EP1332235A1 - Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de metal liquide - Google Patents

Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de metal liquide

Info

Publication number
EP1332235A1
EP1332235A1 EP01978568A EP01978568A EP1332235A1 EP 1332235 A1 EP1332235 A1 EP 1332235A1 EP 01978568 A EP01978568 A EP 01978568A EP 01978568 A EP01978568 A EP 01978568A EP 1332235 A1 EP1332235 A1 EP 1332235A1
Authority
EP
European Patent Office
Prior art keywords
liquid metal
rotary
wettable
injector
rotary injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01978568A
Other languages
German (de)
English (en)
Other versions
EP1332235B1 (fr
Inventor
Marc Bertherat
Pierre Le Brun
Michel Allibert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Constellium Issoire SAS
Original Assignee
Aluminium Pechiney SA
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney SA, Pechiney Rhenalu SAS filed Critical Aluminium Pechiney SA
Publication of EP1332235A1 publication Critical patent/EP1332235A1/fr
Application granted granted Critical
Publication of EP1332235B1 publication Critical patent/EP1332235B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/064Obtaining aluminium refining using inert or reactive gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ

Definitions

  • the invention relates to a rotary gas dispersion device for the treatment of a bath of liquid metal, in particular aluminum, an aluminum alloy, magnesium or a magnesium alloy.
  • the invention relates more particularly to a rotary injector (or "rotor") intended for the injection and dispersion of at least one treatment gas in a metal in the liquid state.
  • Liquid aluminum leaving electrolytic cells or reflow ovens contains dissolved or suspended impurities.
  • the most important of these impurities are hydrogen, alkaline elements such as sodium or calcium and oxides, in particular oxides originating from the oxidation of the metal during treatment.
  • the liquid aluminum is subjected to various treatments for removing impurities.
  • treatments which uses a combination of chemical reactions and flotation phenomena, consists in introducing into the bath, in the form of small bubbles, a gas called "treatment", which can be inert or reactive.
  • a gas called "treatment” which can be inert or reactive.
  • an argon bubble will bring with it to the surface of the bath a solid inclusion in suspension and / or capture, by diffusion, the hydrogen dissolved in the liquid metal.
  • a chlorine bubble will react with the sodium contained and give a sodium salt which will also be transported to the surface of the bath.
  • Mixtures are also used, such as argon which may contain a few percent of reactive gas of the chlorine type.
  • Such treatments by gas action can be carried out batchwise in an oven or in a crucible (this is called a "batch” treatment).
  • the treatments are most often carried out continuously between the oven and the casting machine in a chute or in a treatment tank (or “pocket”) of the type which is schematically represented in FIG. 1.
  • the treatment efficiency is maximum when the exchange surface between the bath and the gas is itself maximum. This is achieved by designing the dispersing device so as to obtain very small bubbles, to project these bubbles throughout the volume of liquid metal (that is to say so as to produce the least possible dead volume) and to create recirculations of the bath itself so that it comes into contact with bubbles (always in order to obtain the least dead volume possible).
  • the process gas can be dispersed in various ways in the liquid metal.
  • static dispersing devices such as rods are used, or more frequently rotary dispersing devices which include one or more rotary injectors.
  • a rotary injector or "rotor” is typically composed of a hollow drive shaft through which the gas arrives, gas emission orifices and blades.
  • the blades are used to stir the bath, to disperse the gas therein and, sometimes, to split the bubbles into smaller bubbles by shearing effect.
  • the openings are generally located near the rotor blades, for example between them or at their ends.
  • International application WO 98/05915 (corresponding to American patent US 6,060,013) describes a rotary injector of this type.
  • European application EP 819 770 (equivalent to American patent US 5,904,894) describes a rotary injector into which the treatment gas is injected using a porous material inert with respect to the liquid metal.
  • Rotary injectors do not allow satisfactory control of the flow rate and the size of the gas bubbles emitted.
  • Rotary injectors comprising emission orifices which present risks of blockage of the orifices and of evolution of the size of the orifices and of the blades by erosion, which modifies the quality of the dispersion of the gas.
  • the pores are often too large. Consequently, on the one hand, the bubbles are too large, lack efficiency, the gas being insufficiently dispersed in the liquid metal, and cause harmful surface swirls; on the other hand, it is necessary not to stop the passage of gas in the pores to prevent the liquid metal from entering there, in particular during the periods of rest between two flows. On the other hand, when the pores are too small, the bubbles spread and remain large and it is difficult to introduce a high gas flow rate into the liquid metal.
  • the invention relates to a rotary injector for injecting gas, called “process gas", into a liquid metal comprising a drive shaft, stirring means, means for conveying gas and means for emitting said gas. gas, and being characterized in that the emission means consist, in whole or in part, of at least one material wettable by said liquid metal, said material preferably being substantially inert to said liquid metal.
  • said material can be made wettable by means of a coating of material wettable by liquid metal.
  • the invention also relates to a rotary dispersion device comprising at least one rotary injector according to the invention.
  • the invention also relates to a device for treating a liquid metal, such as a degassing bag, comprising at least one rotary injector or at least one rotary dispersion device according to the invention.
  • Another subject of the invention is the use of the injector according to the invention for the treatment of a liquid metal, in batch or continuously, in particular in an oven or in a chute.
  • the invention also relates to a process for treating a liquid metal, characterized in that at least one rotary injector according to the invention is used.
  • Said metal can be aluminum or one of its alloys, or magnesium or one of its alloys. Description of the figures
  • Figure 1 illustrates a typical liquid metal processing device using a rotary injector.
  • FIG. 2 illustrates the wettability criterion within the meaning of the present invention.
  • FIG. 3 illustrates four embodiments of the rotary injector according to the invention, seen in perspective.
  • FIG. 4 illustrates two embodiments of the rotary injector according to the invention, seen in the axis of symmetry on the side of the part intended to be immersed in the liquid metal.
  • FIG. 5 illustrates an embodiment of the rotary injector according to the invention, seen in longitudinal section, in a cutting plane passing through the axis of symmetry and corresponding to the cutting planes B-B of FIG. 4.
  • FIG. 6 illustrates, in longitudinal section, in a cutting plane passing through the axis of symmetry, two embodiments of the rotary injector of the invention.
  • FIG. 7 illustrates, in longitudinal section, in a section plane passing through the axis of symmetry, three embodiments of the rotary injector of the invention.
  • a liquid metal treatment device typically comprises an enclosure (41) provided with inlet means (42) for the "raw" liquid metal (that is to say liquid metal to be treated) (421), means for leaving (43) the treated metal (431) and at least one rotary dispersing device (30).
  • the inlet (42) and outlet (43) means are generally located either at the ends of the device, or on one and the same side.
  • a rotary dispersing device (30) comprises a rotary injector (1), means for rotating (31) said injector, a source of process gas (32) and conduits (33) between said source ( 32) and the injector (1).
  • the or each rotary injector (1) enters said enclosure (41) via an opening (44) which is generally provided with sealing means (45).
  • the treatment enclosure (41) is generally a tank with one or more compartments (46, 47).
  • the rotary injector (1) for injecting gas (2) into a liquid metal (3) said injector comprising a drive shaft (4), stirring means (5), means of delivery of gas (6, 7, 1 1), emission means (8, 9) of gas (2), said injector being characterized in that the emission means (8, 9) are, in all or part, consisting of at least one material wettable by the liquid metal (3).
  • said wettable material is substantially inert to said liquid metal, that is to say that it has a lifetime in the liquid metal which is long enough to allow acceptable industrial use.
  • a material is considered to be substantially inert to the liquid metal when it can be immersed in the liquid metal for a period of the order of 10 hours or more without significant alteration of the properties of the rotary injector and without prohibitive pollution of the treated metal.
  • Ceramics generally fulfill this condition, in particular ceramics based on oxides, carbides, nitrides, borides and their mixtures. Certain refractory metals also fulfill this condition, such as tungsten.
  • the emission means (8, 9) and / or the stirring means (5) and / or said drive shaft (4) and / or said insert (90) comprise a coating of wettable material on all or part of their surface exposed to liquid metal.
  • Said porous material can also be made wettable by liquid metal using a coating of wettable material, that is to say that it can comprise a coating of wettable material.
  • a material is considered to be wettable when the wetting angle made by the liquid metal in contact with it is less than 90 ° (see FIG. 2).
  • the wetting angle (21) between the tangent T to the bubble (20) at its point of contact with the emission means (9) and the outer surface S of the transmission means is less than 90 °.
  • the metal which then wets the material well near the emission orifice (8), counteracts the spreading of the bubble (20) and limits its diameter.
  • the wetting angle (21) is greater than 90 °. In this case, the metal, which has difficulty wetting the emission means, allows the bubble to spread.
  • the wettable material of the diffuser can be chosen from certain refractory metals which are substantially inert with respect to said liquid metals, molybdenum (Mo), tungsten (W ), vanadium (V), titanium (Ti), chromium (Cr), iron (Fe), steels, ..., or their alloys, or among ceramics such as titanium diboride
  • TiB 2 TiB 2
  • nitrides especially aluminum nitrides (such as AIN)
  • carbides especially aluminum carbides (such as Al C 3 ) and titanium carbides (such as TiC ⁇ . X )
  • BN boron nitride
  • the emission and stirring means which constitute the so-called “active" part of the injector, are generally located at the so-called “lower” end of the injector, that is to say the end of the injector intended to be immersed in the liquid metal.
  • the injector is normally intended to be used in a vertical position, with said lower part placed downwards.
  • the active part normally includes at least one lower surface (120, 121, 122), at least one upper surface (130, 131) and side surfaces (140, 141, 142).
  • the conveying means (6, 1, 1 1) typically comprise a main channel (6) in the shaft (4) of the injector and at least one secondary channel (7) to channel the treatment gas to the emission means (8, 9).
  • the main channel (6) is typically in the axis of symmetry of said shaft.
  • said emission means comprise at least one emission orifice (8) of said gas (2).
  • the diameter of the orifice (8) influences the diameter of the bubble to be obtained.
  • the diameter of each orifice (8) is preferably as small as possible. In practice, the diameter is preferably between 0.5 and 5 mm, and more preferably between 1 and 3 mm, which allows the size of the orifices to be well controlled at the time of their manufacture.
  • said emission means comprise a porous material wettable by said liquid metal (3), and preferably also substantially inert to said liquid metal (3), for which the diameter of the open pores emerging at the surface of said porous material is preferably less than 0.5 mm.
  • the rotary injector (1) may also include an intermediate cavity (1 1), typically between the main channel (6) and the secondary channels (7), which acts as a buffer volume, and / or a means for introducing a local pressure drop just upstream of the emission orifice, such as a porous material.
  • the intermediate cavity (1 1) typically has a cylindrical shape and the secondary channels (7) extend radially therefrom to the emission means (8, 9).
  • the emission orifices (8) are preferably located near the blades (5) of the injector, typically between them ( Figures 3a and 3b) or at the end thereof ( Figure 3c and 3d) .
  • Emission ports may be provided at the end of the injector; for example, an orifice can be provided in the central part of said lower surface (120) of the injector.
  • the number of emission ports (8) may be different from the number of blades (5). It is also possible to provide superimposed emission orifices. In practice, an emission orifice is provided for each blade.
  • the emission orifices (8) preferably emerge on said lateral surfaces (140, 141, 142), for example on the external lateral surface (141) of one of the blades (5) or on the lateral surface (140) between the blades.
  • the position of the emission orifices is preferably such as to allow maximum shearing of the bubbles during their formation.
  • emission orifices are located between blades, they are preferably located halfway up the corresponding lateral surface (140); when emission orifices are located on blades, they can be located in the upper half of the corresponding external lateral surface (141) (that is to say in the part of said surface closest to the shaft (4)).
  • Emission ports typically emerge at an angle to the side surface which is about 90 °; this angle can, in certain cases, be different from 90 °, in which case the axis of the secondary channels (7) can also form an angle with respect to the axis of the main channel which is different from 90 °.
  • the stirring means (5) can also consist, in whole or in part, of at least one material wettable by said liquid metal (3), and preferably also substantially inert to said liquid metal (3), which material can be different that used for the transmission means (8, 9).
  • the stirring means typically comprise blades (5). These blades are normally simple in shape, such as a plate shape.
  • the stirring means can also comprise a complementary dispersing means, such as a disc (12) situated above the blades, typically in contact with the latter (as illustrated in FIGS. 3a, 3c and 4a).
  • the drive shaft (4) may advantageously be made, in whole or in part, of at least one material wettable by said liquid metal, and preferably substantially inert to said liquid metal, which material may be different from that used for the transmission means (8, 9).
  • the part of said shaft intended to be immersed in the liquid metal consists, at least on the surface, of said wettable material.
  • the rotary injector (1) may consist of several separate parts (4, 5, 12, 13, 14, 90), as illustrated in Figures 6 and 7.
  • the parts can be made of different materials.
  • the rotary injector may advantageously include an insert (90) comprising said emission means (8, 9) and made of said wettable material, which allows it to be easily changed depending on the metal to be treated or in the event of breakage. accidental.
  • the part of the injector intended to be immersed in the liquid metal may consist of a single piece.
  • the injector comprises the following parts: a drive shaft (4), a disc (12), blades (5), a central core (13) and an assembly body (14).
  • the central core comprises an intermediate cavity (11), routing channels (7) and emission orifices (8).
  • the injector comprises the following parts: a drive shaft (4), blades (5) and an assembly body (14).
  • the blades include routing channels (7), emission ports (8) and an intermediate cavity (11), said cavity being generally common to all the blades and enclosed in a central core (13) (not illustrated).
  • the assembly body (14) comprises at least one central channel (60) and connection means (15a, 16a, 17a), typically a thread, which cooperate with complementary connection means ( 15b, 16b, 17b) of the other parts (4, 12, 13).
  • connection means 15a, 16a, 17a
  • complementary connection means 15b, 16b, 17b of the other parts (4, 12, 13).
  • the central core (13) and / or the blades (5) are provided with removable inserts (90).
  • the emission means (9) are made of a wettable material.
  • the Applicant's tests have shown that it is particularly advantageous that the parts of the injector which are immersed in the liquid metal during the treatment are all made of a wettable material. The same material can be used for all these parts. Indeed, it has been noticed that, in this case, the bubbles emitted by the orifices (8) which are attracted in the blades and along the rotor shaft by a hydrodynamic effect do not remain trapped and do not have tendency to merge to form large bubbles, as is the case with non-wettable materials.
  • the injector consists of several parts, the parts of the injector which are immersed in the liquid metal during the treatment are preferably all made of a wettable material. The same material can be used for all these parts.
  • the injector may be provided with a ring (10) to allow coupling with rotation means (31).
  • the axis of rotation of the rotary injector (1) is located in the axis of symmetry of the drive shaft (4).
  • the rotary injector (1) of the invention can be used for the treatment of a liquid metal circulating in an enclosure, as illustrated in FIG. 1, which is typically a treatment bag, or in a circulation chute of liquid metal (not shown). It can also be used for batch processing, for example in an oven. In other words, a processing bag, oven or chute can be equipped with a rotary injector according to the invention for the treatment of a liquid metal continuously or in batches (batch treatment).
  • Tests were carried out in a small experimental tank.
  • the size of the bubbles formed was observed and determined using an X-ray camera.
  • the method consists in irradiating the bath of liquid metal (3) in which the bubbles (20) are emitted using rays.
  • X to visualize the said bubbles after recovery of the image by a camera and to measure them after calibration of the acquisition chain.
  • the tests were carried out with rotary injectors comparable to those illustrated in FIG. 3.
  • the blades and the emission means were made of graphite; in another case, representative of the invention, they were made of titanium. In both cases, the holes had a diameter of 1 mm.
  • the Applicant has noted on the one hand that, with the injectors of the prior art, the bubbles had an average diameter of the order of 15 mm, part of the treatment gas could rise up along the rotor and of the injector shaft and 20% of the injected gas was not dispersed in the liquid metal. The part of the undispersed gas is practically useless because it does not contribute to the treatment of the liquid metal.
  • the Applicant has also observed that, with the injectors according to the invention, the bubbles had an average diameter of the order of 6 mm and less than 0.5% of the gas injected (detection limit) was not dispersed in liquid metal.
  • the Applicant has also noticed that, unlike the prior art, the bubbles emitted by the orifices located at the ends of the blades do not tend to form pockets of gas between the blades. The bubbles therefore preserve their small size, which results in greater treatment efficiency than the prior art.
  • the injector according to the invention avoids the formation of gas pockets under the injector which could cause instabilities.
  • the rotary injector according to the invention has the advantage of allowing a significant reduction in the speed of rotation required to obtain small bubbles by shearing effect.
  • the speed of rotation can if be between 100 and 350 rpm, which also makes it possible to limit the surface agitation of the liquid metal and reduce wear on parts.
  • the rotary injector according to the invention also has the advantage of having processing performance which is less sensitive to possible wear of the blades of the injector. Indeed, according to the invention, the size of the gas bubbles is largely determined by the emission orifices, and only a small part by the rotational movement of the blades, which then mainly have the function of dispersing the bubbles. in the largest possible bath volume and to stir it in order, in particular, to homogenize the treatment. Consequently, the wear of the blades over time does not cause an unacceptable crippling of the treatment performance of the injector of the invention.
  • the orifice of the emission means of the injector according to the invention can be small enough to avoid the penetration of liquid metal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treating Waste Gases (AREA)
  • Coating Apparatus (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

DISPOSITIF ROTATIF DE DISPERSION DE GAZ POUR LE TRAITEMENT D'UN BAIN DE METAL LIQUIDE
Domaine de l'invention
L'invention concerne un dispositif rotatif de dispersion de gaz pour le traitement d'un bain de métal liquide, en particulier de l'aluminium, un alliage d'aluminium, du magnésium ou un alliage de magnésium. L'invention concerne plus particulièrement un injecteur rotatif (ou "rotor") destiné à la l'injection et à la dispersion d'au moins un gaz de traitement dans un métal à l'état liquide.
Etat de la technique
L'aluminium liquide sortant des cuves d'électrolyse ou de fours de refusion contient des impuretés dissoutes ou en suspension. Les plus importantes de ces impuretés sont l'hydrogène, les éléments alcalins tels que sodium ou calcium et des oxydes, notamment des oxydes provenant de l'oxydation du métal en cours de traitement.
Afin d'éliminer ces impuretés néfastes pour les propriétés ultérieures du demi- produit, l'aluminium liquide est soumis à divers traitements d'élimination des impuretés. Le plus répandu de ces traitements, qui utilise une combinaison de réactions chimiques et de phénomènes de flottation, consiste à introduire dans le bain, sous forme de petites bulles, un gaz dit "de traitement", qui peut être inerte ou réactif. Par exemple, une bulle d'argon va entraîner avec elle à la surface du bain une inclusion solide en suspension et/ou capter, par diffusion, l'hydrogène dissous dans le métal liquide. De même un bulle de chlore va réagir avec le sodium contenu et donner un sel de sodium qui sera également transporté à la surface du bain. On utilise également des mélanges, tels que de l'argon pouvant contenir quelques pour-cent de gaz réactif du type chlore. De tels traitements par action de gaz peuvent être effectués en discontinu dans un four ou dans un creuset (on parle alors d'un traitement "batch"). Les traitements sont le plus souvent effectués en continu entre le four et la machine de coulée dans une goulotte ou dans une cuve (ou "poche") de traitement du type de celle qui est schématiquement représentée dans la figure 1.
L'efficacité du traitement est maximum quand la surface d'échange entre le bain et le gaz est elle-même maximum. Ceci s'obtient en concevant le dispositif de dispersion de manière à obtenir de très petites bulles, à projeter ces bulles dans tout le volume de métal liquide (c'est-à-dire de façon à produire le moins de volume mort possible) et à créer des recirculations du bain lui-même pour que celui-ci vienne au contact des bulles (toujours afin d'obtenir le moins de volume mort possible).
Le gaz de traitement peut être dispersé de différentes manières dans le métal liquide. Généralement, on utilise des dispositifs de dispersion statiques, tels que des cannes, ou, plus fréquemment, des dispositifs de dispersion rotatifs qui comprennent un ou plusieurs injecteurs rotatifs.
Un injecteur rotatif, ou "rotor", est typiquement composé d'un arbre d'entraînement creux par lequel arrive le gaz, d'orifices d'émission du gaz et de pales. Les pales servent à brasser le bain, à disperser le gaz dans celui-ci et, quelquefois, à scinder les bulles en bulles de plus petite dimension par effet de cisaillement. Les orifices sont en général situés à proximité des pales du rotor, par exemple entre celles-ci ou à leur extrémité. La demande internationale WO 98/05915 (correspondant au brevet américain US 6 060 013) décrit un injecteur rotatif de ce type.
La demande européenne EP 819 770 (équivalent au brevet américain US 5 904 894) décrit un injecteur rotatif dans lequel le gaz de traitement est injecté à l'aide d'un matériau poreux inerte vis-à-vis du métal liquide.
Or, la recherche de la plus grande efficacité du traitement par une agitation intense dans le volume du bain, qui se traduit par une agitation permanente en surface, souvent appelée « vagues de surface », qui peut entraîner des projections de bain par remontée de grosses bulles et par un phénomène de vortex autour de l'arbre d'entraînement, risque de provoquer un "regazage" du métal et de dégrader la qualité inclusionnaire par formation d'oxydes en surface et/ou par entraînement d'inclusions ou d'oxydes de la surface libre vers l'intérieur du métal liquide. On cherche donc à limiter autant que possible l'agitation de la surface libre du métal liquide.
En outre, le recours à une agitation importante du métal liquide conduit à l'utilisation de vitesses de rotation des injecteurs rotatifs qui se situent généralement entre 200 et 1000 tours/min, selon le type d'injecteur. De telles vitesses entraînent une usure importante des pièces mobiles du dispositif de dispersion de gaz.
Par ailleurs, les injecteurs rotatifs connus ne permettent pas de contrôler de manière satisfaisante le débit et la taille des bulles de gaz émises. Les injecteurs rotatifs comprenant des orifices d'émission qui présentent des risques de bouchage des orifices et d'évolution de la taille des orifices et des pales par érosion, ce qui modifie la qualité de la dispersion du gaz.
Dans les cas où les injecteurs rotatifs comprennent une matière poreuse pour disperser le gaz, les pores sont souvent trop gros. Par conséquent, d'une part, les bulles sont trop grosses, manquent d'efficacité, le gaz étant insuffisamment dispersé dans le métal liquide, et provoquent des remous de surface préjudiciables ; d'autre part, il est nécessaire de ne pas arrêter le passage du gaz dans les pores pour empêcher le métal liquide d'y pénétrer, en particulier pendant les périodes de repos entre deux coulées. Par contre, quand les pores sont trop petits, les bulles s'étalent et restent grosses et il est difficile d'introduire un débit de gaz élevé dans le métal liquide. Ainsi plusieurs procédés connus utilisant des diffuseurs poreux, même avec des porosités très fines (par exemple inférieures à 1 mm environ), situés au fond des cuves ou des fours permettent au mieux d'obtenir des bulles de l'ordre de 30 à 50 mm de diamètre. La demanderesse a poursuivi ses efforts pour augmenter l'efficacité des dispositifs de traitement de métal liquide, notamment par un contrôle et une diminution du diamètre des bulles émises par un injecteur de gaz rotatif.
Objets de l'invention
L'invention pour objet un injecteur rotatif pour injecter du gaz, dit "gaz de traitement", dans un métal liquide comprenant un arbre d'entraînement, des moyens de brassage, des moyens d'acheminement du gaz et des moyens d'émission dudit gaz, et étant caractérisé en ce que les moyens d'émission sont, en tout ou partie, constitués d'au moins un matériau mouillable par ledit métal liquide, ledit matériau étant de préférence substantiellement inerte audit métal liquide.
Selon une variante avantageuse de l'invention, ledit matériau peut être rendu mouillable à l'aide d'un revêtement en matériau mouillable par le métal liquide.
L'invention a également pour objet un dispositif de dispersion rotatif comprenant au moins un injecteur rotatif selon l'invention.
L'invention a encore pour objet un dispositif de traitement d'un métal liquide, tel qu'une poche de dégazage, comprenant au moins un injecteur rotatif ou au moins un dispositif de dispersion rotatif selon l'invention.
L'invention a encore pour objet l'utilisation de l'injecteur selon l'invention pour le traitement d'un métal liquide, en batch ou en continu, notamment dans un four ou dans une goulotte.
L'invention a encore pour objet un procédé de traitement d'un métal liquide caractérisé en ce qu'on utilise au moins un injecteur rotatif selon l'invention.
Ledit métal peut être de l'aluminium ou un de ses alliages, ou du magnésium ou un de ses alliages. Description des figures
La figure 1 illustre un dispositif de traitement de métal liquide typique utilisant un injecteur rotatif.
La figure 2 illustre le critère de mouillabilité au sens de la présente invention.
La figure 3 illustre quatre modes de réalisation de l'injecteur rotatif selon l'invention, vus en perspective.
La figure 4 illustre deux modes de réalisation de l'injecteur rotatif selon l'invention, vus dans l'axe de symétrie du côté de la partie destinée à être immergée dans le métal liquide.
La figure 5 illustre un mode de réalisation de l'injecteur rotatif selon l'invention, vu en coupe longitudinale, dans un plan de coupe passant par l'axe de symétrie et correspondant aux plans de coupe B-B de la figure 4.
La figure 6 illustre, en coupe longitudinale, dans un plan de coupe passant par l'axe de symétrie, deux modes de réalisation de l'injecteur rotatif de l'invention.
La figure 7 illustre, en coupe longitudinale, dans un plan de coupe passant par l'axe de symétrie, trois modes de réalisation de l'injecteur rotatif de l'invention.
Description détaillée de l'invention
Tel qu'illustré à la figure \ , un dispositif de traitement de métal liquide (40) comprend typiquement une enceinte (41) munie de moyens d'entrée (42) du métal liquide "brut" (c'est-à-dire du métal liquide à traiter) (421), de moyens de sortie (43) du métal traité (431) et d'au moins un dispositif de dispersion rotatif (30). Les moyens d'entrée (42) et de sortie (43) sont généralement situés soit aux extrémités du dispositif, soit sur un seul et même côté.
Typiquement un dispositif de dispersion rotatif (30) comprend un injecteur rotatif (1), des moyens de mise en rotation (31) dudit injecteur, d'une source de gaz de traitement (32) et de conduits (33) entre ladite source (32) et l'injecteur (1). Le, ou chaque, injecteur rotatif (1) pénètre dans ladite enceinte (41) par l'intermédiaire d'une ouverture (44) qui est généralement munie de moyens d'étanchéité (45). L'enceinte de traitement (41) est généralement une cuve à un ou plusieurs compartiments (46, 47).
Selon l'invention, l'injecteur rotatif (1) pour injecter du gaz (2) dans un métal liquide (3), ledit injecteur comprenant un arbre d'entraînement (4), des moyens de brassage (5), des moyens d'acheminement du gaz (6, 7, 1 1), des moyens d'émission (8, 9) du gaz (2), ledit injecteur étant caractérisé en ce que les moyens d'émission (8, 9) sont, en tout ou partie, constitués d'au moins un matériau mouillable par le métal liquide (3).
De préférence, ledit matériau mouillable est substantiellement inerte audit métal liquide, c'est-à-dire qu'il a une durée de vie dans le métal liquide qui est suffisamment longue pour permettre une utilisation industrielle acceptable. Typiquement, un matériau est considéré comme étant substantiellement inerte au métal liquide lorsqu'il peut être immergé dans le métal liquide pendant une durée de l'ordre de 10 heures ou plus sans altération significative des propriétés de l'injecteur rotatif et sans pollution rédhibitoire du métal traité. Les céramiques remplissent généralement cette condition, notamment les céramiques à bases d'oxydes, de carbures, de nitrures, de borures et de leurs mélanges. Certains métaux réfractaires remplissent également cette condition, tels que le tungstène.
II est également possible d'obtenir une durée de vie satisfaisante, et éventuellement une réduction des coûts de fabrication et d'entretien, en utilisant un matériau revêtu d'un produit inerte au métal liquide qui le rend mouillable à celui-ci. Dans ce cas, les moyens d'émission (8, 9) et/ou les moyens de brassage (5) et/ou ledit arbre d'entraînement (4) et/ou ledit insert (90) comprennent un revêtement en matériau mouillable sur tout ou partie de leur surface exposée au métal liquide. Ledit matériau poreux peut également être rendu mouillable par métal liquide à l'aide d'un revêtement en matériau mouillable, c'est-à-dire qu'il peut comprendre un revêtement en matériau mouillable.
Au sens de la présente invention, un matériau est considéré comme étant mouillable lorsque l'angle de mouillage que fait le métal liquide à son contact est inférieur à 90° (voir la figure 2). Quand le matériau est mouillable par le métal liquide (cas de la figure 2a), l'angle de mouillage (21) entre la tangente T à la bulle (20) à son point de contact avec le moyen d'émission (9) et la surface extérieure S du moyen d'émission est inférieur à 90°. Dans ce cas, le métal, qui mouille alors bien le matériau à proximité de l'orifice d'émission (8), contrarie l'étalement de la bulle (20) et en limite le diamètre. Quand le matériau n'est pas mouillable par le métal liquide (cas de la figure 2b), l'angle de mouillage (21) est supérieur à 90°. Dans ce cas, le métal, qui a de la difficulté à mouiller le moyen d'émission, permet à la bulle de s'étaler.
Dans le cas de l'aluminium ou du magnésium ou de leurs alliages liquides, le matériau mouillable du diffuseur peut être choisi parmi certains métaux réfractaires substantiellement inertes vis-à-vis des dits métaux liquides, le molybdène (Mo), le tungstène (W), le vanadium (V), le titane (Ti), le chrome (Cr), le fer (Fe), les aciers,..., ou leurs alliages, ou parmi des céramiques comme le diborure de titane
(TiB2), les nitrures (notamment les nitrures d'aluminium (tels que AIN)), les carbures (notamment les carbures d'aluminium (tels que Al C3) et les carbures de titane (tels que TiCι.x)), .... On peut noter à ce sujet que normalement le graphite ou l'alumine ne sont pas mouillables par ces métaux liquides. Le ZrO2 et le SiC sont aussi des matériaux non mouillables par l'aluminium et ses alliages. Dans ses essais, la demanderesse a constaté que le nitrure de bore (BN) était non-mouillable par l'aluminium et ses alliages. Le comportement mouillant d'un matériau dépend aussi de la rugosité et de l'état d'oxydation de sa surface. Les moyens d'émission et de brassage, qui constituent la partie dite "active" de l'injecteur, sont généralement situés à l'extrémité dite "inférieure" de l'injecteur, c'est- à-dire l'extrémité de l'injecteur destiné à être immergée dans le métal liquide. L'injecteur est normalement destiné à être utilisé en position verticale, avec ladite partie inférieure placée vers le bas. La partie active comprend normalement au moins une surface inférieure (120, 121, 122), au moins une surface supérieure (130, 131) et des surfaces latérales (140, 141, 142).
Tel qu'illustré à la figure 5, les moyens d'acheminement (6, 1, 1 1) comprennent typiquement un canal principal (6) dans l'arbre (4) de l'injecteur et au moins un canal secondaire (7) pour canaliser le gaz de traitement jusqu'aux moyens d'émission (8, 9). Le canal principal (6) est typiquement dans l'axe de symétrie dudit arbre.
Dans le mode de réalisation préféré de l'invention, lesdits moyens d'émission comportent au moins un orifice d'émission (8) dudit gaz (2). Le diamètre de l'orifice (8) influence le diamètre de la bulle à obtenir. Afin d'obtenir de petites bulles, le diamètre de chaque orifice (8) est de préférence aussi petit que possible. En pratique, le diamètre se situe de préférence entre 0,5 et 5 mm, et de préférence encore entre 1 et 3 mm, ce qui permet de bien maîtriser la taille des orifices au moment de leur fabrication.
Pour des diamètres inférieurs à 0,5 mm, il est plus avantageux d'utiliser des matériaux poreux mouillables pour lesquels il est aisé de maîtriser le frittage et la formation des porosités. Dans ce cas, lesdits moyens d'émission comprennent un matériau poreux mouillables par ledit métal liquide (3), et de préférence également substantiellement inerte audit métal liquide (3), pour lequel le diamètre des pores ouverts émergeants à la surface dudit matériau poreux est de préférence inférieur à 0,5 mm.
Pour mieux contrôler le diamètre des bulles, il est important que la pression du gaz au niveau de l'orifice d'émission (8) et/ou des pores émergeants à la surface du moyen d'émission, à l'interface entre le métal et la surface du moyen d'émission (9), soit sensiblement constante quel que soit le débit de gaz, en particulier lors de la formation et du détachement de la bulle (20). Dans ce but, l'injecteur rotatif (1) peut également comprendre une cavité intermédiaire (1 1), typiquement entre le canal principal (6) et les canaux secondaires (7), qui joue le rôle de volume tampon, et/ou un moyen pour introduire une perte de charge locale juste en amont de l'orifice d'émission, tel qu'un matériau poreux. La cavité intermédiaire (1 1) a typiquement une forme cylindrique et les canaux secondaires (7) partent radialement de celle-ci vers les moyens d'émission (8, 9).
Les orifices d'émission (8) sont de préférence situés à proximité des pales (5) de l'injecteur, typiquement entre celles-ci (figures 3a et 3b) ou à l'extrémité de celles-ci (figure 3c et 3d). Des orifices d'émission peuvent être prévus à l'extrémité de l'injecteur ; par exemple, on peut prévoir un orifice dans la partie centrale de ladite surface inférieure (120) de l'injecteur. Le nombre d'orifices d'émission (8) peut être différent du nombre de pales (5). Il est également possible de prévoir des orifices d'émission superposés. En pratique, on prévoit un orifice d'émission pour chaque pale.
Les orifices d'émission (8) émergent de préférence sur lesdites surfaces latérales (140, 141, 142), par exemple sur la surface latérale externe (141) d'une des pales (5) ou sur la surface latérale (140) entre les pales. La position des orifices d'émission est de préférence telle qu'elle permet d'obtenir un cisaillement maximum des bulles lors de leur formation. Lorsque des orifices d'émission sont situés entre des pales, ils se situent de préférence à mi-hauteur de la surface latérale (140) correspondante ; lorsque des orifices d'émission sont situés sur des pales, ils peuvent se situer dans la moitié supérieure de la surface latérale externe (141) correspondante (c'est-à-dire dans la partie de ladite surface la plus près de l'arbre (4)). Les orifices d'émission émergent typiquement avec un angle par rapport la surface latérale qui est égal à environ 90° ; cet angle peut, dans certain cas, être différent de 90°, auquel cas l'axe des canaux secondaires (7) peut également former un angle par rapport à l'axe du canal principal qui est différent de 90°. Les moyens de brassage (5) peuvent également être constitués, en tout ou partie, d'au moins un matériau mouillable par ledit métal liquide (3), et de préférence également substantiellement inerte audit métal liquide (3), lequel matériau peut être différent de celui utilisé pour les moyens d'émission (8, 9). Les moyens de brassage comprennent typiquement des pales (5). Ces pales sont normalement de forme simple, telle qu'une forme de plaque. Les moyens de brassage peuvent également comprendre un moyen de dispersion complémentaire, tel qu'un disque (12) situé au-dessus des pales, typiquement en contact avec ceux-ci (tel qu'illustré aux figures 3a, 3c et 4a).
L'arbre d'entraînement (4) peut avantageusement être constitué, en tout ou partie, d'au moins un matériau mouillable par ledit métal liquide, et de préférence substantiellement inerte audit métal liquide, lequel matériau peut être différent de celui utilisé pour les moyens d'émission (8, 9). En pratique, il suffit que la partie dudit arbre destinée à être immergée dans le métal liquide, soit constituée, au moins en surface, dudit matériau mouillable.
Afin de faciliter la fabrication, l'entretien et la réparation, l'injecteur rotatif (1) selon l'invention peut être constitué de plusieurs pièces distinctes (4, 5, 12, 13, 14, 90), tel qu'illustré à aux figures 6 et 7. Les pièces peuvent être constituées de matériaux différents. En particulier, l'injecteur rotatif peut comporter avantageusement un insert (90) comprenant lesdites moyens d'émission (8, 9) et constitué dudit matériau mouillable, ce qui permet de le changer aisément en fonction du métal à traiter ou en cas de bris accidentel. La partie de l'injecteur destinée à être immergée dans le métal liquide peut être constituée d'une seule pièce.
A titre d'exemple non limitatif, illustré à la figure 6a, l'injecteur comprend les pièces suivantes : un arbre d'entraînement (4), un disque (12), des pales (5), un noyau central (13) et un corps d'assemblage (14). Le noyau central comprend une cavité intermédiaire (11), des canaux d'acheminement (7) et des orifices d'émission (8). Dans le mode de réalisation illustré à la figure 6b, l'injecteur comprend les pièces suivantes : un arbre d'entraînement (4), des pales (5) et un corps d'assemblage (14). Les pales comprennent des canaux d'acheminement (7), des orifices d'émission (8) et une cavité intermédiaire (11), ladite cavité étant généralement commune à toutes les pales et enfermée dans un noyau central (13) (non illustré). Dans ces deux modes de réalisation, le corps d'assemblage (14) comprend au moins un canal central (60) et des moyens de liaison (15a, 16a, 17a), typiquement un filetage, qui coopèrent avec des moyens de liaisons complémentaires (15b, 16b, 17b) des autres pièces (4, 12, 13). Selon des variantes possibles de ces modes de réalisation, illustrées à la figure 7, le noyau central (13) et/ou les pales (5) sont munis d'inserts (90) amovibles.
Il est suffisant, selon l'invention, que seuls les moyens d'émission (9) soient en un matériau mouillable. Les essais de la demanderesse ont montré qu'il était particulièrement avantageux que les parties de l'injecteur qui sont immergées dans le métal liquide lors du traitement soient toutes en un matériau mouillable. Le même matériau peut être utilisé pour toutes ces parties. En effet, il a été remarqué que, dans ce cas, les bulles émises par les orifices (8) qui sont attirées dans les pales et le long de l'arbre du rotor par un effet hydrodynamique ne restent pas emprisonnées et n'ont pas tendance à se fusionner pour former des bulles de grande taille, comme c'est le cas avec des matériaux non-mouillables. Lorsque l'injecteur est constitué de plusieurs pièces, les pièces de l'injecteur qui sont immergées dans le métal liquide lors du traitement sont de préférence toutes en un matériau mouillable. Le même matériau peut être utilisé pour toutes ces pièces.
L'injecteur peut être muni d'un anneau (10) pour permettre le couplage avec des moyens de mise en rotation (31).
L'axe de rotation de l'injecteur rotatif (1) se situe dans l'axe de symétrie de l'arbre d'entraînement (4).
L'injecteur rotatif (1) de l'invention peut être utilisé pour le traitement d'un métal liquide circulant dans une enceinte, tel qu'illustré à la figure 1, qui est typiquement une poche de traitement, ou dans une goulotte de circulation de métal liquide (non illustrée). Il peut également être utilisé pour le traitement en batch, par exemple dans un four. En d'autres termes, une poche de traitement, un four ou une goulotte peuvent être équipés d'injecteur rotatif selon l'invention en vue du traitement d'un métal liquide en continu ou par lots (traitement en batch).
Exemples
Des essais ont été réalisés dans une cuve expérimentale de petite taille. La taille des bulles formées a été observée et déterminée à l'aide d'une caméra à rayons X. La méthode consiste à irradier le bain de métal liquide (3) dans lequel les bulles (20) sont émises à l'aide de rayons X, à visualiser les dites bulles après récupération de l'image par une caméra et à les mesurer après étalonnage de la chaîne d'acquisition.
Les essais ont été réalisés avec des injecteurs rotatifs comparables à ceux illustrés à la figure 3. Dans un cas, représentatif de l'art antérieur, les pales et les moyens d'émission étaient en graphite ; dans un autre cas, représentatif de l'invention, ils étaient en titane. Dans les deux cas, les orifices avaient un diamètre de 1 mm.
Dans ces essais, la demanderesse a constaté d'une part que, avec les injecteurs de l'art antérieur, les bulles avaient un diamètre moyen de l'ordre de 15 mm, une partie du gaz de traitement pouvait remonter le long du rotor et de l'arbre de l'injecteur et 20 % du gaz injecté n'était pas dispersé dans le métal liquide. La partie du gaz non dispersée est pratiquement inutile car elle ne contribue pas au traitement du métal liquide.
La demanderesse a constaté d'autre part que, avec les injecteurs selon l'invention, les bulles avaient un diamètre moyen de l'ordre de 6 mm et moins de 0,5 % du gaz injecté (limite de détection) n'était pas dispersé dans le métal liquide.
La demanderesse a en outre remarqué que, contrairement à l'art antérieur, les bulles émises par les orifices situées aux extrémités des pales n'ont pas tendance à former des poches de gaz entre les pales. Les bulles préservent dès lors leur petite taille, ce qui résulte en une plus grande efficacité de traitement que l'art antérieur. La demanderesse a également noté que l'injecteur selon l'invention évite la formation de poches de gaz sous l'injecteur qui pourraient provoquer des instabilités.
Ainsi, les performances de dégazage obtenus avec des injecteurs selon l'invention sont nettement améliorés par rapport à ceux observés avec des injecteurs de l'art antérieur.
Avantages de l'invention
L'injecteur rotatif selon l'invention présente l'avantage de permettre une réduction significative de la vitesse de rotation requise pour obtenir des bulles de petite taille par effet de cisaillement. Avec un injecteur selon l'invention et pour un rendement équivalent à celui de l'art antérieur, la vitesse de rotation peut si situer entre 100 et 350 t/min, ce qui permet en outre de limiter l'agitation de surface du métal liquide et de réduire l'usure des pièces.
L'injecteur rotatif selon l'invention a également pour avantage de présenter des performances de traitement qui sont moins sensibles à l'usure éventuelle des pales de l'injecteur. En effet, selon l'invention, la taille des bulles de gaz est en très grande partie déterminée par les orifices d'émission, et en faible partie seulement par le mouvement de rotation des pales, lesquelles ont alors principalement pour fonctions de disperser les bulles dans le plus grand volume de bain possible et d'agiter celui-ci en vue, notamment, d'homogénéiser le traitement. Par conséquent, l'usure des pales dans le temps n'entraîne pas de dégradation rédhibitoire des performances de traitement de l'injecteur de l'invention.
L'orifice des moyens d'émission de l'injecteur selon l'invention peut être suffisamment petit pour éviter la pénétration de métal liquide.

Claims

REVENDICATIONS
1. Injecteur rotatif (1) pour injecter du gaz (2) dans un métal liquide (3) comprenant un arbre d'entraînement (4), des moyens de brassage (5), des moyens d'acheminement (6, 7, 11) dudit gaz (2) et des moyens d'émission (8, 9) du gaz (2), et caractérisé en ce que les moyens d'émission (8, 9) sont, en tout ou partie, constitués d'au moins un matériau mouillable par ledit métal liquide (3).
2. Injecteur rotatif (1) selon la revendication 1, caractérisé en ce que ledit matériau mouillable est également substantiellement inerte audit métal liquide (3).
3. Injecteur rotatif (1) selon la revendication 1 ou 2, caractérisé en ce que ledit matériau est rendu mouillable à l'aide d'un revêtement en matériau mouillable par le métal liquide.
4. Injecteur rotatif (1) selon l'une quelconque des revendications 1 à 3, caractérisé en ce que lesdits moyens d'émission comportent au moins un orifice d'émission
(8) dudit gaz (2).
5. Injecteur rotatif (1) selon la revendication 4, caractérisé en ce que le diamètre dudit, ou de chaque, orifice (8) se situe de préférence entre 0,5 et 5 mm.
Injecteur rotatif (1) selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdits moyens d'émission comprennent un matériau poreux mouillable par ledit métal liquide (3) ou un matériau poreux rendu mouillable à l'aide d'un revêtement en matériau mouillable par le métal liquide.
7. Injecteur rotatif (1) selon la revendication 6, caractérisé en ce que le diamètre des pores ouverts émergeants à la surface dudit matériau poreux est inférieur à 0,5 mm.
8. Injecteur rotatif (1) selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comporte un insert (90) comprenant lesdits moyens d'émission (8, 9) et constitué dudit matériau mouillable ou d'un matériau rendu mouillable à l'aide d'un revêtement en matériau mouillable par le métal liquide.
9. Injecteur rotatif selon l'une quelconque des revendications 1 à 8, caractérisé en ce que lesdits moyens de brassage (5) sont aussi constitués, en tout ou partie, d'au moins un matériau mouillable par ledit métal liquide ou d'un matériau rendu mouillable à l'aide d'un revêtement en matériau mouillable par le métal liquide.
10. Injecteur rotatif (1) selon l'une quelconque des revendications 1 à 9, caractérisé en ce que ledit arbre d'entraînement (4) est aussi constitué, en tout ou partie, d'au moins un matériau mouillable par ledit métal liquide ou d'un matériau rendu mouillable à l'aide d'un revêtement en matériau mouillable par le métal liquide.
11. Injecteur rotatif (1) selon l'une quelconque des revendications 1 à 10, caractérisé en ce que le ou chaque matériau mouillable est choisi dans le groupe comprenant le molybdène, le tungstène, le vanadium, le titane, le chrome, le fer, les aciers ou leurs alliages, et le diborure de titane, les nitrures d'aluminium, les carbures d'aluminium et les carbures de titane.
12. Dispositif de dispersion rotatif (30) caractérisé en ce qu'il comprend au moins un injecteur rotatif selon l'une des revendications 1 à 1 1.
13. Dispositif de traitement d'un métal liquide (40) caractérisé en ce qu'il comprend au moins un injecteur rotatif selon l'une quelconque des revendications 1 à 1 1 ou au moins un dispositif de dispersion rotatif selon la revendication 12.
14. Poche de dégazage d'un métal liquide comprenant au moins un injecteur rotatif selon l'une quelconque des revendications 1 à 11 ou au moins un dispositif de dispersion rotatif selon la revendication 12.
15. Four comprenant au moins un injecteur rotatif selon l'une quelconque des revendications 1 à 11 ou au moins un dispositif de dispersion rotatif selon la revendication 12.
16. Goulotte munie d'au moins un injecteur rotatif selon l'une quelconque des revendications 1 à 11 ou au moins un dispositif de dispersion rotatif selon la revendication 12.
17. Utilisation d'un l'injecteur rotatif selon l'une quelconque des revendications 1 à 11, d'un dispositif de dispersion rotatif selon la revendication 12, d'un dispositif de traitement selon la revendication 13, d'une poche de dégazage selon la revendication 14, d'un four selon la revendication 15 ou d'une goulotte selon la revendication 16 pour le traitement d'un métal à l'état liquide.
18. Utilisation selon la revendication 17, caractérisée en ce que ledit métal est choisi parmi l'aluminium, les alliages d'aluminium, le magnésium et les alliages de magnésium.
19. Procédé de traitement d'un métal à l'état liquide, caractérisé en ce qu'on utilise au moins un injecteur rotatif selon l'une quelconque des revendications 1 à 1 1, au moins un dispositif de dispersion rotatif selon la revendication 12, au moins dispositif de dégazage selon la revendication 13, au moins une poche de dégazage selon la revendication 14, au moins un four selon la revendication 15 ou au moins une goulotte selon la revendication 16.
0. Procédé de traitement selon la revendication 19, caractérisé en ce que ledit métal est choisi parmi l'aluminium, les alliages d'aluminium, le magnésium et les alliages de magnésium.
EP01978568A 2000-10-20 2001-10-18 Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de metal liquide Expired - Lifetime EP1332235B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0013468A FR2815642B1 (fr) 2000-10-20 2000-10-20 Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de metal liquide
FR0013468 2000-10-20
PCT/FR2001/003231 WO2002033137A1 (fr) 2000-10-20 2001-10-18 Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de metal liquide

Publications (2)

Publication Number Publication Date
EP1332235A1 true EP1332235A1 (fr) 2003-08-06
EP1332235B1 EP1332235B1 (fr) 2004-04-14

Family

ID=8855564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01978568A Expired - Lifetime EP1332235B1 (fr) 2000-10-20 2001-10-18 Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de metal liquide

Country Status (13)

Country Link
US (1) US20040021257A1 (fr)
EP (1) EP1332235B1 (fr)
JP (1) JP2004511661A (fr)
CN (1) CN1469935A (fr)
AT (1) ATE264406T1 (fr)
AU (1) AU2002210668A1 (fr)
CA (1) CA2426268A1 (fr)
DE (1) DE60102832T2 (fr)
ES (1) ES2218458T3 (fr)
FR (1) FR2815642B1 (fr)
NO (1) NO20031762D0 (fr)
RU (1) RU2270876C2 (fr)
WO (1) WO2002033137A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112779435A (zh) * 2020-12-27 2021-05-11 上海交通大学安徽(淮北)陶铝新材料研究院 一种带有电磁搅拌的熔体控制原位自生铝基复合材料的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1352295B1 (fr) * 2000-10-12 2015-12-23 Board of Regents, The University of Texas System Gabarit pour photolithographie a temperature ambiante et basse pression produisant des empreintes de l'ordre du micron et du nanometre
GB2396310A (en) * 2002-12-21 2004-06-23 Foseco Int Rotary device with vanes for dispersing a gas in a molten metal
AU2004220103B2 (en) * 2003-03-07 2010-06-24 Bpsi Holdings, Incorporated Water-based inks for printing on confectionery
JP5099399B2 (ja) * 2005-11-04 2012-12-19 独立行政法人日本原子力研究開発機構 溶湯精錬装置及び溶湯精錬方法
EP2198228B8 (fr) * 2007-10-09 2012-10-24 Abb Ab Dispositif pour submerger un matériau dans du métal liquide à l'aide d'un agitateur électromagnétique
NO332418B1 (no) * 2011-01-04 2012-09-17 Alu Innovation As Rotor for tilforsel av varme til ei smelte
WO2014190430A1 (fr) * 2013-05-29 2014-12-04 Rio Tinto Alcan International Limited Injecteur rotatif et procédé d'ajout de solides fondants dans de l'aluminium fondu
USD742427S1 (en) 2013-09-27 2015-11-03 Rio Tinto Alcan International Limited Impeller for a rotary injector
US9528167B2 (en) * 2013-11-18 2016-12-27 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
CN106435233B (zh) * 2016-11-25 2018-03-30 辽宁忠旺集团有限公司 一种小型铝合金熔炼除气除杂装置
CN112808991A (zh) * 2020-12-27 2021-05-18 上海交通大学安徽(淮北)陶铝新材料研究院 一种带有永磁搅拌的原位自生铝基复合材料的系统
CN113909451B (zh) * 2021-10-13 2023-09-29 宁波众创智能科技有限公司 连续在线除气定量炉

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH583781A5 (fr) * 1972-12-07 1977-01-14 Feichtinger Heinrich Sen
US3972709A (en) * 1973-06-04 1976-08-03 Southwire Company Method for dispersing gas into a molten metal
JPS6251789A (ja) * 1985-08-30 1987-03-06 Matsuda Pump Seisakusho:Kk セラミツクス製溶融金属用ポンプ
JPS63313631A (ja) * 1987-06-17 1988-12-21 Nittoku Fuaanesu Kk 溶湯処理用インペラ
FR2628756B1 (fr) * 1988-03-15 1992-05-22 Alusuisse France Sa Dispositif pour eliminer des impuretes presentes sous forme gazeuse et solide dans un produit liquide contenu dans un reservoir
CA1305609C (fr) * 1988-06-14 1992-07-28 Peter D. Waite Traitement de metaux legers fondus
JPH0364409A (ja) * 1989-08-02 1991-03-19 Nkk Corp 溶湯攪拌用インペラー
US5234202A (en) * 1991-02-19 1993-08-10 Praxair Technology, Inc. Gas dispersion apparatus for molten aluminum refining
JP3520286B2 (ja) * 1996-07-16 2004-04-19 ペシネー・ジャポン株式会社 金属溶湯処理用回転式処浬ガス拡散装置
AU714284B2 (en) * 1996-08-02 1999-12-23 Aluminium Pechiney Rotary gas dispersion device for the treatment of a liquid aluminium bath
US6056803A (en) * 1997-12-24 2000-05-02 Alcan International Limited Injector for gas treatment of molten metals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0233137A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112779435A (zh) * 2020-12-27 2021-05-11 上海交通大学安徽(淮北)陶铝新材料研究院 一种带有电磁搅拌的熔体控制原位自生铝基复合材料的方法
CN112779435B (zh) * 2020-12-27 2021-12-14 上海交通大学安徽(淮北)陶铝新材料研究院 一种带有电磁搅拌的熔体控制原位自生铝基复合材料的方法

Also Published As

Publication number Publication date
ES2218458T3 (es) 2004-11-16
FR2815642B1 (fr) 2003-07-11
NO20031762L (no) 2003-04-15
US20040021257A1 (en) 2004-02-05
JP2004511661A (ja) 2004-04-15
WO2002033137A1 (fr) 2002-04-25
CN1469935A (zh) 2004-01-21
DE60102832D1 (de) 2004-05-19
CA2426268A1 (fr) 2002-04-25
RU2270876C2 (ru) 2006-02-27
DE60102832T2 (de) 2005-04-21
ATE264406T1 (de) 2004-04-15
NO20031762D0 (no) 2003-04-15
AU2002210668A1 (en) 2002-04-29
EP1332235B1 (fr) 2004-04-14
FR2815642A1 (fr) 2002-04-26

Similar Documents

Publication Publication Date Title
EP1332235B1 (fr) Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de metal liquide
EP0262058B1 (fr) Dispositif rotatif à pales de mise en solution d'éléments d'alliage et de dispersion de gaz dans un bain d'aluminium
EP0050578B1 (fr) Dispositif de traitement d'un bain de métal liquide par injection de gaz
JP5351150B2 (ja) 溶融金属を処理する回転撹拌デバイス
EP0077282B1 (fr) Dispositif pour le traitement, au passage, d'un courant de métal ou alliage liquide à base d'aluminium ou de magnésium
CA2251230C (fr) Dispositif rotatif de dispersion de gaz pour le traitement d'un bain d'aluminium liquide
EP1858662B1 (fr) Procede pour couler en continu un metal a resistance mecanique amelioree et produit obtenu par le procede
WO2016071613A1 (fr) Procede d'utilisation d'une sonotrode tubulaire
EP1192289A1 (fr) Procede et dispositif ameliores de degazage et de separation des inclusions d'un bain de metal liquide par injection de bulles de gaz
JP2014080663A (ja) 金属溶湯の清浄化装置
EP0667199A1 (fr) Procédé et dispositif de coulée continue de filaments métalliques directement à partir de métal liquide
EP0438004A1 (fr) Procédé et dispositif d'élaboration de produits composites à matrice métallique
FR2555080A1 (fr) Procede et appareil pour eviter la formation d'un tourbillon dans un recipient metallurgique de coulee a sortie par le fond
EP0419378B1 (fr) Dispositif de traitement au moyen de gaz d'un bain liquide d'aluminium de grande surface maintenu à l'état stationnaire dans un four
FR2474530A1 (fr) Alliage pour fabrication d'appareils travaillant a haute temperature et appareils realises en cet alliage
FR2604107A1 (fr) Dispositif rotatif de mise en solution d'elements d'alliage et de dispersion de gaz dans un bain d'aluminium
CA1153864A (fr) Busettes plongeantes utilisees en coulee continue electrorotative de metaux
FR2468655A1 (fr) Filtrage et degazage continus de cuivre en fusion
BE1004002A6 (fr) Procede et dispositif pour l'introduction d'elements de renforcement dans un bain de metal fondu.
FR3021977A1 (fr) Procede pour fabriquer un lingot d'acier faiblement allie
WO1996016193A1 (fr) Dispositif de degazage et de separation des inclusions dans un bain de metal liquide
EP1504130A1 (fr) Dispositif de traitement en ligne de metal liquide par voie gazeuse et par filtration
BE422878A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030410

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040414

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040414

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040414

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040414

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60102832

Country of ref document: DE

Date of ref document: 20040519

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040714

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040714

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20040402119

Country of ref document: GR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040629

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2218458

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20050916

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050919

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050920

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050923

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20050926

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20051006

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20051010

Year of fee payment: 5

Ref country code: FR

Payment date: 20051010

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20051028

Year of fee payment: 5

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061018

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061018

BERE Be: lapsed

Owner name: *ALUMINIUM PECHINEY

Effective date: 20061031

Owner name: *PECHINEY RHENALU

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040914

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20061019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050926

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061031