EP1332242B1 - Elektrochemisches verfahren zur selektiven umsetzung von alkylaromatischen verbindungen zu aldehyden - Google Patents

Elektrochemisches verfahren zur selektiven umsetzung von alkylaromatischen verbindungen zu aldehyden Download PDF

Info

Publication number
EP1332242B1
EP1332242B1 EP01983632A EP01983632A EP1332242B1 EP 1332242 B1 EP1332242 B1 EP 1332242B1 EP 01983632 A EP01983632 A EP 01983632A EP 01983632 A EP01983632 A EP 01983632A EP 1332242 B1 EP1332242 B1 EP 1332242B1
Authority
EP
European Patent Office
Prior art keywords
tert
butyl
chosen
group
xylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01983632A
Other languages
English (en)
French (fr)
Other versions
EP1332242A1 (de
Inventor
Stéphane TREVIN
André SAVALL
Dorin Bejan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electricite de France SA
Original Assignee
Electricite de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite de France SA filed Critical Electricite de France SA
Publication of EP1332242A1 publication Critical patent/EP1332242A1/de
Application granted granted Critical
Publication of EP1332242B1 publication Critical patent/EP1332242B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/52Compounds having —CHO groups bound to carbon atoms of six—membered aromatic rings
    • C07C47/575Compounds having —CHO groups bound to carbon atoms of six—membered aromatic rings containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation

Definitions

  • the present invention relates to a new method of selective transformation of alkylaromatic compounds into corresponding aldehydes using anodes metal and oxygen self-oxidation.
  • Aromatic aldehydes are products essential for the synthesis of intermediaries or finished products with high added value, especially in pharmaceutical, food and perfumery.
  • aromatic aldehydes are obtained by oxidation catalytic of alkylaromatic compounds.
  • the AMOCO MC process initially developed for the production of terephthalic acid, uses cobalt and bromide salts in the environment acetic acid to produce aldehydes that are just catalytic reaction intermediates. isolation aldehydes is complex and must be done continuously to prevent their further oxidation to acid. The aldehyde formation is therefore direct but not selective.
  • Electrochemical production of aldehydes aromatic is currently provided by processes direct or indirect using the catalytic pathways or multielectronic oxidations leading to many by products.
  • the oxidation of the substrates organic takes place at the anode with the formation of species can be positively charged (radicals cations or dications). These species then participate in reactions with nucleophiles and / or bases present in the electrolyte. It is possible that the compounds obtained then participate in other reactions electrochemical or at homogeneous transfer stages electron.
  • aromatic aldehyde is not obtained only after passing through an intermediate acetate in this process.
  • the aromatic aldehyde is obtained so selective, but it is not obtained directly.
  • the anode has, in a first step, to prepare or regenerate continuously oxidizing.
  • the oxidant reacts with the organic substrate following a reaction similar to that which occurs when the oxidizing agent is obtained by other means.
  • a mediator can be deposited on the anode as in all BASF processes which use a graphite electrode covered with Cr 2 O 3 in order to improve the aldehyde yields as described in the German patents DE 2855508 and DE 3132726.
  • electricity consumption remains high and exceeds the theoretical quantity.
  • the present invention therefore relates to a method electrochemical, selective transformation of compounds alkylaromatics to corresponding aromatic aldehydes, characterized by the fact that an oxidation is carried out said alkylaromatic compounds in liquid phase on metallic anode and in the presence of an oxidation coagent oxygen donor.
  • the method according to the invention thus involves two oxidizing agents: the electron and the donor oxygen.
  • alkylaromatic compounds are meant the compounds having at least one aromatic or heteroaromatic nucleus substituted or not and which carries at least one side chain methyl, preferably that can be activated electrochemically.
  • the preferred aromatic ring is benzene.
  • the preferred alkylaromatic compounds are toluene, o -xylene, m -xylene, p -xylene or mesitylene.
  • alkylaromatic compounds according to the invention may bear one or more other substituents, linear or connected, identical or different.
  • the preferred substituents are the acyl radicals, acylamino, acyloxy, alkenyles, alkoxy, alkoxyalkyles, alkoxyacyles, alkyls, alkynyles, amino, aminoacyles, aryls, aryalkyls, arylamino, carboxy, carboxyalkyls, cyano, cycloalkyls, cycloheteroalkyls, halo, heteroatoms, including O, N, S, nitro, oxo, thio, these substituents which may themselves be substituted or not.
  • Preferred alkyl substituents are C 1 -C 15 alkyl.
  • the preferred alkoxy substituents are MeO, EtO, PrO, BuO.
  • the preferred substituted alkylaromatic compounds are: tert. -butyl-2-methyl-5-anisole, tert. -butyl-4-toluene, tert. -Butyl-5m-xylene and methyl-4-anisole.
  • the oxygen donor is chosen from crown ethers, ozone, peroxide hydrogen (hydrogen peroxide), or the oxygen in the air or pure oxygen.
  • the oxygen donors behave very well towards the environment in not producing by-products containing salts. More still preferentially, pure dioxygen is used in because of its low cost and the yields obtained.
  • the alkylaromatic radicals produced are in a first time adsorbed on the anode. They can solubilize in the reaction medium according to a reaction reversible.
  • the radical species produced can participate in reactions with different nucleophiles and / or the different bases present in the reaction medium.
  • the oxygen donor which is introduced into the medium reaction, with adsorbed alkylaromatic radicals and / or desorbed (in solution), which will lead to obtaining the corresponding alcohol and aldehyde after molecular rearrangement.
  • the Applicant has highlighted that it is mainly this last reaction which is privileged compared to others since rearrangements molecules lead directly to the aldehyde, which minimizes by-products.
  • the method according to the invention thus allows it to obtain yields above 65%, with good selectivity for aldehyde. In comparison, some of the current processes present only one 50% yield.
  • Appropriate anodes in the process according to the invention are thus anodes made of metallic material or metallic composite which will promote the desorption of radicals formed on their surface.
  • Metal can be especially chosen from nickel, platinum, titanium, lead or stainless steel.
  • Particularly suitable metal anodes to implement the invention are chosen from DSA (Dimensionally Stable Anode) electrodes. These anodes, often used in industry for their lifetime important, have a passivation layer conductive at the surface, which protects them from solubilization. We could for example use an anode titanium coated with a layer of platinum.
  • DSA Dissionally Stable Anode
  • the anode and the cathode are concentric and separated by a gas diffuser membrane, which allows oxygen to be introduced into the middle of the medium reaction.
  • the inventors have also discovered that the alcohol obtained by reaction with the oxygen donor can be oxidized to its turn on the anode and by the oxygen donor to drive to the corresponding aldehyde. Indeed, it is theoretically very difficult to predict this reaction due to the complexity of the reactions that may occur and the diversity of species in solution in the environment reaction.
  • the oxidation medium is in the liquid phase.
  • the reaction medium preferably comprises at least one solvent which can be chosen from those which have good dielectric permittivity, such as for example methanol, ethanol, water or alternatively low molecular weight having a molar mass less than or equal to 150 g / mol such as acetic acid (AcOH), methanesulfonic acid (CH 3 SO 3 H), triflic acid (CF 3 CO 2 H), sulfuric acid (H 2 SO 4 ) or / and hydrogenofluorosulfonic acid (HSO 3 F).
  • acetic acid AcOH
  • methanesulfonic acid CH 3 SO 3 H
  • triflic acid CF 3 CO 2 H
  • sulfuric acid H 2 SO 4
  • H 2 SO 4 hydrogenofluorosulfonic acid
  • an anhydrous reaction medium can be used with H 2 SO 4 / (C 2 H 5 OH) or HSO 3 F / (AcOH) mixtures as solvent.
  • H 2 SO 4 / (C 2 H 5 OH) or HSO 3 F / (AcOH) mixtures as solvent.
  • This makes it possible to use a solvent having a greater range of electroactivity and therefore also makes it possible to minimize the secondary oxidation reaction of the solvent.
  • the direct electrochemical formation of the alcohol corresponding to the substituted aromatic compound is not promoted.
  • one or more support electrolytes can be used to increase the conductivity and conduct the electrolysis.
  • These support electrolytes can in particular be sodium (AcONa) or potassium acetate (AcOK), sodium tetrafluoroborates (BF 4 Na), tetraethylamine (BF 4 NEt 4 ) or tetrabutylamine ((BF 4 NBu 4 ) tetraethylamine trifluoromethanesulfonates (CF 3 SO 3 NEt 4 ) or tetrabutylamine (CF 3 SO 3 NBu 4 ) or sodium fluorosulfonates (FSO 3 Na) or potassium (FSO 3 K).
  • the support electrolyte concentration is preferably between 10 -2 and 1 M.
  • the consumption of energy is halved, which represents a significant cost reduction.
  • the transformation aldehyde requires only two electrons per molecule in the process according to the invention, against four per molecule, for the processes currently used.
  • the method according to the invention is furthermore two to three times faster than those currently used.
  • dioxygen one of the oxidants cheaper on the market also allows a reduction in costs. It also has the advantage of being non-polluting and of not not give by-products containing salts that it should be dealt with later.
  • the reaction can take place at relatively temperatures low, of the order of 60 to 100 ° C, in a cell conventional, suitable for electrochemical treatment and less significant pressures than those implemented in the prior art.
  • a device allowing the implementation work of the process according to the invention can be for example a Grignard double jacket reactor with a filter hurry.
  • the process of the Applicant Company allows to synthesize a product that has never been prepared before: the tert.-butyl-4-methoxy-3-benzaldehyde.
  • This compound is a intermediate in the synthesis of ambrette musk (tert. Butyl-2 dinitro-4,6 methyl-5 anisole), produced at high added value, highly prized by the cosmetic industry and in perfumery.
  • Examples 1 to 3 are intended to demonstrate the influence of the anode material and the presence oxygen on the selectivity of the reaction during the selective transformation of different compounds aromatics to corresponding aldehydes by comparison to conventional processes.
  • the reaction temperature is 80 ° C
  • the intensity / surface of the anode is 78 A / m 2
  • the charge is 1.86 F / mol.
  • EXAMPLE 3 selective transformation of tert.-butyl-5 m-xylene (5tBumX) into tert. 5-Butyl-3-methylbenzaldehyde
  • Two electrolyses are carried out of a solution of tert.-butyl-5 m-xylene at 0.2 M in AcOH-H 2 O; the support electrolyte being 0.1 M NaBF 4 , the temperature being 80 ° C, the surface intensity being 78 A / m 2 and the charge being 2.8 F / mol.
  • Two electrolyses are carried out under nitrogen of tert-butyl-4 toluene at 0.2 M in AcOH-H 2 O, at a temperature of 80 ° C. and with a charge of 2.05 F / mol.
  • an anode of carbon and nitrogen with NaOAc as electrolyte support.
  • a platinum anode and oxygen are used in accordance with the process of the invention with Et 4 NBF 4 as the support electrolyte.
  • the aim of these two experiments is to demonstrate the influence of the electrolyte on the first electrochemical step (E 1 ) of the reaction mechanism.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Claims (10)

  1. Elektrochemisches Verfahren zur selektiven Umlagerung von alkylaromatischen Verbindungen in entsprechende aromatische Aldehyde, dadurch gekennzeichnet, dass eine Oxidation in flüssiger Phase bei einer Temperatur zwischen 60 und 100°C der alkylaromatischen Verbindungen auf einer Metallanode sowie in Anwesenheit eines Sauerstoffbildenden Oxidationskoagenses vorgenommen wird.
  2. Verfahren nach Anspruch 1, wobei die alkylaromatischen Verbindungen aus der Gruppe ausgewählt werden, die Verbindungen umfassen, welche zumindest einen aromatischen oder heteroaromatischen Kern umfassen, der gegebenenfalls substituiert oder nicht substituiert ist, und der zumindest eine laterale Methylkette trägt, wie insbesondere Toluol, o-Xylol, m-Xylol, p-Xylol oder Mesitylen.
  3. Verfahren nach Anspruch 1 oder 2, bei welchem das Sauerstoff-bildende Oxidationskoagens aus der Gruppe ausgewählt ist, welche Ring-Ether, Ozon, Wasserstoffperoxid, Luftdioxid, reines Dioxid und Gemische hieraus enthält.
  4. Verfahren nach einem der Ansprüche 1 bis 3, bei welchem die Metallanode ausgewählt ist aus der Gruppe, Anoden umfasst, von denen zumindest ein Teil der Oberfläche Nikkel, Platin, Titan, Blei, Edelstahl oder Legierungen hieraus enthält, DSA-Anoden oder Metall-Verbundstoffanoden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem das Reaktionsmedium zumindest ein Lösungsmittel umfasst, das aus der Gruppe ausgewählt ist, welche Lösungsmittel umfasst, die eine gute dielektrische Permittivität besitzen.
  6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem das Lösungsmittel aus der Gruppe ausgewählt ist, die Methanol, Ethanol, Wasser oder Säuren umfasst, bevorzugt Säuren mit einem Molekulargewicht, das kleiner oder gleich 150 g/mol ist, und besonders bevorzugt Essigsäure (AcOH), Methansulfonsäure (CH3SO3H), Trifluoressigsäure (CF3CO2H), Schwefelsäure (H2SO4) und Fluorwasserstoffsulfonsäure (HSO3F) oder Gemische hieraus.
  7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem das Medium einen Träger-Elektrolyten umfasst, der insbesondere ausgewählt ist aus der Gruppe, Natriumacetat (AcONa) oder Kaliumacetat (AcOK), Natriumtetrafluorborat (BF4Na), Tetraethylamin (BF4Net4) oder Tetrabutylamin (BF4NBu4), Tetraethylamintrifluormethansulfonat (CF3SO3NEt4) oder Tetrabutylamin (CF2SO3NBu4) sowie Natriumsulfonat (PSO3Na) oder Kaliumfluorsulfonat (PSO3K) umfasst, wobei die Konzentration des Elektrolyten bevorzugt zwischen 10-2 und 1 M beträgt.
  8. Verfahren nach einem der Ansprüche 1 bis 7 zur selektiven Umlagerung von tert-Butyl-2-methyl-5-anisol in tert-Butyl-4-methoxy-3-benzaldehyd.
  9. Verfahren nach einem der Ansprüche 1 bis 8 zur selektiven Umlagerung von tert-Butyl-4-toluol, tert-Butyl-5-m-xylol oder Methyl-4-anisol in tert-Butyl-4-benzaldehyd, tert-Butyl-5-methyl-3-benzaldehyd oder Aldehydanisin-4.
  10. tert-Butyl-4-methoxy-3-benzaldehyd.
EP01983632A 2000-10-20 2001-10-19 Elektrochemisches verfahren zur selektiven umsetzung von alkylaromatischen verbindungen zu aldehyden Expired - Lifetime EP1332242B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0013469A FR2815644B1 (fr) 2000-10-20 2000-10-20 Procede electrochimique de transformation selective des composes alkylaromatiques en aldehydes
FR0013469 2000-10-20
PCT/FR2001/003247 WO2002033151A1 (fr) 2000-10-20 2001-10-19 Procede electrochimique de transformation selective des composes alkylaromatiques en aldehydes

Publications (2)

Publication Number Publication Date
EP1332242A1 EP1332242A1 (de) 2003-08-06
EP1332242B1 true EP1332242B1 (de) 2004-11-17

Family

ID=8855565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01983632A Expired - Lifetime EP1332242B1 (de) 2000-10-20 2001-10-19 Elektrochemisches verfahren zur selektiven umsetzung von alkylaromatischen verbindungen zu aldehyden

Country Status (5)

Country Link
EP (1) EP1332242B1 (de)
AT (1) ATE282725T1 (de)
DE (1) DE60107281T2 (de)
FR (1) FR2815644B1 (de)
WO (1) WO2002033151A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463500B (zh) * 2015-11-19 2017-10-13 上海师范大学 一种基于光电催化制备芳香醛/酮化合物的方法
TWI835872B (zh) * 2018-10-03 2024-03-21 美商蘭姆研究公司 用於惰性陽極鍍覆槽的流量分配設備
CN114855192B (zh) * 2022-03-31 2023-12-08 浙江大学杭州国际科创中心 过渡金属氧化物催化剂电化学氧化制备苄基酮/醛类化合物的方法
CN115216791A (zh) * 2022-08-05 2022-10-21 湖南大学 一种芳香醛或脂肪醛类化合物的电催化制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2351932A1 (fr) * 1976-05-21 1977-12-16 Rhone Poulenc Ind Procede d'oxydation anodique de methylbenzenes
US4402804A (en) * 1982-05-17 1983-09-06 Ppg Industries, Inc. Electrolytic synthesis of aryl alcohols, aryl aldehydes, and aryl acids
JPH0492375A (ja) * 1990-08-06 1992-03-25 Tosoh Corp ベンズアルデヒドの製造方法
DE19723961A1 (de) * 1997-06-06 1998-12-10 Consortium Elektrochem Ind Verfahren zur Herstellung von aromatischen und heteroaromatischen Aldehyden und Ketonen

Also Published As

Publication number Publication date
FR2815644B1 (fr) 2003-09-05
EP1332242A1 (de) 2003-08-06
ATE282725T1 (de) 2004-12-15
FR2815644A1 (fr) 2002-04-26
DE60107281D1 (de) 2004-12-23
DE60107281T2 (de) 2005-10-27
WO2002033151A1 (fr) 2002-04-25

Similar Documents

Publication Publication Date Title
EP1890990B1 (de) Verfahren zur herstellung von carbonsäuren
EP0024225B2 (de) Verfahren zur Herstellung von Dimethyläthylamin
EP1332242B1 (de) Elektrochemisches verfahren zur selektiven umsetzung von alkylaromatischen verbindungen zu aldehyden
US6069282A (en) Process for the preparation of aldehydes and ketones
FR2846651A1 (fr) Procede de fabrication d'acides carboxyliques
EP1723098B1 (de) Verfahren zur funktionalisierung von konjugierten oder konjugierbaren derivaten unter zuhilfenahme eines elektrophoren mediators vom tempo-typ
FR2486968A1 (fr) Procede electrochimique pour la synthese de composes organiques
EP2379477B1 (de) Katalytisches verfahren zur herstellung von diolverbindungen, insbesondere 2-methyl-2,4-pentandiol
CH642373A5 (fr) Compose pyrannique, procede pour sa preparation et son utilisation a titre d'intermediaire de synthese.
EP0203851B1 (de) Elektrochemisches Verfahren zur Herstellung von organischen trifluoro- (oder chlorodifluoro- oder dichlorofluoro) methylierten Verbindungen
EP0013995B1 (de) Verfahren zur Herstellung acetylenischer macrocyclischer Ketone
EP3481812B1 (de) Verfahren zur umwandlung von levoglucosenon in 4-hydroxymethyl-butyrolacton und 4-hydroxymethyl-butenolid ohne verwendung eines beliebigen organischen lösungsmittels und katalysators
EP0909268B1 (de) Verfahren zur herstellung substituierter anthrachinone und ihre verwendung zur herstellung von rheinen
EP0370920B1 (de) Verfahren zur Herstellung von Chinon aus Hydrochinon durch Elektrolyse
CA2040742A1 (fr) Procede d'oxydation de composes organiques
FR2462412A1 (fr) Procede de preparation d'anisaldehyde
Savari et al. Performance of Potassium Iodate as an Electrocatalyst for the Oxidation of Secondary Alcohols Utilizing a Platinum Electrode in a Biphasic Medium
EP0201365A1 (de) Verfahren zur Elektrosynthese von Alkoholen und Epoxidverbindungen
CH327513A (fr) Procédé de préparation d'un dérivé du prégnane
CH637104A5 (fr) Procede de synthese de dinitro-2,4 t-butyl-6 methyl-3 anisole.
FR2542764A1 (fr) Nouveau procede electrochimique de dicarboxylation de composes organiques insatures
EP0100822B1 (de) Verfahren zur Herstellung von Cyclopentadec-4-Inone und seines Homologes 3-Methyl
FR2905950A1 (fr) Procede de preparation d'une composition d'acide glucuronique ou d'un derive d'acide glucuronique comprenant une etape d'oxydation electronique
FR2601671A1 (fr) Procede pour la production du dihydroxy-2,6 naphtalene
EP1515939A2 (de) Verfahren zur herstellung einer ungesättigten carbonsäure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030415

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SAVALL, ANDRE

Inventor name: BEJAN, DOJIN

Inventor name: TREVIN, STEPHANE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SAVALL, ANDRE

Inventor name: TREVIN, STEPHANE

Inventor name: BEJAN, DORIN

17Q First examination report despatched

Effective date: 20030924

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): AT BE DE FR GB SE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ELECTRICITE DE FRANCE SERVICE NATIONAL

REF Corresponds to:

Ref document number: 60107281

Country of ref document: DE

Date of ref document: 20041223

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050316

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050915

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050916

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051007

Year of fee payment: 5

Ref country code: GB

Payment date: 20051007

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051028

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

26N No opposition filed

Effective date: 20050818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061019

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061019

BERE Be: lapsed

Owner name: *ELECTRICITE DE FRANCE

Effective date: 20051031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031