 0.000 description 12
- 239000000205 acacia gum Substances 0.000 description 12
- 238000002156 mixing Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 11
- 239000008367 deionised water Substances 0.000 description 10
- 229910021641 deionized water Inorganic materials 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 241000272525 Anas platyrhynchos Species 0.000 description 9
- 230000005484 gravity Effects 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 229930006000 Sucrose Natural products 0.000 description 7
- 238000013019 agitation Methods 0.000 description 7
- 150000004781 alginic acids Chemical class 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 239000005720 sucrose Substances 0.000 description 7
- 239000002562 thickening agent Substances 0.000 description 7
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 6
- 229940072056 alginate Drugs 0.000 description 6
- 239000000783 alginic acid Substances 0.000 description 6
- 229960001126 alginic acid Drugs 0.000 description 6
- 235000014171 carbonated beverage Nutrition 0.000 description 6
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 6
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 6
- 239000004299 sodium benzoate Substances 0.000 description 6
- 235000010234 sodium benzoate Nutrition 0.000 description 6
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- 244000269722 Thea sinensis Species 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 235000010985 glycerol esters of wood rosin Nutrition 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 4
- 229920000945 Amylopectin Polymers 0.000 description 4
- 235000016795 Cola Nutrition 0.000 description 4
- 244000228088 Cola acuminata Species 0.000 description 4
- 235000011824 Cola pachycarpa Nutrition 0.000 description 4
- 229920002871 Dammar gum Polymers 0.000 description 4
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 4
- 239000002023 wood Substances 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 235000019499 Citrus oil Nutrition 0.000 description 3
- 235000019502 Orange oil Nutrition 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 3
- YGCFIWIQZPHFLU-UHFFFAOYSA-N acesulfame Chemical compound CC1=CC(=O)NS(=O)(=O)O1 YGCFIWIQZPHFLU-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 235000021311 artificial sweeteners Nutrition 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 239000010500 citrus oil Substances 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- -1 mono-terpene hydrocarbon Chemical class 0.000 description 3
- 239000010502 orange oil Substances 0.000 description 3
- 229920001592 potato starch Polymers 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 2
- 229920000856 Amylose Polymers 0.000 description 2
- 244000099147 Ananas comosus Species 0.000 description 2
- 235000007119 Ananas comosus Nutrition 0.000 description 2
- 235000018185 Betula X alpestris Nutrition 0.000 description 2
- 235000018212 Betula X uliginosa Nutrition 0.000 description 2
- 241001474374 Blennius Species 0.000 description 2
- 241000282461 Canis lupus Species 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 235000005979 Citrus limon Nutrition 0.000 description 2
- 244000131522 Citrus pyriformis Species 0.000 description 2
- 241000675108 Citrus tangerina Species 0.000 description 2
- 240000000560 Citrus x paradisi Species 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 241001379910 Ephemera danica Species 0.000 description 2
- 235000016623 Fragaria vesca Nutrition 0.000 description 2
- 240000009088 Fragaria x ananassa Species 0.000 description 2
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 241001598113 Laminaria digitata Species 0.000 description 2
- 241000199919 Phaeophyceae Species 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 240000006909 Tilia x europaea Species 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- ANVAOWXLWRTKGA-XHGAXZNDSA-N all-trans-alpha-carotene Chemical compound CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1C(C)=CCCC1(C)C ANVAOWXLWRTKGA-XHGAXZNDSA-N 0.000 description 2
- 235000013405 beer Nutrition 0.000 description 2
- AEMOLEFTQBMNLQ-UHFFFAOYSA-N beta-D-galactopyranuronic acid Natural products OC1OC(C(O)=O)C(O)C(O)C1O AEMOLEFTQBMNLQ-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 235000020971 citrus fruits Nutrition 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 235000013365 dairy product Nutrition 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 210000000416 exudates and transudate Anatomy 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N hexanedioic acid Natural products OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 229930003658 monoterpene Natural products 0.000 description 2
- 235000002577 monoterpenes Nutrition 0.000 description 2
- AJDUTMFFZHIJEM-UHFFFAOYSA-N n-(9,10-dioxoanthracen-1-yl)-4-[4-[[4-[4-[(9,10-dioxoanthracen-1-yl)carbamoyl]phenyl]phenyl]diazenyl]phenyl]benzamide Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2NC(=O)C(C=C1)=CC=C1C(C=C1)=CC=C1N=NC(C=C1)=CC=C1C(C=C1)=CC=C1C(=O)NC1=CC=CC2=C1C(=O)C1=CC=CC=C1C2=O AJDUTMFFZHIJEM-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 235000013615 non-nutritive sweetener Nutrition 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004302 potassium sorbate Substances 0.000 description 2
- 235000010241 potassium sorbate Nutrition 0.000 description 2
- 229940069338 potassium sorbate Drugs 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 235000021572 root beer Nutrition 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 235000020374 simple syrup Nutrition 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 235000010983 sucrose acetate isobutyrate Nutrition 0.000 description 2
- UVGUPMLLGBCFEJ-SWTLDUCYSA-N sucrose acetate isobutyrate Chemical compound CC(C)C(=O)O[C@H]1[C@H](OC(=O)C(C)C)[C@@H](COC(=O)C(C)C)O[C@@]1(COC(C)=O)O[C@@H]1[C@H](OC(=O)C(C)C)[C@@H](OC(=O)C(C)C)[C@H](OC(=O)C(C)C)[C@@H](COC(C)=O)O1 UVGUPMLLGBCFEJ-SWTLDUCYSA-N 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- 235000010493 xanthan gum Nutrition 0.000 description 2
- 239000000230 xanthan gum Substances 0.000 description 2
- 229920001285 xanthan gum Polymers 0.000 description 2
- 229940082509 xanthan gum Drugs 0.000 description 2
- 239000001043 yellow dye Substances 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- BTXXTMOWISPQSJ-UHFFFAOYSA-N 4,4,4-trifluorobutan-2-one Chemical compound CC(=O)CC(F)(F)F BTXXTMOWISPQSJ-UHFFFAOYSA-N 0.000 description 1
- QISOBCMNUJQOJU-UHFFFAOYSA-N 4-bromo-1h-pyrazole-5-carboxylic acid Chemical compound OC(=O)C=1NN=CC=1Br QISOBCMNUJQOJU-UHFFFAOYSA-N 0.000 description 1
- BQACOLQNOUYJCE-FYZZASKESA-N Abietic acid Natural products CC(C)C1=CC2=CC[C@]3(C)[C@](C)(CCC[C@@]3(C)C(=O)O)[C@H]2CC1 BQACOLQNOUYJCE-FYZZASKESA-N 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- 235000009434 Actinidia chinensis Nutrition 0.000 description 1
- 244000298697 Actinidia deliciosa Species 0.000 description 1
- 235000009436 Actinidia deliciosa Nutrition 0.000 description 1
- 240000000972 Agathis dammara Species 0.000 description 1
- 241000199897 Alaria esculenta Species 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 240000007087 Apium graveolens Species 0.000 description 1
- 235000015849 Apium graveolens Dulce Group Nutrition 0.000 description 1
- 235000010591 Appio Nutrition 0.000 description 1
- 241000512260 Ascophyllum Species 0.000 description 1
- YZQCXOFQZKCETR-UWVGGRQHSA-N Asp-Phe Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 YZQCXOFQZKCETR-UWVGGRQHSA-N 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 244000188595 Brassica sinapistrum Species 0.000 description 1
- 239000001842 Brominated vegetable oil Substances 0.000 description 1
- 235000004936 Bromus mango Nutrition 0.000 description 1
- 235000005881 Calendula officinalis Nutrition 0.000 description 1
- 241000209507 Camellia Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 235000009467 Carica papaya Nutrition 0.000 description 1
- 240000006432 Carica papaya Species 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- AEMOLEFTQBMNLQ-BZINKQHNSA-N D-Guluronic Acid Chemical compound OC1O[C@H](C(O)=O)[C@H](O)[C@@H](O)[C@H]1O AEMOLEFTQBMNLQ-BZINKQHNSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-VANFPWTGSA-N D-mannopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@@H]1O AEMOLEFTQBMNLQ-VANFPWTGSA-N 0.000 description 1
- 244000000626 Daucus carota Species 0.000 description 1
- 235000002767 Daucus carota Nutrition 0.000 description 1
- 241001057636 Dracaena deremensis Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 241000004455 Fucus spiralis Species 0.000 description 1
- 241000227647 Fucus vesiculosus Species 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Natural products OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- IAJILQKETJEXLJ-SQOUGZDYSA-N L-guluronic acid Chemical compound O=C[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O IAJILQKETJEXLJ-SQOUGZDYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 241001466453 Laminaria Species 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 241001491705 Macrocystis pyrifera Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241000220225 Malus Species 0.000 description 1
- 235000011430 Malus pumila Nutrition 0.000 description 1
- 235000015103 Malus silvestris Nutrition 0.000 description 1
- 235000014826 Mangifera indica Nutrition 0.000 description 1
- 240000007228 Mangifera indica Species 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 241000508269 Psidium Species 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 240000007651 Rubus glaucus Species 0.000 description 1
- 235000011034 Rubus glaucus Nutrition 0.000 description 1
- 235000009122 Rubus idaeus Nutrition 0.000 description 1
- 241000983746 Saccharina latissima Species 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 239000004376 Sucralose Substances 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 240000000785 Tagetes erecta Species 0.000 description 1
- 240000000851 Vaccinium corymbosum Species 0.000 description 1
- 235000003095 Vaccinium corymbosum Nutrition 0.000 description 1
- 240000001717 Vaccinium macrocarpon Species 0.000 description 1
- 235000012545 Vaccinium macrocarpon Nutrition 0.000 description 1
- 235000017537 Vaccinium myrtillus Nutrition 0.000 description 1
- 235000002118 Vaccinium oxycoccus Nutrition 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 235000003903 alpha-carotene Nutrition 0.000 description 1
- 239000011795 alpha-carotene Substances 0.000 description 1
- ANVAOWXLWRTKGA-HLLMEWEMSA-N alpha-carotene Natural products C(=C\C=C\C=C(/C=C/C=C(\C=C\C=1C(C)(C)CCCC=1C)/C)\C)(\C=C\C=C(/C=C/[C@H]1C(C)=CCCC1(C)C)\C)/C ANVAOWXLWRTKGA-HLLMEWEMSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000008122 artificial sweetener Substances 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- 239000011648 beta-carotene Substances 0.000 description 1
- 235000013734 beta-carotene Nutrition 0.000 description 1
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 229960002747 betacarotene Drugs 0.000 description 1
- 239000001491 betula lenta l. bark oil Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000021014 blueberries Nutrition 0.000 description 1
- 235000019323 brominated vegetable oil Nutrition 0.000 description 1
- 235000010410 calcium alginate Nutrition 0.000 description 1
- 239000000648 calcium alginate Substances 0.000 description 1
- 229960002681 calcium alginate Drugs 0.000 description 1
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 1
- 235000019519 canola oil Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 239000008370 chocolate flavor Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 239000008373 coffee flavor Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 235000018597 common camellia Nutrition 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 235000004634 cranberry Nutrition 0.000 description 1
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical class OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-YBSDWZGDSA-N d-mannuronic acid Chemical compound O[C@@H]1O[C@@H](C(O)=O)[C@H](O)[C@@H](O)[C@H]1O AEMOLEFTQBMNLQ-YBSDWZGDSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- FLISWPFVWWWNNP-BQYQJAHWSA-N dihydro-3-(1-octenyl)-2,5-furandione Chemical compound CCCCCC\C=C\C1CC(=O)OC1=O FLISWPFVWWWNNP-BQYQJAHWSA-N 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 235000021564 flavored carbonated beverage Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000008369 fruit flavor Substances 0.000 description 1
- 235000015203 fruit juice Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 235000010492 gellan gum Nutrition 0.000 description 1
- 239000000216 gellan gum Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229960004903 invert sugar Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 235000019223 lemon-lime Nutrition 0.000 description 1
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002772 monosaccharides Chemical group 0.000 description 1
- 150000002773 monoterpene derivatives Chemical class 0.000 description 1
- 235000021096 natural sweeteners Nutrition 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 239000008601 oleoresin Substances 0.000 description 1
- 239000007968 orange flavor Substances 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 229930004725 sesquiterpene Natural products 0.000 description 1
- 150000004354 sesquiterpene derivatives Chemical class 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- MSXHSNHNTORCAW-MPGIDXPLSA-M sodium;(3s,4s,5s,6r)-3,4,5,6-tetrahydroxyoxane-2-carboxylate Chemical compound [Na+].O[C@@H]1OC(C([O-])=O)[C@@H](O)[C@H](O)[C@@H]1O MSXHSNHNTORCAW-MPGIDXPLSA-M 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 235000019408 sucralose Nutrition 0.000 description 1
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 description 1
- 150000003445 sucroses Chemical class 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 230000009967 tasteless effect Effects 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 239000009637 wintergreen oil Substances 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/52—Adding ingredients
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/20—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
- A23L29/206—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
- A23L29/212—Starch; Modified starch; Starch derivatives, e.g. esters or ethers
- A23L29/219—Chemically modified starch; Reaction or complexation products of starch with other chemicals
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/20—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
- A23L29/206—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
- A23L29/256—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin from seaweeds, e.g. alginates, agar or carrageenan
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
Definitions
- This invention relates to beverage products.
- this invention relates to beverage products in which a beverage emulsion is stabilized with a co-processed propylene glycol alginate/modified starch composition and to processes for preparing the co-processed propylene glycol alginate/modified starch composition, the beverage emulsion, and the beverage product.
- Beverage products desirably have a cloudy or opaque appearance.
- the cloudy or opaque appearance of these beverage products is typically achieved by incorporating a beverage emulsion.
- Beverage emulsions can be either flavor emulsions, which provide the beverage product with both flavor and cloudiness, or cloud emulsions, which provide cloudiness but essentially no flavor. Both types of beverage emulsions comprise a discontinuous oil phase dispersed in a continuous aqueous phase, i.e., they are "oil-in-water" emulsions.
- the oil phase is uniformly dispersed in the continuous aqueous phase in the form of fine droplets that give the beverage product its cloudy or opaque appearance and, if the emulsion is a flavor emulsion, provide a uniform distribution of the flavor.
- Beverage emulsions are thermodynamically unstable two-phase systems that have a tendency to separate into two immiscible liquids. Because the oil is the dispersed phase, it exists as droplets that tend, to separate, or "flocculate” by aggregating to form clumps. In the absence of weighting agents, the oil phase, which is less dense than the aqueous phase, can separate and rise to the top of the beverage container. This phenomenon is referred to as "creaming" and can manifest itself as an unsightly ring inside the neck of the bottle (a condition commonly referred to as “ringing”) or as powdery "floe” on the shoulder of the bottle.
- the oil phase can become attached to colloidal particles or other materials heavier than the aqueous phase, in which case the oil phase will settle to the bottom of the container.
- This condition is usually referred to as “sedimentation” because the cloud appears as sediment on the bottom of the bottle. Sedimentation may also occur if the oil phase is over weighted with weighting agent.
- the beverage emulsion which has a pH of about 3.5 and which, in the case of a flavor emulsion, comprises about 10% by weight flavor oil, is prepared first.
- About 2% by weight or less of the beverage emulsion is added to an aqueous solution comprising about 55- 60% by weight solids, primarily sweetener, such as sugar, and food grade acid, such as citric acid, to form a syrup, which is at about pH 2.5.
- the syrup is then diluted with about five parts of water, or with carbonated water if a carbonated beverage product is being prepared, to form the beverage product, which typically has a pH of about 3.0.
- the beverage emulsion must be stable by itself, in the syrup, and in the beverage product. Typically, the beverage emulsion must be stable for about one year before dilution and for about six months in the beverage product.
- a thickener or emulsion stabilizer is added to the aqueous phase.
- Gum arabic is typically the thickener of choice in flavor emulsions.
- gum arabic is a natural exudate gum produced by Acacia Senegal, a shrub best suited to arid regions of Africa. Thus, its availability and price are subject to fluctuations in the political and climatic conditions in this region of the world.
- Thickeners can adversely affect the flavor and mouthfeel of the beverage product, especially if relatively large quantities of thickener are required. When included in the beverage products at higher levels, some thickeners can additionally destabilize the beverage emulsion. In addition, carbohydrate gums are relatively expensive.
- the invention is a co-processed composition useful as a stabilizer for beverage emulsions.
- the composition comprises co-processed modified starch and propylene glycol alginate, in which: a) the ratio by weight of modified starch to propylene glycol alginate is about 60:40 to about 95:5; and b) the propylene glycol alginate has a degree of esterification of about 40% to about 95%.
- the modified starch is preferably modified waxy maize starch.
- the propylene glycol alginate has a molecular weight, as defined by viscosity of a 1 % by weight aqueous solution measured at 20°C, of about 1 to 500 cps.
- the invention is a method for preparing the emulsion stabilizer and a method for preparing a beverage emulsion comprising the emulsion stabilizer.
- the invention is a beverage emulsion and a beverage product comprising the emulsion stabilizer.
- Beverage emulsions are oil-in-water emulsions made up of a continuous aqueous phase and a discontinuous oil phase. Although they are prepared as concentrates, they are consumed in highly diluted form. The emulsion may provide flavor, color, and cloudy appearance to the beverage, or just a cloudy appearance. The preparation and composition of beverage emulsions is discussed in "Beverage Emulsions," by OH. Tan, in Food Emulsions, 3d Ed, S. E. Friberg and K. Larsson, Eds., Dekker, New York, 1997, pp. 491-534.
- the oil component is an important ingredient of a beverage emulsion. This component provides flavor emulsions with flavor and cloudiness and cloud emulsions with cloudiness only.
- the oil phase of a flavor emulsion comprises flavor oils and one or more weighting agents.
- the oil phase of a cloud emulsion comprises flavorless oils and, typically, one or more weighting agents.
- Flavor emulsions comprise one or more suitable flavor oils.
- suitable flavors include: fruit flavors, such as guava, kiwi, peach, mango, papaya, pineapple, banana, strawberry, raspberry, blueberry, orange, grapefruit, tangerine, lemon, lime, lemon-lime, etc.; cola flavors; tea flavors; coffee flavors; chocolate flavors; dairy flavors; root beer and birch beer flavors; etc.
- Root beer and birch beer flavors typically comprise methyl salicylate (wintergreen oil, sweet birch oil).
- the flavor oil typically contains several citrus oils of different types so that a well-balanced flavor is produced.
- Citrus oils contain more than 90% by weight mono-terpenes and a smaller amount of sesqui-terpenes. Both are carriers of the oxygenated terpenoids, specifically the alcohols, aldehydes, ketones, acids, and esters, that are responsible for the characteristic aroma and flavor profile of the oil.
- Cloud emulsions comprise a clouding agent. Because the terpenes possess little intrinsic odor or flavor, they are often used as the oil component of cloud emulsions (clouding agent). Organoleptically neutral vegetable oils and/or hydrogenated vegetable oils, such as those derived from soybean, corn, safflower, sunflower, cottonseed, canola, rapeseed, coconut, and palm oil, may also be used as clouding agents. Pigments, such as titanium dioxide, may also be used as clouding agent.
- the flavor oil may also comprise a "folded" flavor oil, a concentrated flavor oil obtained by high vacuum distillation. This process removes much of the mono-terpene hydrocarbon cMimonene while retaining the flavor components. When folded oils are used, less oil is required to produce the desired flavor and/or fragrance.
- Citrus oils typically have a specific gravity in the range of 0.845 to 0.890. However, the specific gravity of a 10 to 12% by weight sugar solution is about 1.038 to 1.046. Consequently, weighting agents, or density adjusting agents, are added to flavor oils to increase their density. For cloud emulsions, the oil emulsion contains flavorless oils and weighting agents.
- Weighting agents are flavorless, oil-soluble materials that have specific gravities greater than those of the flavor oils and which are miscible with the flavor oils. Although brominated vegetable oil has been used as a weighting agent, its use has been restricted or eliminated in many places in the world. Commonly used weighting agents are now ester gum, damar gum, and sucrose acetate /so-butyrate (SAIB). Ester gum is produced by esterification of pale wood rosin with food grade glycerol. Wood rosin, a solid resinous material found in the oleoresin of pine trees, contains about 90% by weight resin acids, primarily abietic acid and pimeric acid, and about 10% by weight non-acidic neutral components.
- Ester gum is prepared by esterification of the wood rosin with glycerol, which produces a mixture of mono-, di-, and triglycerides. After removal of the excess glycerine by vacuum distillation and steam sparging, the wood rosin typically has a specific gravity of about 1.08 at 25°C.
- ester gum is approved by the United States and a number of other countries as a food additive.
- Damar gum refers to a group of water-insoluble natural exudates from shrubs of the Genus Dammar, especially the Caesalpinaceae and Dipterocarpacae families, which are indigenous to Malaysia, Indonesia, and the East Indies. It is highly soluble in essential oils and is typically used as a weighting agent in cloud emulsions. Damar gum typically has a specific gravity of about 1.04 to 1.08 at 20°C.
- Sucrose acetate /so-butyrate is a mixture of sucrose esters containing about 2 mol of acetate and 6 mol of /so-butyrate per mol of sucrose, primarily 6,6 l -diacetyl-2,3,4,1',3',4 , -hexa-/so-butyryl sucrose. It is produced by esterification of sucrose with acetic anhydride. Sucrose acetate /so-butyrate is a tasteless, odorless, and colorless viscous liquid with a specific gravity of about 1.146.
- the emulsion stabilizer of the invention is a co-processed composition comprising propylene glycol alginate and modified starch.
- the stabilizer comprises at least 80% by weight of the co-processed composition.
- the stabilizer comprises at least 85% by weight of the co-processed composition.
- the stabilizer comprises at least 90% by weight of the co- processed composition.
- the stabilizer consists essentially of the co-processed composition.
- Co-processing is required. A simple mixture or blend of the ingredients is not sufficient to produce the functional properties of the co-processed composition.
- co-processing refers to the process of forming a uniform or essentially uniform aqueous dispersion or solution of the propylene glycol alginate and the modified starch, followed by drying to recover the co- processed PGA/starch composition.
- the solution may conveniently be formed by dissolving each of the components in water. Drying may be accomplished by well-known methods such as, for example, spray drying, freeze drying, air drying, pulse combustion drying, drum or roller drying, or bulk co-drying using a fluid bed dryer or some other suitable dryer. Spray drying is preferred.
- the co- processed PGA/starch composition may also be prepared by extrusion.
- Propylene glycol alginate is a derivative of algin (alginic acid), a hydrophilic, colloidal carbohydrate acid derived from brown seaweed.
- Alginic acid is a polyuronic acid made up of two uronic acids: D-mannuronic acid and L- guluronic acid. The ratio of mannuronic acid and guluronic acid varies with factors such as seaweed species, plant age, and seasonal variations.
- Alginic acid in the form of mixed water insoluble salts, in which the principal cation is calcium, is found in the fronds and stems of seaweeds of the class Phaeophyceae, examples of which are Fucus vesiculosus, Fucus spiralis, Ascophyllum nodos ⁇ m, Macrocystis pyrifera, Alaria esculenta, Laminaria longicruris, Laminaria digitata, Laminaria saccharina, and Laminaria cloustoni.
- Methods for the recovery of water-insoluble alginic acid and its water- soluble salts, especially sodium alginate are well known. They are described, for example, in Green, U.S. Pat. No. 2,036,934, and Le Gloahec, U.S. Patent U.S. Pat. No. 2,128,551.
- Alginic acid is substantially insoluble in water. It forms water-soluble salts with alkali metals, magnesium, ammonium, lower amines, and certain other organic bases. These salts form viscous aqueous solutions. The salts are stable in alkaline media, but are converted to alginic acid when the pH is lowered below about pH 4. In addition, water-insoluble calcium alginate is formed if any calcium is present in the medium. To stabilize alginate to acidic media and to media that contain calcium, alginate is reacted with an alkylene oxide, such as ethylene oxide or propylene oxide, to form a glycol alginate, which is water-soluble and compatible with acidic media and calcium-containing media.
- an alkylene oxide such as ethylene oxide or propylene oxide
- glycol is bonded to the alginate through the carboxyl groups.
- Glycol alginates especially propylene glycol alginate, have improved acid stability over unsubstituted alginic acids and their salts, and are more resistant to precipitation by calcium and other polyvalent metal ions.
- propylene glycol alginate Typically, alginate is reacted with propylene oxide to form propylene glycol alginate (PGA).
- PGA propylene glycol alginate
- Preparation of propylene glycol alginate is disclosed in Strong, U.S. Pat. No. 3,948,881 , Pettitt, U.S. Pat. No. 3,772,266, and Steiner, U.S. Pat. No. 2,426,125.
- the propylene glycol alginate has a degree of esterification of about 40% to about 95%, more preferably about 70% to 95%.
- propylene glycol alginate may comprise other materials, typically impurities produced in the process of manufacture.
- commercial propylene glycol alginate may comprise up to about 9% by weight propylene glycol.
- propylene glycol alginate includes materials either with or without impurities that are normally produced in the manufacturing process. Mixtures of propylene glycol alginates of different molecular weights may also be used to effect a greater degree of stability.
- a mixture of a high viscosity propylene glycol alginate and a low viscosity propylene glycol alginate may be used to provide greater emulsion stability to the beverage product without masking taste.
- Propylene glycol alginates provide a range of viscosities for the solutions to which they are added, depending on the type and concentration used.
- the propylene glycol alginate typically has a molecular weight, as defined by viscosity of a 1 % by weight aqueous solution measured at 20°C, of about 1 to 500 cps, preferably about 3 to 60 cps, more preferably about 3 to 20 cps, and most preferably 3 to 5 cps.
- the viscosity of a 1 % by weight aqueous solution of the mixture measured at 20°C is typically about 1 to 500 cps, preferably about 3 to 60 cps, more preferably about 3 to 20 cps, and most preferably 3 to 5 cps. Viscosity is measured using a Brookfield viscometer.
- Modified starch refers to a group of specially designed starch derivatives with balanced lipophilic and hydrophilic properties.
- modified starch generally refers to starch that has undergone some chemical modification
- modified starch refers to starch modified by reaction with a cyclic anhydride, especially a cyclic anhydride that contains a substituent group comprising 5 to 18 carbon atoms, preferably 1-octenylsuccinic anhydride ("OSAN-starch,” sometimes called “lipophilic starch”). The approximate amount of substitution is reported to be about 2% to 3%. Modified starch and processes for its preparation are disclosed in Caldwell, U.S. Pat. No. 2,661 ,349.
- the starch may, if desired, be "acid-thinned," preferably before chemical modification.
- Acid-thinned starch is prepared by degradation of the starch molecule to produce a starch with a lower molecular weight and viscosity than the original starch.
- Acid-thinned starches are typically white in color and have a bland flavor. Starches in wide range of viscosities can be obtained by a controlled hydrolysis of raw starch.
- the modified starch is preferably prepared from waxy maize starch, which is produced by a type of corn plant known as waxy maize.
- Waxy maize starch which is clear and non-gelling, has distinctive properties that make it different from ordinary corn and potato starches.
- corn starch, potato starch, and waxy maize starch are each polymers of D-glucose
- waxy maize starch contains about 93% to 100% of the branched-chain polymer amylopectin.
- corn starch contains about 27% straight-chain amylose molecules in addition to amylopectin
- potato starch contains about 22% straight-chain amylose molecules.
- Amylopectin has a highly branched, tree-like configuration composed of linear chains connected by ⁇ -1 ,6-linkages. The branch points are believed to occur at intervals of about one every 20 to 30 glucose residues. The total amylopectin molecule is composed of several hundred branches, and molecular weights are thought to be in the millions. The molecule has a globular shape.
- the ratio by weight of modified starch to propylene glycol alginate in the co-processed stabilizer composition may preferably be about 60:40 to about 95:5, more preferably 75:25 to 90:10, still more preferably 80:20 to 90:10.
- the ratio by weight of co-processed stabilizer composition to oil phase in the beverage emulsion is about 1 :2 to about 1 :1.
- Minor amounts of water, up to about 10% by weight, may also be present in the co-processed stabilizer composition.
- the beverage emulsion typically comprises about 3% to 12% by weight, more typically about 5 to 10% by weight co-processed stabilizer composition, even more typically about 6 to 8% by weight co-processed stabilizer composition.
- the beverage emulsion Before dilution with syrup, the beverage emulsion typically comprises about 5% to 15% by weight, more typically about 7% by weight to about 12% by weight, even more typically about 10% by weight, oil phase.
- Water is the major component of beverage emulsions. In most beverage emulsions the water content is 60 to 70% by weight, and can be as high as 85% by weight in certain formulations.
- the water should be treated to remove colloidal and suspended material, and any undesirable taste, odor, mineral salts, and microorganisms.
- the water has a maximum alkalinity of 50 mg of calcium carbonate per liter for beverage emulsions.
- the water has a maximum alkalinity of 50 mg of calcium carbonate per liter for cola drinks and 100 mg of calcium carbonate per liter for other beverage products.
- acid is added to beverage emulsions to bring the pH to below about 4.5 and to control the growth of microorganisms.
- Citric acid is commonly used, but other edible food grade acids, such as malic, adipic, fumaric, and lactic acid can be used as replacements for citric acid.
- Food grade phosphoric acid is also commonly used to provide acidity, especially in cola beverages.
- Preservatives such as potassium sorbate and sodium benzoate, can be added. Typically about 400 ppm to about 1000 ppm, more typically about 650 ppm to about 750 ppm, of preservative is present in the final beverage product. Phosphates and polyphosphates may also be used as preservatives.
- Coloring agents may be added to beverage emulsions.
- FD&C dyes such as FD&C Yellow Dye 6 and FD&C Red Dye 40
- natural coloring agents such as ⁇ -carotene, ⁇ -carotene, and marigold extracts are typically used.
- the coloring agent and flavor oil are typically matched to produce a particular impression ⁇ i.e., lime-flavored beverage products are green; orange-flavored beverage products are orange; strawberry-flavored beverage products are red; etc.).
- the amount added will depend on the color desired for final beverage product.
- dyes are not used with cloud emulsions, but pigments such as titanium dioxide may be added to provide opacity.
- Vitamin A and provitamins thereof may also be added if they are chemically and physically compatible with the other components of the beverage emulsion, the syrup, and the beverage.
- Beverage emulsions may be prepared by well-known methods. Although the procedure must be tailored to the desired emulsion, a three-step procedure is generally used. In the first step, the aqueous phase and the oil phase are prepared separately. To prepare the aqueous phase, the preservative, acid, coloring agent, and co-processed stabilizer composition are dissolved in water. To prepare the oil phase, the weighting agent, if present, is added to the flavor oil for a flavor emulsion, or to the unflavored oil for a cloud emulsion.
- the emulsion is formed from the separate oil and aqueous phases in a two-step process.
- the oil phase and the aqueous phase are mixed to form a crude emulsion, known as a pre-mix using, for example, a high-speed mixer, colloid mill, homomixer, hydroshear, or similar type of mixer.
- the oil droplets are all typically less than 20 ⁇ m.
- the pre-mix is then homogenized to reduce the oil droplets to fine particles.
- the pre-mix is pumped through a homogenization valve at high pressure, which converts the oil droplets to fine particles.
- Single-stage or, preferably, two-stage homogenizers may be used. Although the pressure settings vary with the composition of the emulsion, the first stage is typically about 2,000 psig to 5,000 psig (about 140 to 350 kg/cm 2 ), and the second stage is typically about 500 psig (about 35 kg/cm 2 ). To obtain a uniform particle size, the emulsion is generally passed through the homogenizer at least twice.
- Beverage emulsions typically comprise about 65% to 85% by weight, more typically about 60% to 70% by weight, of water; about 5% to 15% by weight, more typically about 7% to about 12% by weight, even more typically about 10% by weight, of the oil phase; and about 3% to 12% by weight, more typically about 5% to 10% by weight, even more typically about 6% to about 8% by weight, of the co-processed stabilizer composition.
- beverage emulsions can be used to prepare beverage products using standard beverage formulating techniques.
- Beverage products include carbonated beverage products, such as colas and carbonated fruit-flavored and citrus-flavored beverage products, and uncarbonated beverage products, such as uncarbonated citrus-flavored and fruit-flavored beverage products.
- the preparation of beverage products and the materials used therein are well known to those skilled in the art and have been described in numerous patents and publications, such as, Nakel, U.S. Pat. No. 4,737,375; Wolf, U.S. Pat. No. 5,342,643; Calderas, U.S. Pat. No. 5,431 ,940; Drake, U.S. Pat. No. 5,624,698; Pflaumer, U.S. Pat. No.
- a syrup is formed.
- the syrup comprises about 0.5% by weight to about 2.0% by weight of the beverage emulsion.
- the syrup comprises a sweetener, preferably a carbohydrate sweetener, in an amount sufficient to provide the desired flavor and texture.
- the carbohydrate sweetener is preferably a mono- or disaccharide, such as maltose, lactose, galactose, sucrose ("sugar”), glucose, fructose, an invert sugar, or a mixture thereof.
- the beverage emulsion is added to an aqueous solution comprising about 55-60% by weight solids, primarily sweetener, typically a carbohydrate sweetener such as sugar, and food grade acid, such as citric acid, to form the syrup.
- the syrup is then diluted with water to form the final beverage product.
- the volume ratio of water to syrup is from about 3:1 to 8:1 , typically about 5:1.
- carbonated water can be used for the dilution, or carbon dioxide can be introduced after dilution.
- the beverage emulsion typically comprises from about 0.05% by weight to about 0.7% by weight, preferably about 0.1 % by weight to about 0.5% by weight of the beverage product.
- Carbohydrate sweeteners such as sugar, when present, typically comprise from about 0.1 % to about 20%, more preferably from about 6% to about 14%, by weight, of the beverage products.
- Optional artificial or noncaloric sweeteners that may be used in place of, or in combination with, carbohydrate sweeteners include, for example, saccharin, cyclamates, acetosulfam, acetosulfame K (potassium acetosulfame), sucralose, L-aspartyl-L- phenylalanine lower alkyl ester sweeteners (e.g., aspartame).
- Non-carbonated fruit-flavored beverage products may comprise 0.1 to 40%, preferably 1 to 20%, and more preferably 2 to 10%, and most preferably 3 to 6% juice (weight percentage based on single strength 2°-16° Brix fruit juice).
- the juice may be any citrus juice, non-citrus fruit juice, or mixture thereof, which is known for use in non-carbonated beverage products, such as apple, cranberry, grape, cherry, strawberry, orange, lemon, lime, tangerine, grapefruit, pineapple, coconut, etc.
- Non-fruit juices such as vegetable or botanical juices, such as tomato, lettuce, celery, carrot, beet, etc, can also be used.
- Non- carbonated fruit-flavored beverage products typically have a pH of from about 2.5 to about 4.5, preferably from about 2.7 to about 4.0. Tea, coffee, and chocolate solids also can be used. When tea solids are used, the non-carbonated beverage product typically comprises preferably about 0.02% by weight to about 0.25% by weight, more preferably about 0.07% by weight to about 0.15% by weight, of tea solids. Tea solids are extracted from tea materials including those materials obtained from the genus Camellia including C. sinensis and C. assaimica. Dairy-based beverage products have a pH of about 3.5 to 6.0, typically about 4.5 to 6.0.
- C*EmCap-lnstant 12633 Stabilized and acid-thinned instant waxy maize starch containing about 6% by weight moisture (Cerestar, Hammond, IN, USA)
- This example discloses preparation of a co-processed PGA/starch composition.
- PURITY® Gum 1773 waxy maize starch (267.3 g) was added to preheated (70°C) deionized water (2,675 g) while mixing with an overhead mixer to maintain a vortex.
- Duck Loid SLF-3 propylene glycol alginate (57.5 g) was added to the water-starch mixture, and the mixture mixed for an additional 30 min.
- the mixture was homogenized at 2500 psi (176 Kg/cm 2 ) using a Manton-Gaulin homogenizer 15MR-8TA.
- the viscosity immediately before spray drying was 1250 cps, measured with a Brookfield viscometer using #6 spindle at 20 rpm (30 sec reading).
- the mixture was spray dried on a three foot (about 0.91 m) Bowen spray dryer.
- the inlet dryer temperature was 200°C and the outlet temperature was 100°C.
- the final product was spherical in form with a moisture content of 7.8% by weight.
- the product was sieved through a 60 mesh screen.
- a flavor oil/weighting agent mixture was prepared by mixing 540 g of Cold. Pressed Orange Oil (Florida Chemical, Winter Haven FL USA) (specific gravity at 25°C, 0.842-0.846) and 540 g of five-fold Folded Orange Oil (Florida Chemical) (specific gravity at 25°C, 0.860-0.870) to which a weighting agent of Ester Gum 8BG synthetic resin (920 g) was added with sufficient agitation and mixing time to fully solubilize the gum and produce a uniform mixture. The density of the mixture was about 0.975 g/cm 2 .
- beverage stabilizer emulsions BEV-202 Gum Arabic; Duck Loid SLF-3 propylene glycol alginate (PGA); PURITY® Gum 1773 starch; blends of propylene glycol alginate with starch; and the co-processed PGA/starch composition prepared in Example 1.
- the flavor emulsions in Table I were prepared by dissolving sodium benzoate into room temperature filtered water while mixing on a LIGHTNIN'® mixer. The desired stabilizer was then added to the mixture with continued stirring until fully dissolved. If necessary, the mixture was heated. Citric acid and FD&C Yellow Dye 6 were pre-blended and then incorporated into the mixture with agitation. The covered mixture was left undisturbed overnight to allow the foam to dissipate. The flavor oil/weighting agent mixture was added slowly to the mixture while stirring.
- the dispersion was then homogenized with recirculation for two to four passes using 2500 psi (176 Kg/cm 2 ) in the first stage and 500 psi (35 Kg/cm 2 ) in the second stage of a Manton-Gaulin homogenizer 15MR-8TA.
- the resulting flavor oil emulsion was transferred to a glass container for storage.
- the particle size was measured using a Horiba model LA910 particle size analyzer. The PGA alone gave the lowest mean particle size and the narrowest particle size range while the co-processed PGA/starch gave the largest mean particle size.
- shelf-life performance at room temperature can be approximated by elevated temperature storage. Storage conditions of one week at 40°C are estimated to be roughly equivalent to one month at room temperature. Storage stability of the flavor emulsion prepared in step b was measured by placing about 25 g into small capped vials, which were stored at 40°C. The contents of the vials were examined each week up to 12 weeks to determine whether any visible separation of the emulsion occurred.
- the emulsion samples 2e and 2f using simple mixture of both starch and PGA, partially separated within the first 4 weeks.
- the gum arabic stabilized emulsion (sample 2a) separated between 8 and 12 weeks.
- the emulsion stabilized with starch alone (2d) and the co- processed PGA/starch stabilized emulsion (2 g) were stable for the full twelve weeks.
- Syrup was prepared by adding 1.44 wt% of the flavor oil emulsion to 98.6 wt% of the sugar syrup while mixing.
- the beverage product was prepared by adding five parts of filtered water to one part of the beverage syrup.
- the beverage product should have a shelf- life at room temperature of three months in a plastic container and six months in a glass container.
- the appearance of the beverage product should remain uniformly “cloudy.” There should be no “ring” formation at the neck and no settling or precipitate at the bottom of the beverage product.
- a flavor evaluation panel tasted the beverage products after three months room temperature storage.
- the sample with starch alone had a mild, somewhat masked, flavor intensity.
- the sample containing the PGA/starch co-processed stabilizer composition had a flavor intensity intermediate between gum arabic and starch alone.
- the sample with the PGA/starch composition had a cleaner orange flavor character than starch alone but less intensity as compared to gum arabic alone.
- a co-processed PGA/starch with the same ratio of PGA to starch as the co-processed PGA/starch prepared in Example 1 was prepared using a different starch.
- Duck Loid SLF-3 propylene glycol alginate (96.1 g) was added under agitation to deionized water (753.9 g) that had been preheated to 90°C. This solution was stirred for 15 min at 1000 rpm.
- C ⁇ mCap- Instant 126N1 411.5 g was added under agitation to deionized water (3708.5 g) that had been preheated to 90°C.
- the solution was stirred for 15 min at 800 rpm with a three-blade stirrer.
- the PGA solution was then added to the starch solution and mixed an additional 30 min at 500 rpm.
- the starch/PGA solution was then homogenized at 2500 psi (176 Kg/cm 2 ).
- the viscosity as measured as measured immediately before spray drying using a Brookfield viscometer with #1 spindle at 50 rpm after 30 sec was 34 cps and the slurry pH was 4.5.
- the mixture was spray dried on a three foot (about 0.91 m) Bowen spray dryer.
- the inlet dryer temperature was 200°C and the outlet temperature was 100°C.
- the final product was spherical in form and the moisture content was about 7.5%.
- the product was sieved through a 60 mesh screen.
- Flavor oil emulsions in Table II were prepared as in Example 2, except that in Examples 4b, 4c, and 4d after the stabilizer was added, the mixture was heated to about 72°C and mixing continued for about 20 min prior to addition of the remaining ingredients.
- Emulsions were placed on storage stability as in Example 2.
- Emulsion 4c showed signs of separation after about 1.5 weeks at 40°C.
- the beverage syrup for Example 4c developed a neck ring after three weeks. The remaining samples were acceptable after five weeks.
- Co-processed PGA/PURITY® Gum 1773 starch was prepared by mixing and spray drying a mixture prepared by adding PURITY® Gum 1773 starch (473.2 g) in deionized water (3,926.8 g) to Duck Loid SLF-3 propylene glycol alginate (67.8 g) in deionized water (532.2 g) as described in Example 3.
- the viscosity of the slurry before spray drying was 27 cps and the pH was 3.84.
- Co-processed PGA/C*EmCap-lnstant 126N1 was prepared by mixing and spray drying a mixture prepared by adding C ⁇ mCap- Instant 126N1 starch (487.2 g) in deionized water (3,923.8 g) to Duck Loid SLF-3 propylene glycol alginate (70.6 g) in deionized water (553.7 g) as described in Example 3.
- the viscosity as measured immediately before spray drying was 32 cps and the pH was 4.46.
- the final spray-dried product was spherical in form and the moisture content was less than 10%.
- the product was sieved through a 60 mesh screen.
- This example illustrates use of an extrusion mixer to prepare a high solids co-processed PGA/starch composition.
- a premix was prepared by mixing C ⁇ mCap-lnstant 12633 (848 g) and Duck Loid SLF-3 propylene glycol alginate (162.6 g) in a Hobart mixer and adding deionized water (170.8 g) with moderate agitation to give a uniform dough-like consistency.
- the solids of the premix were 80.2 wt%.
- the premix was then charged to a Readco laboratory twin shaft mixer, which was operated full open at 100 rpm and 5 to 6 amps.
- the in-process temperature started at 20°C and ended at about 50°C.
- the resulting high solids co-processed PGA/starch had a solids content of 85.9 wt% and a 15:85 weight ratio of PGA/starch. It was ground to a fine powder.
- a flavor emulsion prepared using 5 wt% of this high solids co-processed PGA/starch was prepared as in Example 2 using orange oil blend (40 g), the co-processed PGA/starch (20 g), FD&C Yellow Dye 6 (1.75 g), citric acid (0.8 g), sodium benzoate (0.4 g) and deionized water (337.05 g).
- the dispersion was homogenized with an initial pass at 500 psi (35 Kg/cm 2 ) followed by 4 passes at 3000 psi (211 Kg/cm 2 ).
- the flavor emulsion had a particle size of 0.66 microns, as measured by a Coulter counter, and remained stable after 3 months storage at room temperature.
- Distilled water (3809.5 g) was weighed into a deep plastic container.
- C ⁇ mCap- Instant 12633 (404.41 g) was added steadily and quickly with stirring using a double blade agitator.
- the sample was mixed for 30 minutes.
- Duck Loid SLF-3 (84.7 gm) was mixed in distilled water (665.4 g) for 30 minutes. The two liquids were then combined and mixed for an additional 30 minutes.
- the weight ratio was 15:85 PGA/starch.
- the sample was uniform and free of lumps after mixing.
- a total of 6 gallons of material were prepared by this method. Gallon samples were re-mixed, pumped with a peristaltic pump at a feed rate to maintain the desired outlet temperature, and dried using a pulse combustion spray drying system (Pulse Combustion Systems LLC) under the following process conditions:
- Flavor emulsions were prepared for co-processed starch/PGA Samples 1 to 6. Flavor emulsions prepared using Samples 1 , 4, 5 and 6 broke to form two even layers. Flavor emulsions prepared using Samples 2 and 3 remained stable and were used to prepare beverage products. Additional co-processed starch/PGA samples (Samples 7, 8, and 9) were prepared with the same 85:15 starch/PGA composition and dried using pulse combustion drying. Samples 7 and 9 were sprayed at 10 wt% solids and sample 8, which had a decreased amount of water in the formulation, was sprayed at 20 wt% solids. The recovered powders produced stable beverage flavor emulsions and a beverage product that was stable after one month of storage.
- This example illustrates co-processed compositions that were prepared at 20 wt% solids and then roll dried.
- Flavor emulsions and beverage products were prepared from each roll dried co-processed PGA/starch as described in Example 2. The flavor emulsions were stable. The beverage products prepared from the flavor emulsions were stable after one month of storage.
Landscapes
- Chemical & Material Sciences (AREA)
- Food Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Non-Alcoholic Beverages (AREA)
- Confectionery (AREA)
- Jellies, Jams, And Syrups (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25028900P | 2000-11-30 | 2000-11-30 | |
US250289P | 2000-11-30 | ||
PCT/US2001/044799 WO2002043509A1 (en) | 2000-11-30 | 2001-11-30 | Beverage emulsion stabilizer |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1343388A1 EP1343388A1 (en) | 2003-09-17 |
EP1343388A4 true EP1343388A4 (en) | 2004-10-13 |
Family
ID=22947136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01998235A Withdrawn EP1343388A4 (en) | 2000-11-30 | 2001-11-30 | STABILIZER FOR BEVERAGE EMULSIONS |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1343388A4 (zh) |
JP (1) | JP2004514765A (zh) |
CN (1) | CN1477933A (zh) |
AU (1) | AU2002219942A1 (zh) |
BR (1) | BR0115612A (zh) |
MX (1) | MXPA03004595A (zh) |
WO (1) | WO2002043509A1 (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030021874A1 (en) * | 2001-07-02 | 2003-01-30 | The Procter & Gamble Co. | Stabilized compositions and processes of their preparation |
WO2004017761A1 (de) * | 2002-08-03 | 2004-03-04 | Dragoco Gerberding & Co. Ag | Instantlösliches sprühgetrocknetes pulver und instant-getränkepulver für die getränkeherstellung sowie verfahren zu deren herstel lung |
JP4180023B2 (ja) * | 2004-06-30 | 2008-11-12 | 株式会社資生堂 | 毛髪化粧料 |
US8153180B2 (en) * | 2005-09-06 | 2012-04-10 | Pepsico, Inc. | Method and apparatus for making beverages |
ATE471666T1 (de) * | 2005-12-09 | 2010-07-15 | Danisco | Stabilisierte emulsion |
US8445044B2 (en) | 2007-05-07 | 2013-05-21 | Kent Precision Foods Group, Inc. | Food thickening agent, method for producing food thickening agent |
EP2025250B1 (de) * | 2007-07-31 | 2012-12-19 | Symrise AG | Aufrahmstabile Getränkesirupe |
CN102573513A (zh) * | 2009-10-02 | 2012-07-11 | 帝斯曼知识产权资产管理有限公司 | 作为脂溶性成分的乳化剂的新型植物胶-改性食物淀粉缀合物 |
US9101156B2 (en) | 2013-03-15 | 2015-08-11 | Kent Precision Foods Group, Inc. | Thickener composition, thickened nutritive products, methods for preparing thickened nutritive products, and methods for providing nutrition |
US11944111B2 (en) * | 2015-02-20 | 2024-04-02 | Pepsico., Inc. | Stabilizing sorbic acid in beverage syrup |
KR20210055096A (ko) * | 2018-10-04 | 2021-05-14 | 더 코카콜라 컴파니 | 감귤류 음료를 위한 증량제 |
US11751594B2 (en) | 2020-10-22 | 2023-09-12 | Grain Processing Corporation | Food thickener composition and method |
CN113208097B (zh) * | 2021-05-13 | 2023-06-30 | 大连工业大学 | 一种由海藻酸钠和玉米淀粉稳定的鱼皮明胶乳液及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3332786A (en) * | 1966-06-13 | 1967-07-25 | Kelco Co | Method of preparing enzyme stable starch and product |
US4643894A (en) * | 1984-07-24 | 1987-02-17 | Colorcon, Inc. | Maltodextrin coating |
US5616358A (en) * | 1995-07-19 | 1997-04-01 | The Procter & Gamble Company | Stable beverages containing emulsion with unweighted oil and process of making |
US5919512A (en) * | 1995-12-15 | 1999-07-06 | The Procter & Gamble Company | Method of making beverages having stable flavor/cloud emulsions in the presence of polyphosphate-containing preservative systems and low levels of xanthan gum |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6017388A (en) * | 1996-01-16 | 2000-01-25 | Opta Food Ingredients, Inc. | Starch-emulsifier composition and methods of making |
EP0874874A1 (en) * | 1996-01-16 | 1998-11-04 | Opta Food Ingredients, Inc. | Starch-emulsifier composition and methods of making |
US6228419B1 (en) * | 1998-10-20 | 2001-05-08 | Opta Food Ingredients, Inc. | High-amylose starch-emulsifier composition and methods of making |
-
2001
- 2001-11-30 JP JP2002545498A patent/JP2004514765A/ja active Pending
- 2001-11-30 WO PCT/US2001/044799 patent/WO2002043509A1/en not_active Application Discontinuation
- 2001-11-30 AU AU2002219942A patent/AU2002219942A1/en not_active Abandoned
- 2001-11-30 EP EP01998235A patent/EP1343388A4/en not_active Withdrawn
- 2001-11-30 CN CNA018197159A patent/CN1477933A/zh active Pending
- 2001-11-30 BR BR0115612-8A patent/BR0115612A/pt not_active IP Right Cessation
- 2001-11-30 MX MXPA03004595A patent/MXPA03004595A/es unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3332786A (en) * | 1966-06-13 | 1967-07-25 | Kelco Co | Method of preparing enzyme stable starch and product |
US4643894A (en) * | 1984-07-24 | 1987-02-17 | Colorcon, Inc. | Maltodextrin coating |
US5616358A (en) * | 1995-07-19 | 1997-04-01 | The Procter & Gamble Company | Stable beverages containing emulsion with unweighted oil and process of making |
US5919512A (en) * | 1995-12-15 | 1999-07-06 | The Procter & Gamble Company | Method of making beverages having stable flavor/cloud emulsions in the presence of polyphosphate-containing preservative systems and low levels of xanthan gum |
Non-Patent Citations (3)
Title |
---|
ANONYMOUS: "Functional Drink, Tea and Juice Stabilizers, Clarifiers and Texturizers.", INTERNET ARTICLE, XP002287134, Retrieved from the Internet <URL:http://www.ispcorp.com/products/beverage/content/brochure/pdf/userguide.pdf> [retrieved on 20040706] * |
G.O. PHILLIPS, P.A. WILLIAMS, D.J. WEDLOCK: "Gums and Stabilisers for the Food Industry 5", 1990, IRL PRESS, USA, XP002287149 * |
See also references of WO0243509A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2004514765A (ja) | 2004-05-20 |
EP1343388A1 (en) | 2003-09-17 |
WO2002043509A1 (en) | 2002-06-06 |
MXPA03004595A (es) | 2003-09-04 |
BR0115612A (pt) | 2003-09-16 |
AU2002219942A1 (en) | 2002-06-11 |
CN1477933A (zh) | 2004-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1956928B1 (en) | Stabilised emulsion | |
US20040062845A1 (en) | Beverage emulsion stabilizer | |
EP3209137B1 (en) | Metastable, translucent flavor nanoemulsions and methods of preparing the same | |
JP3311350B2 (ja) | 飲料増粘剤/乳化剤系 | |
JP4294606B2 (ja) | 乳化香料組成物 | |
CN108024559B (zh) | 蔗糖单酯微乳液 | |
AU2006322992A1 (en) | Beverage emulsion | |
EP2388278B1 (en) | Modified sugar beet pectin and method for using the same | |
JPH10501988A (ja) | 油相を含む安定な飲料ファウンテンシロップ及びファウンテンシロップ油相の安定化方法 | |
EP1343388A1 (en) | Beverage emulsion stabilizer | |
KR20090093966A (ko) | 식품 및 음료용 유화제 | |
JP2741093B2 (ja) | 飲食品用乳化液組成物の製法 | |
US9907325B2 (en) | Encapsulated weighting agents for beverage emulsions | |
EP3288395B1 (en) | Quillaja-stabilized liquid beverage concentrates and methods of making same | |
US20210392926A1 (en) | Weighting Agents for Citrus Beverages |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030606 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7A 23L 2/62 B Ipc: 7A 23L 2/52 B Ipc: 7A 23L 2/38 B Ipc: 7A 23L 2/00 B Ipc: 7A 23L 1/0532 B Ipc: 7A 23L 1/0522 A |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20040831 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20051206 |