WO1998005915A1 - Dispositif rotatif de dispersion de gaz pour le traitement d'un bain d'aluminium liquide - Google Patents

Dispositif rotatif de dispersion de gaz pour le traitement d'un bain d'aluminium liquide Download PDF

Info

Publication number
WO1998005915A1
WO1998005915A1 PCT/FR1997/001367 FR9701367W WO9805915A1 WO 1998005915 A1 WO1998005915 A1 WO 1998005915A1 FR 9701367 W FR9701367 W FR 9701367W WO 9805915 A1 WO9805915 A1 WO 9805915A1
Authority
WO
WIPO (PCT)
Prior art keywords
blades
rotor
gas
bath
diameter
Prior art date
Application number
PCT/FR1997/001367
Other languages
English (en)
Inventor
Pierre Le Brun
Catherine Xuereb
Joël BERTRAND
Original Assignee
Pechiney Rhenalu
Aluminium Pechiney
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Rhenalu, Aluminium Pechiney filed Critical Pechiney Rhenalu
Priority to AU38533/97A priority Critical patent/AU714284B2/en
Priority to CA002251230A priority patent/CA2251230C/fr
Priority to EP97935603A priority patent/EP0916066B1/fr
Priority to DE0916066T priority patent/DE916066T1/de
Priority to DE69700963T priority patent/DE69700963T2/de
Priority to US09/171,964 priority patent/US6060013A/en
Publication of WO1998005915A1 publication Critical patent/WO1998005915A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/064Obtaining aluminium refining using inert or reactive gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ

Definitions

  • the invention relates to a rotary gas dispersing device for the treatment of a liquid bath of aluminum or its alloys.
  • aluminum will be used in the generic sense of "aluminum and its alloys”.
  • Liquid aluminum leaving electrolytic cells or reflow ovens contains dissolved or suspended impurities.
  • the most important of these impurities are hydrogen, alkaline elements such as sodium or calcium and the oxides, in particular aluminum oxide itself.
  • the liquid aluminum is subjected to various treatments for removing the impurities.
  • the most widespread of these treatments which uses a combination of chemical reactions and flotation phenomena, consists in introducing into the bath in the form of small bubbles an inert or reactive gas.
  • an inert or reactive gas For example, an argon bubble will bring with it to the surface of the bath a solid inclusion in suspension.
  • a chlorine bubble will react with the sodium contained and give a sodium salt which will also be transported to the surface of the bath.
  • Such treatments by the action of gases can be carried out batchwise in an oven or in a crucible. But they are most generally carried out continuously between the furnace and the casting machine in a processing of the type which is schematically represented in FIG. 1.
  • the liquid metal to be treated enters the first compartment (2) of the pocket through an inlet spout (1). It is treated in passing by the gas bubbles (4) dispersed by the rotary device (3). The metal thus treated overflows into an outlet compartment (5) equipped with a baffle (6) and leaves the pocket through the outlet spout (7).
  • the gas to be dispersed in the liquid bath is still injected a few times with simple rods, but the most common technique consists in using a rotary dispersing device composed of a hollow axis of rotation through which the gas arrives and a rotor of the most suitable form for dispersing the gas bubbles in the bath.
  • the effectiveness of the treatment is obviously maximum when the exchange surface between the bath and the gas is itself maximum. This is achieved by designing the rotor to obtain very small bubbles, projecting these bubbles throughout the volume (as little dead volume as possible) and creating recirculations of the bath itself so that it comes into contact with the bubbles ( always as little dead volume as possible).
  • Patent application EP 0347108 proposes to combine gas treatment and filtration in the same device.
  • a filter layer is interposed between the gas injection rotor and the surface of the liquid metal.
  • the gas bubbles pass through the filter up to the surface and it is clear that the surface turbulence must be very reduced, the filter playing a role in distributing the bubbles and breaking up any large broths.
  • this device has serious drawbacks: on the one hand, the filtering layer, which becomes clogged and must be periodically renewed, is an expensive device and difficult to operate; on the other hand, the size of the rotor is necessarily reduced to facilitate passage through the filter layer and ensure sealing at this level.
  • Patent application EP 061 1830 proposes to provide a baffle at the bottom of the treatment tank over the entire width of the latter.
  • This baffle passes to the right of the rotor (s) and, by modifying the fields of bubble distribution and metal circulation, would reduce surface disturbances or, which amounts to the same thing, increase the quantity of gas injected and the rotational speed of the rotor without increasing these surface disturbances.
  • This solution has a considerable practical drawback. As liquid metal passes through the tank, dross builds up around of the privileged area which constitutes the baffle and it is necessary to clean the baffle very frequently under particularly difficult conditions.
  • Japanese patent application JP 06-273074 aims very precisely at reducing surface agitation and teaches an improved rotor for this purpose.
  • the Applicant has sought to develop a rotary gas dispersing device which makes it possible to reduce both the phenomena of surface agitation, episodic projections and vortex without requiring modifications to the tank itself as a filtering layer. or a baffle and without reducing the effectiveness of the treatment.
  • the object of the invention is a rotary gas dispersion device for the continuous treatment of a liquid aluminum bath in a treatment vessel comprising a drive shaft hollow for gas inlet and a rotor consisting of several blades arranged in a star around a central hub characterized in that, at the upper part of the rotor, a substantially flat disc covers the star formed by the blades, in that the gas is injected into the bath through the orifices located between the blades and in that the ratio between the outside diameter of the rotor and the diameter of its central hub is between 1, 5 and 4.
  • the drive shaft has at its lower end a threaded part or a threaded part intended for fixing the rotor.
  • the rotor itself has a central hub and a threaded tube for fixing the rotor to the part or threaded part of the drive shaft.
  • To this central hub are fixed blades arranged in spokes. The number of these blades can be variable, even or odd. If the number of pays is too low, agitation and therefore the effectiveness of the treatment may prove to be insufficient. Too many blades lead to a more difficult to manufacture and therefore more expensive assembly. The choice depends on the case by case of the volumes of metal to be treated in a given time, the size of the tank which can be with one compartment or with several compartments, etc. In the usual conditions of aluminum treatment, a number of blades between 6 and 8 is a good compromise.
  • the blades generally have a rectangular shape but it is also possible to use trapezoidal blades where the height of the blade is smaller at the outer end thereof than at its connection to the central hub and even triangular blades where the blade height is zero at its outer end.
  • the shape of the blade must be such that, given its height and the configuration of the injection orifices which will be discussed below, most of the injected gas is taken up and dispersed by the blade.
  • the rotor comprises a substantially horizontal disk whose diameter is equal to or close to the outside diameter of the star formed by the blades.
  • This disc is positioned above the star formed by the blades. It is advantageous to give the upper face of the disc a slightly frustoconical shape in order to facilitate the flow of liquid metal when the rotor is withdrawn vertically from the tank. It is not recommended to choose a diameter smaller than the diameter defined by the star that constitute the blades. As soon as the tip of the blades exceeds the diameter of the disc, the anti-wave effect of the device decreases considerably. In the other direction, on the other hand, the anti-wave effect is maintained even if the diameter of the disc is greater than the diameter defined by the star formed by the blades. There is little point, however, in adopting such a configuration. And, in the preferred version of the invention, the diameter of the disc and the outside diameter of the star formed by the blades are made to coincide substantially.
  • the external diameter of the rotor according to the invention is variable. As for the rotors of the prior art, it depends on the volume to be treated, the size of the tank, the shape of the tank with one or more compartments.
  • the rotor according to the invention is characterized by a high lift of the blades.
  • the lift of the blades can be defined by the ratio between the outside diameter of the rotor and the diameter of its central hub.
  • the rotors of the prior art have a low lift of the blades because an increase in lift would cause an increase in surface agitation.
  • a typical example of a rotor of the prior art with low lift of blades is given by the rotor A of the example given below.
  • the increase in the lift of the blades has limits. Below a certain ratio, the rotor is difficult to manufacture, fragile and expensive. Above a certain ratio, the beneficial effect of the lift of the blades becomes negligible. Under the usual conditions for tanks in the aluminum industry, a range for the ratio of 1.5 to 4 represents a good compromise.
  • a first solution consists in producing the rotor by machining from a single block. Disc, blades and central hub make up a single unit.
  • Another solution consists in making the rotor in two parts: on the one hand the disc with, in its center, its own hub for fixing by thread to the drive shaft, on the other hand all of the blades with its central hub. The rotor is then obtained by successive adjustments of the disc and the pay on the drive shaft.
  • the advantage of a two-piece assembly is that the rotor can be made of different materials. For example, the blades which are subjected to greater stresses than the disc, can be made of a material harder than the disc.
  • the device according to the invention can be produced in all materials compatible with the conditions of use (mechanical resistance, resistance to high temperature, wear, etc.) and in particular with all the materials already known. to be used in similar equipment (graphite, boron nitride, alumina, silicon nitride, ceramics family of SIALON, etc.), the three parts (drive shaft, disc and blades) may optionally be carried out in different materials.
  • the gas injection holes are drilled radially in the central hub on which the blades are fixed. The connection of these orifices to the gas inlet via the drive shaft will be discussed later.
  • the gas injection orifices are positioned and produced in such a way that the gas jet is generally located at the height of the central zone of the blade which, during rotation, will disperse it.
  • FIGURES Figure 1 shows in section the diagram of a conventional tank for continuous treatment of liquid aluminum with a rotary gas injection device.
  • FIG. 2 represents a rotary gas injection device of the prior art.
  • FIG. 3a represents a rotary gas injection device according to the invention with 8 identical blades.
  • FIG. 3b represents a rotary gas injection device according to the invention with alternating complete blades and blades with reduced surface.
  • FIG. 4 represents two possible variants (4a and 4b) for assembling the different elements of a device according to the invention and for supplying gas to the injection orifices.
  • the rotor according to the invention comprises a gas injection between each blade by a single orifice which is positioned in the vertical direction at mid-height of the blade, which is oriented in the radial direction in such a way that its axis corresponds substantially to the bisector of the angle formed by the two blades and which is pierced along a horizontal axis.
  • a rotor of this type is shown in Figure 3a where there is the drive shaft (1), the upper disc (4), the blades (5) and a gas injection port (10).
  • the diameter of the orifices is between 1 and 5 mm. Below 1 mm in diameter, there is a risk of blockage. Above 5 mm, the diameter of the bubbles becomes too large, the metal / gas exchange surface decreases and the effectiveness of the treatment can be compromised. In certain configurations, depending on the volume to be treated, the size of the rotor and its speed, the volume of gas to be dispersed, it may be advantageous to replace the single hole located between the blades with two or more holes of smaller diameter.
  • the orifices thus described, drilled in a star in the central hub of the rotor, can be connected to the gas supply through the hollow drive shaft by all kinds of means. These means depend on the choices made elsewhere for the mechanical arrangement of the rotor and the shaft, depending on the materials, the size of the rotor, etc. These various possible means which can be very numerous are compatible with invention insofar as they provide a sufficiently regular gas flow and well distributed in the different orifices.
  • a drive shaft (1) has at its lower end a threaded cylindrical hole (2) which will be the female part of a screw connection.
  • the rotor itself (3) made in one piece has an upper disc (4), a number of blades (5) and a cylindrical central core (6).
  • This central core (6) full at its lower part (6a), comprises a cylindrical cavity (7a) which plays the role of gas distributor. From this cavity are drilled radially the orifices (10) which diffuse the gas between the blades.
  • the assembly includes a screw (9) of cylindrical shape and pierced in its center with a gas passage channel.
  • the drive shaft (1) comprises a threaded cylindrical hole (2) which will be the female part of the screw connection.
  • the rotor is in two parts: the upper disc (4) is manufactured separately and joined to the assembly consisting of the blades and the central core for mounting only.
  • the upper disc (4) has on its lower face grooves (4a) intended to receive the upper part of the blades at the time of assembly.
  • the center of the disc is drilled with a threaded cylindrical hole intended to receive the connection screw.
  • the central core (6) of the rotor proper is pierced with a threaded cylindrical hole (8) intended to receive the connection screw.
  • a circular cavity (7b) is also hollowed out in this central core which will act as a gas distributor. From this cavity radially leave the orifices (10) for injecting the gas between the blades.
  • the assembly includes a screw (9) pierced in its center with a gas passage channel. This channel which, at the upper part of the screw, will connect to the channel of the drive shaft, ends at the bottom part in a series of small radial channels which, once the assembly is assembled, will lead into the chamber gas distribution. During assembly, the screw (9) is introduced into the lower part of the central core.
  • the screw (9) assembles the three parts. Once the assembly is complete, the complete gas circuit is formed from the central channel of the drive shaft, passing through the central channel of the screw, the small lateral channels inside the screw, the chamber of distribution hollowed out inside the central core and the injection holes between the blades.
  • the Applicant has found that the device according to the invention as it has been described so far makes it possible to considerably reduce "surface waves", projections and vortex without reducing the effectiveness of the treatment. She also found that the results were further improved if the device had additional features.
  • the invention also relates to a rotary device comprising a hollow drive shaft serving as a gas inlet and a rotor composed of a disc and blades arranged in a radius on the underside, comprising between the blades injection orifices for gas, characterized in that the number of blades is an even number and that alternating “complete” blades and blades whose contact surface with the bath is reduced by 10 to 30% compared to the surface of the complete blade .
  • the reduction of the surface of one blade out of two at their lower part can be carried out in several ways depending, among other things, on the shape chosen for the "complete" blade.
  • Other configurations are possible, the important thing being that, for the reduced surface blade as for the "complete” blade, the combination of blade shape / position of the orifices is such that the gas jet is for the most part supported and dispersed by the blade.
  • FIG. 2 a device A according to the prior art, commonly used in current industrial installations and represented in FIG. 2.
  • the outside diameter of the rotor was 250 mm and included 8 identical blades of rectangular shape with a height of 100 mm in the vertical direction and width 30 mm horizontally.
  • the central hub was 190 mm in diameter.
  • the ratio between the outside diameter of the rotor and the diameter of its hub (the lift of the blades) was 1, 3.
  • the gas injection was carried out according to the principle of this conventional rotor by 8 holes of 2.5 mm diameter opening at the end of the blade.
  • FIG. 3a A device B according to the invention and shown in Figure 3a.
  • This device included a 15 mm thick disc with an outside diameter of 250 mm. It included 8 identical rectangular blades of constant height 85 mm in the vertical direction and width 75 mm in the horizontal direction.
  • the central hub was 100 mm in diameter.
  • the ratio between the outside diameter of the rotor and the diameter of its central hub was 2.5.
  • the gas injection according to the invention was carried out by 8 orifices located in the same horizontal plane, horizontally diffusing gas jets approximately directed along the bisectors of the angles formed by two successive blades and this approximately halfway up the blades. These holes had an identical diameter of 2.5 mm,
  • FIG. 3b A device C also according to the invention and represented in FIG. 3b of the same dimensions as the device B but comprising alternating "complete" blades and blades with reduced surface.
  • the number of projections was observed for a gas flow rate of 6 Nm 3 / h and a rotation speed of 250 revolutions / minute.
  • the number of projections per unit of time was reduced by a factor of 2 with device B and by a factor of 3 with device C, respectively, compared to the number of projections per unit of time observed with the reference device A.

Abstract

L'invention concerne un dispositif rotatif de dispersion de gaz dans une cuve de traitement de l'aluminium liquide. Le dispositif permet de réduire agitation de surface, projections et vortex tout en maintenant l'efficacité du traitement. Le dispositif comporte un rotor (1) constitué d'un ensemble de pales (5) surmontées d'un disque (4) sensiblement plat. L'injection de gaz est effectuée à travers le moyeu central et des orifices latéraux (10) situés entre les pales. Le ratio entre le diamètre extérieur du rotor et le diamètre de son moyeu central est compris entre 1,5 et 4.

Description

DISPOSITIF ROTATIF DE DISPERSION DE GAZ POUR LE TRAITEMENT D'UN BAIN
D'ALUMINIUM LIQUIDE
DOMAINE DE L'INVENTION
L'invention concerne un dispositif rotatif de dispersion de gaz pour le traitement d'un bain liquide d'aluminium ou de ses alliages. Dans la suite du texte le mot « aluminium » sera employé dans le sens générique de « aluminium et ses alliages ».
ETAT DE LA TECHNIQUE
L'aluminium liquide sortant des cuves d'électrolyse ou de fours de refusion contient des impuretés dissoutes ou en suspension. Les plus importantes de ces impuretés sont l'hydrogène, les éléments alcalins tels que sodium ou calcium et les oxydes, en particulier l'oxyde d'aluminium lui-même.
Afin d'éliminer ces impuretés néfastes pour les propriétés ultérieures du demi produit, l'aluminium liquide est soumis à divers traitements d'élimination des impuretés. Le plus répandu de ces traitements, qui utilise une combinaison de réactions chimiques et de phénomènes de flottation, consiste à introduire dans le bain sous forme de petites bulles un gaz inerte ou réactif. Par exemple une bulle d'argon va entraîner avec elle à la surface du bain une inclusion solide en suspension. De même un bulle de chlore va réagir avec le sodium contenu et donner un sel de sodium qui sera également transporté à la surface du bain. De tels traitements par action des gaz peuvent être effectués en discontinu dans un four ou dans un creuset. Mais ils sont le plus généralement effectués en continu entre le four et la machine de coulée dans une cuve de traitement du type de celle qui est schématiquement représentée dans la figure 1 .
Le métal liquide à traiter entre dans le premier compartiment (2) de la poche par un bec d'entrée (1 ). Il est traité au passage par les bulles de gaz (4) dispersées par le dispositif rotatif (3). Le métal ainsi traité déborde dans un compartiment de sortie (5) équipé d'une chicane (6) et ressort de la poche par le bec de sortie (7).
Le gaz à disperser dans le bain liquide est encore injecté quelques fois avec de simples cannes mais la technique la plus répandue consiste à utiliser un dispositif rotatif de dispersion composé d'un axe creux de rotation par lequel arrive le gaz et d'un rotor de la forme la plus appropriée pour disperser les bulles de gaz dans le bain. L'efficacité du traitement est évidemment maximum quand la surface d'échange entre le bain et le gaz est elle-même maximum. Ceci s'obtient en concevant le rotor pour obtenir de très petites bulles, projeter ces bulles dans tout le volume (le moins de volume mort possible) et créer des recirculations du bain lui-même pour que celui-ci vienne au contact des bulles (toujours le moins de volume mort possible) .
Cette recherche de la plus grande efficacité du traitement par une agitation intense dans le volume du bain se traduit par une agitation permanente en surface souvent appelée « vagues de surface », par des projections de bain par remontée de grosses bulles et par un phénomène de vortex autour de l'axe de rotation. Ces trois phénomènes risquent de réintroduire dans le bain des inclusions et de générer une oxydation fâcheuse de l'aluminium liquide.
On a cherché à supprimer ou à diminuer ces inconvénients. Le brevet américain US 4618427 propose par exemple un changement radical dans la technologie des dispositifs de dispersion de gaz. Certes un tel dispositif ne présente pas les inconvénients précités, mais un tel rotor ne génère qu'une très faible recirculation du métal liquide ce qui revient à diminuer l'interface métal/gaz et par conséquent l'efficacité du procédé.
La demande de brevet EP 0347108 propose de combiner traitement par gaz et filtration dans un même dispositif. Une couche filtrante est interposée entre le rotor d'injection de gaz et la surface du métal liquide. Les bulles de gaz traversent le filtre en remontant à la surface et on conçoit bien que les turbulences en surface doivent être très réduites, le filtre jouant un rôle de répartition des bulles et cassant les gros bouillons éventuels. Ce dispositif présente cependant de sérieux inconvénients : d'une part la couche filtrante, qui se colmate et doit être périodiquement renouvelée, est un dispositif coûteux et d'exploitation difficile; d'autre part, la taille du rotor est forcément réduite pour faciliter le passage à travers la couche filtrante et assurer l'étanchéité à ce niveau. La forme conique de la distribution des bulles issues de ce rotor, si elle assure une bonne distribution des bulles sous la couche filtrante, laisse une grande partie de la cuve hors d'atteinte des bulles ce que ne compense pas la recirculation toroïdale du métal liquide lui-même. L'efficacité du traitement par gaz se trouve donc sensiblement réduite ce qui n'est peut-être pas rédhibitoire dans un dispositif mixte traitement par gaz/filtration tel que décrit dans cette demande, mais n'est pas satisfaisant pour un dispositif de traitement par gaz seul.
La demande de brevet EP 061 1830 propose de prévoir au fond de la cuve de traitement une chicane sur toute la largeur de celle-ci. Cette chicane passe au droit du ou des rotors et, en modifiant les champs de distribution des bulles et de circulation du métal, permettrait de diminuer les perturbations de surface ou, ce qui revient au même, d'augmenter la quantité de gaz injecté et la vitesse de rotation du rotor sans augmenter ces perturbations de surface. Cette solution présente un inconvénient pratique considérable. Au fur et à mesure que le métal liquide traverse la cuve, des crasses s'accumulent autour de la zone privilégiée que constitue la chicane et il est nécessaire de nettoyer très fréquemment la chicane dans des conditions particulièrement difficiles.
La demande de brevet japonais JP 06-273074 vise très précisément la diminution de l'agitation de surface et enseigne un rotor amélioré dans ce but. L'expérience montre que l 'utilisation d' un tel rotor atténue effectivement le phénomène permanent de « vagues de surface » mais qu'il se produit périodiquement et intempestivement des projections à la surface du bain qui ont des conséquences néfastes sur la reprise d 'inclusions.
PROBLEME POSE
La demanderesse a cherché à mettre au point un dispositif rotatif de dispersion de gaz qui permette de diminuer à la fois les phénomènes d 'agitation de surface, de projections épisodiques et de vortex sans nécessiter des modifications de la cuve elle-même comme une couche filtrante ou une chicane et sans diminuer l'efficacité du traitement.
DESCRIPTION DE L'INVENTION
L'objet de l'invention est un dispositif rotatif de dispersion de gaz pour le traitement en continu d ' un bain d'aluminium liquide dans une cuve de traitement comportant un arbre d 'entraînement creux servant d'arrivée de gaz et un rotor constitué de plusieurs pales disposées en étoile autour d'un moyeu central caractérisé en ce que, à la partie supérieure du rotor, un disque sensiblement plat recouvre l'étoile formée par les pales, en ce que le gaz est injecté dans le bain par les orifices situés entre les pales et en ce que le ratio entre le diamètre extérieur du rotor et le diamètre de son moyeu central est compris entre 1 ,5 et 4.
L'arbre d'entraînement comporte à son extrémité inférieure une pièce filetée ou une partie filetée destinée à la fixation du rotor. Le rotor lui-même comporte un moyeu central et un tube fileté destiné à la fixation du rotor sur la partie ou la pièce filetée de l'arbre d'entraînement. A ce moyeu central sont fixées des pales disposées en rayons. Le nombre de ces pales peut être variable, pair ou impair. Si le nombre de paies est trop faible, l'agitation et donc l'efficacité du traitement peut s'avérer insuffisante. Un nombre de pales trop élevé conduit à un ensemble plus difficile à fabriquer et donc plus coûteux. Le choix dépend au cas par cas des volumes de métal à traiter dans un temps donné, de la dimension de la cuve qui peut être à un compartiment ou à plusieurs compartiments, etc.. Dans les conditions habituelles de traitement de l'aluminium, un nombre de pales compris entre 6 et 8 constitue un bon compromis.
Les pales ont généralement une forme rectangulaire mais on peut également utiliser des pales trapézoïdales où la hauteur de la pale est plus faible à l'extrémité externe de celle-ci qu'au niveau de son raccordement au moyeu central et même des pales triangulaires où la hauteur de la pale est nulle à son extrémité externe. La forme de la pale doit être telle que, compte tenu de sa hauteur et de la configuration des orifices d'injection dont il sera parlé plus loin, la plus grande part du gaz injecté est prise en charge et dispersée par la pale.
Le rotor comporte un disque sensiblement horizontal dont le diamètre est égal ou voisin du diamètre extérieur de l'étoile que constituent les pales. Ce disque est positionné au-dessus de l'étoile que constituent les pales. Il est avantageux de donner à la face supérieure du disque une forme légèrement tronconique dans le but de faciliter l'écoulement du métal liquide lorsque le rotor est retiré verticalement de la cuve. Il est déconseillé de choisir un diamètre inférieur au diamètre défini par l'étoile que constituent les pales. Dès que l'extrémité des pales dépasse le diamètre du disque, l'effet anti-vagues du dispositif diminue considérablement. Dans l'autre sens par contre, l'effet anti-vagues est maintenu même si le diamètre du disque est supérieur au diamètre défini par l'étoile que constituent les pales. Il n 'y a guère d'intérêt cependant à adopter une telle configuration. Et, dans la version préférée de l'invention, on fait coïncider sensiblement diamètre du disque et diamètre extérieur de l'étoile que constituent les pales.
Le diamètre externe du rotor suivant l'invention est variable. Comme pour les rotors de l'art antérieur, il dépend du volume à traiter, de la taille de la cuve, de la forme de la cuve à un ou plusieurs compartiments.
Le rotor suivant l'invention se caractérise par une portance des pales élevée. La portance des pales peut se définir par le rapport entre le diamètre extérieur du rotor et le diamètre de son moyeu central. Les rotors de l'art antérieur ont une portance des pales faible car une augmentation de la portance entraînerait une augmentation de l'agitation de surface. Un exemple typique d'un rotor de l'art antérieur à faible portance de pales est donné par le rotor A de l'exemple donné plus loin. L'augmentation de la portance des pales a cependant des limites. En deçà d'un certain ratio, le rotor est difficile à fabriquer, fragile et coûteux. Au-delà d'un certain ratio, l'effet bénéfique de la portance des pales devient négligeable. Dans les conditions habituelles des cuves de l'industrie de l'aluminium, une plage pour le ratio de 1 ,5 à 4 représente un bon compromis.
L'agencement entre le disque et l'ensemble des pales peut être réalisé de plusieurs manières. Une première solution consiste à réaliser le rotor par usinage d'un seul bloc. Disque, pales et moyeu central constituent un ensemble monobloc. Une autre solution consiste à réaliser le rotor en deux pièces : d'une part le disque avec, en son centre, son propre moyeu de fixation par filetage à l'arbre d'entraînement, d'autre part l'ensemble des pales avec son moyeu central. Le rotor est alors obtenu par ajustements successifs du disque et des paies sur l'arbre d'entraînement. L'avantage d'un montage en deux pièces est qu'on peut réaliser le rotor en différents matériaux. Par exemple, les pales qui sont soumises à des contraintes plus grandes que le disque, peuvent être réalisées dans un matériau plus dur que le disque.
D'une manière générale, le dispositif suivant l'invention peut être réalisé dans tous les matériaux compatibles avec les conditions d ' utilisation (tenue mécanique, tenue à haute température, usure, ...) et en particulier avec tous les matériaux déjà connus pour être utilisés dans des équipements semblables (graphite, nitrure de bore, alumine, nitrure de silicium, céramiques de la famille des SIALON, etc.) , les trois pièces (arbre d' entraînement, disque et pales) pouvant éventuellement être réalisées dans des matériaux différents.
Les orifices d 'injection de gaz sont percés radialement dans le moyeu central sur lequel sont fixées les pales. Le raccordement de ces orifices à l'arrivée de gaz via l'arbre d 'entraînement sera évoqué plus loin.
Les orifices d 'injection de gaz sont positionnés et réalisés d' une manière telle que le jet de gaz se situe globalement à la hauteur de la zone centrale de la pale qui, au cours de la rotation, va venir le disperser.
FIGURES La figure 1 représente en coupe le schéma d ' une cuve conventionnelle de traitement en continu de l'aluminium liquide avec un dispositif rotatif d 'injection de gaz.
La figure 2 représente un dispositif rotatif d 'injection de gaz de l'art antérieur.
La figure 3a représente un dispositif rotatif d'injection de gaz suivant l'invention avec 8 pales identiques.
La figure 3b représente un dispositif rotatif d'injection de gaz suivant l'invention avec alternance de pales complètes et de pales à surface réduite. La figure 4 représente deux variantes possibles (4a et 4b) pour l'assemblage des différents éléments d'un dispositif suivant l'invention et pour l'alimentation en gaz des orifices d'injection.
DESCRIPTION DETAILLEE DE L'INVENTION
Dans sa version la plus simple, la plus rationnelle et la plus efficace, le rotor suivant l'invention comporte une injection de gaz entre chaque pale par un orifice unique qui est positionné dans le sens vertical à mi-hauteur de la pale, qui est orienté dans le sens radial d' une manière telle que son axe corresponde sensiblement à la bissectrice de l'angle formé par les deux pales et qui est percé suivant un axe horizontal. Un rotor de ce type est représenté figure 3a où l'on distingue l'arbre d'entraînement ( 1 ) , le disque supérieur (4), les pales (5) et un orifice d'injection de gaz ( 10).
Mais de très nombreuses variantes sont possibles dans le cadre de l'invention. On peut par exemple ne pas injecter du gaz entre chaque pale mais devant une pale sur deux seulement. L'efficacité de l'ensemble en sera réduite mais dans certaines circonstances de volume à traiter ou de qualité requise du métal, cela peut s'avérer suffisant. On peut également positionner l'orifice dans le sens vertical non pas à mi-hauteur de la pale mais plus haut ou plus bas et/ou incliner l'orifice vers le bas ou vers le haut par rapport à l'horizontale. Le point important est que le jet de gaz doit être pour sa plus grande part dispersé par la pale en évitant qu'une partie significative du gaz s'échappe au-dessous ou au-dessus de la pale sans être dispersé.
Il est préférable que le diamètre des orifices soit compris entre 1 et 5 mm. En- dessous de 1 mm de diamètre, il y a des risques de bouchage. Au-dessus de 5 mm, le diamètre des bulles devient trop important, la surface d 'échange métal/gaz diminue et l'efficacité du traitement peut être compromise. Dans certaines configurations, en fonction du volume à traiter, de la taille du rotor et de sa vitesse, du volume de gaz à disperser, il peut être intéressant de remplacer l'orifice unique situé entre les pales par deux ou plusieurs orifices de diamètre plus faible.
Les orifices ainsi décrits, percés en étoile dans le moyeu central du rotor, peuvent être reliés à l'alimentation de gaz à travers l'arbre creux d'entraînement par toutes sortes de moyens. Ces moyens dépendent des choix faits par ailleurs pour l'agencement mécanique du rotor et de l'arbre, en fonction des matériaux, de la taille du rotor, etc...Ces différents moyens possibles qui peuvent être très nombreux sont compatibles avec l'invention dans la mesure où ils fournissent un débit de gaz suffisamment régulier et bien réparti dans les différents orifices.
Sans que cela constitue en quoi que ce soit une limitation de la portée de l'invention, deux solutions possibles peuvent être citées pour l'alimentation en gaz des orifices du rotor :
L'une des solutions est représentée sur la figure 4a. Un arbre d'entraînement ( 1 ) comporte à son extrémité inférieure un trou cylindrique fileté (2) qui sera la partie femelle d'un raccordement par vis. Le rotor lui-même (3) fabriqué en une seule pièce comporte un disque supérieur (4), un certain nombre de pales (5) et un noyau central cylindrique (6). Ce noyau central (6), plein à sa partie inférieure (6a), comporte une cavité cylindrique (7a) qui joue le rôle de distributeur de gaz. A partir de cette cavité, sont percés radialement les orifices (10) qui diffusent le gaz entre les pales. Traversant le disque (4) et la partie supérieure (6b) du noyau central, un trou cylindrique fileté (8) d'un diamètre identique à celui du trou cylindrique fileté (2) de l'arbre d 'entraînement, destiné à servir également de partie femelle pour le raccordement par vis, débouche dans la cavité centrale de distribution de gaz. Enfin, l'ensemble comporte une vis (9) de forme cylindrique et percée en son centre d'un canal de passage de gaz. Lors du montage, on commence par fixer la vis au rotor dans le trou cylindrique fileté (8) prévu à cet effet. Puis on fixe le rotor à l'arbre d'entraînement en vissant, dans le trou cylindrique fileté (2) prévu dans l'arbre, la partie supérieure de la vis (9) qui dépasse au-dessus du disque. Une fois l'ensemble monté, le passage du gaz et sa distribution sont assurés à travers le canal central de l'arbre d'entraînement, le canal central prévu dans la vis (9), la chambre de distribution (7) et les orifices latéraux ( 10) .
Une autre solution pour l'assemblage rotor/arbre et la distribution de gaz est représentée à la figure 4b. L'arbre d'entraînement ( 1 ) comporte un trou cylindrique fileté (2) qui sera la partie femelle du raccordement par vis. Le rotor est en deux parties : le disque supérieur (4) est fabriqué séparément et joint à l'ensemble constitué par les pales et le noyau central au montage seulement. Le disque supérieur (4) comporte sur sa face inférieure des rainures (4a) destinées à recevoir la partie supérieure des pales au moment du montage. Le centre du disque est percé d'un trou cylindrique fileté destiné à recevoir la vis de raccordement. Le noyau central (6) du rotor proprement dit est percé d'un trou cylindrique fileté (8) destiné à recevoir la vis de raccordement. A mi-hauteur des pales, est également creusée dans ce noyau central une cavité circulaire (7b) qui jouera le rôle de distributeur de gaz. De cette cavité partent radialement les orifices ( 10) d'injection du gaz entre les pales. Enfin, l'ensemble comporte une vis (9) percée en son centre d'un canal de passage du gaz. Ce canal qui, à la partie supérieure de la vis, se raccordera au canal de l'arbre d 'entraînement, se termine à la pqrtie inférieure en une série de petits canaux radiaux qui, une fois l'ensemble monté, déboucheront dans la chambre de distribution du gaz. Lors du montage, la vis (9) est introduite à la partie inférieure du noyau central. Grâce aux parties filetées de la partie supérieure du noyau central, du disque et de la partie inférieure de l'arbre d'entraînement, la vis (9) assure l'assemblage des trois pièces. Une fois l'ensemble monté, le circuit complet du gaz est constitué depuis le canal central de l'arbre d 'entraînement, en passant par le canal central de la vis, les petits canaux latéraux à l'intérieur de la vis, la chambre de distribution creusée à l'intérieur du noyau central et les orifices d'injection entre les pales.
La demanderesse a constaté que le dispositif selon l'invention tel qu'il a été décrit jusqu'ici permettait de diminuer considérablement « vagues de surface », projections et vortex sans diminution de l'efficacité du traitement. Elle a également constaté que les résultats étaient encore améliorés si le dispositif comportait des caractéristiques supplémentaires. L'invention concerne également un dispositif rotatif comportant un arbre d'entraînement creux servant d'arrivée de gaz et un rotor composé d' un disque et de pales disposées en rayon à la face inférieure, comportant entre les pales des orifices d'injection de gaz, caractérisé en ce que le nombre de pales est un nombre pair et que sont alternées des pales « complètes » et des pales dont la surface de contact avec le bain est réduite de 10 à 30% par rapport à la surface de la pale complète. La réduction de surface d'une pale sur deux à leur partie inférieure peut être effectuée de plusieurs manières en fonction, entre autres, de la forme choisie pour la pale « complète ». On peut par exemple faire alterner des pales « complètes » rectangulaires avec des pales à surface réduite où l'on a simplement diminué la hauteur du rectangle. On peut également faire alterner des pales rectangulaires avec des pales trapézoïdales de même hauteur au niveau du moyeu mais de hauteur plus faible en extrémité de pale. D'autres configurations sont possibles, l'important étant que, pour la pale à surface réduite comme pour la pale « complète », la combinaison forme de la pale/ position des orifices soit telle que le jet de gaz soit pour sa plus grande part pris en charge et dispersé par la pale. Ceci peut conduire dans le cas des pales alternées à une position différente des orifices devant les pales à surface réduite par rapport à leur position devant les pales « complètes ». Mais on peut également choisir les formes respectives des pales « complètes » et des pales à surface réduite pour pouvoir utiliser des orifices positionnés de manière identique pour toutes les pales. L'important pour obtenir le résultat maximum est que la surface des pales soit suffisante et que soient alternées des pales « complètes » et des pales à surface réduite. L'effet favorable de l'alternance des pales sur l'apparition des vagues de surface, des projections et du vortex, qui reste pour le moment inexpliqué, commence à se faire sentir lorsque une pale sur deux a une surface réduite de 10%. Lorsque la réduction de surface d' une pale sur deux atteint 30% l'efficacité du traitement, toutes choses égales par ailleurs, commence à diminuer probablement parce que l 'agitation est insuffisante.
EXEMPLE
Dans une cuve de dimensions intérieures 800 mmxδOO mmx800 mm remplie d'une charge d'aluminium liquide de 1200 kg ont été successivement testés :
- un dispositif A suivant l'art antérieur, couramment utilisé dans les installations industrielles actuelles et représenté à la figure 2. Le diamètre extérieur du rotor était de 250 mm et comportait 8 pales identiques de forme rectangulaire de hauteur 100 mm dans le sens vertical et de largeur 30 mm dans le sens horizontal. Le moyeu central était de diamètre 190 mm. Le ratio entre le diamètre extérieur du rotor et le diamètre de son moyeu (la portance des pales) était de 1 ,3. L'injection de gaz était effectuée suivant le principe de ce rotor conventionnel par 8 trous de diamètre 2,5 mm débouchant en extrémité de pale.
- un dispositif B suivant l'invention et représenté figure 3a. Ce dispositif comportait un disque d'épaisseur 15 mm et de diamètre extérieur 250 mm. Il comportait 8 pales rectangulaires identiques de hauteur constante 85 mm dans le sens vertical et de largeur 75 mm dans le sens horizontal. Le moyeu central était de diamètre 100 mm. Le ratio entre le diamètre extérieur du rotor sur le diamètre de son moyeu central était de 2,5. L'injection de gaz conformément à l'invention était réalisée par 8 orifices situés dans un même plan horizontal, diffusant horizontalement des jets de gaz approximativement dirigés suivant les bissectrices des angles formés par deux pales successives et ceci approximativement à mi-hauteur des pales. Ces orifices avaient un diamètre identique de 2,5 mm ,
- un dispositif C également suivant l'invention et représenté figure 3b de mêmes dimensions que le dispositif B mais comportant en alternance des pales "complètes" et des pales à surface réduite. 4 pales, identiques aux pales du dispositif B, avaient une hauteur constante de 85 mm dans le sens vertical. Les 4 autres pales, alternées avec les précédentes avaient une hauteur variable de 85 mm à leur raccordement au moyeu central à
65 mm en extrémité de pale. L'injection de gaz, comme pour le dispositif B, était effectuée par des orifices de 2,5 mm situés sur un même plan horizontal diffusant horizontalement des jets à mi-hauteur des pales que celles-ci soient complètes ou tronquées.
Au cours des essais, ont été mesurés ou observés les paramètres suivants : fréquence des projections, profondeur du vortex, amplitude des vagues de surface, efficacité du traitement. Les résultats obtenus ont été les suivants :
- le nombre de projections a été observé pour un débit de gaz de 6 Nm3/h et une vitesse de rotation de 250 tours/minute. Le nombre de projections par unité de temps a été réduit respectivement d'un facteur 2 avec le dispositif B et d'un facteur 3 avec le dispositif C par rapport au nombre de projections par unité de temps constatées avec le dispositif A de référence.
les mesures de la profondeur du vortex (en cm) ont été effectuées volontairement sans injection de gaz. Les résultats sont résumés dans le tableau 1 . TABLEAU
Vitesse de rotation en tours/minute 250 300 350
Dispositif A 2 4 7
Dispositif B 1 3 5
Dispositif C 1 3 5
- l'amplitude des vagues de surface, très difficilement mesurable a été évaluée à l'oeil pour un débit de gaz de 6 Nm3h et deux vitesses de rotation. Les observations sont rassemblées dans le Tableau 2.
TABLEAU 2
Vitesse de rotation (en tours/minute) 250 350
Dispositif A (art antérieur) moyenne forte
Dispositif B (suivant l'invention) faible moyenne
Dispositif C (suivant l'invention) très faible faible
- L'efficacité du traitement a été mesurée par le taux de réduction de la teneur en H2 du métal liquide après un traitement de 6 minutes avec un débit de gaz de 6 Nm3 /h. Les résultats obtenus au cours des essais étaient du même ordre pour les trois rotors testés avec des taux de réduction compris entre 60 et 75%.

Claims

REVENDICATIONS
1 . Dispositif rotatif de dispersion de gaz pour le traitement en continu d'un bain d'aluminium liquide dans une cuve de traitement comportant un arbre d'entraînement creux servant d'arrivée de gaz et un rotor constitué de plusieurs pales disposées en étoile autour d'un moyeu central caractérisé en ce que, à la partie supérieure du rotor, un disque sensiblement plat recouvre l'étoile formée par les pales, en ce que le gaz est injecté dans le bain par les orifices situés entre les pales et en ce que le ratio entre le diamètre extérieur du rotor et le diamètre de son moyeu central est compris entre 1 ,5 et 4.
2. Dispositif suivant la revendication 1 caractérisé en ce que le nombre de pales est compris entre 6 et 8.
3. Dispositif suivant l'une quelconque des revendications 1 ou 2 caractérisé en ce que les orifices sont positionnés dans le sens vertical sensiblement à mi-hauteur de la pale, qu 'ils sont percés sensiblement horizontalement et que leur axe correspond sensiblement à la bissectrice de l'angle formé par les deux pales.
4. Dispositif suivant l'une quelconque des revendications 1 à 3 caractérisé en ce que les orifices ont un diamètre compris entre 1 et 5 mm.
5. Dispositif suivant l'une quelconque des revendications 1 à 4 caractérisé en ce que le nombre de pales est un nombre pair et que sont alternées des pales complètes ayant une surface donnée de contact avec le bain et des pales réduites ayant une surface de contact avec le bain plus faible que celle des pales complètes.
6. Dispositif suivant l'une quelconque des revendications 1 à 5 caractérisé en ce que le nombre de pales est un nombre pair et que sont alternées des pales complètes ayant une surface donnée de contact avec le bain et des pales réduites ayant une surface de contact avec le bain réduite de 10 à 30 % par rapport à la surface de la pale complète.
PCT/FR1997/001367 1996-08-02 1997-07-23 Dispositif rotatif de dispersion de gaz pour le traitement d'un bain d'aluminium liquide WO1998005915A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU38533/97A AU714284B2 (en) 1996-08-02 1997-07-23 Rotary gas dispersion device for the treatment of a liquid aluminium bath
CA002251230A CA2251230C (fr) 1996-08-02 1997-07-23 Dispositif rotatif de dispersion de gaz pour le traitement d'un bain d'aluminium liquide
EP97935603A EP0916066B1 (fr) 1996-08-02 1997-07-23 Dispositif rotatif de dispersion de gaz pour le traitement d'un bain d'aluminium liquide
DE0916066T DE916066T1 (de) 1996-08-02 1997-07-23 Rührer zum einbringen von gas bei der behandlung eines aluminiumbades
DE69700963T DE69700963T2 (de) 1996-08-02 1997-07-23 Rührer zum einbringen von gas bei der behandlung eines aluminiumbades
US09/171,964 US6060013A (en) 1996-08-02 1997-07-23 Rotary gas dispersion device for treating a liquid aluminium bath

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR96/09975 1996-08-02
FR9609975 1996-08-02

Publications (1)

Publication Number Publication Date
WO1998005915A1 true WO1998005915A1 (fr) 1998-02-12

Family

ID=9494899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/001367 WO1998005915A1 (fr) 1996-08-02 1997-07-23 Dispositif rotatif de dispersion de gaz pour le traitement d'un bain d'aluminium liquide

Country Status (6)

Country Link
US (1) US6060013A (fr)
EP (1) EP0916066B1 (fr)
AU (1) AU714284B2 (fr)
CA (1) CA2251230C (fr)
DE (2) DE916066T1 (fr)
WO (1) WO1998005915A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589313B2 (en) 2000-09-12 2003-07-08 Alcan International Limited Process and apparatus for adding particulate solid material to molten metal
FR2815642B1 (fr) * 2000-10-20 2003-07-11 Pechiney Rhenalu Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de metal liquide
US6602318B2 (en) 2001-01-22 2003-08-05 Alcan International Limited Process and apparatus for cleaning and purifying molten aluminum
DE10301561A1 (de) * 2002-09-19 2004-05-27 Hoesch Metallurgie Gmbh Rotor, Vorrichtung und Verfahren zum Einbringen von Fluiden in eine Metallschmelze
DE10393540D2 (de) * 2002-09-19 2005-06-30 Hoesch Metallurg Gmbh Rotor, Vorrichtung und ein Verfahren zum Einbringen von Fluiden in eine Metallschmelze
GB2396310A (en) * 2002-12-21 2004-06-23 Foseco Int Rotary device with vanes for dispersing a gas in a molten metal
JP5575933B2 (ja) * 2013-01-18 2014-08-20 昭和電工株式会社 アルミニウム溶湯処理装置
USD742427S1 (en) 2013-09-27 2015-11-03 Rio Tinto Alcan International Limited Impeller for a rotary injector
RU2016115269A (ru) 2013-09-27 2017-11-01 Рио Тинто Алкан Интернешенл Лимитед Лопастное колесо двойного назначения для роторного инжектора
CN105420510A (zh) * 2015-12-08 2016-03-23 西南铝业(集团)有限责任公司 一种熔体精炼装置
US11946698B1 (en) * 2023-08-17 2024-04-02 Zhejiang Hailiang Co., Ltd. Metal melting furnace including a stirring device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3227547A (en) * 1961-11-24 1966-01-04 Union Carbide Corp Degassing molten metals
CH434765A (fr) * 1964-08-14 1967-04-30 Aluminium Lab Ltd Appareil pour projeter des liquides
US3982913A (en) * 1972-12-07 1976-09-28 Leybold-Heraeus-Verwaltung G.M.B.H. Method and apparatus for degassing metallic melts
EP0073729A1 (fr) * 1981-08-28 1983-03-09 Aluminium Pechiney Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de métal liquide
US4401295A (en) * 1981-05-27 1983-08-30 Sumitomo Light Metal Industries, Ltd. Apparatus for treating molten metal
EP0347108A1 (fr) * 1988-06-14 1989-12-20 Alcan International Limited Traitement de métaux légers fondus
EP0438004A1 (fr) * 1989-12-18 1991-07-24 PECHINEY RECHERCHE (Groupement d'Intérêt Economique régi par l'Ordonnance du 23 Septembre 1967) Immeuble Balzac Procédé et dispositif d'élaboration de produits composites à matrice métallique
CA2073706A1 (fr) * 1992-07-13 1994-01-14 Cesur Celik Installation et procede pour l'affinage de metal en fusion
EP0611830A1 (fr) * 1993-02-19 1994-08-24 Foseco International Limited Dispositif de dispersion de gaz pour le raffinage d'un bain d'aluminium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160693A (en) * 1991-09-26 1992-11-03 Eckert Charles E Impeller for treating molten metals

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3227547A (en) * 1961-11-24 1966-01-04 Union Carbide Corp Degassing molten metals
CH434765A (fr) * 1964-08-14 1967-04-30 Aluminium Lab Ltd Appareil pour projeter des liquides
US3982913A (en) * 1972-12-07 1976-09-28 Leybold-Heraeus-Verwaltung G.M.B.H. Method and apparatus for degassing metallic melts
US4401295A (en) * 1981-05-27 1983-08-30 Sumitomo Light Metal Industries, Ltd. Apparatus for treating molten metal
EP0073729A1 (fr) * 1981-08-28 1983-03-09 Aluminium Pechiney Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de métal liquide
EP0347108A1 (fr) * 1988-06-14 1989-12-20 Alcan International Limited Traitement de métaux légers fondus
EP0438004A1 (fr) * 1989-12-18 1991-07-24 PECHINEY RECHERCHE (Groupement d'Intérêt Economique régi par l'Ordonnance du 23 Septembre 1967) Immeuble Balzac Procédé et dispositif d'élaboration de produits composites à matrice métallique
CA2073706A1 (fr) * 1992-07-13 1994-01-14 Cesur Celik Installation et procede pour l'affinage de metal en fusion
EP0611830A1 (fr) * 1993-02-19 1994-08-24 Foseco International Limited Dispositif de dispersion de gaz pour le raffinage d'un bain d'aluminium

Also Published As

Publication number Publication date
DE916066T1 (de) 1999-10-21
CA2251230A1 (fr) 1998-02-12
DE69700963D1 (de) 2000-01-20
AU714284B2 (en) 1999-12-23
CA2251230C (fr) 2002-07-09
AU3853397A (en) 1998-02-25
EP0916066B1 (fr) 1999-12-15
DE69700963T2 (de) 2000-06-08
EP0916066A1 (fr) 1999-05-19
US6060013A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
EP0916066B1 (fr) Dispositif rotatif de dispersion de gaz pour le traitement d'un bain d'aluminium liquide
EP0073729B1 (fr) Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de métal liquide
EP0050578B1 (fr) Dispositif de traitement d'un bain de métal liquide par injection de gaz
EP0055956B1 (fr) Lance de soufflage de gaz oxydant, notamment d'oxygène, pour le traitement des métaux en fusion
EP0262058A1 (fr) Dispositif rotatif à pales de mise en solution d'éléments d'alliage et de dispersion de gaz dans un bain d'aluminium
EP0077282B1 (fr) Dispositif pour le traitement, au passage, d'un courant de métal ou alliage liquide à base d'aluminium ou de magnésium
EP0765702A1 (fr) Busette pour l'introduction d'un métal liquide dans une lingotière de coulée continue des métaux
EP1332235B1 (fr) Dispositif rotatif de dispersion de gaz pour le traitement d'un bain de metal liquide
EP0268627A1 (fr) Procede et dispositif de granulation d'un materiau fondu.
EP0187609B1 (fr) Dispositif d'alimentation rotative en fonte liquide d'une installation de coulée continue verticale d'un tuyau en fonte à graphite sphéroîdal
FR3073836A1 (fr) Procede et dispositif pour alimenter un bain de silicium liquide en particules de silicium solides
EP0578517B1 (fr) Procédé pour traiter du métal en fusion dans une opération de coulée avec interposition d'un filtre, et filtre pour la mise en oeuvre de ce procédé
FR2628756A1 (fr) Dispositif pour eliminer des impuretes presentes sous forme gazeuse et solide dans un produit liquide contenu dans un reservoir
EP1100974A1 (fr) Procede de filtration en ligne d'un metal liquide et dispositif pour la mise en oeuvre de ce procede
WO1996016193A1 (fr) Dispositif de degazage et de separation des inclusions dans un bain de metal liquide
JP2007204843A (ja) ガス吹込みノズル装置およびそれを備えたガス吹込み設備
FR2763079A1 (fr) Rotor et installation pour le traitement d'un bain de metal liquide
BE566168A (fr)
EP1019170A1 (fr) Filtre regenerable pour liquides, notamment alimentaires
JP2003130557A (ja) 溶融金属通気攪拌装置及びその運転方法
CA1052918A (fr) Traitement aerobique dans une enceinte devisee en zone peripherique de decantation et zone centrale d'activation
BE493772A (fr)
WO2003095686A1 (fr) Dispositif de traitement en ligne de metal liquide par voie gazeuse et par filtration
BE422878A (fr)
BE472960A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2251230

Country of ref document: CA

Ref country code: CA

Ref document number: 2251230

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997935603

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09171964

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997935603

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998507664

Format of ref document f/p: F

WWG Wipo information: grant in national office

Ref document number: 1997935603

Country of ref document: EP