EP1326495A1 - Wirkstoffkombinationen mit insektiziden, fungiziden und akariziden eigenschaften - Google Patents

Wirkstoffkombinationen mit insektiziden, fungiziden und akariziden eigenschaften

Info

Publication number
EP1326495A1
EP1326495A1 EP01982360A EP01982360A EP1326495A1 EP 1326495 A1 EP1326495 A1 EP 1326495A1 EP 01982360 A EP01982360 A EP 01982360A EP 01982360 A EP01982360 A EP 01982360A EP 1326495 A1 EP1326495 A1 EP 1326495A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
optionally substituted
methyl
spp
alkoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01982360A
Other languages
German (de)
English (en)
French (fr)
Inventor
Reiner Fischer
Ulrike Wachendorff-Neumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience AG
Original Assignee
Bayer CropScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer CropScience AG filed Critical Bayer CropScience AG
Publication of EP1326495A1 publication Critical patent/EP1326495A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • A01N43/38Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having no bond to a nitrogen atom
    • A01N47/06Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having no bond to a nitrogen atom containing —O—CO—O— groups; Thio analogues thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/10Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
    • A01N47/16Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof the nitrogen atom being part of a heterocyclic ring

Definitions

  • the present invention relates to new combinations of active ingredients which consist of known cyclic ketoenols on the one hand and other known fungicidal active ingredients on the other hand and which are very suitable for controlling phytopathogenic fungi, spider mites and insects.
  • X represents halogen, alkyl, alkoxy, haloalkyl, haloalkoxy or cyano
  • W, Y and Z independently of one another represent hydrogen, halogen, alkyl, alkoxy, haloalkyl, haloalkoxy or cyano,
  • A represents hydrogen, in each case optionally substituted by halogen, alkyl, alkoxyalkyl, saturated, optionally substituted cycloalkyl, in which at least one ring atom is optionally replaced by a heteroatom,
  • B represents hydrogen or alkyl
  • a and B together with the carbon atom to which they are attached represent a saturated or unsaturated, optionally containing at least one heteroatom unsubstituted or substituted cycle,
  • D represents hydrogen or an optionally substituted radical from the series
  • E represents a metal ion or an ammonium ion
  • L represents oxygen or sulfur
  • M oxygen or sulfur
  • R ⁇ represents alkyl, alkenyl, alkoxyalkyl, polyalkoxyalkyl, optionally substituted by halogen, or cycloalkyl, phenyl or benzyl, optionally substituted
  • R 3 represents alkyl which is optionally substituted by halogen or phenyl which is optionally substituted
  • R4 and R independently of one another each represent optionally halogen-substituted alkyl, alkoxy, alkylamino, dialkylamino, alkylthio, alkenylthio, cycloalkylthio or represent optionally substituted phenyl, benzyl, phenoxy or phenylthio and
  • R6 and R independently of one another for hydrogen, in each case optionally substituted by halogen, alkyl, cycloalkyl, alkenyl, alkoxy, alkoxyalkyl, for optionally substituted phenyl, for optionally substituted benzyl or together with the N atom to which they are attached, for one optionally by Oxygen or sulfur interrupted optionally substituted ring and
  • BAS 500F known from BCPC-Conf.-Pests Diss (2000) (Vol.) 2, 541-548 and or
  • the insecticidal, fungicidal and acaricidal activity of the active compound combination according to the invention is considerably higher than the sum of the effects of the individual active compounds. There is an unforeseeable real synergistic effect and not just an addition.
  • the active substance combinations according to the invention contain, in addition to at least one active substance of the formula (I), at least one active substance of the compounds 1 to 55.
  • W preferably represents hydrogen, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, chlorine, bromine or fluorine,
  • X preferably represents C 1 -C 4 alkyl, C 1 -C 4 alkoxy, C 1 -C 4 haloalkyl,
  • Y and Z independently of one another preferably represent hydrogen, C1-C4-alkyl, halogen, C 1 -C4-alkoxy or C -C4-haloalkyl,
  • A preferably represents hydrogen or in each case optionally substituted by halogen C C ⁇ -alkyl or C3-Cg-cycloalkyl,
  • B preferably represents hydrogen, methyl or ethyl
  • A, B and the carbon atom to which they are attached preferably represent saturated C3-C6 cycloalkyl in which optionally one ring member is replaced by oxygen or sulfur and which is optionally substituted one or two times by C 1 -C 4 alkyl, Trifluoromethyl or C 1 -C 4 alkoxy is substituted, D preferably represents hydrogen, in each case optionally substituted by fluorine or chlorine, -C 6 -alkyl, C 3 -C 4 -alkenyl or C 3 -C 6 -cycloalkyl,
  • a and D together preferably represent C 3 -C 4 -alkanediyl which is optionally substituted by methyl, in which a methylene group is optionally replaced by sulfur,
  • G preferably represents hydrogen (a) or one of the groups
  • E represents a metal ion or an ammonium ion
  • L represents oxygen or sulfur
  • M oxygen or sulfur
  • R 1 preferably represents in each case optionally substituted by halogen -CC-alyl, C 2 -C 10 -alkenyl, C 1 -C 4 -alkoxy-C 1 -C 4 -alkyl, C 1 -C 4 -alkylthio-
  • phenyl optionally substituted by fluorine, chlorine, bromine, cyano, nitro, C 1 -C 4 -alkyl, CrCzt-alkoxy, trifluoromethyl or trifluoromethoxy
  • pyridyl or thienyl optionally substituted by chlorine or methyl
  • R 2 preferably represents d-do-alkyl, C 2 -do-alkenyl, C 1 -C 4 -alkoxy-C 2 -C 4 -alkyl, each optionally substituted by fluorine or chlorine,
  • C 5 -C 6 cycloalkyl optionally substituted by methyl or methoxy or
  • R 3 preferably represents optionally substituted by fluorine QC 4 - alkyl or optionally substituted by fluorine, chlorine, bromine, Ci-C 4 alkyl, C 1 -C 4 -alkoxy -AI-, trifluoromethyl, trifluoromethoxy, cyano or nitro,
  • R 4 preferably represents in each case optionally fluorine or chlorine substitution jewes by C ⁇ -C 4 alkyl, C 1 -C 4 alkoxy, C 1 -C alkylamino, C 1 -C 4 -alkylthio or represents in each case optionally fluorine- , Chlorine, bromine, nitro, cyano, dC 4 -
  • R 5 preferably represents dC 4 alkoxy or dC 4 thioalkyl
  • R 6 preferably represents dC 6 alkyl, C 3 -C 6 cycloalkyl, dC 6 alkoxy, C 3 -G 6 alkenyl, dC 4 alkoxy -CC 4 -alkyl,
  • R 7 preferably represents dC 6 -alkyl, C 3 -C 6 -alkenyl or dC 4 -alkoxy-dC 4 -alkyl, R 6 and R 7 together preferably represent a C 3 -C 6 -alkylene radical which is optionally substituted by methyl or ethyl and in which a carbon atom is optionally replaced by oxygen or sulfur,
  • W particularly preferably represents hydrogen, methyl, ethyl, chlorine, bromine or methoxy
  • X particularly preferably represents chlorine, bromine, methyl, ethyl, propyl, i-propyl, methoxy, ethoxy or trifluoromethyl,
  • Y and Z are particularly preferably independently of one another hydrogen, fluorine, chlorine, bromine, methyl, ethyl, propyl, i-propyl, trifluoromethyl or methoxy,
  • B particularly preferably represents hydrogen, methyl or ethyl
  • A, B and the carbon atom to which they are attached are particularly preferably saturated C 6 -cycloalkyl, in which a ring member is optionally replaced by oxygen and which is optionally simply substituted by methyl, ethyl, methoxy, ethoxy, propoxy or butoxy,
  • D particularly preferably represents hydrogen, represents methyl, ethyl, propyl, i-propyl, butyl, i-butyl, allyl, cyclopropyl, cyclopentyl or cyclohexyl,
  • a and D together particularly preferably represent C 3 -C 4 -alkanediyl which is optionally substituted by methyl,
  • G particularly preferably represents hydrogen (a) or one of the groups
  • M oxygen or sulfur
  • R 1 particularly preferably represents d-Cs-alkyl, C 2 -C 4 -alkenyl, methoxymethyl, ethoxymethyl, ethylthiomethyl, cyclopropyl, cyclopentyl or cyclohexyl,
  • phenyl optionally substituted by fluorine, chlorine, bromine, cyano, nitro, methyl, ethyl, methoxy, trifluoromethyl or trifluoromethoxy,
  • R 2 particularly preferably represents CrC 8 alkyl, C 2 -C 4 alkenyl, methoxyethyl, ethoxyethyl or phenyl or benzyl,
  • R 6 and R 7 independently of one another particularly preferably represent methyl, ethyl or together a Cs-alkylene radical in which the C 3 -methylene group is replaced by oxygen.
  • W very particularly preferably represents hydrogen or methyl
  • X very particularly preferably represents chlorine, bromine or methyl
  • Y and Z very particularly preferably independently of one another represent hydrogen, chlorine, bromine or methyl
  • A, B and the carbon atom to which they are attached very particularly preferably represent saturated C 6 -cycloalkyl, in which one ring member is optionally replaced by oxygen and which is optionally simply substituted by methyl, methoxy, ethoxy, propoxy or butoxy,
  • D very particularly preferably represents hydrogen
  • G very particularly preferably represents hydrogen (a) or one of the groups
  • M oxygen or sulfur
  • R 1 very particularly preferably represents C 1 -C 8 -alkyl, C 2 -C 4 -alkenyl, methoxymethyl, ethoxymethyl, ethylmethylthio, cyclopropyl, cyclopentyl, cyclohexyl or
  • phenyl optionally substituted by fluorine, chlorine, bromine, methyl, methoxy, trifluoromethyl, trifluoromethoxy, cyano or nitro,
  • R 2 very particularly preferably represents C 1 -C 6 -alkyl, C 2 -C 4 -alkenyl, methoxyethyl, ethoxyethyl, phenyl or benzyl, R 6 and R 7 independently of one another very particularly preferably represent methyl, ethyl or together a Cs-alkylene radical in which the C 3 -methylene group is replaced by oxygen.
  • the active substance combinations can also contain other fungicidal, acaricidal or insecticidal active components.
  • the combinations according to the invention contain active compounds of the formula (I) and the mixing partner in the preferred and particularly preferred mixing ratios given in the table below:
  • the mixing ratios are based on weight ratios.
  • the ratio is to be understood as an active ingredient of the formula ( ⁇ ): mixing partner
  • the active compound combinations according to the invention have a strong microbicidal action and can be used to control unwanted microorganisms, such as fungi and bacteria, in crop protection and in material protection.
  • Fungicides can be used in crop protection to combat Plasmodiophoromyces, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes.
  • Bactericides can be used in crop protection to control Pseudomonadaceae
  • Xanthomonas species such as, for example, Xanthomonas campestris pv. Oryzae;
  • Pseudomonas species such as, for example, Pseudomonas syringae pv. Lachrymans;
  • Erwinia species such as, for example, Erwinia amylovora
  • Pythium species such as, for example, Pythium ultimum
  • Phytophthora species such as, for example, Phytophthora infestans
  • Pseudoperonospora species such as, for example, Pseudoperonospora humuli or
  • Plasmopara species such as, for example, Plasmopara viticola
  • Bremia species such as, for example, Bremia lactucae
  • Peronospora species such as, for example, Peronospora pisi or P. brassicae;
  • Erysiphe species such as, for example, Erysiphe graminis
  • Sphaerotheca species such as, for example, Sphaerotheca Sportsiginea;
  • Podosphaera species such as, for example, Podosphaera leucotricha
  • Venturia species such as, for example, Venturia inaequalis
  • Pyrenophora species such as, for example, Pyrenophora teres or P. graminea
  • Drechslera (Conidial form: Drechslera, Syn: Helminthosporium);
  • Cochliobolus species such as, for example, Cochliobolus sativus
  • Drechslera (Conidial form: Drechslera, Syn: Helminthosporium); Uromyces species, such as, for example, Uromyces appendiculatus;
  • Puccinia species such as, for example, Puccinia recondita; Sclerotinia species, such as, for example, Sclerotinia sclerotiorum; Tilletia species, such as, for example, Tilletia caries; Ustilago species, such as, for example, Ustilago nuda or Ustilago avenae; Pellicularia species, such as, for example, Pellicularia sasakii; Pyricularia species, such as, for example, Pyricularia oryzae;
  • Fusarium species such as, for example, Fusarium culmorum
  • Botrytis species such as, for example, Botrytis cinerea
  • Septoria species such as, for example, Septoria nodorum
  • Leptosphaeria species such as, for example, Leptosphaeria nodorum
  • Cercospora species such as, for example, Cercospora canescens
  • Alternaria species such as, for example, Alternaria brassicae
  • Pseudocercosporella species such as, for example, Pseudocercosporella he ⁇ otrichoides.
  • the active compound combinations according to the invention are also suitable for increasing the crop yield. They are also less toxic and have good plant tolerance.
  • the active compound combinations according to the invention can be used to protect technical materials against attack and destruction by undesired microorganisms.
  • technical materials are to be understood as non-living materials that have been prepared for use in technology.
  • technical materials that are to be protected against microbial change or destruction by active substance combinations according to the invention can be adhesives, glues, paper and cardboard, textiles, leather, wood, paints and plastic articles, cooling lubricants and other materials. which can be attacked or decomposed by microorganisms.
  • parts of production plants for example cooling water circuits, are also mentioned which can be impaired by the multiplication of microorganisms.
  • technical materials are preferably adhesives, glues, papers and cartons, leather,
  • Wood, paints, cooling lubricants and heat transfer liquids called, particularly preferably wood.
  • Bacteria, fungi, yeasts, algae and, for example, are microorganisms which can break down or change the technical materials
  • the active compound combinations according to the invention preferably act against fungi, in particular mold, wood-discoloring and wood-destroying fungi (Basidiomycetes) and against mucus organisms and algae.
  • microorganisms of the following genera may be mentioned:
  • Alternaria such as Alternaria tenuis
  • Aspergillus such as Aspergillus niger
  • Chaetomium like Chaetomium globosum
  • Coniophora such as Coniophora puetana
  • Lentinus such as Lentinus tigrinus
  • Penicillium such as Penicillium glaucum
  • Polyporus such as Polyporus versicolor
  • Aureobasidium such as Aureobasidium pullulans
  • Sclerophoma such as Sclerophoma pityophila
  • Trichoderma such as Trichoderma viride
  • Escherichia such as Escherichia coli
  • Pseudomonas such as Pseudomonas aeruginosa
  • Staphylococcus such as Staphylococcus aureus.
  • the active substance combinations can be converted into the customary formulations.
  • customary formulations such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols, very fine encapsulations in polymeric substances and in coating compositions for seeds, as well as ULV cold and warm mist formulations.
  • formulations are made in a known manner, e.g. by mixing the active ingredients with extenders, that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, if appropriate using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents. If water is used as an extender, e.g. organic solvents can also be used as auxiliary solvents.
  • extenders that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, if appropriate using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • surface-active agents that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • water e.g. organic solvents can also be used as auxiliary solvents.
  • aromatics such as xylene, toluene or alkyl naphthalene
  • chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chlorethylenes or methylene chloride
  • aliphatic hydrocarbons such as cyclohexane or paraffins, e.g. Petroleum fractions, alcohols, such as butanol or glycol, and their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • highly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • Liquefied gaseous extenders or carriers mean liquids which are gaseous at normal temperature and under normal pressure, e.g. Aerosol propellants such as halogenated hydrocarbons as well as butane, propane, nitrogen and carbon dioxide.
  • Possible solid carriers are: e.g. natural rock meals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock meals, such as highly disperse silica, aluminum oxide and silicates. The following are suitable as solid carriers for granules: e.g. broken and fractionated natural rocks such as calcite, marble,
  • emulsifiers and / or foam-generating agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates and protein hydrolyzates.
  • Possible dispersants are: eg lignin sulfite waste liquor and methyl cellulose.
  • Adhesives such as carboxymethyl cellulose, natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and also natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids can be used in the formulations.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 95 percent by weight
  • Active ingredient preferably between 0.5 and 90%.
  • the active substance combinations can be used as such, in the form of their formulations or the use forms prepared therefrom, such as ready-to-use solutions, suspensions, wettable powders, pastes, soluble powders, dusts and granules. They are used in the usual way, e.g. by pouring, spraying, atomizing, scattering, dusting, foaming, brushing, etc. It is also possible to apply the active ingredients using the ultra-low-volume process or to inject the active ingredient preparation or the active ingredient itself into the soil. The seeds of the plants can also be treated.
  • the application rates can be varied within a relatively wide range, depending on the type of application.
  • the active compound application rates are generally between 0.1 and 10,000 g / ha, preferably between 10 and 1,000 g / ha.
  • the active compound application rates are generally between 0.001 and 50 g per kg of seed, preferably between 0.01 and 10 g per kg of seed.
  • the active compound application rates are generally between 0.1 and 10,000 g / ha, preferably between 1 and 5,000 g / ha.
  • the agents used to protect industrial materials generally contain the active ingredients in an amount of 1 to 95% by weight, preferably 10 to 75% by weight.
  • the application concentrations of the active compound combinations according to the invention depend on the type and the occurrence of the microorganisms to be controlled and on the composition of the material to be protected.
  • the optimal amount can be determined by test series.
  • the application concentrations are in the range from 0.001 to 5% by weight, preferably from 0.05 to 1.0% by weight, based on the material to be protected.
  • the active compound combinations according to the invention are suitable for controlling animal pests, preferably arthropods and nematodes, in particular insects and arachnids, which occur in agriculture, animal health, in forests, in the protection of stored goods and materials and in the hygiene sector. They are effective against normally sensitive and resistant species as well as against all or individual stages of development.
  • animal pests preferably arthropods and nematodes, in particular insects and arachnids, which occur in agriculture, animal health, in forests, in the protection of stored goods and materials and in the hygiene sector. They are effective against normally sensitive and resistant species as well as against all or individual stages of development.
  • the pests mentioned above include:
  • Isopoda e.g. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.
  • Thysanura for example Lepisma saccharina.
  • Collembola for example Onychiurus armatus.
  • Orthoptera for example Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus spp., Schistocerca gregaria.
  • the Blattaria for example Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica.
  • Dermaptera for example, Forficula auricularia.
  • Phthiraptera e.g. Pediculus humanus co ⁇ oris, Haematopinus spp., Linognathus spp., Trichodectes spp., Damalinia spp ..
  • Thysanoptera e.g. Hercinothrips femoralis, Thrips tabaci, Thrips palmi, Frankliniella accidentalis.
  • Heteroptera e.g. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.
  • Homoptera e.g. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fäbae, Aphis pomi, Eriosoma lanigerum, Hyalopterus arundinis,
  • Anthrenus spp. Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimalltra solitus Lissorhoptrus oryzophilus. From the order of the Hymenoptera, for example Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.
  • Dacus oleae Tipula paludosa, Hylemyia spp., Liriomyza spp .. From the order of the Siphonaptera e.g. Xenopsylla cheopis, Ceratophyllus spp .. From the Arachnida class e.g.
  • Hyalomma spp. Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp., Hemitarsonemus spp., Brevipalpus spp ..
  • Plant-parasitic nematodes include e.g. Pratylenchus spp., Radopholus similis, Ditylenchus dipsaci, Tylenchulus semipenetrans, Heterodera spp., Globodera spp., Meloidogyne spp., Aphelenchoides spp., Longidorus spp., Xiphinema spp., Trichodorus spp., Bursaph.
  • the active substance combinations can be converted into the customary formulations, such as solutions, emulsions, wettable powders, suspensions, powders, dusts, Pastes, soluble powders, granules, suspension emulsion concentrates, active ingredient-impregnated natural and synthetic substances as well as fine encapsulation in polymeric substances.
  • formulations are made in a known manner, e.g. by mixing the active ingredients with extenders, that is to say liquid solvents and / or solid carriers, optionally using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • extenders that is to say liquid solvents and / or solid carriers
  • surface-active agents that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • water is used as an extender, e.g. also organic
  • Solvents are used as auxiliary solvents.
  • the following are essentially suitable as liquid solvents: aromatics, such as xylene, toluene, or alkyl naphthalene, chlorinated aromatics and chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chlorethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, e.g. Petroleum fractions, mineral and vegetable
  • ketones such as acetone, methyl ethyl ketone, methylhysobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethylformamide and dimethyl sulfoxide
  • solid carriers for example ammonium salts and natural rock powders, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock powders, such as highly disperse silica, aluminum oxide and silicates, as solid carriers for granules are possible: eg broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules from inorganic and organic flours as well as granules from organic material such as sawdust, coconut shells, corn cobs and tobacco stalks; Possible emulsifying and / or foam-generating agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl
  • Adhesives such as carboxymethyl cellulose, natural and synthetic powdery, granular or latex-shaped polymers, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids such as cephalins and lecithins and synthetic phospholipids can be used in the formulations.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 95% by weight of active compound, preferably between 0.5 and 90%.
  • the active compound combinations according to the invention can be used in commercially available formulations and in the use forms prepared from these formulations in a mixture with other active compounds, such as insecticides, attractants, sterilizers,
  • Insecticides include, for example, phosphoric acid esters, carbamates, carboxylic acid esters, chlorinated hydrocarbons, phenylureas, substances produced by microorganisms, etc.
  • the active compound combinations according to the invention can also be present in their commercially available formulations and in the use forms prepared from these formulations in a mixture with synergists.
  • Synergists are compounds that increase the effectiveness of the active ingredients without the added synergist itself having to be active.
  • the active substance content of the use forms prepared from the commercially available formulations can vary within wide ranges.
  • Application forms can be from 0.0000001 to 95% by weight of active compound, preferably between 0.0001 and 1% by weight.
  • the application takes place in a customary manner adapted to the application forms.
  • the active substance combinations When used against hygiene pests and pests of stored products, the active substance combinations are notable for an excellent residual action on wood and clay and for good stability to alkali on limed substrates.
  • the active compound combinations according to the invention act not only against plant, hygiene and stored-product pests, but also in the veterinary sector against animal parasites (ectoparasites) such as tick ticks, leather ticks, space mites, running mites, flies (stinging and licking), parasitic fly larvae, lice, Hair lice, featherlings and fleas.
  • animal parasites ectoparasites
  • tick ticks leather ticks
  • space mites space mites
  • running mites running mites
  • flies stinging and licking
  • parasitic fly larvae lice, Hair lice, featherlings and fleas.
  • Anoplurida e.g. Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp ..
  • Nematocerina and Brachycerina for example Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp.
  • Atylotus spp. Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp., Melophagus spp ..
  • Siphonaptrida e.g. Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp ..
  • Heteropterida e.g. Cimex spp., Triatoma spp., Rhodnius spp.
  • Acarapis spp. Cheyletiella spp., Ornitrocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypppectoles spp ., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp ..
  • the active compound combinations according to the invention are also suitable for combating arthropods which are used in agricultural animals, such as Cattle, sheep, goats, horses, pigs, donkeys, camels, buffalo, rabbits, chickens, turkeys, ducks, geese, bees, other pets such as e.g. Dogs, cats, house birds, aquarium fish and so-called experimental animals, such as Hamsters, guinea pigs, rats and
  • the active compound combinations according to the invention are used in the veterinary sector in a known manner by enteral administration in the form of, for example, tablets, capsules, drinkers, drenches, granules, pastes, boluses, the feed-through method, suppositories, by parenteral administration, such as for example play through injections (intramuscular, subcutaneous, intravenous, intraperitoneal, etc.),
  • Implants by nasal application, by dermal application in the form of, for example, diving or bathing (dipping), spraying (spray), pouring on (pour-on and spot-on), washing, powdering and with the help of shaped articles containing active ingredients, such as collars , Ear tags, tail tags, limb bands, holsters, marking devices, etc.
  • active ingredients such as collars , Ear tags, tail tags, limb bands, holsters, marking devices, etc.
  • the active substance combinations can be formulated (for example powders, emulsions, flowable agents) which contain the active substances in an amount of 1 to 80% by weight, directly or after 100 to 10,000 -Apply thinner or use it as a chemical bath.
  • insects may be mentioned by way of example and without limitation - beetles such as Hylotrupes bajulus, Chlorophoras pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinus pecticornis, Dendrobium pertinex, Ernobius mollis, Priobium ca ⁇ ini, Lyctus africanus, Lyctus brunicanus, Lyctus brunicanus Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthes rugicollis, Xyleborus spec. Tryptodendron spec. Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec. Dinoderus minutus.
  • Kalotermes flavicollis Cryptotermes brevis, Heterotermes indicola, Reticuhtermes flavipes, Reticuhtermes santonensis, Reticuhtermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.
  • Bristle tails such as Lepisma saccharina.
  • non-living materials such as preferably plastics, adhesives, glues, papers and cartons, leather, wood, wood processing products and paints.
  • the material to be protected against insect infestation is very particularly preferably wood and wood processing products.
  • the active ingredient combinations can be used as such, in the form of concentrates or generally customary formulations such as powders, granules, solutions, suspensions, emulsions or pastes.
  • the formulations mentioned can be prepared in a manner known per se, for example by mixing the active ingredients with at least one solvent or diluent, emulsifier, dispersant and / or binder or fixative, water repellants, optionally siccatives and UV stabilizers and, if appropriate Dyes and pigments as well as other processing aids.
  • the insecticidal compositions or concentrates used to protect wood and wood-based materials contain the active compound according to the invention in a concentration of 0.0001 to 95% by weight, in particular 0.001 to 60% by weight.
  • the amount of the agents or concentrates used depends on the type and occurrence of the insects and on the medium. The optimal amount can be determined in each case by test series. In general, however, it is sufficient to use 0.0001 to 20% by weight, preferably 0.001 to 10% by weight, of the active compound, based on the material to be protected.
  • Water and optionally an emulsifier and / or wetting agent optionally an emulsifier and / or wetting agent.
  • the organic chemical solvents used are preferably oily or oily solvents with an evaporation number above 35 and a flash point above 30 ° C., preferably above 45 ° C.
  • Corresponding mineral oils or their aromatic fractions or mineral oil-containing solvent mixtures, preferably white spirit, petroleum and / or alkylbenzene, are used as such low-volatility, water-insoluble, oily and oily solvents.
  • Mineral oils with a boiling range of 170 to 220 ° C, white spirit with a boiling range of 170 to 220 ° C, spindle oil with a boiling range of 250 to 350 ° C, petroleum or aromatics with a boiling range of 160 to 280 ° C, Te ⁇ entinöl and Like. Used.
  • organic non-volatile oily or oily solvents with an evaporation number above 35 and a flash point above 30 ° C, preferably above 45 ° C can be partially replaced by slightly or medium-volatile organic chemical solvents, with the proviso that the solvent mixture also has an evaporation number 35 and has a flash point above 30 ° C, preferably above 45 ° C, and that the mixture is soluble or emulsifiable in this solvent mixture.
  • part of the organic chemical solvent or solvent mixture is replaced by an aliphatic polar organic chemical solvent or solvent mixture.
  • Aliphatic organic chemical solvents containing hydroxyl and / or ester and / or ether groups, such as, for example, glycol ethers, esters or the like, are preferably used.
  • organic chemicals which are known per se and which are water-thinnable and / or soluble or dispersible or emulsifiable in the organic chemical solvents used and / or binding drying oils, in particular binders consisting of or comprising an acrylate resin, a vinyl resin, for example polyvinyl acetate, polyester resin, polycondensation or polyaddition resin, polyurethane resin, alkyd resin or modified alkyd resin, phenolic resin, hydrocarbon resin such as indene-coumarone resin, silicone resin, drying vegetable and / or drying oils and / or physically drying binders on the Base of a natural and / or synthetic resin used.
  • binders consisting of or comprising an acrylate resin, a vinyl resin, for example polyvinyl acetate, polyester resin, polycondensation or polyaddition resin, polyurethane resin, alkyd resin or modified alkyd resin, phenolic resin, hydrocarbon resin such as indene-coumarone resin, silicone resin, drying
  • the synthetic resin used as a binder can be used in the form of an emulsion, dispersion or solution. Bitumen or bituminous substances up to 10% by weight can also be used as binders. In addition, known dyes, pigments, water-repellants, odor correctors and inhibitors or anticorrosive agents and the like can be used.
  • At least one alkyd resin or modified alkyd resin and / or a drying vegetable oil is preferably contained in the agent or in the concentrate as the organic chemical binder.
  • Alkyd resins having an oil content of more than 45% by weight, preferably 50 to, are preferred according to the invention
  • binder mentioned can be replaced by a fixative (mixture) or a plasticizer (mixture).
  • fixative mixture
  • plasticizer mixture
  • additives are intended to volatilize the active ingredients and crystallize or precipitate! prevent. They preferably replace 0.01 to 30% of the binder (based on 100% of the binder used).
  • the plasticizers come from the chemical classes of phthalic acid esters such as dibutyl, dioctyl or benzyl butyl phthalate, phosphoric acid esters such as tributyl phosphate, adipic acid esters such as di- (2-ethylhexyl) adipate, stearates such as butyl stearate or amyl stearate, oleates such as butyl oleate, higher glycerol glycerol or glycerol ether - Kolether, glycerol ester and p-toluenesulfonic acid ester.
  • phthalic acid esters such as dibutyl, dioctyl or benzyl butyl phthalate
  • phosphoric acid esters such as tributyl phosphate
  • adipic acid esters such as di- (2-ethylhexyl) adipate
  • Fixing agents are chemically based on polyvinyl alkyl ethers such as e.g. Polyvinyl methyl ether or ketones such as benzophenone, ethylene benzophenone.
  • Water is also particularly suitable as a solvent or diluent, if appropriate in a mixture with one or more of the above-mentioned organic chemical solvents or diluents, emulsifiers and dispersants.
  • a particularly effective wood protection is achieved by industrial impregnation processes, e.g. vacuum, double vacuum or pressure processes.
  • the active compound combinations according to the invention can be used to protect objects, in particular ship hulls, sieves, nets, structures, quay systems and signaling systems which come into contact with sea or brackish water.
  • Scalpellum species or by species from the group Balanomo ⁇ ha (barnacles), such as Baianus or pollicipes species, increases the frictional resistance of ships and, as a result, leads to a significant increase in operating costs due to increased energy consumption and, moreover, frequent dry dock stays.
  • heavy metals such as e.g. in bis (trialkyltin) sulfides, tri-ra- butyltin laurate, trif-butyltin chloride, copper (I) oxide, triethyltin chloride, tri - / - butyl (2-phenyl-4-chloropheneoxy) tin, tributyltin oxide, molybdenum disulfide , Antimony oxide, polymeric butyl titanate, phenyl (bispyridine) bismuth chloride, tri-n-butyltin fluoride, manganese ethylene bisthiocarbamate, zinc dimethyldithiocarbamate, zinc ethylene bisthiocarbamate,
  • the ready-to-use antifouling paints can also be used if necessary
  • active ingredients preferably algicides, fungicides, herbicides, molluscicides or other antifouling active ingredients.
  • Suitable combination partners for the antifouling agents according to the invention are preferably:
  • the antifouling agents used contain the active substance combinations according to the invention in a concentration of 0.001 to 50% by weight, in particular 0.01 to 20% by weight.
  • the antifouling agents according to the invention furthermore contain the usual constituents, e.g. in Ungerer, Chem. Ind. 1985, 37, 730-732 and Williams, Antifouling Marine Coatings, Noyes, Park Ridge, 1973.
  • antifouling paints contain in particular binders.
  • Examples of recognized binders are polyvinyl chloride in a solvent system, chlorinated rubber in a solvent system, acrylic resins in a solvent system, especially in an aqueous system, vinyl chloride / vinyl acetate copolymer systems in the form of aqueous dispersions or in the form of organic solvent systems, butadiene / styrene / acrylonitrile Rubbers, drying oils, such as linseed oil, resin esters or modified hard resins in combination with tar or bitumen, asphalt and epoxy compounds, small amounts of chlorinated rubber, chlorinated polypropylene and vinyl resins.
  • Paints may also contain inorganic pigments, organic pigments or dyes, which are preferably insoluble in sea water. Paints may also contain materials such as rosin to enable controlled release of the active ingredients.
  • the paints may also contain plasticizers, modifiers that affect rheological properties, and other conventional ingredients.
  • the compounds according to the invention or the abovementioned mixtures can also be incorporated into self-polishing antifouling systems.
  • the active ingredient combinations are also suitable for controlling animal pests, in particular insects, arachnids and mites, which occur in closed rooms, such as, for example, apartments, factory halls, offices, vehicle cabins and others. They can be used to control these pests in household insecticide products. They are effective against sensitive and resistant species and against all stages of development. These pests include: From the order of the Sco ⁇ ionidea, for example Buthus occitanus.
  • Acarina e.g. Argas persicus, Argas reflexus, Bryobia ssp., Dermanyssus gallinae, Glyciphagus domesticus, Ornithodorus moubat, Rhipicephalus sanguineus, Trombicula arfreddugesi, Neutrombicula autumnalis,
  • Dermatophagoides pteronissimus Dermatophagoides forinae.
  • Araneae e.g. Aviculariidae
  • Araneidae From the order of the Opiliones e.g. Pseudosco ⁇ iones chelifer, Pseudosco ⁇ iones cheiridium, Opiliones phalangium.
  • Isopoda e.g. Oniscus asellus, Porcellio scaber.
  • Diplopoda e.g. Blaniulus guttulatus, Polydesmus spp ..
  • Lepismodes inquilinus From the order of the Blattaria e.g. Blatta orientalies, Blattella germanica, Blattella asahinai, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta australasiae, Periplaneta americana, Periplaneta brunnea, Periplaneta fuliginosa, Supella longipalpa. From the order of the Saltatoria e.g. Acheta domesticus. From the order of the Dermaptera e.g. Forficula auricularia.
  • From the order of the Diptera for example Aedes aegypti, Aedes albopictus, Aedes taeniorhynchus, Anopheles spp., Calliphora erythrocephala, Chrysozona pluvialis,
  • Lepidoptera e.g. Achroia grisella, Galleria mellonella, Plodia inte ⁇ unctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella.
  • Ctenocephalides canis From the order of the Siphonaptera e.g. Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis. From the order of the Hymenoptera e.g. Camponotus herculeanus, Lasius Füliginosus, Lasius niger, Lasius umbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum.
  • Rhodinus prolixus Triatoma infestans.
  • Plants are understood to mean all plants and plant populations, such as desired and undesirable wild plants or cultivated plants (including naturally occurring cultivated plants).
  • Cultivated plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the Plant varieties that can or cannot be protected by plant breeders' rights.
  • Plant parts are to be understood to mean all above-ground and underground parts and organs of plants, such as shoots, leaves, flowers and roots, examples being leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds, and roots, tubers and rhizomes .
  • the plant parts also include crops and vegetative and generative propagation material, for example cuttings, tubers, rhiozomes, offshoots and seeds.
  • Storage room according to the usual treatment methods, e.g. by dipping, spraying, vaporizing, atomizing, scattering, spreading and, in the case of propagation material, in particular seeds, furthermore by single- or multi-layer coating.
  • plants and their parts can be treated according to the invention.
  • plant species and plant cultivars and their parts occurring wildly or obtained by conventional organic breeding methods, such as crossbreeding or protoplast fusion are treated.
  • transgenic plants and plant cultivars which have been obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetic modified organisms) and their parts are treated.
  • the term "parts” or “parts of plants” or “plant parts” was explained above.
  • Plants of the plant varieties which are in each case commercially available or in use are particularly preferably treated according to the invention.
  • the treatment according to the invention can also cause superadditive (“synergistic") effects.
  • superadditive for example, reduced application rates and / or extensions of the spectrum and / or an enhancement of the effect of the substances and agents which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to dryness or to water or soil salt content, increased flowering performance, easier harvesting, acceleration of ripening, higher crop yields, higher quality and / or higher nutritional value of the harvested products, higher shelf life and / or workability of the harvested products possible, which go beyond the effects that are actually to be expected.
  • the preferred transgenic (genetically engineered) plants or plant cultivars to be treated according to the invention include all plants which, by virtue of the genetic engineering modification, have received genetic material which gives these plants particularly advantageous, valuable properties (“traits”). Examples of such properties are better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated ripening, higher harvest yields, higher quality and / or higher nutritional value of the harvested products , higher shelf life and / or workability of the harvested products.
  • transgenic plants are the important cultivated plants, such as cereals (wheat, rice), corn, soybeans, potatoes, cotton, rapeseed and fruit plants (with the fruits apples, pears, citrus fruits and grapes), with corn, soybeans, potatoes and cotton and rapeseed are highlighted.
  • the traits are particularly emphasized as the increased defense of the plants against insects by toxins which arise in the plants, in particular those which are caused by the genetic material from Bacillus thuringiensis (for example by the genes Cry ⁇ A (a), CryIA (b), Cry ⁇ A (c), CryllA, CrylllA, C ⁇ ymB2, Cry9c, Cry2Ab, Cry3Bb and CrylF and their combinations) are produced in the plants (hereinafter "Bt plants”).
  • trait As properties (“traits”) continue to be special emphasized the increased tolerance of the plants to certain herbicidal active ingredients, for example imidazolinones, sulfonylureas, glyphosate or phosphinotricin (eg "PAT" gene).
  • the genes imparting the desired properties (“traits”) can also occur in combinations with one another in the transgenic plants. Examples of “Bt plants” are maize varieties,
  • Cotton varieties, soy varieties and potato varieties named under the trade names YIELD GARD® (e.g. corn, cotton, soy), KnockOut® (e.g. corn), StarLink® (e.g. corn), Bollgard® (cotton), Nucotn® (cotton) and NewLeaf ® (potato) are sold.
  • Examples of herbicide-tolerant plants are corn varieties, cotton varieties and soy varieties which are marketed under the trade names Roundup Ready® (tolerance against glyphosate, e.g. maize, cotton, soy), Liberty Link® (tolerance against phosphinotricin, e.g.
  • Herbicide-resistant plants are also those under the name
  • the plants listed can be treated particularly advantageously according to the invention with the active compound mixtures according to the invention.
  • the preferred ranges given for the mixtures above also apply to the treatment of these plants. Plant treatment with the mixtures specifically listed in the present text should be particularly emphasized.
  • Insecticides, fungicides and acaricides always have a synergistic effect when the effect of the active ingredient combinations is greater than the sum of the effects of the individually applied active ingredients.
  • the expected effect for a given combination of two active substances can be calculated as follows (cf. Colby, SR, "Calculating Synergistic and Antagonistic Responses of Herbicide Combinations", Weeds 15, pages 20-22, 1967):
  • E means the expected efficiency, expressed in% of the untreated control, when using the active compound A and B in a concentration of m and n ppm,
  • the effect of the combination is super-additive, i.e. it is a synergistic
  • Test insect Diabrotica balteata - larvae in the soil
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amount of solvent, the stated amount of emulsifier is added and the concentrate is diluted with water to the desired concentration.
  • the active ingredient preparation is poured onto the floor.
  • the concentration of the active ingredient in the preparation is practically irrelevant, the only decisive factor is the amount of active ingredient per unit volume of soil, which is given in ppm (mg / 1).
  • the bottom is filled in 0.25 l pots and left at 20 ° C.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • Soybean shoots (Glycine max) of the Roundup Ready variety (trademark of Monsanto Comp. USA) are treated by dipping into the preparation of active compound of the desired concentration and populated with the tobacco bud caterpillar Heliothis virescens while the leaves are still moist.
  • the killing of the insects is determined.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
EP01982360A 2000-10-09 2001-09-26 Wirkstoffkombinationen mit insektiziden, fungiziden und akariziden eigenschaften Withdrawn EP1326495A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10049804 2000-10-09
DE10049804A DE10049804A1 (de) 2000-10-09 2000-10-09 Wirkstoffkombinationen mit fungiziden und akariziden Eigenschaften
PCT/EP2001/011126 WO2002030199A1 (de) 2000-10-09 2001-09-26 Wirkstoffkombinationen mit insektiziden, fungiziden und akariziden eigenschaften

Publications (1)

Publication Number Publication Date
EP1326495A1 true EP1326495A1 (de) 2003-07-16

Family

ID=7659056

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01982360A Withdrawn EP1326495A1 (de) 2000-10-09 2001-09-26 Wirkstoffkombinationen mit insektiziden, fungiziden und akariziden eigenschaften

Country Status (10)

Country Link
US (1) US20040102326A1 (es)
EP (1) EP1326495A1 (es)
JP (1) JP2004510793A (es)
KR (1) KR20030032055A (es)
CN (1) CN1468056A (es)
AU (1) AU2002213967A1 (es)
BR (1) BR0114491A (es)
DE (1) DE10049804A1 (es)
MX (1) MXPA03003029A (es)
WO (1) WO2002030199A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070961A2 (en) 2010-11-26 2012-05-31 Sapec-Agro, Sa Fungicidal mixture

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10055941A1 (de) * 2000-11-10 2002-05-23 Bayer Ag Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE10228102A1 (de) * 2002-06-24 2004-01-15 Bayer Cropscience Ag Fungizide Wirkstoffkombinationen
DE10330724A1 (de) * 2003-07-08 2005-01-27 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE10354629A1 (de) 2003-11-22 2005-06-30 Bayer Cropscience Ag 2-Ethyl-4,6-dimethyl-phenyl substituierte spirocyclische Tetramsäure-Derivate
US20090069356A1 (en) * 2004-10-22 2009-03-12 Dany Leopold Jozefien Bylemans Use of anilinopyrimidines in wood protection
GB0525567D0 (en) * 2005-12-15 2006-01-25 Syngenta Participations Ag Novel materials and methods for the production thereof
DE102006031978A1 (de) * 2006-07-11 2008-01-17 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102006031976A1 (de) * 2006-07-11 2008-01-17 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
US20110294782A1 (en) 2006-11-10 2011-12-01 Massachusetts Institute Of Technology Small molecule pak inhibitors
EP2008519A1 (de) * 2007-06-28 2008-12-31 Bayer CropScience AG Verwendung von Wirkstoffkombinationen mit insektiziden Eigenschaften zur Bekämpfung von tierischen Schädlingen aus der Familie der Stinkwanzen
EP2011394A1 (de) * 2007-07-03 2009-01-07 Bayer CropScience AG Verwendung von Tetramsäure - Derivaten zur Bekämpfung von virusübertragenden Vektoren
EP2039248A1 (de) * 2007-09-21 2009-03-25 Bayer CropScience AG Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
AU2008343923C1 (en) * 2007-12-20 2014-04-10 Bayer Intellectual Property Gmbh Use of tetramic acid derivatives for controlling nematodes
EP2071952A1 (de) * 2007-12-21 2009-06-24 Bayer CropScience AG Verwendung von Tetramsäurederivaten zur Bekämpfung von Schaderregern durch Angiessen oder Tröpfchenapplikation
EP2127522A1 (de) * 2008-05-29 2009-12-02 Bayer CropScience AG Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
US8683346B2 (en) * 2008-11-17 2014-03-25 Sap Portals Israel Ltd. Client integration of information from a supplemental server into a portal
AR076224A1 (es) * 2009-04-22 2011-05-26 Bayer Cropscience Ag Uso de propineb como repelente de aves
DE102009028001A1 (de) 2009-07-24 2011-01-27 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
BR112012006841B8 (pt) * 2009-10-15 2021-06-08 Bayer Cropscience Ag combinação de composto ativo, seus usos e método para curativamente ou preventivamente controlar os fungos fitopatogênicos e/ou microrganismos e/ou pragas de plantas ou safras
WO2011100424A1 (en) * 2010-02-12 2011-08-18 Bayer Croscience Lp Methods for reducing nematode damage to plants
JP5720137B2 (ja) * 2010-08-04 2015-05-20 住友化学株式会社 有害節足動物防除組成物及び有害節足動物の防除方法
CN108156983A (zh) * 2017-12-29 2018-06-15 浦江县合洪园艺研发有限公司 一种猕猴桃的繁育方法

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2504404A (en) * 1946-06-12 1950-04-18 Du Pont Manganous ethylene bis-dithiocarbamate and fungicidal compositions containing same
AT214705B (de) * 1948-05-18 Exxon Research Engineering Co Verfahren zur Bekämpfung von Schädlingen
FR65758E (es) * 1950-04-18 1956-03-12
US2732354A (en) * 1952-12-05 1956-01-24 Chlorine derivatives of isoolefem-poly-
NL207586A (es) * 1955-05-31
US3037954A (en) * 1958-12-15 1962-06-05 Exxon Research Engineering Co Process for preparing a vulcanized blend of crystalline polypropylene and chlorinated butyl rubber
US3099644A (en) * 1959-10-06 1963-07-30 Exxon Research Engineering Co Continuous chlorination and bromination of butyl rubber
NL277376A (es) * 1961-05-09
US4009278A (en) * 1969-03-19 1977-02-22 Sumitomo Chemical Company, Limited Antimicrobial composition and method containing N-(3,5-dihalophenyl)-imide compounds
US3745170A (en) * 1969-03-19 1973-07-10 Sumitomo Chemical Co Novel n-(3,5-dihalophenyl)-imide compounds
US3823240A (en) * 1970-10-06 1974-07-09 Rhone Poulenc Sa Fungicidal hydantoin derivatives
FR2148868A6 (es) * 1970-10-06 1973-03-23 Rhone Poulenc Sa
US4147791A (en) * 1972-01-11 1979-04-03 Bayer Aktiengesellschaft 1-Substituted-1,2,4-triazole fungicidal compositions and methods for combatting fungi that infect or attack plants
DE2324010C3 (de) * 1973-05-12 1981-10-08 Bayer Ag, 5090 Leverkusen 1-Substituierte 2-Triazolyl-2-phenoxyäthanol-Verbindungen, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Pilzen
GB1469772A (en) * 1973-06-21 1977-04-06 Boots Co Ltd Fungicidal imidazole derivatives
US3954992A (en) * 1973-07-02 1976-05-04 E. I. Du Pont De Nemours And Company 2-Cyano-2-hydroxyiminoacetamides as plant disease control agents
CA1030699A (en) * 1973-11-08 1978-05-02 Polysar Limited Halobutyl of improved green strength
CA1019094A (en) * 1973-11-08 1977-10-11 Ernest J. Buckler Remoldable halobutyl rubbers
CA1014296A (en) * 1973-11-08 1977-07-19 Ernest J. Buckler Amine modified polymers
FR2254276B1 (es) * 1973-12-14 1977-03-04 Philagro Sa
US3957847A (en) * 1974-03-21 1976-05-18 E. I. Du Pont De Nemours And Company 2-cyano-2-hydroxyiminoacetamides as plant disease control agents
US4206228A (en) * 1974-04-09 1980-06-03 Ciba-Geigy Corporation Microbicidal aniline derivatives
US4151299A (en) * 1974-04-09 1979-04-24 Ciba-Geigy Corporation Certain aniline derivatives as microbicidal agents
OA04979A (fr) * 1974-04-09 1980-11-30 Ciba Geigy Nouveaux dérivés de l'aniline utiles comme agents microbicides et leur procédé de préparation.
US4598085A (en) * 1977-04-27 1986-07-01 Janssen Pharmaceutica N.V. Fungicidal 1-(2-aryl-2-R-ethyl)-1H-1,2,4-triazoles
JPS6052146B2 (ja) * 1979-12-25 1985-11-18 石原産業株式会社 N−ピリジルアニリン系化合物、それらの製造方法及びそれらを含有する有害生物防除剤
AU542623B2 (en) * 1980-05-16 1985-02-28 Bayer Aktiengesellschaft 1-hydroxyethyl-azole derivatives
US4454304A (en) * 1981-04-22 1984-06-12 Copolymer Rubber & Chemical Corp. Method and material for producing high green strength rubber compounds
US4510136A (en) * 1981-06-24 1985-04-09 E. I. Du Pont De Nemours And Company Fungicidal 1,2,4-triazole derivatives
US4496551A (en) * 1981-06-24 1985-01-29 E. I. Du Pont De Nemours And Company Fungicidal imidazole derivatives
US4594390A (en) * 1982-08-23 1986-06-10 Monsanto Company Process for the preparation of thermoplastic elastomers
JPS60178801A (ja) * 1984-02-24 1985-09-12 Dainippon Ink & Chem Inc グアニジン系農園芸用殺菌剤
GB8429739D0 (en) * 1984-11-24 1985-01-03 Fbc Ltd Fungicides
US4705800A (en) * 1985-06-21 1987-11-10 Ciba-Geigy Corporation Difluorbenzodioxyl cyanopyrrole microbicidal compositions
ES2061432T3 (es) * 1985-10-09 1994-12-16 Shell Int Research Nuevas amidas de acido acrilico.
US5177147A (en) * 1986-03-03 1993-01-05 Advanced Elastomer Systems, Lp Elastomer-plastic blends
USRE33989E (en) * 1986-07-16 1992-07-07 Basf Aktiengesellschaft Oxime ethers and fungicides containing these compounds
DE3623921A1 (de) * 1986-07-16 1988-01-21 Basf Ag Oximether und diese enthaltende fungizide
JPH0784445B2 (ja) * 1986-12-03 1995-09-13 クミアイ化学工業株式会社 ピリミジン誘導体および農園芸用殺菌剤
ES2052696T5 (es) * 1987-02-09 2000-03-01 Zeneca Ltd Fungicidas.
DE3735555A1 (de) * 1987-03-07 1988-09-15 Bayer Ag Aminomethylheterocyclen
CA1339133C (en) * 1987-03-13 1997-07-29 Rikuo Nasu Imidazole compounds and biocidal composition comprising the same for controlling harmful organisms
DE19775050I2 (de) * 1987-08-21 2010-12-16 Syngenta Participations Ag Benzothiadiazole und ihre Verwendung in Verfahren und Mitteln gegen Pflanzenkrankheiten.
DE3881320D1 (de) * 1987-09-28 1993-07-01 Ciba Geigy Ag Schaedlingsbekaempfungsmittel.
US5654379A (en) * 1987-11-27 1997-08-05 Exxon Chemicals Patent, Inc. Process for selective bromination of para-alkylstyrene/isoolefin copolymers
DE3815728A1 (de) * 1988-05-07 1989-11-16 Bayer Ag Stereoisomere von n-(r)-(1-aryl-ethyl)-1-alkyl-2,2-dichlor- cyclopropancarbonsaeureamiden
US5013793A (en) * 1990-07-26 1991-05-07 Exxon Chemical Patents Inc. Dynamically cured thermoplastic olefin polymers and process for producing the same
DE3913682A1 (de) * 1989-04-26 1990-10-31 Bayer Ag 3-aryl-pyrrolidin-2,4-dione
US4985063A (en) * 1988-08-20 1991-01-15 Bayer Aktiengesellschaft 3-aryl-pyrrolidine-2,4-diones
US5142065A (en) * 1988-08-20 1992-08-25 Bayer Aktiengesellschaft 3-aryl-pyrrolidine-2,4-diones
US5021500A (en) * 1988-10-28 1991-06-04 Exxon Chemical Company Dynamically vulcanized alloys of crystalline polyolefin resin and halobutyl rubber material
US5186737A (en) * 1989-01-07 1993-02-16 Bayer Aktiengesellschaft Pesticidal 3-aryl-pyrrolidine-2,4-diones
US5264440A (en) * 1989-02-10 1993-11-23 Imperial Chemical Industries Plc Fungicides
US4921910A (en) * 1989-04-19 1990-05-01 Polysar Limited Toughened thermoplastics
US5043392A (en) * 1989-04-19 1991-08-27 Polysar Limited Toughened thermoplastics
US5223523A (en) * 1989-04-21 1993-06-29 E. I. Du Pont De Nemours And Company Fungicidal oxazolidinones
DE3929087A1 (de) * 1989-09-01 1991-03-07 Bayer Ag 3-aryl-pyrrolidin-2,4-dion-derivate
DE4032090A1 (de) * 1990-02-13 1991-08-14 Bayer Ag Polycyclische 3-aryl-pyrrolidin-2,4-dion-derivate
US5333662A (en) * 1990-07-18 1994-08-02 Exxon Chemical Patents Inc. Tire innerliner composition
DE4121365A1 (de) * 1991-06-28 1993-01-14 Bayer Ag Substituierte 1-h-3-aryl-pyrrolidin-2,4-dion-derivate
FR2706456B1 (fr) * 1993-06-18 1996-06-28 Rhone Poulenc Agrochimie Dérivés optiquement actifs de 2-imidazoline-5-ones et 2-imidazoline-5-thiones fongicides.
US6002016A (en) * 1991-12-20 1999-12-14 Rhone-Poulenc Agrochimie Fungicidal 2-imidazolin-5-ones and 2-imidazoline-5-thiones
AU666040B2 (en) * 1992-10-28 1996-01-25 Bayer Aktiengesellschaft Substituted 1-H-3-aryl-pyrrolidine-2,4-dione derivatives
DE4306257A1 (de) * 1993-03-01 1994-09-08 Bayer Ag Substituierte 1-H-3-Phenyl-5-cycloalkylpyrrolidin-2,4-dione, ihre Herstellung und ihre Verwendung
DE4306259A1 (de) * 1993-03-01 1994-09-08 Bayer Ag Dialkyl-1-H-3-(2,4-dimethylphenyl)-pyrrolidin-2,4-dione, ihre Herstellung und ihre Verwendung
US5290886A (en) * 1993-04-20 1994-03-01 Advanced Elastomer Systems, L.P. Thermoplastic elastomers having improved low temperature properties
US5428099A (en) * 1993-05-19 1995-06-27 Exxon Chemical Patents Inc. Method to control carbon black distribution in elastomer blends
DE4431730A1 (de) * 1994-02-09 1995-08-10 Bayer Ag Substituierte 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate
US5723491A (en) * 1994-07-11 1998-03-03 Novartis Corporation Fungicidal composition and method of controlling fungus infestation
DE19528046A1 (de) * 1994-11-21 1996-05-23 Bayer Ag Triazolyl-Derivate
US6358887B1 (en) * 1995-02-13 2002-03-19 Bayer Aktiengesellschaft 2-Phenyl-substituted heterocyclic 1,3-ketonols as herbicides and pesticides
DE19543864A1 (de) * 1995-02-13 1996-08-14 Bayer Ag Phenylsubstituierte cyclische Ketoenole
BR9608229A (pt) * 1995-05-09 1998-12-29 Bayer Ag Cetoenóis alquil-dihalogenofenil-substituídos
US5597866A (en) * 1995-06-30 1997-01-28 Exxon Chemical Patents Inc. Propylene polymer compositions having improved impact strength
HUP9802822A3 (en) * 1995-08-10 1999-04-28 Bayer Ag Halobenzimidazol derivatives, intermediates, preparation thereof and microbocide compositions containing these compounds as active ingredients
DE19602095A1 (de) * 1996-01-22 1997-07-24 Bayer Ag Halogenpyrimidine
WO1997036868A1 (de) * 1996-04-02 1997-10-09 Bayer Aktiengesellschaft Substituierte phenylketoenole als schädlingsbekämpfungsmittel und herbizide
DK1277751T3 (da) * 1996-08-05 2007-02-26 Bayer Cropscience Ag 2- og 2,5-substituerede phenylketoenoler
DE19632126A1 (de) * 1996-08-09 1998-02-12 Bayer Ag Phenylsubstituierte cyclische Ketoenole
US6391912B1 (en) * 1996-12-12 2002-05-21 Bayer Aktiengesellschaft Substituted phenylketoenols
US5910543A (en) * 1996-12-18 1999-06-08 Advanced Elastomer Systems, L.P. Thermoplastic elastomer with polar and non-polar rubber components
US6060563A (en) * 1997-05-23 2000-05-09 Exxon Research And Engineering Co Graft copolymers containing ionomer units
DE19808261A1 (de) * 1998-02-27 1999-10-28 Bayer Ag Arylphenylsubstituierte cyclische Ketoenole

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0230199A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070961A2 (en) 2010-11-26 2012-05-31 Sapec-Agro, Sa Fungicidal mixture

Also Published As

Publication number Publication date
CN1468056A (zh) 2004-01-14
US20040102326A1 (en) 2004-05-27
KR20030032055A (ko) 2003-04-23
DE10049804A1 (de) 2002-04-18
BR0114491A (pt) 2003-10-14
WO2002030199A1 (de) 2002-04-18
JP2004510793A (ja) 2004-04-08
AU2002213967A1 (en) 2002-04-22
MXPA03003029A (es) 2003-06-24

Similar Documents

Publication Publication Date Title
EP1553829B1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
EP1691608B2 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
EP1646281B1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
EP1330161B1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
EP1322160B1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
EP1335648B1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
EP1298995B1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
EP1855532A2 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
DE102006033154A1 (de) Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102004021564A1 (de) Wirkstoffkombinationen mit insektiziden Eigenschaften
DE10353281A1 (de) Wirkstoffkombination mit insektiziden und akariziden Eigenschaften
EP1267620A2 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
DE102004006075A1 (de) Wirkstoffkombinationen mit insektiziden Eigenschaften
EP1326495A1 (de) Wirkstoffkombinationen mit insektiziden, fungiziden und akariziden eigenschaften
DE10356550A1 (de) Wirkstoffkombinationen mit insektiziden Eigenschaften
WO2001078511A1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
WO2002005648A1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
WO2005004604A1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
EP1988778A2 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
DE102004021566A1 (de) Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
WO2005065453A1 (de) Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
DE102005041955A1 (de) Wirkstoffkombination mit insektiziden und akariziden Eigenschaften
DE102004048527A1 (de) Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030509

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20031027

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040507