EP1333976A1 - Method for the production of screen cavities in a rotogravure form and base body applicable in said method - Google Patents

Method for the production of screen cavities in a rotogravure form and base body applicable in said method

Info

Publication number
EP1333976A1
EP1333976A1 EP01980111A EP01980111A EP1333976A1 EP 1333976 A1 EP1333976 A1 EP 1333976A1 EP 01980111 A EP01980111 A EP 01980111A EP 01980111 A EP01980111 A EP 01980111A EP 1333976 A1 EP1333976 A1 EP 1333976A1
Authority
EP
European Patent Office
Prior art keywords
layer
support layer
copper
laser radiation
base body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01980111A
Other languages
German (de)
French (fr)
Other versions
EP1333976B1 (en
Inventor
Jakob Frauchiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daetwyler Global Tec Holding AG
Original Assignee
MDC Max Daetwyler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MDC Max Daetwyler AG filed Critical MDC Max Daetwyler AG
Publication of EP1333976A1 publication Critical patent/EP1333976A1/en
Application granted granted Critical
Publication of EP1333976B1 publication Critical patent/EP1333976B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41BMACHINES OR ACCESSORIES FOR MAKING, SETTING, OR DISTRIBUTING TYPE; TYPE; PHOTOGRAPHIC OR PHOTOELECTRIC COMPOSING DEVICES
    • B41B17/00Photographic composing machines having fixed or movable character carriers and without means for composing lines prior to photography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/02Engraving; Heads therefor
    • B41C1/04Engraving; Heads therefor using heads controlled by an electric information signal
    • B41C1/05Heat-generating engraving heads, e.g. laser beam, electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/04Printing plates or foils; Materials therefor metallic
    • B41N1/06Printing plates or foils; Materials therefor metallic for relief printing or intaglio printing

Definitions

  • the invention relates to a method according to the preamble of patent claim 1 and a base body of a gravure printing plate according to the preamble of patent claim 8.
  • DE-A 30 35 714 discloses a further method for producing pressure cups for an intaglio printing plate.
  • the still "raw" gravure form was coated with an etchant-resistant varnish.
  • the varnish was then removed with an electronic engraving device at the points where grid pits should later be available.
  • a stylus, a laser beam or an electron beam was used as the electronic engraving device.
  • an etching process was carried out to produce the grid cells.
  • the manufacturing process described here was complicated and time consuming. A method analogous to this is described in DE-A 2 344 233.
  • EP-B 0473 973 proposes to produce the cells no longer in copper but in zinc.
  • the method described in EP-B 0 473 973 can be used, it is disadvantageous in the case of the gravure printing forms produced thereby that the entire gravure Printing technology is now geared towards copper as the material in which the grid cells are located.
  • the object of the invention is to present a method and to create a base body in which or on the screen cup of a gravure printing form directly by means of laser radiation, preferably in copper, but also in other materials without an ejection crater rim, i.e. burr-free grid cups can be produced.
  • the object is achieved in that a, preferably only a single ablation support layer is applied to the base body over the upper layer areas provided for the information embossing, through which scanning pits with the laser radiation by material ablation (evaporation and / or ejection of molten material) into the jacket areas are introduced and then this support layer is removed, whereupon burr-free rest cases are obtained.
  • the laser radiation is radiation that is modulated in terms of its intensity over time. As a rule, pulsed radiation will be used, but this is not mandatory. Laser spikes, Q-switches, mode-locking etc. are also possible. When the support layer is removed, there is no change in the grid cells in the upper layer areas.
  • the quality of the grid cells produced in this way without burr is so good that a hard layer, in particular a chrome layer, can be applied without aftertreatment.
  • the chromium layer in gravure forms of this type is preferably applied with a layer thickness between 4 ⁇ m and 30 ⁇ m, in particular between 8 ⁇ m and 10 ⁇ m.
  • the burr-free grid cells preferably in copper, can be achieved in particular by selecting the support layer in such a way that it enables good energy coupling for the laser radiation with good initiation of material ablation (ablation) to the underlying material with minimized directed radiation backscattering.
  • Minimized radiation backscatter is important so that no radiation gets back into the laser resonator. This would be intensified there and could cause damage to the optical components.
  • a good energy coupling of the laser radiation is important, since then only a small portion of the radiation remains, which is still necessary for a back reflection could come into question. On the other hand, a good energy coupling causes a strong heating of the material of the support layer.
  • the support layer has changed to the liquid state, there is practically no longer any need to worry about radiation absorption. If one now selects this material of the support layer in such a way that the melting point of its essential material portion is low, the high radiation absorption also occurs quickly. However, the melting point should in any case be lower than that of the underlying upper layer material, in which the grid cells are then located. If the grid cells are to be in copper, the melting point should be below 1083 ° C.
  • the metals would be silver with 961 ° C, aluminum with 660 ° C, gold with 1063 ° C (which, however, immediately falls out of the cost), gallium and germanium with 937 ° C, indium with 927 ° C, lead at 327 ° C, tin at 232 ° C, zinc at 419 ° C, etc.
  • An essential material fraction of the layer material is understood to mean a percentage which causes the property mentioned above. Depending on the material, a substantial proportion of the material should be between 80% and close to 100%.
  • the material of the support layer is said to be a material removal in which the
  • the local thermal energy introduced with the laser radiation should cause the material underneath to melt as quickly as possible.
  • this reproducible melting is only possible if the layer thickness of the ablation support layer is the same everywhere. If this is the case, the well volume to be generated can be precisely specified via the radiated maximum pulse intensity and the pulse shape. The easiest way to determine the well volume is by experiment. Good results have resulted in copper as information-bearing layer and zinc as erosion support layer with the layer thickness of between 1 micron to 15 microns, preferably microns between 5 and 10 microns is less than 10 with a layer thickness tolerance of "3, preferably better than 5 ⁇ 10 of" 5 , A zinc layer with such accuracy is best applied galvanically.
  • the material of the ablation support layer should have the highest possible vapor pressure.
  • "Background material” ejected by the laser pulse from the information-carrying layer, which still falls fluidly onto the support layer, causes it to melt and evaporate and is then thrown away by the steam with a further loss of heat.
  • the vapor pressure of the "background material” should be at least five times lower than that of the material lying on it. If the example above remains, zinc has a vapor pressure that is about 100 times higher than that of copper.
  • the material of the ablation support layer should be able to be removed well, in particular chemically, without attacking the information-carrying jacket regions.
  • the wavelength of the laser radiation used is to be adapted to the absorption of the material of the ablation support layer.
  • the wavelength must also be adapted to the dimensions of the grid cells to be produced in accordance with the optical imaging laws.
  • a CO 2 laser (wavelength 10.6 ⁇ m) can be used for scanning cells with a diameter larger than 10 ⁇ m.
  • an Nd: YAG laser (1.06 ⁇ m) is preferred.
  • Pulse shaping and an optical structure for the beam guidance of the laser will preferably be carried out as described in EP 00 810 552.0. If an Nd: YAG laser is used, zinc has also proven itself in this case as the material of the ablation support layer.
  • the ablation support layer not only initiates material removal in the underlying material, it also causes a switch-on delay for the drilling process in the underlying layer.
  • the laser pulse has therefore already risen to a higher intensity value than its initial pulse value, which results in an increase in the drilling intensity. This results in a good, i.e. a hemispherical shape.
  • FIG. 1 shows a cross section through the base body according to the invention in an enlarged view with a pulsed laser beam generating a scanning cell
  • FIG. 2 shows a cross section analogous to FIG. 1, the removal support layer being removed here
  • FIG. 3 shows a cross section analogous to FIGS. 1 and 2, a hard layer being applied here.
  • Metallic rotogravure forms are usually made up of several functional elements.
  • a steel cylinder is usually used as the base body 1.
  • a copper layer 3 with a thickness of a few millimeters is applied to the steel cylinder.
  • the copper layer 3 is the information-bearing gravure form.
  • the information consists of an arrangement of a multiplicity of grid cells 5 which receive the color required for printing.
  • a chromium coating 7 with a typical thickness of approximately 10 ⁇ m is applied as the top layer.
  • the print information is now introduced directly into the copper layer 3 in its upper layer area 8 with a beam 9 of a pulsed Nd: YAG by material removal.
  • the copper surface 11 is galvanically provided with a zinc layer 13 as a removal support layer with a small thickness tolerance (less than 5 ⁇ 10 "5 ).
  • a small thickness tolerance less than 5 ⁇ 10 "5 .
  • the laser pulse 9 for generating a grid 5 each pierces the zinc layer 13 while melting.
  • Solid zinc has an absorption for the radiation 9 of the Nd: YAG laser of approximately 50%.
  • solid zinc shows almost no directional reflection. Does the zinc go due to its relatively low melting and its low thermal conductivity compared to copper into the liquid state, there is almost 100 percent radiation absorption. There is a strong local heating of the zinc, which continues to pass it on to the underlying copper in the absorbing state, whereupon this also changes into the liquid state. Copper is now of an almost 100 percent reflection for the radiation 9 of the Nd: YAG laser (although the reflection does not come into effect because the copper is still covered by zinc) in the solid state, now liquid in an approximately 100 percent absorption passed.
  • the copper material ejection or that of the zinc 15 lie on the zinc layer 13 and can be easily removed by chemically detaching it in a subsequent cleaning process.
  • the exposed engraving (small cup 5) in copper 3 is burr-free and can be chrome-plated without any problems.
  • Zinc in particular prevents the melts from sticking, reduces the initial reflection for the laser radiation 9 and therefore allows an efficient drilling process in copper 3.
  • the method just described is of course not limited to zinc 13 as a copper coating. As stated at the beginning, a number of other materials are possible.
  • the removal support layer to be applied to copper 3 does not necessarily have to be a metal layer either. Non-metals are also suitable, provided they have the required properties with regard to absorption, directed reflection and melting point.
  • the base body 1 of a gravure printing plate does not necessarily have to be cylindrical; it can also be semi-cylindrical, flat or shaped differently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

The invention relates to the production of a rotogravure form, preferably comprising a rotationally symmetrical base body (1) and with screen cavities (5) as print information, by means of time-modulated, particularly pulsed laser radiation (9), whereby an erosion support layer (13) is applied to the surface regions (8), provided for information engraving on the base body (1), through which the screen cavities (5) are produced in said surface regions (8) with the laser radiation (9), by means of material ablation. Said erosion support layer (13) is subsequently removed to give burr-free screen cavities (5).

Description

Verfahren zur Herstellung von Rasternäpfchen in einer Tiefdruckform und in dem Verfahren verwendbarer Grundkörper Process for the production of halftone cells in a gravure printing form and base body which can be used in the process
Die Erfindung betrifft ein Verfahren gemäss dem Oberbegriff des Patentanspruchs 1 und einen Grundkörper einer Tiefdruckform gemäss dem Oberbegriff des Patentanspruchs 8.The invention relates to a method according to the preamble of patent claim 1 and a base body of a gravure printing plate according to the preamble of patent claim 8.
Stand der Technik Aus der DE-A 2 218 393 ist ein gattungsfremdes Verfahren zur Herstellung vonPRIOR ART DE-A 2 218 393 describes a non-generic method for the production of
Tiefdruckformen mit Elektronenstrahlen bekannt. Bei der Herstellung von Tiefdruckformen mit Elektronenstrahlen ergaben sich Schwierigkeiten bei der Erzeugung von Rasternäpfchen mit einer Tiefe unter 10 μm. Die DE-A 2 218 393 hat deshalb vorgeschlagen, die mit Elektronenstrahlen zu gravierenden Oberflächen mit einer Trennschicht aus Silber bzw. Kupfersulfid mit einer Schichtdicke von lediglich 0,1 μm zu beschichten. Auf die Trennschicht wurde dann eine zweite Schicht aus Kupfer mit einer Schichtdicke von 15 μm aufgebracht. Trennschicht und zweite Schicht dienten lediglich dazu, auf Abtragungstiefe zu reduzieren. Nach dem Gravieren mit Elektronenstrahlen, wobei Näpfchen mit einer Tiefe bis zu 20 μm erzeugt wurden, verblieben beim nachträglichen Abziehen der Trenn- und Kupferschicht lediglich Näpfchen mit einer Tiefe von 5 μm; d.h. unter 10 μm, wie gewünscht.Gravure forms with electron beams are known. In the production of gravure printing forms using electron beams, difficulties arose in the production of scanning cells with a depth of less than 10 μm. DE-A 2 218 393 has therefore proposed coating the surfaces to be engraved with electron beams with a separating layer made of silver or copper sulfide with a layer thickness of only 0.1 μm. A second layer of copper with a layer thickness of 15 μm was then applied to the separating layer. The separating layer and the second layer only served to reduce the depth of removal. After engraving with electron beams, where Cups with a depth of up to 20 μm were produced, when the separation and copper layers were subsequently removed, only cups with a depth of 5 μm remained; ie below 10 microns as desired.
Das in der DE-A 2 218 393 beschriebene Verfahren stellte aufgrund einer Er- zeugung von zwei Schichten mit unterschiedlichen Materialen und einem Arbeiten im Vakuum ein kompliziertes Verfahren dar.The process described in DE-A 2 218 393 was a complicated process due to the production of two layers with different materials and working in a vacuum.
Aus der DE-A 30 35 714 ist ein weiteres Verfahren zur Herstellung von Drucknäpfchen für eine Tiefdruckform bekannt. Hierbei wurde die noch "rohe" Tiefdruckform mit einem ätzmittelresistenten Lack belegt. Der Lack wurde dann mit einer elektroni- sehen Graviervorrichtung an den Stellen abgetragen, an denen später Rasternäpfchen vorhanden sein sollten. Als elektronische Graviervorrichtung wurde ein Stichel, ein Laserstrahl oder ein Elektronenstrahl verwendet. Nach dem gezielten Abtragen des Lacks erfolgte zur Erzeugung der Rasternäpfchen ein Ätzvorgang. Das hier beschriebene Herstellungsverfahren war kompliziert und zeitaufwendig. Ein hierzu analoges Verfahren ist in der DE-A 2 344 233 beschrieben.DE-A 30 35 714 discloses a further method for producing pressure cups for an intaglio printing plate. Here, the still "raw" gravure form was coated with an etchant-resistant varnish. The varnish was then removed with an electronic engraving device at the points where grid pits should later be available. A stylus, a laser beam or an electron beam was used as the electronic engraving device. After the targeted removal of the lacquer, an etching process was carried out to produce the grid cells. The manufacturing process described here was complicated and time consuming. A method analogous to this is described in DE-A 2 344 233.
In der EP-B 0 473 973 wird nun vorgeschlagen, mittels Laserstrahlung eine direkte Gravur der Rasternäpfchen für die Tiefdruckform vorzunehmen, wobei hier darauf hingewiesen wird, dass eine Laserbearbeitung von Tiefdruckformen mit einer Aussen- schicht aus Kupfer mit den nachfolgenden Schwierigkeiten verbunden waren: 1. Sehr starke Reflexion der Kupferschicht;In EP-B 0 473 973 it is now proposed to use laser radiation to carry out a direct engraving of the scanning cups for the intaglio printing form, it being pointed out here that laser processing of intaglio printing forms with an outer layer of copper was associated with the following difficulties: 1 Very strong reflection of the copper layer;
2. Hohe Schmelz- bzw. Verdampfungstemperatur von Kupfer;2. High melting or vaporization temperature of copper;
3. Hohe Schmelz- bzw. Verdampfungswärme von Kupfer;3. High melting or evaporation heat of copper;
4. Gute Wärmeleitfähigkeit von Kupfer und damit starke Wärmeabgabe an die Umgebung der Rasternäpfchen. Bei der Lasergravur von Kupferschichten ergab sich zudem ein überstehender4. Good thermal conductivity of copper and thus strong heat transfer to the surroundings of the cell. In the laser engraving of copper layers, there was also a protruding one
Auswurfkraterrand am Näpfchen. Dieser Rand musste dann in mühevoller Weise entfernt werden.Ejection crater rim on the bowl. This edge then had to be removed with difficulty.
Aus diesem Grund schlägt die EP-B 0473 973 vor, die Näpfchen nicht mehr in Kupfer, sondern in Zink zu erzeugen. Das in der EP-B 0 473 973 beschriebene Verfahren ist zwar einsetzbar, nachteilig bei den hiermit hergestellten Tiefdruckformen ist jedoch, dass die gesamte Tief- drucktechnik nun einmal auf Kupfer als Material ausgerichtet ist, in dem sich die Rasternäpfchen befinden.For this reason, EP-B 0473 973 proposes to produce the cells no longer in copper but in zinc. Although the method described in EP-B 0 473 973 can be used, it is disadvantageous in the case of the gravure printing forms produced thereby that the entire gravure Printing technology is now geared towards copper as the material in which the grid cells are located.
Aufgabe der ErfindungObject of the invention
Aufgabe der Erfindung ist es, ein Verfahren vorzustellen sowie einen Grundkör- per zu schaffen, bei dem bzw. auf dem Rasternäpfchen einer Tiefdruckform direkt mittels Laserstrahlung bevorzugt in Kupfer, aber auch in anderen Materialien ohne Auswurfskraterrand, d.h. gratfreie Rasternäpfchen herstellbar sind.The object of the invention is to present a method and to create a base body in which or on the screen cup of a gravure printing form directly by means of laser radiation, preferably in copper, but also in other materials without an ejection crater rim, i.e. burr-free grid cups can be produced.
Lösung der AufgabeSolution of the task
Die Aufgabe wird dadurch gelöst, dass auf dem Grundkörper über dessen, für die Informationseinprägung vorgesehenen Oberschichtbereichen eine, bevorzugt nur eine einzige Abtragungsunterstützungsschicht aufgebracht wird, durch die hindurch Rasternäpfchen mit der Laserstrahlung durch Materialablation (Verdampfen und/oder Auswurf von geschmolzenem Material) in die Mantelbereiche eingebracht werden und anschliessend diese Unterstützungsschicht entfernt wird, worauf gratfreie Rastemäpf- chen erhalten werden. Die Laserstrahlung ist eine zeitlich in ihrem Intensitätsverlauf modulierte Strahlung. In der Regel wird man eine gepulste Strahlung verwenden, was jedoch nicht zwingend ist. Laserspikes, Q-switch, mode-locking usw. sind ebenfalls möglich. Bei der Entfernung der Unterstützungsschicht erfolgt keine Veränderung der Rasternäpfchen in den Oberschichtbereichen. Die Qualität der derart ohne Grat herge- stellten Rasternäpfchen ist so gut, dass ohne Nachbehandlung eine Hartschicht, insbesondere eine Chromschicht, aufgebracht werden kann. Die Chromschicht bei derartigen Tiefdruckformen wird man vorzugsweise mit einer Schichtdicke zwischen 4 μm und 30 μm, insbesondere zwischen 8 μm und 10 μm aufbringen.The object is achieved in that a, preferably only a single ablation support layer is applied to the base body over the upper layer areas provided for the information embossing, through which scanning pits with the laser radiation by material ablation (evaporation and / or ejection of molten material) into the jacket areas are introduced and then this support layer is removed, whereupon burr-free rest cases are obtained. The laser radiation is radiation that is modulated in terms of its intensity over time. As a rule, pulsed radiation will be used, but this is not mandatory. Laser spikes, Q-switches, mode-locking etc. are also possible. When the support layer is removed, there is no change in the grid cells in the upper layer areas. The quality of the grid cells produced in this way without burr is so good that a hard layer, in particular a chrome layer, can be applied without aftertreatment. The chromium layer in gravure forms of this type is preferably applied with a layer thickness between 4 μm and 30 μm, in particular between 8 μm and 10 μm.
Die gratfreien Rasternäpfchen, vorzugsweise in Kupfer, lassen sich inbesondere dadurch erreichen, dass die Unterstützungsschicht derart ausgewählt wird, dass sie eine gute Energieeinkopplung für die Laserstrahlung mit einer guten Materialabtra- gungsinitierung (Ablation) zum darunterliegenden Material bei einer minimierten gerichteten Strahlungsrückstreuung ermöglicht. Eine minimierte Strahlungsrückstreuung ist wichtig, damit keine Strahlung zurück in den Laserresonator gelangt. Diese würde nämlich dort verstärkt und könnte Beschädigungen an den optischen Komponenten bewirken. Eine gute Energieeinkopplung der Laserstrahlung ist wichtig, da dann nur noch ein geringer Strahlungsanteil verbleibt, der überhaupt für eine Rückreflexion noch in Frage kommen könnte. Andererseits bewirkt eine gute Energieeinkopplung eine starke Aufheizung des Materials der Unterstützungsschicht. Ist die Unterstützungsschicht einmal in den flüssigen Zustand übergegangen, muss man sich praktisch keine Sorgen mehr betreffend Strahlungsabsorption machen. Wählt man nun dieses Material der Unterstützungsschicht noch derart aus, dass bei seinem wesentlichen Materialanteil der Schmelzpunkt tief liegt, so tritt die hohe Strahlungsabsorption auch schnell ein. Der Schmelzpunkt sollte jedoch auf jeden Fall tiefer liegen als derjenige des darunterliegenden Oberschichtmaterials, in dem dann die Rasternäpfchen liegen. Sollen die Rasternäpfchen in Kupfer liegen, so sollte der Schmelzpunkt unter 1083 °C liegen. Lediglich vom Schmelzpunkt her, würden sich bei den Metallen Silber mit 961 °C, Aluminium mit 660 °C, Gold mit 1063 °C (was jedoch sofort von den Kosten her herausfällt), Gallium und Germanium mit 937 °C, Indium mit 927 °C, Blei mit 327 °C, Zinn mit 232 °C, Zink mit 419 °C usw. anbieten. Vernünftig verwendbar sind jedoch nur Materialien, deren Dämpfe nicht gesundheitsschädlich sind, da ansonsten grosse Aufwendung für eine Dampfabsaugung vorgenommen werden müssten. Unter einem wesentlichen Materialanteil des Schichtmaterials wird ein Prozentsatz verstanden, der die oben angeführte Eigenschaft hervorruft. Ein wesentlicher Materialanteil dürfte je nach Materialien bei einem Prozentanteil von 80 % bis nahe 100 % liegen. Das Material der Unterstützungsschicht soll einen Materialabtrag in dem dieThe burr-free grid cells, preferably in copper, can be achieved in particular by selecting the support layer in such a way that it enables good energy coupling for the laser radiation with good initiation of material ablation (ablation) to the underlying material with minimized directed radiation backscattering. Minimized radiation backscatter is important so that no radiation gets back into the laser resonator. This would be intensified there and could cause damage to the optical components. A good energy coupling of the laser radiation is important, since then only a small portion of the radiation remains, which is still necessary for a back reflection could come into question. On the other hand, a good energy coupling causes a strong heating of the material of the support layer. Once the support layer has changed to the liquid state, there is practically no longer any need to worry about radiation absorption. If one now selects this material of the support layer in such a way that the melting point of its essential material portion is low, the high radiation absorption also occurs quickly. However, the melting point should in any case be lower than that of the underlying upper layer material, in which the grid cells are then located. If the grid cells are to be in copper, the melting point should be below 1083 ° C. Merely from the melting point, the metals would be silver with 961 ° C, aluminum with 660 ° C, gold with 1063 ° C (which, however, immediately falls out of the cost), gallium and germanium with 937 ° C, indium with 927 ° C, lead at 327 ° C, tin at 232 ° C, zinc at 419 ° C, etc. However, only materials whose vapors are not harmful to health can be used sensibly, since otherwise great expenditure would have to be made for steam extraction. An essential material fraction of the layer material is understood to mean a percentage which causes the property mentioned above. Depending on the material, a substantial proportion of the material should be between 80% and close to 100%. The material of the support layer is said to be a material removal in which the
Druckinformation tragenden darunterliegenden Material bewirken. D.h. es soll durch die mit der Laserstrahlung eingebrachte örtliche Wärmeenergie möglichst rasch ein reproduziertes Schmelzen des darunterliegenden Materials erfolgen. Wie Versuche gezeigt haben, ist dieses reproduzierbare Schmelzen nur gegeben, wenn die Schichtdicke der Abtragungsunterstützungsschicht überall gleich dick ist. Ist dies der Fall, kann nämlich über die eingestrahlte maximale Pulsintensität und die Pulsform exakt das zu erzeugende Näpfchenvolumen vorgegeben werden. Das Näpfchenvolumen lässt sich am einfachsten experimentell ermitteln. Gute Ergebnisse haben sich bei Kupfer als informationstragender Schicht und Zink als Abtragungsunterstützungsschicht bei deren Schichtdicke zwischen 1 μm bis 15 μm, bevorzugt zwischen 5 μm und 10 μm mit einer Schichtdicketoleranz von kleiner als 10"3, bevorzugt von besser als 5 10"5 ergeben. Eine Zinkschicht mit einer derartigen Genauigkeit wird am besten galvanisch aufgebracht. Durch Versuche konnte ferner festgestellt werden, dass das Material der Abtra- gungsunterstützungsschicht einen möglichst hohen Dampfdruck aufweisen sollte. Vom Laserpuls aus der informationstragenden Schicht ausgeworfenes "Untergrundmaterial", welches noch flüssig auf die Unterstützungsschicht fällt, bringt diese zum Schmelzen und Verdampfen und wird dann durch den Dampf unter einem weiteren Wärmeverlust weggeschleudert. Der Dampfdruck des "Untergrundmaterials" sollte mindestens fünfmal kleiner sein als derjenige des darauf liegenden Materials. Wird beim oben angeführten Beispiel verblieben, so hat Zink einen etwa 100 mal höheren Dampfdruck als Kupfer.Cause print information carrying underlying material. That is, the local thermal energy introduced with the laser radiation should cause the material underneath to melt as quickly as possible. As experiments have shown, this reproducible melting is only possible if the layer thickness of the ablation support layer is the same everywhere. If this is the case, the well volume to be generated can be precisely specified via the radiated maximum pulse intensity and the pulse shape. The easiest way to determine the well volume is by experiment. Good results have resulted in copper as information-bearing layer and zinc as erosion support layer with the layer thickness of between 1 micron to 15 microns, preferably microns between 5 and 10 microns is less than 10 with a layer thickness tolerance of "3, preferably better than 5 10 of" 5 , A zinc layer with such accuracy is best applied galvanically. Tests have also shown that the material of the ablation support layer should have the highest possible vapor pressure. "Background material" ejected by the laser pulse from the information-carrying layer, which still falls fluidly onto the support layer, causes it to melt and evaporate and is then thrown away by the steam with a further loss of heat. The vapor pressure of the "background material" should be at least five times lower than that of the material lying on it. If the example above remains, zinc has a vapor pressure that is about 100 times higher than that of copper.
Das Material der Abtragungsunterstützungsschicht sollte gut, insbesondere che- misch, ohne Angreifen der informationstragenden Mantelbereiche entfernbar sein.The material of the ablation support layer should be able to be removed well, in particular chemically, without attacking the information-carrying jacket regions.
Die Wellenlänge der verwendeten Laserstrahlung ist der Absorption des Materials der Abtragungsunterstützungsschicht anzupassen. Auch ist die Wellenlänge gemäss den optischen Abbildungsgesetzen den Dimensionen der zu erzeugenden Rasternäpfchen anzupassen. Für Rasternäpfchen mit einem Durchmesser grösser als 10 μm kann ein CO2-Laser (Wellenlänge 10,6 μm) verwendet werden. Für kleine Durchmesser wird man bevorzugt einen Nd:YAG-Laser (1 ,06 μm) verwenden. Eine Pulsformung sowie einen optischen Aufbau für die Strahlführung des Lasers wird man vorzugsweise derart vornehmen, wie in der EP 00 810 552.0 beschrieben. Wird ein Nd:YAG-Laser verwendet, hat sich auch in diesem Fall Zink als Material der Abtra- gungsunterstützungsschicht bewährt.The wavelength of the laser radiation used is to be adapted to the absorption of the material of the ablation support layer. The wavelength must also be adapted to the dimensions of the grid cells to be produced in accordance with the optical imaging laws. A CO 2 laser (wavelength 10.6 μm) can be used for scanning cells with a diameter larger than 10 μm. For small diameters, an Nd: YAG laser (1.06 μm) is preferred. Pulse shaping and an optical structure for the beam guidance of the laser will preferably be carried out as described in EP 00 810 552.0. If an Nd: YAG laser is used, zinc has also proven itself in this case as the material of the ablation support layer.
Die Abtragungsunterstützungsschicht initiert nicht nur einen Materialabtrag in dem darunter liegenden Material, sie bewirkt zudem eine Einschaltverzögerung für den Bohrvorgang in die darunterliegende Schicht. Der Laserpuls ist somit bereits auf einen gegenüber seinem Pulsanfangswert höheren Intensitätswert angestiegen, was eine Bohrintensitätserhöhung ergibt. Hierdurch ergibt sich eine gute, d.h. eine halbkugelförmige Rastemäpfchenform.The ablation support layer not only initiates material removal in the underlying material, it also causes a switch-on delay for the drilling process in the underlying layer. The laser pulse has therefore already risen to a higher intensity value than its initial pulse value, which results in an increase in the drilling intensity. This results in a good, i.e. a hemispherical shape.
Weitere Vorteile der Erfindung sowie der Ausführungsvarianten ergeben sich auch noch aus dem untenstehenden Text.Further advantages of the invention and of the design variants also result from the text below.
Nachfolgend wird ein Ausführungsbeispiel angeführt, welches jedoch gemäss obigen Ausführungen in einem weiten Bereich auch materialmässig variierbar ist.An exemplary embodiment is given below, which, however, can also be varied in material in a wide range according to the above statements.
Aus der nachfolgenden Detailbeschreibung und der Gesamtheit der Patentansprüche ergeben sich weitere vorteilhafte Ausführungsformen und Merkmalskombina- tionen der Erfindung.From the following detailed description and the entirety of the claims, further advantageous embodiments and combinations of features result. tion of the invention.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Die zur Erläuterung der Ausführungsbeispiele verwendeten Zeichnungen zeigen:The drawings used to explain the exemplary embodiments show:
Fig. 1 einen Querschnitt durch den erfindungsgemässen Grundkörper in vergrösserter Darstellung mit einem Rasternäpfchen erzeugenden, gepulsten Laserstrahl,1 shows a cross section through the base body according to the invention in an enlarged view with a pulsed laser beam generating a scanning cell,
Fig. 2 einen zu Figur 1 analogen Querschnitt, wobei hier die Abtragungsunterstüt- zungsschicht entfernt ist undFIG. 2 shows a cross section analogous to FIG. 1, the removal support layer being removed here
Fig. 3 einen zu den Figuren 1 und 2 analogen Querschnitt, wobei hier eine Hartschicht aufgebracht ist.3 shows a cross section analogous to FIGS. 1 and 2, a hard layer being applied here.
Grundsätzlich sind in den Figuren gleiche Teile mit gleichen Bezugszeichen versehen.In principle, the same parts are provided with the same reference symbols in the figures.
Wege zur Ausführung der ErfindungWays of Carrying Out the Invention
Metallische Rotations-Tiefdruckformen sind üblicherweise aus mehreren funktioneilen Elementen aufgebaut. Als Grundkörper 1 dient meist ein Stahlzylinder. Auf dem Stahlzylinder ist eine Kupferlage 3 mit einer Dicke von einigen Millimetern aufgebracht. Die Kupferlage 3 ist die informationstragende Tiefdruckform. Die Information besteht aus einer Anordnung einer Vielzahl von Rasternäpfchen 5, welche die für den Druck benötigte Farbe aufnehmen. Zur Erhöhung der Wiederstandsfähigkeit ist als oberste Schicht eine Chrombeschichtung 7 mit einer typischen Dicke von etwa 10 μm aufgebracht. Die Druckinformation wird nun direkt in die Kupferlage 3 in deren Oberschichtbereich 8 mit einem Strahl 9 einem gepulsten Nd:YAG durch Materialabtragung eingebracht. Um diese direkte Materialabtragung mit gratfreien Rasternäpfchen 5 zu erreichen, wird die Kupferoberfläche 11 galvanisch mit einer Zinkschicht 13 als Abtragungs- unterstützungsschicht mit einer geringen Dickentoleranz (kleiner als 5 10"5) versehen. Die Gratfreiheit ist eine Voraussetzung für eine einwandfreie Qualität im Druckprozess.Metallic rotogravure forms are usually made up of several functional elements. A steel cylinder is usually used as the base body 1. A copper layer 3 with a thickness of a few millimeters is applied to the steel cylinder. The copper layer 3 is the information-bearing gravure form. The information consists of an arrangement of a multiplicity of grid cells 5 which receive the color required for printing. To increase the resistance, a chromium coating 7 with a typical thickness of approximately 10 μm is applied as the top layer. The print information is now introduced directly into the copper layer 3 in its upper layer area 8 with a beam 9 of a pulsed Nd: YAG by material removal. In order to achieve this direct material removal with burr-free raster cups 5, the copper surface 11 is galvanically provided with a zinc layer 13 as a removal support layer with a small thickness tolerance (less than 5 · 10 "5 ). The absence of burrs is a prerequisite for perfect quality in the printing process ,
Der Laserpuls 9 zur Erzeugung jeweils eines Rasternäpfchens 5 durchstösst unter einem Aufschmelzen die Zink-Schicht 13. Festes Zink hat eine Absorption für die Strahlung 9 des Nd:YAG-Lasers von etwa 50 %. Ferner zeigt festes Zink so gut wie keine gerichtete Rückstrahlung. Geht das Zink aufgrund seines relativ tiefen Schmelz- punkts und seiner im Verhältnis zu Kupfer geringen Wärmeleitfähigkeit in den flüssigen Zustand über, erfolgt eine nahezu 100-prozentige Strahlungsabsorption. Es erfolgt eine starke örtliche Erwärmung des Zinks, welches weiterhin im absorbierenden Zustand diese an das darunterliegende Kupfer weitergibt, worauf dieses ebenfalls in den flüssi- gen Zustand übergeht. Kupfer ist nun von einer nahezu 100-prozentigen Reflexion für die Strahlung 9 des Nd:YAG-Lasers (wobei die Reflexion jedoch nicht zur Wirkung kommt, da das Kupfer noch von Zink bedeckt ist) im festen Zustand, jetzt flüssig in eine annähernd 100-prozentige Absorption übergegangen.The laser pulse 9 for generating a grid 5 each pierces the zinc layer 13 while melting. Solid zinc has an absorption for the radiation 9 of the Nd: YAG laser of approximately 50%. In addition, solid zinc shows almost no directional reflection. Does the zinc go due to its relatively low melting and its low thermal conductivity compared to copper into the liquid state, there is almost 100 percent radiation absorption. There is a strong local heating of the zinc, which continues to pass it on to the underlying copper in the absorbing state, whereupon this also changes into the liquid state. Copper is now of an almost 100 percent reflection for the radiation 9 of the Nd: YAG laser (although the reflection does not come into effect because the copper is still covered by zinc) in the solid state, now liquid in an approximately 100 percent absorption passed.
Der Kupfermaterialauswurf bzw. derjenige des Zinks 15 liegen auf der Zink- schicht 13 und können leicht entfernt werden, indem diese in einem folgenden Reini- gungsprozess chemisch abgelöst wird. Die freigelegte Gravur (Rasternäpfchen 5) im Kupfer 3 ist gratfrei und kann problemlos verchromt werden.The copper material ejection or that of the zinc 15 lie on the zinc layer 13 and can be easily removed by chemically detaching it in a subsequent cleaning process. The exposed engraving (small cup 5) in copper 3 is burr-free and can be chrome-plated without any problems.
Mit der dünn aufgetragenen Zinkschicht 13 ist nun eine wirtschaftliche, direkte, gratfreie Lasergravur in Kupfer 3 möglich geworden. Zink verhindert insbesondere ein Anhaften der Aufschmelzungen, reduziert die Anfangsreflexion für die Laserstrahlung 9 und erlaubt deshalb einen effizienten Bohrprozess in Kupfer 3.With the thinly applied zinc layer 13, an economical, direct, burr-free laser engraving in copper 3 has now become possible. Zinc in particular prevents the melts from sticking, reduces the initial reflection for the laser radiation 9 and therefore allows an efficient drilling process in copper 3.
Das gerade beschriebene Verfahren ist selbstverständlich nicht auf Zink 13 als Kupferbeschichtung beschränkt. Wie eingangs ausgeführt, sind eine Reihe anderer Materialien möglich. Die auf Kupfer 3 aufzubringende Abtragungsunterstützungsschicht muss auch nicht unbedingt eine Metallschicht sein. Auch Nicht-Metalle eignen sich, sofern sie die geforderten Eigenschaften betreffend Absorption, gerichteter Reflexion und Schmelzpunkt aufweisen.The method just described is of course not limited to zinc 13 as a copper coating. As stated at the beginning, a number of other materials are possible. The removal support layer to be applied to copper 3 does not necessarily have to be a metal layer either. Non-metals are also suitable, provided they have the required properties with regard to absorption, directed reflection and melting point.
Anstelle nur einer einzigen Abtragungsunterstützungsschicht 13 können auch mehrere Schichten übereinander angebracht werden. Es hat sich jedoch die einzige Zinkschicht 13 aus Kostengründen und aufgrund des einfachen Handlings bewährt.Instead of only a single ablation support layer 13, several layers can also be applied one above the other. However, the only zinc layer 13 has proven itself for reasons of cost and simple handling.
Der Grundkörper 1 einer Tiefdruckform muss nicht unbedingt zylindrisch ausgebildet sein; er kann auch halbzylindrisch, flach oder anders geformt sein. The base body 1 of a gravure printing plate does not necessarily have to be cylindrical; it can also be semi-cylindrical, flat or shaped differently.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung einer Rasternäpfchen (5) als Druckinfomationen tragenden, vorzugsweise einen rotationssymmetrischen Grundkörper (1) aufweisen- den, Tiefdruckform mittels zeitlich modulierter, insbesondere gepulster Laserstrahlung (9), dadurch gekennzeichnet, dass auf dem Grundkörper (1) über dessen, für eine Informationseinprägung vorgesehenen Oberschichtbereichen (8) eine Abtragungsunterstützungsschicht (13) aufgebracht wird, durch die hindurch Rasternäpfchen (5) mit der Laserstrahlung (9) in die Schichtbereiche (3, 8; 13) durch Materialablation eingebracht werden und anschliessend diese Abtragungs- unterstützungsschicht (13) entfernt wird, worauf gratfreie Rasternäpfchen (5) erhalten werden.1. A method for producing a scanning cup (5) as a printing information bearing, preferably having a rotationally symmetrical base body (1), gravure printing plate by means of time-modulated, in particular pulsed laser radiation (9), characterized in that on the base body (1), a removal support layer (13) is applied for the upper layer areas (8) provided for information imprinting, through which raster cells (5) with the laser radiation (9) are introduced into the layer areas (3, 8; 13) by material ablation and then this removal support layer ( 13) is removed, whereupon burr-free cups (5) are obtained.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass nur eine einzige Abtragungsunterstützungsschicht (13) aufgebracht, und nach deren Entfernen eine Hartschicht (7), insbesondere eine Chromschicht (7), vorzugsweise mit einer Schichtdicke zwischen 4 μm und 30 μm, insbesondere zwischen 8 μm und 10 μm, aufgebracht wird und vorzugsweise die für die Informationseinprägung vorgesehenen Schichtbereiche (8) aus Kupfer sind.2. The method according to claim 1, characterized in that only a single ablation support layer (13) is applied, and after its removal a hard layer (7), in particular a chrome layer (7), preferably with a layer thickness between 4 μm and 30 μm, in particular between 8 μm and 10 μm, is applied and the layer areas (8) provided for the information embossing are preferably made of copper.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Unterstützungsschicht (13) derart ausgewählt wird, dass sie eine gute Energieeinkopplung für die Laserstrahlung (9) mit einer guten Materialabtragungsinitiierung zum darunterliegenden Material (3, 8) bei einer minimierten gerichteten Strah- lungsrückstreuung ermöglicht.3. The method according to claim 1 or 2, characterized in that the support layer (13) is selected such that it has a good energy coupling for the laser radiation (9) with a good material removal initiation to the underlying material (3, 8) with a minimized directed beam - Backscattering made possible.
Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Unterstützungsschicht (13) mit einer bis auf eine Toleranz konstanten Dicke aufgebracht wird, um die Rasternäpfchentiefe über eine einstellbare Energie bzw. einen zeitlich modulierten Intensitätsverlauf der Laserstrahlung (9) mit einem vorgebbaren, reproduzierbaren Formfaktor erzeugen zu können, und die Unterstützungsschicht (13) mit einer Dicke zwischen 1 μm und 15 μm, insbesondere zwischen 5 μm und 10 μm, speziell galvanisch, unter besonderer Beachtung einer Schichtdickentoleranz kleiner als 10"3, vorzugsweise kleiner als 5-10"5, aufgebracht wird.Method according to one of claims 1 to 3, characterized in that the support layer (13) with a thickness which is constant up to a tolerance is applied in order to be able to generate the depth of the scanning cup via an adjustable energy or a time-modulated intensity profile of the laser radiation (9) with a predeterminable, reproducible form factor, and the support layer (13) with a thickness between 1 μm and 15 μm, in particular between 5 μm and 10 μm, especially galvanically, with special attention to a layer thickness tolerance of less than 10 "3 , preferably less than 5-10 " 5 .
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass für die Unterstützungsschicht (13) ein Material mit einem hohen Dampfdruck, vorzugsweise mit mindestens einem um den Faktor fünf höheren als Kupfer ausgewählt wird und namentlich die Unterstützungsschicht (13) gut, insbesondere chemisch, ohne Angreifen der informationstragenden Schichtbereiche (8) entfernbar ist.5. The method according to any one of claims 1 to 4, characterized in that a material with a high vapor pressure, preferably with at least one higher than copper by a factor of five is selected for the support layer (13) and in particular the support layer (13) is good, in particular chemically, can be removed without attacking the information-carrying layer regions (8).
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein wesentlicher Materialanteil der Unterstützungsschicht (13) derart ausgewählt wird, dass er einen tiefen Schmelzpunkt, vorzugsweise unter demjenigen von Kupfer, insbesondere unter 500 °C hat und vor allem ein Metall, insbesondere Zink ist.6. The method according to any one of claims 1 to 5, characterized in that a substantial proportion of the material of the support layer (13) is selected such that it has a low melting point, preferably below that of copper, in particular below 500 ° C and especially a metal , especially zinc.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass eine Laserstrahlung (9) mit einer bevorzugten Wellenlänge zwischen 0,8 μm und 11 μm, vorzugsweise die Strahlung eines CO2-Lasers, insbesondere bei Rasternäpfchen im Mikrometerbereich die Strahlung eines Nd:YAG-Lasers verwendet wird.7. The method according to any one of claims 1 to 6, characterized in that a laser radiation (9) with a preferred wavelength between 0.8 microns and 11 microns, preferably the radiation of a CO 2 laser, especially in the micrometer range, the radiation of a Nd: YAG laser is used.
8. Grundkörper (1) einer Tiefdruckform, in dessen Oberschichtbereich bzw. -bereiche (8) Rasternäpfchen (5) als Druckinformation mit zeitlich modulierter, insbesondere gepulster Laserstrahlung (9) mit einem Verfahren gemäss der Ansprüche 1 bis 7 einbringbar sind, dadurch gekennzeichnet, dass jeder Oberschichtbereich (8) mit einer entfernbaren, vorzugsweise einzigen, Abtragungsunterstützungsschicht (13) bedeckt ist, durch die hindurch Rasternäpfchen (5) mit der Laserstrahlung (9) einbringbar sind und die Unterstützungsschicht (13) eine gute Energieeinkopplung für die Laserstrahlung (9) mit einer guten Materialabtragungsinitiierung zum darunterliegenden Material (3) bei einer minimierten gerichteten Strahlungsrückstreuung ermöglicht.8. Main body (1) of a gravure printing plate, in the upper layer area or areas (8) of which there are raster cups (5) as print information with time-modulated, in particular Pulsed laser radiation (9) can be introduced using a method according to claims 1 to 7, characterized in that each top layer area (8) is covered with a removable, preferably single, ablation support layer (13) through which the scanning cups (5) with the laser radiation pass (9) can be introduced and the support layer (13) enables good energy coupling for the laser radiation (9) with a good material removal initiation to the underlying material (3) with a minimized directional radiation backscattering.
9. Grundkörper (1) nach Anspruch 8, dadurch gekennzeichnet, dass die für die Informationseinprägung vorgesehenen Schichtbereiche (8) aus Kupfer sind und die Unterstützungsschicht (13) eine Dicke zwischen 1 μm und 15 μm, insbesondere9. Base body (1) according to claim 8, characterized in that the layer regions (8) provided for the information embossing are made of copper and the support layer (13) has a thickness between 1 μm and 15 μm, in particular
-3 zwischen 5 μm und 10 μm, mit einer Schichtdickentoleranz kleiner als 10 , insbe--3 between 5 μm and 10 μm, with a layer thickness tolerance of less than 10, in particular
-5 sondere kleiner als 5 10 hat, wobei die Unterstützungsschicht (13) ein Material mit einem hohen Dampfdruck, vorzugsweise mit mindestens einem um den Faktor fünf höheren als Kupfer ist und namentlich die Unterstützungsschicht (13) gut, insbesondere chemisch, ohne Angreifen der informationstragenden Schichtbereiche (8) entfernbar ist.-5 especially less than 5 10, the support layer (13) being a material with a high vapor pressure, preferably with at least one higher than copper by a factor of five, and in particular the support layer (13) being good, in particular chemically, without attacking the information-bearing layer areas (8) can be removed.
10. Grundkörper (1) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass ein wesentlicher Materialanteil der Unterstützungsschicht (13) einen tiefen Schmelzpunkt, vorzugsweise unter demjenigen von Kupfer, insbesondere unter 500 °C hat und vor allem ein Metall, insbesondere Zink ist. 10. Base body (1) according to claim 8 or 9, characterized in that a substantial proportion of the material of the support layer (13) has a low melting point, preferably below that of copper, in particular below 500 ° C and is above all a metal, in particular zinc.
EP01980111A 2000-11-15 2001-11-15 Method for the production of screen cavities in a rotogravure form and base body applicable in said method Expired - Lifetime EP1333976B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH221900 2000-11-15
CH22192000 2000-11-15
PCT/CH2001/000668 WO2002040272A1 (en) 2000-11-15 2001-11-15 Method for the production of screen cavities in a rotogravure form and base body applicable in said method

Publications (2)

Publication Number Publication Date
EP1333976A1 true EP1333976A1 (en) 2003-08-13
EP1333976B1 EP1333976B1 (en) 2006-08-23

Family

ID=4568057

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01980111A Expired - Lifetime EP1333976B1 (en) 2000-11-15 2001-11-15 Method for the production of screen cavities in a rotogravure form and base body applicable in said method

Country Status (5)

Country Link
US (1) US20040029048A1 (en)
EP (1) EP1333976B1 (en)
JP (1) JP2004512997A (en)
DE (1) DE50110828D1 (en)
WO (1) WO2002040272A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8038731B2 (en) 2006-03-24 2011-10-18 L'oreal S.A. Method of dyeing and lightening keratin materials in the presence of a reducing agent comprising a fluorescent disulphide dye

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090168111A9 (en) * 1999-09-01 2009-07-02 Hell Gravure Systems Gmbh Printing form processing with fine and coarse engraving tool processing tracks
EP1410923B1 (en) * 2002-10-17 2006-08-09 Hell Gravure Systems GmbH Method for producing a printing plate for intaglio printing
AT504185B1 (en) * 2003-07-03 2009-06-15 Oebs Gmbh METHOD FOR PRODUCING A PRESSURE PLATE
SE531975C2 (en) 2007-04-23 2009-09-22 Anders Bjurstedt Device for printing in gravure
EP1985459A3 (en) * 2007-04-23 2009-07-29 Mdc Max Daetwyler AG Manufacture of intaglio printing formes
DE102008035203B4 (en) 2008-07-28 2011-01-27 Leibniz-Institut für Oberflächenmodifizierung e.V. Method for deleting and remaking a printing cylinder
DE102009058845B4 (en) * 2009-12-18 2012-12-06 Christof Tielemann Method for producing a printing roller with a laser-engraved surface
DE102012205702B3 (en) 2012-04-05 2013-05-23 Schaeffler Technologies AG & Co. KG Method for marking components
JP6389695B2 (en) * 2014-08-18 2018-09-12 理想科学工業株式会社 Thermal plate making equipment

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE728837C (en) * 1935-05-30 1942-12-04 Josef Horn Method of making planographic printing plates
US2100258A (en) * 1936-02-15 1937-11-23 Reynolds Metals Co Composite body of copper and aluminum or copper and magnesium, and method of making same
US3474457A (en) * 1967-11-13 1969-10-21 Precision Instr Co Laser recording apparatus
US3539410A (en) * 1967-11-20 1970-11-10 Gen Photogrammetric Services L Relief models
US3528965A (en) * 1968-02-09 1970-09-15 Beecham Group Ltd Penicillin ester process and products
DE2218393A1 (en) 1972-04-15 1973-10-25 Steigerwald Strahltech WORKPIECE ENGRAVED WITH ENERGY BEAM, IN PARTICULAR DEEP PRINT FORM OR THE SAME
DE2344233A1 (en) 1972-09-09 1974-03-21 Newton Horwood Ltd PRINT PLATE AND METHOD OF MANUFACTURING IT
US4060032A (en) * 1975-05-21 1977-11-29 Laser Graphic Systems Corporation Substrate for composite printing and relief plate
US4357633A (en) * 1979-07-11 1982-11-02 Buechler Lester W Engraving apparatus and method
US4328390A (en) * 1979-09-17 1982-05-04 The University Of Delaware Thin film photovoltaic cell
JPS5646753A (en) 1979-09-26 1981-04-28 Dainippon Printing Co Ltd Preparation of gravure lithographic plate
DE3047999A1 (en) * 1980-12-19 1982-07-15 Basf Ag, 6700 Ludwigshafen METHOD FOR REDUCING THE ABRASION OF PIGMENTS AND PRINTING INKS AND IMPROVED PIGMENTS AND PRINTING INKS IN THE ABRASION BEHAVIOR
DK159251C (en) * 1983-03-12 1991-02-18 Basf Ag PROCEDURE FOR CLOSING THE SPACE BETWEEN A END OF THE PRESSURE PRESSURE CYLINDER OPENING THE END OF THE PRESSURE PRESSURE Cylinder, AND THE FITTING OF THE DEPTH PRESSURE DEVICE
EP0473973B1 (en) 1990-09-04 1995-11-29 MDC Max Dätwyler Bleienbach AG Process for the treatment of intaglio printing plates
DE4212582A1 (en) * 1992-04-15 1993-10-21 Hell Ag Linotype Prodn. of gravure printing cylinders - comprises providing a metal (alloy) protective layer on the cylinder surface before the gravure process
CH689917A5 (en) * 1995-05-03 2000-01-31 Daetwyler Ag Method and apparatus for producing wells in the surface of a gravure cylinder.
JP3408923B2 (en) 1996-05-28 2003-05-19 シャープ株式会社 Image display device
US5807658A (en) * 1996-08-20 1998-09-15 Presstek, Inc. Self-cleaning, abrasion-resistant, laser-imageable lithographic printing contructions
DE19840926B4 (en) * 1998-09-08 2013-07-11 Hell Gravure Systems Gmbh & Co. Kg Arrangement for material processing by means of laser beams and their use
EP1072350A1 (en) * 1999-07-12 2001-01-31 MDC Max Dätwyler AG Bleienbach Method and device for distributing the intensity in a laser beam
DE10033629B4 (en) * 2000-07-11 2011-12-01 Tampoprint Ag printing plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0240272A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8038731B2 (en) 2006-03-24 2011-10-18 L'oreal S.A. Method of dyeing and lightening keratin materials in the presence of a reducing agent comprising a fluorescent disulphide dye

Also Published As

Publication number Publication date
JP2004512997A (en) 2004-04-30
EP1333976B1 (en) 2006-08-23
DE50110828D1 (en) 2006-10-05
US20040029048A1 (en) 2004-02-12
WO2002040272A1 (en) 2002-05-23

Similar Documents

Publication Publication Date Title
EP1389405B1 (en) Method for drilling microholes using a laser beam
DE10205351A1 (en) Process for laser-controlled material processing
WO2003074278A1 (en) Quality printing method, printing machine, and corresponding printing substance
EP3606698B1 (en) Method for welding components
EP1333976B1 (en) Method for the production of screen cavities in a rotogravure form and base body applicable in said method
DE2814044C2 (en)
EP2681348B1 (en) Method for refining a metallic coating on a steel strip
WO2009090098A2 (en) Method and apparatus for producing a solar cell
DE10209617C1 (en) Laser processing method, for rapidly boring holes in dielectric substrates, comprises deviating a laser beam produced by a carbon dioxide laser onto the substrate to be processed using a deviating unit
DE202012012732U1 (en) Steel embossing roller with a structured surface and device for producing the structured surface
EP0473973A1 (en) Process for the treatment of intaglio printing plates
DE102019103960A1 (en) Process for polishing and smoothing a workpiece surface
DE102016212057A1 (en) Method for welding components
DE10393157B4 (en) Spraying preventing coating during laser processing
EP1151857A2 (en) Controlled imaging formation and erasure on a metallic titanium printing form
DE19736110C2 (en) Method and device for burr and melt-free micromachining of workpieces
DE102017106372A1 (en) Method for machining a workpiece and a workpiece produced thereby
DE102006023940A1 (en) Nanostructuring of substrate such as metal/semiconductor/its alloy, by direct laser ablation, comprises irradiating the substrate surface with spatially distributed laser intensity patterns, and coating the surface with polymer layer
DE102013002222B4 (en) Method of modifying the surface of a metal
DE102020214259A1 (en) Process for laser polishing a workpiece surface
DE19612100B4 (en) Process for producing a metal gravure form
EP3189928B1 (en) Method for removing a coating made of an organic material stuck to the surface of a tin-plated steel sheet
DE10140533A1 (en) Method and device for micromachining a workpiece with laser radiation
DE19801013A1 (en) Process for the removal of surface layers by means of laser-induced shock waves reinforced with outer layers
DE102005055174B3 (en) Removing material by laser beam involves using a fluid containing metal or metal alloy to contact side of transparent material which is opposite incoming laser beam

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030514

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): DE IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060823

REF Corresponds to:

Ref document number: 50110828

Country of ref document: DE

Date of ref document: 20061005

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081211

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601