WO1996016193A1 - Dispositif de degazage et de separation des inclusions dans un bain de metal liquide - Google Patents

Dispositif de degazage et de separation des inclusions dans un bain de metal liquide Download PDF

Info

Publication number
WO1996016193A1
WO1996016193A1 PCT/FR1995/001477 FR9501477W WO9616193A1 WO 1996016193 A1 WO1996016193 A1 WO 1996016193A1 FR 9501477 W FR9501477 W FR 9501477W WO 9616193 A1 WO9616193 A1 WO 9616193A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid metal
inclusions
metal
flow
Prior art date
Application number
PCT/FR1995/001477
Other languages
English (en)
Inventor
Alain Dubus
Pierre Le Brun
Original Assignee
Aluminium Pechiney
Pechiney Rhenalu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney, Pechiney Rhenalu filed Critical Aluminium Pechiney
Priority to AU41794/96A priority Critical patent/AU4179496A/en
Publication of WO1996016193A1 publication Critical patent/WO1996016193A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/066Treatment of circulating aluminium, e.g. by filtration
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ
    • C22B9/055Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ while the metal is circulating, e.g. combined with filtration

Definitions

  • the invention relates to a device for improving the degassing and separation of inclusions from a liquid metal, such as aluminum and its alloys or magnesium and its alloys.
  • This treatment is usually carried out by blowing in a suitable gas, for example an inert gas insoluble in liquid metal, of the Ar type which may contain a few percent of reactive gas of the chlorine type.
  • a suitable gas for example an inert gas insoluble in liquid metal, of the Ar type which may contain a few percent of reactive gas of the chlorine type.
  • the inert and insoluble gas absorbs and dissolves the dissolved gases by dilution, while the dissolved impurities of the alkaline type can react with the reactive gas and generate solid or liquid inclusions which remain in suspension. All inclusions must be eliminated.
  • inclusions will be understood to mean both solid and liquid inclusions, both those preexisting in the raw liquid metal and those generated as a result of the treatment.
  • the treatment can be carried out in bags comprising one or more treatment compartments, according to the purity of the final metal desired and the flow rate of treated metal. It is known to insufflate gas into liquid metal by equipping the treatment compartment with porous plugs, as for example in the article "A new generation of fluxing in aluminum melting and holding furnaces" by JR Guttery et al. . (Light Métal 1994 - p. 921-927, Edited by U. Mannweller) and the patents J 61117237, J 6208343- or of a porous bottom, as for example in the patents J 02145730, GB 2220424.
  • an outlet compartment for example separated from the previous one by a wall comprising an opening for the passage of liquid metal, in which a better separation or decantation of the inclusions takes place.
  • a filter bag or compartment with a filter medium may be a bed of powdered product or a porous ceramic, the dimensions of the particles or pores respectively are adapted to the desired final purity but also to the necessary filtration rate.
  • metallurgists using semi-finished products obtained by such processes have increasingly stringent requirements for purity.
  • they seek to produce increasingly thin metal sheets, which requires, among other things, to have an inclusion rate which is lower the thinner the sheet so as not to increase or better reduce the scrap, and to have an even lower content of dissolved impurities (for example hydrogen) so as not to affect or better improve the mechanical characteristics of said sheets.
  • dissolved impurities for example hydrogen
  • the size limit of the inclusions stopped depends on the size of the passages existing in the filtering medium (given for example by the size of the particles forming the filtering bed, by the size of the pores, etc.); but these passages cannot be excessively fine so that the flow rates of liquid metal remain compatible with industrial exploitation.
  • the filtration tank itself represents a large dead metal volume that cannot be recovered during changes in the quality of the metal sunk; there is an obligation to preheat the filter medium before carrying out the filtration, with the additional risk of the presence of temperature gradients which can disturb said filtration, obligation to clean and / or change said filter medium regularly, etc.
  • the Applicant has therefore sought to improve the quality of the liquid metal before carrying out the casting.
  • the invention is a device for treating a stream of liquid metal having dissolved and suspended impurities circulating in an enclosure, characterized in that this enclosure contains at least one assembly constituted by a gas curtain occupying the entire section. liquid metal flow then a calm zone where the liquid metal flow is purified thanks to an easier decantation.
  • this zone will also be called calm zone as opposed to the more agitated zone containing the curtain of gas bubbles.
  • the enclosure usually comprises means for entering and leaving the liquid metal.
  • the gas curtain forms a continuous curtain of bubbles within the liquid metal and is generally obtained using at least one gas bubble diffuser usually of elongated shape.
  • This diffuser has gas outlet orifices, for example by virtue of a porosity or any other equivalent means, of dimensions and in number such that it generates the desired bubbles and the required gas flow rate. It can be produced from a porous body, for example in the form of a bar or porous tube situated at the bottom of the enclosure and occupying continuously the entire width of the flow of liquid metal.
  • the diffuser is supplied with gas continuously and distributes it over the entire width of the liquid metal stream; the gas thus introduced generates bubbles which rise vertically over the entire height of said flow. The entire cross section of said stream will thus be crossed by the bubble curtain.
  • the bubble curtain can be obtained using several contiguous diffusers having sufficient overlap areas for the bubble curtain to be continuous.
  • the thickness and density of the bubble curtain is generally such that, depending on the metal flow rate, there is almost certainty of contact between the bubbles and the inclusions.
  • the diffuser can be included in the bottom of the pocket; it can also be installed in said pocket in a removable manner, for example placed on the floor or on a base or else suspended in the liquid metal so that it is in the immediate vicinity, or even in contact, of the floor and all the metal flow is treated by gas.
  • This latter mode of installation provides advantages because the installation and removal of the diffuser are particularly easy, which makes it possible in particular to facilitate maintenance and cleaning operations for the bag and the diffuser. It is important that the installation of the diffuser or thresholds of low height does not significantly narrow the cross section of the stream of liquid metal so that its horizontal speed remains as slow as possible.
  • the diffuser is generally inert with respect to the liquid metal and it can be based on porous sintered products, foams, wicks, etc. obtained from ceramics or metals.
  • An advantageous size of bubbles is between 1 and 10 mm.
  • the speed of the liquid metal is as slow and steady as possible in line with the bubble curtain to be sure that all inclusions are trapped by the gas, as well as in the tranquilized zone to ensure the elimination of trapped inclusions.
  • the speed of the liquid metal does not generally exceed 2 cm / sec and preferably 0.9 cm / sec. However, the speed of the metal is usually greater than 0.3 cm / sec.
  • the first bubble curtain can be preceded by a quiet zone. Following a first set, a series of several bubble curtain-tranquilized area sets may be available.
  • the gas acts as a flotation agent for the inclusions which are thus entrained and collected on the surface of the liquid metal of the tranquilized zone.
  • the particles too heavy to be entrained settle in the tranquilized zone; they gather at the bottom of the enclosure and are not resuspended.
  • the calm zone is of sufficient size to optimize complete separation by settling the heaviest inclusions or by flotation of the lighter inclusions.
  • liquid can advantageously have a large volume to increase the residence time of the treated liquid metal and be such that the section of the stream of liquid metal is larger than the section crossing the curtain of bubbles in order to reduce the speed of said metal as much as possible. liquid.
  • its length is preferably at least three times the width (or thickness) of the bubble curtain for an identical section of vein of liquid metal.
  • means are generally installed to stop or eliminate the supernatant dross resulting from the collection of inclusions. These means are usually placed towards the liquid metal outlet chute and may include a wall emerging from the liquid metal.
  • the device according to the invention in addition to being an effective means for separating inclusions, also offers the advantage, thanks to its gas curtain, of being able to treat or provide additional treatment for dissolved impurities present in the metal. liquid.
  • the gas can indeed be an inert gas with respect to the liquid metal, such as argon, which will suffice by eliminating the dissolved gases and effecting the collection of the inclusions in suspension; but it can also contain a reactive gas such as chlorine, which will also make it possible to improve said collection of inclusions and to carry out or complete the purification in dissolved elements (for example alkaline) found in the incoming metal.
  • a reactive gas such as chlorine
  • the device according to the invention can be used to treat a raw metal.
  • the purification of dissolved impurities is of the level obtained in the prior art using a bag with a porous bottom; on the other hand, there is a marked improvement in the elimination of inclusions.
  • the device is placed after the outlet compartment of said initial pocket or directly after the last treatment compartment, thereby eliminating the outlet compartment.
  • the device of the invention proves to be very complementary, ca if the rotor ensures a very good dispersion treatment gas, e therefore a good purification of dissolved impurities, the separation of inclusions can present insufficiencies due to vigorous mixing.
  • Said device according to the invention is therefore particularly suitable for effecting a more effective separation of inclusions than filtration while ensuring additional treatment of soluble impurities as has already been said.
  • the device according to the invention can also be used in other configurations.
  • a high-throughput raw metal gas treatment installation comprising several treatment compartments with rotor
  • the usage configurations mentioned above are of course not limiting.
  • the device is of simple implementation. Compared to a filtration system on a bed or filter foam, the operating constraints are significantly reduced; there is no longer, for example, preheating the filter medium, nor impregnating it with liquid metal, with the risks that these operations present: temperature gradient detrimental to the quality of the cast metal, clogging of the filter media, release of inclusions.
  • the device of the invention requires only simpler and more spaced cleanings than those of a filter: there is only to evacuate the settled residues in the quiet areas.
  • immersion heaters of small diameter, typically less than 40 mm, and of power per unit of high submerged length, typically greater than 5 k / m.
  • Another aspect of the invention is the method flowing from the device; in said method the entire flow of liquid metal passes through at least one assembly comprising a continuous curtain of treatment gas followed directly by a calm volume.
  • Figure 1 illustrates, without limitation, the vertical sectional view of a device according to the invention installed following a pocket for treating raw liquid metal by blowing gas using a rotor. But as has been said it could just as well be used alone or in other configurations.
  • Figures 2 and 3 give plan views of other variants concerning the arrangement of the curtains and the quiet areas.
  • the processing bag comprising an enclosure (2) with an input means (3) of the raw liquid metal (4); a rotor (5) provided with a shaft (6), also serving as a gas supply, disperses said gas in the liquid metal.
  • the treated metal is removed by the outlet means (7) located at the base of a baffle (9) separating the treatment bag (1) from the bag according to the invention (8) and also serving as a supply means. of said pocket according to the invention (8) in treated liquid metal.
  • the location of the inputs and outputs of liquid metal is not limited; they can be located on any side of the pocket, on the same side, on adjacent or opposite sides, from above, from the bottom, submerged or not, at any height, etc., similarly there can be several inputs and / or several outputs.
  • Upstream of the first gas curtain is a supply space (14), while upstream of the outlet means (15) is an emerging wall (16) plunging into the liquid metal and retaining the dross supernatant on said liquid metal.
  • the arrows represent the direction of movement of the metal.
  • Figure 2 illustrates a pocket according to the invention where the pins have the same meaning as in Figure 1.
  • the tranquilized zones (13) have a cross section of the liquid metal greater than that of the bubble curtain gas (12) to decrease the speed of liquid metal and increase its residence time. It can be seen that the latter is produced using several porous bars, located in the bottom of the pocket, joined in such a way that the bubble curtain is continuous.
  • FIG. 3 illustrates another pocket according to the invention in which the bubble curtain (12) is obtained by joining several diffusers (for example very long porous parts) offset by compared to the others, the flow of liquid metal diagonally crossing the tranquilized zones (13) and being evacuated from the last tranquilized zone by an opening (17) located in the baffle (16) opposite the bubble curtain (12) corresponding.
  • the bubble curtain (12) is obtained by joining several diffusers (for example very long porous parts) offset by compared to the others, the flow of liquid metal diagonally crossing the tranquilized zones (13) and being evacuated from the last tranquilized zone by an opening (17) located in the baffle (16) opposite the bubble curtain (12) corresponding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Dispositif pour traiter au défilé un flux de métal liquide comportant des impuretés dissoutes et en suspension, comprenant une enceinte caractérisé en ce que cette enceinte contient au moins un ensemble constitué par un rideau de gaz traversant la totalité de la section du flux de métal liquide puis une zone calme où le flux de métal liquide se purifie grâce à une décantation facilitée.

Description

DISPOSITIF DE DEGAZAGE ET DE SEPARATION DES INCLUSIONS DANS UN BAIN
DE METAL LIQUIDE
DOMAINE TECHNIQUE
L'invention concerne un dispositif pour améliorer le dégazage et la séparation des inclusions d'un métal liquide, tel que l'aluminium et ses alliages ou le magnésium et ses alliages.
ETAT DE LA TECHNIQUE
On sait qu'avant d'obtenir par coulée des produits métallurgiques semi- finis, tels que l'aluminium, la magnésium ou leurs alliages, il est nécessaire de traiter le métal brut liquide pour le débarrasser des gaz dissous (en particulier l'hydrogène), des impuretés dissoutes (en particulier les alcalins) et des inclusions solides ou liquides qui nuiraient à la qualité des pièces coulées.
Ce traitement est habituellement effectué par insufflation d'un gaz approprié, par exemple un gaz inerte et insoluble dans le métal liquide, du type Ar pouvant contenir quelques pour-cent de gaz réactif du type chlore.
Le gaz inerte et insoluble absorbe par effet de dilution, et évacue, les gaz dissous, tandis que les impuretés dissoutes du type alcalin peuvent réagir avec le gaz réactif et générer des inclusions solides ou liquides qui restent en suspension. L'ensemble des inclusions doit être éliminé.
Dans la suite on entendra par inclusions tant les inclusions solides que liquides, tant celles préexistantes dans le métal liquide brut que celles générées par suite du traitement.
Le traitement peut être effectué dans des poches comportant un ou plusieurs compartiments de traitement, selon la pureté du métal final désirée et le débit de métal traité. Il est connu d'effectuer l'insufflation de gaz dans le métal liquide en équipant le compartiment de traitement de bouchons poreux, comme par exemple dans l'article "A new génération of fluxing in aluminum melting and holding furnaces" de J.R. Guttery et coll. (Light Métal 1994 - p. 921-927, Edité par U. Mannweller) et les brevets J 61117237, J 6208343- ou d'un fond poreux, comme par exemple dans les brevets J 02145730, GB 2220424. Mais de telles solutions, qui souvent ne permettent pas une dispersion suffisamment fine du gaz de traitement, peuvent conduire à une épuration non satisfaisante en gaz ou impuretés dissous ; de plus avec les bouchons poreux il n'est pas possible de garantir que la totalité du volume de métal liquide soit intéressée par le traitement. Quant à l'élimination des inclusions, celles déjà présentes dans le métal à traiter ou celles générées lors du traitement par les gaz, elle est gênée par l'agitation du milieu ; en particulier l'utilisation d'un fond poreux gêne la décantation des inclusions.
Il est connu également du brevet US 4 714494 de disposer un fond poreux dans des goulottes de transport de métal liquide pour y insuffler du gaz. Ce dispositif comme précédemment ne permet pas une élimination des inclusions.
Pour améliorer la dispersion du gaz de traitement dans le métal liquide, il est connu d'effectuer l'insufflation à l'aide d'un rotor ou turbine immergée. Cette méthode est particulièrement efficace pour disperser le gaz de traitement donc pour éliminer les gaz dissous et traiter les alcalins en solution. Mais l'agitation provoquée par le rotor peut affecter l'élimination des inclusions liquides ou solides.
Pour améliorer cette élimination, il est connu d'ajouter au compartiment de traitement un compartiment de sortie, par exemple séparé du précédent par une paroi comportant une ouverture pour le passage du métal liquide, dans lequel s'effectue une meilleure séparation ou décantation des inclusions.
Cependant cette disposition complémentaire peut encore ne pas être suffisante ; c'est pourquoi il est connu de la substituer ou d'y O96/16193 PC17FR95/01477
adjoindre une poche ou un compartiment de filtration comportant un médium filtrant ; ce dernier peut être un lit de produit pulvérulent ou une céramique poreuse, dont les dimensions respectivement des particules ou des pores sont adaptées à la pureté finale recherchée mais aussi au débit de filtration nécessaire.
Or les métallurgistes utilisant les produits semi-finis obtenus par de tels procédés ont des exigences de pureté de plus en plus sévères. En particulier ils cherchent à produire des feuilles métalliques de plus en plus minces, ce qui exige, entre autres, d'avoir un taux d'inclusions d'autant plus faible que la feuille est mince pour ne pas augmenter ou mieux diminuer les rebuts, et d'avoir une teneur en impuretés dissoutes (par exemple en hydrogène) encore plus faible pour ne pas affecter ou mieux améliorer les caractéristiques mécaniques desdites feuilles.
En face de ces exigences la filtration évoquée plus haut montre des limites :
- elle ne permet pas d'arrêter toutes les inclusions liquides, ni les plus petites inclusions solides ; la taille limite des inclusions arrêtées dépend de la taille des passages existant dans le médium filtrant (donnée par exemple par la taille des particules formant le lit filtrant, par la taille des pores...) ; mais ces passages ne peuvent pas être exagérément fins afin que les débits de métal liquide restent compatibles avec une exploitation industrielle.
- elle est sujette à des colmatages, ce qui perturbe le procédé de filtration et est la source de pollution parasite du métal filtré et coulé.
- elle peut être le siège de relargages d'inclusions qui avaient été arrêtées dans un premier temps, ce qui altère évidemment la pureté du métal filtré et coulé.
- elle présente des contraintes d'exploitation importantes : la cuve de filtration elle-même représente un volume mort de métal important et irrécupérable lors des changements de qualité de métal coulé ; il y a obligation de préchauffer le médium filtrant avant d'effectuer la filtration, avec en plus des risques de présence de gradients de température pouvant perturber ladite filtration, obligation de nettoyer et/ou changer régulièrement ledit médium filtrant etc...
Ainsi , il est intéressant de développer de nouvelles méthodes de purification des métaux fondus, afin de permettre le développement de nouvelles applications, et afin d'améliorer encore la qualité des produits.
La demanderesse a donc recherché à améliorer la qualité du métal liquide avant d'effectuer la coulée.
Elle a également recherché à simplifier et à rendre plus économique la mise en oeuvre de l'épuration en recherchant d'autres dispositifs et procédés de traitement.
DESCRIPTION DE L'INVENTION
L'invention est un dispositif pour traiter au défilé un flux de métal liquide comportant des impuretés dissoutes et en suspension, circulant dans une enceinte caractérisé en ce que cette enceinte contient au moins un ensemble constitué par un rideau de gaz occupant la totalité de la section du flux de métal liquide puis une zone calme où le flux de métal liquide se purifie grâce à une décantation facilitée.
Dans la suite cette zone sera aussi appelée zone tranquillisée par opposition à la zone plus agitée contenant le rideau de bulles de gaz.
L'enceinte comporte habituellement des moyens d'entrée et de sortie du métal liquide.
Le rideau de gaz forme un rideau continu de bulles au sein du métal liquide et est généralement obtenu à l'aide d'au moins un diffuseur de bulles de gaz habituellement de forme allongée. Ce diffuseur comporte des orifices de sortie de gaz, par exemple grâce à une porosité ou tout autre moyen équivalent, de dimensions et en nombre tels qu'il génère les bulles voulues et le débit de gaz nécessaire. Il peut être réalisé à partir d'un corps poreux, par exemple sous forme de barrette ou de tube poreux situé au fond de l'enceinte et occupant de façon continue toute la largeur du flux de métal liquide.
Le diffuseur est alimenté en gaz de façon continue et le distribue sur toute la largeur de la veine de métal liquide ; le gaz ainsi introduit génère des bulles qui remontent verticalement sur toute la hauteur dudit flux. Toute la section droite dudit flux sera ainsi traversée par le rideau de bulles.
Quand la largeur de la veine de métal est importante le rideau de bulle peut être obtenu à l'aide de plusieurs diffuseurs accolés présentant des zones de recouvrement suffisantes pour que le rideau de bulles soit continu.
L'épaisseur et la densité du rideau de bulles est en général telle que, en fonction du débit de métal, il y ait une quasi certitude de contact entre les bulles et les inclusions.
Le diffuseur peut être inclus dans la sole de la poche ; il peut aussi être installé dans ladite poche de façon amovible par exemple posé sur la sole ou sur un socle ou encore suspendu dans le métal liquide de façon à ce qu'il soit à proximité immédiate, voire au contact, de la sole et que tout le flux de métal soit traité par le gaz. Ce dernier mode d'installation apporte des avantages du fait que la mise en place et l'enlèvement du diffuseur sont particulièrement aisés, ce qui permet de faciliter notamment les opérations d'entretien et de nettoyage de la poche et du diffuseur. Il est important que l'installation du diffuseur ou de seuils de faible hauteur ne rétrécisse pas significativement la section droite de la veine de métal liquide de façon à ce que sa vitesse horizontale reste aussi lente que possible.
Le diffuseur est généralement inerte vis à vis du métal liquide et il peut être à base de produits frittes poreux, de mousses, de mèches etc.. obtenus à partir de céramiques ou de métaux.
Il est préférable de générer des bulles de gaz aussi fines que possible pour augmenter la probabilité de rencontrer les inclusions à traiter. Une taille avantageuse de bulles se situe entre 1 et 10 mm.
La vitesse du métal liquide est aussi lente et régulière que possible au droit du rideau de bulles pour être sûr que toutes les inclusions soient piégées par le gaz, ainsi que dans la zone tranquilisee pour assurer l'élimination des inclusions piégées. La vitesse du métal liquide ne dépasse pas, en général, 2 cm/sec et de préférence 0,9 cm/sec. Cependant la vitesse du métal est habituellement supérieure à 0,3 cm/sec.
Ceci peut être obtenu en utilisant une grande section de la veine du métal, par exemple de 70x70 cm pour un débit de métal de 60 t/h, la vitesse étant alors d'environ 1,4 cm/sec, ou une section de 80 x 80 cm pour un débit de 40 t/h, la vitesse étant alors de 0,7 cm/sec environ.
Il s'avère que la turbulence occasionnée par le rideau de bulle est faible et qu'ainsi la décantation qui s'effectue dans la zone de tranquilisation directement contiguë est particulièrement efficace. Après ledit rideau de bulles, le flux de métal est généralement substantiellement libre d'obstacles, ou s'il en contient ils ne doivent pas perturber la décantation. Ainsi un compartiment de décantation accolé à un compartiment dans lequel sont générées des bulles ne produit pas le même effet du fait, en particulier, de l'accélération de la vitesse de la veine de métal liquide lors de franchissement de la paroi séparant lesdits compartiments.
Le premier rideau de bulles peut être précédé par une zone tranquillisée. On peut disposer à la suite d'un premier ensemble une série de plusieurs ensembles rideau de bulles-zone tranquillisée.
On peut dire que le gaz agit comme agent de flottation des inclusions qui sont ainsi entraînées et collectées à la surface du métal liquide de la zone tranquillisée. Les particules trop lourdes pour être entraînées décantent dans la zone tranquillisée ; elles se rassemblent au fond de l'enceinte et ne sont pas remises en suspension.
La zone calme est de dimensions suffisantes pour optimiser la séparation complète par décantation des inclusions les plus lourdes ou par flottation des inclusions plus légères.
Elle peut avantageusement avoir un volume important pour augmenter le temps de séjour du métal liquide traité et être telle que la section de la veine de métal liquide soit plus grande que la veine traversant le rideau de bulles afin de diminuer le plus possible la vitesse dudit métal liquide. Ainsi sa longueur est de préférence au moins trois fois la largeur (ou épaisseur) du rideau de bulle pour une section de veine de métal liquide identique.
A la sortie de la dernière zone calme du dispositif selon l'invention, on installe généralement des moyens pour arrêter ou éliminer les crasses surnageantes résultant de la collecte des inclusions. Ces moyens sont habituellement placés vers la goulotte de sortie du métal liquide et peuvent comporter une paroi émergeant du métal liquide.
Le dispositif selon l'invention, en plus d'être un moyen efficace de séparation des inclusions, offre par ailleurs l'avantage, grâce à son rideau de gaz de pouvoir traiter ou apporter un complément de traitement des impuretés dissoutes se trouvant dans le métal liquide.
Le gaz peut être en effet un gaz inerte vis à vis du métal liquide, comme l'argon, ce qui suffira par éliminer les gaz dissous et effectuer la collection des inclusions en suspension ; mais il peut aussi contenir un gaz réactif comme le chlore, ce qui permettra en outre d'améliorer ladite collection des inclusions et d'effectuer ou compléter l'épuration en éléments dissous (par exemples alcalin) se trouvant dans le métal entrant.
Le dispositif selon l'invention peut être utilisé pour traiter un métal brut. Dans ce cas, l'épuration en impuretés dissoutes est du niveau de celle obtenue dans l'art antérieur en utilisant une poche à fond poreux ; par contre on note une nette amélioration dans l'élimination des inclusions.
Mais il est particulièrement avantageux de l'utiliser complémentairemen après que le métal brut ait été traité par un gaz dans une poch initiale. Dans ce cas le dispositif est placé après le compartiment d sortie de ladite poche initiale ou directement après le dernie compartiment de traitement en supprimant ainsi le compartiment de sortie
Une telle disposition permet de remplacer avantageusement la filtration par rapport à cette dernière l'épuration en impuretés dissoutes es complétée grâce au rideau de bulles, le dégazage et la séparation de inclusions sont notablement améliorées, notamment les inclusion liquides.
Mais il est particulièrement recommandé de l'utiliser après une poch initiale où le traitement par un gaz a été effectué au moyen d'un rotor En effet le dispositif de l'invention se montre très complémentaire, ca si le rotor assure une très bonne dispersion du gaz de traitement, e donc une bonne épuration des impuretés dissoutes, la séparation de inclusions peut présenter des insuffisances dues au brassage vigoureux.
Ledit dispositif selon l'invention est alors particulièrement adapté pou effectuer une séparation plus efficace des inclusions que la filtration tout en assurant un complément de traitement des impuretés solubles comme cela a été déjà dit.
On peut encore utiliser le dispositif selon l'invention dans d'autre configurations. Par exemple dans une installation de traitement par le gaz de métal brut de grand débit, comportant plusieurs compartiments d traitement avec rotor, on peut par exemple substituer un de compartiments de traitement par le dispositif de l'invention qui pourr ainsi faire fonction à la fois de traitement des impuretés solubles pa le gaz et de séparation des inclusions améliorée.
Les configurations d'utilisation évoquées ci-dessus ne sont bien sûr pa limitatives. Le dispositif est d'une mise en oeuvre simple. Par rapport à une installation de filtration sur lit ou mousse filtrante, les contraintes d'exploitation sont significativement allégées ; il n'y a plus, par exemple, à préchauffer le médium filtrant, ni à l'imprégner par du métal liquide, avec les risques que présentent ces opérations : gradient de températures préjudiciables à la qualité du métal coulé, colmatage des média filtrants, relargage des inclusions. De plus le dispositif de l'invention ne nécessite que des nettoyages plus simples et espacés que ceux d'un filtre : il y a seulement à évacuer les résidus décantés dans les zones tranquillisées.
Comme perfectionnement du dispositif selon l'invention, on peut prévoir de disposer des moyens de chauffage, par exemple du type thermoplongeur à résistance électrique blindée, dans les zones tranquillisées pour maîtriser de façon très précise la température du métal liquide traité.
Mais pour éviter toute perturbation, il sera particulièrement avantageux d'utiliser des thermoplongeurs de petit diamètre, typiquement inférieur à 40 mm, et de puissance par unité de longueur immergée élevée, typiquement supérieure à 5 k /m.
Un autre aspect de l'invention est le procédé découlant du dispositif ; dans ledit procédé la totalité du flux de métal liquide traverse au moins un ensemble comprenant un rideau continu de gaz de traitement suivi directement par un volume calme.
La figure 1 illustre non limitativement la vue en coupe verticale d'un dispositif selon l'invention installé à la suite d'une poche de traitement de métal liquide brut par insufflation de gaz à l'aide d'un rotor. Mais comme cela a été dit il pourrait aussi bien être utilisé seul ou dans d'autres configurations.
Les figures 2 et 3 donnent des vues en plan d'autres variantes concernant la disposition des rideaux et des zones tranquillisées.
On voit en (1) la poche de traitement, comportant une enceinte (2) avec un moyen d'entrée (3) du métal liquide brut (4) ; un rotor (5) muni d'un arbre (6), servant également d'amenée de gaz, disperse ledit gaz dans le métal liquide.
Le métal traité est évacué par le moyen de sortie (7) situé à la base d'un baffle (9) séparant la poche de traitement (1) de la poche selon l'invention (8) et servant également de moyen d'alimentation de ladite poche selon l'invention (8) en métal liquide traité.
Mais il va de soi que la localisation des entrées et sorties de métal liquide n'est pas limitée ; elles peuvent se situer sur n'importe quelle face de la poche, sur une même face, sur des faces adjacentes ou opposées, par le haut, par le fond, immergées ou non, à n'importe quelle hauteur, etc..., de même il peut y avoir plusieurs entrées et/ou plusieurs sorties.
A l'intérieur de l'enceinte (10) de la poche selon l'invention (8) sont disposés deux ensembles en série comportant chacun un rideau de gaz (11) alimenté par une pièce poreuse (12) située en fond de poche et s'étendant sur toute la largeur de l'enceinte de façon continue ; le rideau de gaz est suivi par un volume calme (13) de décantation. En amont du premier rideau de gaz se trouve un espace d'alimentation (14), tandis qu'en amont du moyen de sortie (15) se trouve une paroi émergée (16) plongeant dans le métal liquide et retenant les crasses surnageant sur ledit métal liquide. Les flèches représentent le sens de circulation du métal.
La figure 2 illustre une poche selon l'invention où les repères ont la même signification que dans la figure 1. Dans cet exemple on voit que les zones tranquillisées (13) ont une section de passage du métal liquide supérieure à celle du rideau de bulle de gaz (12) pour diminuer la vitesse de métal liquide et augmenter son temps de séjour. On voit que ce dernier est réalisé à l'aide de plusieurs barrettes poreuses, situées dans le fond de la poche, accolées de telle façon que le rideau de bulle soit continu.
La figure 3 illustre une autre poche selon l'invention dans laquelle le rideau de bulles (12), est obtenue par accolement de plusieurs diffuseurs (par exemple pièces poreuses de grande longueur) décalés les uns par rapport aux autres, le flux du métal liquide traversant en diagonale les zones tranquillisées (13) et étant évacué de la dernière zone tranquillisée par une ouverture (17) située dans le baffle (16) à l'opposé du rideau de bulles (12) correspondant.

Claims

REVENDICATIONS
1. Dispositif pour traiter au défilé un flux de métal liquide comportan des impuretés dissoutes et en suspension, comprenant une enceint caractérisé en ce que cette enceinte contient au moins un ensembl constitué par un rideau de gaz traversant la totalité de la section d flux de métal liquide puis une zone calme où le flux de métal liquid se purifie grâce à une décantation facilitée.
2. Dispositif selon la revendication 1 caractérisé en ce qu'il comport une cuve de traitement préalable du métal liquide par un gaz.
3. Dispositif selon la revendication 2 caractérisé en ce que l traitement préalable par un gaz a été effectué au moyen d'un roto d'injection de gaz.
4. Dispositif selon l'une quelconque des revendications 1 à 3 caractéris en ce que le gaz est inerte vis à vis du métal traité et est d préférence de l'argon.
5. Dispositif selon la revendication 4 caractérisé en ce que le ga inerte contient un gaz réactif vis à vis des impuretés, de préférenc du chlore.
6. Dispositif selon l'une quelconque des revendications 1 à 5 caractéris en ce que le rideau de bulles est obtenu à l'aide d'un diffuseur situ au fond de l'enceinte et s'étendant sur toute la largeur dudit flux.
7. Procédé de traitement d'un flux de métal liquide contenant de impuretés dissoutes et en suspension caractérisé en ce que la totalit du flux traverse au moins un ensemble comprenant un rideau continu de bulles de gaz suivi directement par un volume calme.
PCT/FR1995/001477 1994-11-24 1995-11-08 Dispositif de degazage et de separation des inclusions dans un bain de metal liquide WO1996016193A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU41794/96A AU4179496A (en) 1994-11-24 1995-11-08 Device for degassing and separating the inclusions in a liquid metal bath

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR94/14320 1994-11-24
FR9414320A FR2727432B1 (fr) 1994-11-24 1994-11-24 Dispositif de degazage et de separation des inclusions dans un bain de metal liquide

Publications (1)

Publication Number Publication Date
WO1996016193A1 true WO1996016193A1 (fr) 1996-05-30

Family

ID=9469280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/001477 WO1996016193A1 (fr) 1994-11-24 1995-11-08 Dispositif de degazage et de separation des inclusions dans un bain de metal liquide

Country Status (3)

Country Link
AU (1) AU4179496A (fr)
FR (1) FR2727432B1 (fr)
WO (1) WO1996016193A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106676283A (zh) * 2017-03-16 2017-05-17 苏州优尼昂精密金属制造有限公司 一种舀汤池连续除气装置和除气方法
CN109777967A (zh) * 2019-02-28 2019-05-21 广东凤铝铝业有限公司 一种真空除气设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO310115B1 (no) * 1999-09-03 2001-05-21 Norsk Hydro As Utstyr for smeltebehandling

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849119A (en) * 1971-11-04 1974-11-19 Aluminum Co Of America Treatment of molten aluminum with an impeller
GB2099854A (en) * 1981-05-27 1982-12-15 Sumitomo Light Metal Ind Molten metal refinement
JPS61117237A (ja) * 1984-11-12 1986-06-04 Nippon Light Metal Co Ltd 金属溶湯連続浄化方法
JPS6283431A (ja) * 1985-10-04 1987-04-16 Mitsui Alum Kogyo Kk アルミニウム溶湯の精製装置
US4714494A (en) * 1986-12-08 1987-12-22 Aluminum Company Of America Trough shear diffusor apparatus for fluxing molten metal and method
GB2220424A (en) * 1988-07-05 1990-01-10 Christopher John English Degassing and cleaning system for molten metals
JPH02145730A (ja) * 1988-11-25 1990-06-05 Daido Sanso Kk アルミニウム溶湯処理方法および装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849119A (en) * 1971-11-04 1974-11-19 Aluminum Co Of America Treatment of molten aluminum with an impeller
GB2099854A (en) * 1981-05-27 1982-12-15 Sumitomo Light Metal Ind Molten metal refinement
JPS61117237A (ja) * 1984-11-12 1986-06-04 Nippon Light Metal Co Ltd 金属溶湯連続浄化方法
JPS6283431A (ja) * 1985-10-04 1987-04-16 Mitsui Alum Kogyo Kk アルミニウム溶湯の精製装置
US4714494A (en) * 1986-12-08 1987-12-22 Aluminum Company Of America Trough shear diffusor apparatus for fluxing molten metal and method
GB2220424A (en) * 1988-07-05 1990-01-10 Christopher John English Degassing and cleaning system for molten metals
JPH02145730A (ja) * 1988-11-25 1990-06-05 Daido Sanso Kk アルミニウム溶湯処理方法および装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 303 (C - 378) 16 October 1986 (1986-10-16) *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 290 (C - 447) 18 September 1987 (1987-09-18) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 390 (C - 0751) 23 August 1990 (1990-08-23) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106676283A (zh) * 2017-03-16 2017-05-17 苏州优尼昂精密金属制造有限公司 一种舀汤池连续除气装置和除气方法
CN109777967A (zh) * 2019-02-28 2019-05-21 广东凤铝铝业有限公司 一种真空除气设备
CN109777967B (zh) * 2019-02-28 2020-10-23 佛山市三水凤铝铝业有限公司 一种真空除气设备

Also Published As

Publication number Publication date
FR2727432A1 (fr) 1996-05-31
AU4179496A (en) 1996-06-17
FR2727432B1 (fr) 1997-01-10

Similar Documents

Publication Publication Date Title
EP0073729B1 (fr) Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de métal liquide
EP0170600B1 (fr) Poche de chloruration d'alliages d'aluminium destinée à éliminer le magnésium
CA2932991C (fr) Procede de fabrication de produits en alliage d'aluminium - cuivre - lithium a proprietes en fatigue ameliorees
US4401295A (en) Apparatus for treating molten metal
EP0262058A1 (fr) Dispositif rotatif à pales de mise en solution d'éléments d'alliage et de dispersion de gaz dans un bain d'aluminium
EP2675932A1 (fr) Demi-produit en alliage d'aluminium à microporosité améliorée et procédé de fabrication
CA2030727C (fr) Four a arc rotatif pour le traitement des scories d'aluminium
EP0077282B1 (fr) Dispositif pour le traitement, au passage, d'un courant de métal ou alliage liquide à base d'aluminium ou de magnésium
WO1996016193A1 (fr) Dispositif de degazage et de separation des inclusions dans un bain de metal liquide
EP0728222B1 (fr) Poche de traitement de metal liquide de faible encombrement
EP0125173B1 (fr) Procédé de production de particules solides métalliques à partir d'un bain métallique
BE898341Q (fr) Procédé de conversion de mattes d'un métal non ferreux en ce métal ou un sulfure de ce métal.
FR2461018A1 (fr) Procede et dispositif pour le debourbage de bains de sel
WO1998005915A1 (fr) Dispositif rotatif de dispersion de gaz pour le traitement d'un bain d'aluminium liquide
EP0290360B1 (fr) Procédé de séparation par filtration des inclusions contenues dans un bain métallique liquide
EP1100974B1 (fr) Procede de filtration en ligne d'un metal liquide et dispositif pour la mise en oeuvre de ce procede
EP1504130B1 (fr) Dispositif de traitement en ligne de metal liquide par voie gazeuse et par filtration
FR2468655A1 (fr) Filtrage et degazage continus de cuivre en fusion
EP4431454A1 (fr) Appareil et procédé de production de silicium de pureté 3n ou supérieure par purification d'un silicium de pureté 2n
CH621365A5 (en) Process for refining magnesium, copper, zinc, tin and lead
CH549644A (fr) Procede pour enlever, en continu, les impuretes non metalliques d'un metal en fusion, appareil pour sa mise en oeuvre et metal ou alliage obtenu.
BE569800A (fr)
FR2529230A1 (fr) Procede et appareillage de degazage de bains de fusion metalliques et/ou d'enlevement d'impuretes non metalliques de ces bains
FR2811071A1 (fr) Four a thermoplongeurs electriques pour le chauffage a coeur de metal liquide non ferreux
BE492509A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AU BB BG BR BY CA CN CZ EE FI GE HU IS JP KE KG KP KR KZ LK LR LT LV MD MG MN MW MX NO NZ PL RO RU SD SG SI SK TJ TM TT UA UG UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA