EP1323809B1 - Co-current shaft reactor - Google Patents

Co-current shaft reactor Download PDF

Info

Publication number
EP1323809B1
EP1323809B1 EP02027458A EP02027458A EP1323809B1 EP 1323809 B1 EP1323809 B1 EP 1323809B1 EP 02027458 A EP02027458 A EP 02027458A EP 02027458 A EP02027458 A EP 02027458A EP 1323809 B1 EP1323809 B1 EP 1323809B1
Authority
EP
European Patent Office
Prior art keywords
gas
shaft
lock
shaft body
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02027458A
Other languages
German (de)
French (fr)
Other versions
EP1323809A2 (en
EP1323809A3 (en
Inventor
Jürgen Möser
Manfred Schulz
Thomas Flick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smile Beteiligungs GmbH
Original Assignee
Smile Beteiligungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smile Beteiligungs GmbH filed Critical Smile Beteiligungs GmbH
Priority to SI200230833T priority Critical patent/SI1323809T1/en
Publication of EP1323809A2 publication Critical patent/EP1323809A2/en
Publication of EP1323809A3 publication Critical patent/EP1323809A3/en
Application granted granted Critical
Publication of EP1323809B1 publication Critical patent/EP1323809B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/32Devices for distributing fuel evenly over the bed or for stirring up the fuel bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/08Continuous processes with ash-removal in liquid state
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/10Continuous processes using external heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/14Continuous processes using gaseous heat-carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/04Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/02Shaft or like vertical or substantially vertical furnaces with two or more shafts or chambers, e.g. multi-storey
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • F27D3/0032Charging or loading melting furnaces with material in the solid state using an air-lock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0943Coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0996Calcium-containing inorganic materials, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1628Ash post-treatment
    • C10J2300/1634Ash vitrification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1869Heat exchange between at least two process streams with one stream being air, oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/16Waste feed arrangements using chute
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/18Waste feed arrangements using airlock systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/26Biowaste
    • F23G2209/261Woodwaste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/28Plastics or rubber like materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/70Incinerating particular products or waste
    • F23G2900/7004Incinerating contaminated animal meals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15081Reheating of flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2001/00Composition, conformation or state of the charge
    • F27M2001/05Waste materials, refuse
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2003/00Type of treatment of the charge
    • F27M2003/14Pyrolising

Definitions

  • the present invention relates to a DC shaft reactor for melting and gasifying feedstocks of different types and consistencies, such as pollutant-free and / or contaminated wood, domestic and bulky refuse, substitute fuels, pelleted dusts or animal meal, plastics, industrial and commercial waste.
  • a synthesis gas which is suitable for generating electrical energy and heat and / or is used as a basis for synthesis processes can be produced.
  • the solid product formed is a non-leachable slag and a material processable metal phase or a non-recoverable liquid phase, which is available for further processing.
  • DE 43 17 145 C1 describes a method and apparatus for degassing waste materials based on a coke-heated countercurrent shaft furnace.
  • the resulting dust-containing gas is completely removed and burned in the underlying melting and overheating zone with oxygen at high temperatures.
  • the countercurrent flow of the gas through the downwardly moving bed and the suction between the Kreislaufgasausaugung and the recirculation gas supply result in a variety of practical problems.
  • the result is short circuit flows in the shaft and insufficient heat transfer to the upper shaft area, which creates a contaminated gas with tar and dust components.
  • a complex gas treatment and purification is necessary.
  • a coke-heated Kreislaufgaskupolofen for material and / or energy recovery of waste materials is described. It consists of a vertical furnace shaft with below-the-aeration large-volume Kreislaufgasabsaugö réelleen, which are connected by channels and nozzles with the melting and superheating zone, above which a large-volume excess gas discharge level, the resulting gas from the process.
  • the furnace shaft part is narrowed in cross-section between the circulation gas and excess gas suction openings.
  • the heat transfer takes place as well as in DE 43 17 145 C1 by the countercurrent principle to the feedstock rising process gases.
  • the multiple countercurrent flow of the gas through the downwardly moving bed despite some modifications due to cross-sectional constriction in the shaft and cross-sectional widening in the gas outlet does not allow the processing of a wide range of feedstock.
  • a reactor for gasifying and / or melting feedstocks with a feed, pyrolysis, melt and superheat section is described.
  • the pyrolysis section has a cross-sectional widening as a gas feed space, into which at least one combustion chamber opens with at least one burner, through which hot combustion gases are fed to a forming bulk cone.
  • high-energy media are introduced by means of upper and lower injection means in the region of the melting and superheating zone and above the melt by means of oxygen lances and / or nozzles.
  • the disadvantage of this device is increased by the bulk cone
  • US 4,813,179 is a DC-shaft reactor for melting and gasifying feed known
  • the shaft body a Lock area is upstream with locks.
  • the lock area ends at a screw conveyor, which introduces feed into the shaft body.
  • the introduced feed is then conveyed in the vertical direction through a feed opening of the shaft body by means of a further screw conveyor to a rotating distribution plate, which spreads the feed over the entire cross-sectional area of the shaft body.
  • preheated reaction gas is fed for drying the feedstock via a gas supply device.
  • the object of the invention is to provide a direct current shaft reactor, with which useful gases, in particular combustible useful gases with a low particle load, can be produced even when different starting materials are used, the energy content of which can be used for the direct current shaft reactor.
  • the inventive DC-shaft reactor for melting and gasifying feedstock has a vertical shaft body. Within the shaft body, the feedstock is dried, heated and gasified. The shaft body can thus usually be subdivided into the areas of drying zone, degassing zone and gasification zone. The shaft body is followed by a receiving body, which serves to receive molten feedstock. Within this body is the Melting zone of the reactor formed. The shaft body and / or the receiving body are connected to a gas discharge device for discharging the Nutzgase generated within the reactor. In particular, the discharge device is arranged in the region between the shaft body and the receiving body and designed as a tube. Further, the vertically oriented shaft body has a feeder through which the feedstock is fed to the shaft reactor.
  • a gas supply device for supplying gas into the shaft body is connected to the shaft body.
  • the supplied gas which is preferably air or oxygen-enriched air, serves to dry the feedstock.
  • the gas supplied is preheated according to the invention.
  • the gas supply device according to the invention is connected to the gas discharge device.
  • the discharged from the reactor hot gas is thus used according to the invention for preheating the gas supplied to the shaft body.
  • the feed opening of the reactor is followed by a lock arrangement which controls the introduction of the feedstock. In the area of the lock arrangement, at least part of the gas supply device is connected to the lock chamber.
  • the inventive use of the discharged gas as an energy source means that no additional energy is required for preheating the gas and the feed already undergoes a first drying in the lock assembly.
  • the lock arrangement is thereby additionally used for drying the feedstock.
  • Another essential advantage of the invention is that heat is removed from the discharged gas. This simplifies the further processing or use of this gas.
  • the lock arrangement preferably has at least one lock chamber.
  • a first lock gate is opened to introduce the feed into the lock chamber.
  • this first lock gate is closed, so that the lock chamber is closed. In this state, possibly contained air can be sucked out of the lock chamber and / or replaced by another gas.
  • the second lock gate which leads in the direction of the interior of the shaft reactor, opened and the feed material passes from the lock chamber into the reactor.
  • the lock arrangement is designed so that the introduction of feed into the DC shaft reactor takes place almost free of freeze or low-shear. This reduces the risk of larger pieces of feedstock rolling to the reactor wall and segregation of the feedstock.
  • the adverse consequences of demixing, such as melting of Ofenausmautation, emergence of flow channels for the incoming gases and fluctuating gas qualities due to different reaction zones are thereby greatly reduced.
  • a low-shear introduction of material into shaft reactors can be achieved, for example, by the fact that the reactor shaft, which follows the lock arrangement, has a similar cross-sectional geometry.
  • the drop height of the supplied goods should be as low as possible. In particular not higher than three times the height of the feed in the lock arrangement.
  • the second floodgate should open as quickly as possible, so that the underside of the falling feed remains as horizontal as possible.
  • the feedstock in the lock assembly should not as far as possible already contain a bulk cone.
  • the first lock gate is designed as a slide with cutting edge in an advantageous manner.
  • the feedstock to be introduced almost corresponds to the geometry of the lock chamber and in particular has almost no bulk cone on.
  • the second lock gate can be opened as quickly as possible, it is carried out in an advantageous manner as a flap or slide.
  • the DC shaft reactor has a shaft body 10.
  • the shaft body 10 can be subdivided into a lock arrangement 12, a drying zone 14 adjoining the lock arrangement 12, a degassing zone 16 adjoining the drying zone 14, and a gasification zone 18 connected thereto.
  • a receiving body 20 connects, which serves to receive molten feedstock 22.
  • the cross-section of the receiving body is widened, so that an annularly formed gas collecting space 24 is formed, which surrounds the lower part of the gasification zone 18.
  • the gas collecting space 24 is connected to a gas discharge device 26 designed as a pipe in the illustrated embodiment.
  • the feed is introduced through a supply port 28 into the well body 10 via the gate assembly 12.
  • the feeding of the feed material takes place via the lock arrangement 12 in order to prevent the introduction of large amounts of ambient air, by means of which the melting and gasification process can be influenced in an uncontrolled manner.
  • the lock arrangement 12 has two lock devices or lock gates 30, 32, between which the lock chamber 34 is formed, the lock chamber 34 already being part of the shaft body 10.
  • a gas supply device 36 is provided in the region of the drying zone 14 of the shaft body 10.
  • the gas supply device 36 has a ring conduit 38 surrounding the shaft body 10, which is connected to a plurality of nozzles 40 distributed uniformly around the circumference.
  • About the gas feeder 36 is the feed in Area of the drying zone 14 preferably hot air, which may optionally be enriched with oxygen, fed to dry the feedstock.
  • a further gas supply means 42 is arranged, which also has a surrounding the shaft body 10 ring line 44.
  • the ring line 44 is connected to a plurality of circumferentially preferably uniformly distributed nozzle 46.
  • High-energy gases, oxygen, air or other gases suitable for controlling the melting and gasification process can be supplied to the feedstock via the gas feed device 42.
  • nozzles 48 are provided in the gasification zone 18. High-energy gas or other gases or substances controlling the melting and gasification process can in turn be supplied via the nozzles 48. Likewise, instead of the nozzles 48, it is also possible to provide burners which directly supply heat to the feedstock in the gasification zone 18.
  • the end region of the shaft body 10, which is rotationally symmetrical with respect to the longitudinal axis 50, has a slightly tapered conical shape, so that the feed material is retained somewhat in the region of the gasification zone 18.
  • a plurality of circumferentially distributed nozzles 54 are further arranged.
  • the nozzles 54 serve to introduce high-energy gases or corresponding substances. By the nozzles 54 it is ensured that the melt 22 remains liquid. Likewise, burners may be provided instead of the nozzles 54.
  • the gas supply device 36 is connected to the gas discharge device 26.
  • the tube of the gas discharge device 26 through which the hot gases produced in the reactor are discharged, to a heat exchanger 56.
  • the discharged gases or Nutzgase flow through the heat exchanger 56 and are then discharged from a pipe 58 preferably for further processing.
  • a Pipeline 60 connected. Through the pipe 60, air or other gas is passed into the heat exchanger 56, takes in the heat exchanger 56 heat from the useful gas and is discharged through a pipe 62 back out of the heat exchanger.
  • the tube 62 is then connected via a heater 64 and a pipe 66 to the ring line 38 of the gas supply device 36.
  • the heating of the gas supplied to the feed material by the gas feed device 36 in the region of the drying zone 14 is thus preferably preheated in operation exclusively by the heat of the useful gases with the aid of the heat exchanger 56.
  • the heating device 64 which may be, for example, an electric heater or a burner, the gas to be supplied via the gas supply device can be additionally heated.
  • the heater 64 can be used to heat the gas.
  • a part 35 of the gas feed device 36 is connected to the shaft body 10 in the region of the lock arrangement 12. Through this connection, the feedstock is already subjected to a first drying in the lock assembly 12.
  • a side wall 68 of the lock assembly 12 is double-walled.
  • heating and thus drying of the feed material in the lock chamber 34 can be achieved by passing a hot medium through the double-walled side wall 68.
  • This is preferably air or another gas, which is likewise preheated by the useful gas, preferably with the aid of the heat exchanger 56.
  • the ideal material input preferably requires a homogeneous mixture, in particular when adding additives such as coke and lime.
  • the entry is carried out according to the invention centrally on the axis of the reactor. Of the Reactor should be kept as full as possible during operation. A level monitoring is therefore preferably mounted directly below the lock gate 32. The filling takes place in a high clock rate.
  • the areas of the lock arrangement 12, the drying zone 14 and the degassing zone 16 are preferably cylindrical or slightly conically widening down to the gasification zone 18.
  • the transition between the zones takes place without a step-shaped or sudden cross-sectional enlargement, i. the transition is the same cross-section and without formation of shake-free cavities, steps or edges.
  • the drying zone 14 can also be designed with double walls, in particular for larger types. This allows indirect heating of the Gutcicle inside or ensuring a uniform temperature on the wall and a reduction of condensation phenomena on the inside.
  • the heat transfer medium is preferably also hot air used. The use of standing up at the end of the process flue gas is also possible.
  • the degassing zone 16 can also be designed double-walled in continuation of the drying zone 14.
  • the double-walled version can be replaced by a silicate brick lining.
  • the gasification zone 18 is the main reaction zone within the shaft reactor. Here, at temperatures of 1,200 to 1,400 ° C, the material and energetic conversion of the solids. The solid fuel produces gases and solid products from coke to ash. For the complete and uniform reaction, it is crucial that a homogeneous bed is flowed through uniformly by the degassing gas already produced and the gasification agent to be introduced here.
  • the gasification zone 18 must have a sufficient height for these reasons. This is achieved in that the gasification zone 18 is formed as a straight cylindrical portion with transition into a conical reduction of the cross section or immediately as an increasing taper. Since the material grain is reduced by the material transformations and related destructive forces, the cavities increase within the pouring column. By reducing the size of the shaft cross section in this area, the sinking speed of the Material column are evened out, flow channels are destroyed and the formation of larger voids in the bed is avoided.
  • the region of the gasification is likewise lined with a silicate mass.
  • the lower cylindrical or tapered region of the gasification region 18 projects into the molten zone 20.
  • the Schütt yarn located above it at least partially, at the same time prevail there high temperatures.
  • cooling takes place by means of indirect water cooling in the shaft wall 70.
  • the longer-chain hydrocarbons formed from the expired degassing and thermolysis reactions were thermally split here and at the same time participated in the gasification processes taking place.
  • the result is a combustible gas average calorific value with the main components carbon monoxide, carbon dioxide, hydrogen and water vapor without constituents of condensable hydrocarbons. Many of the chemical reactions that have taken place are endothermic. The temperature of the gas as well as the bed thus decreases.
  • the gas undergoes a deflection by about 180 ° and enters the shake-free space 24.
  • the gas has a temperature of about 1,000 ° C.
  • the gas collection chamber 24 is already part of the melting zone 20, which is substantially further up than the projecting gasification zone 18 above.
  • the Cylindrical melt zone 20 tapers conically downward and closes with the bottom plate above which the molten phase collects.
  • the melting zone 20 is provided in its entirety with a multi-layer ramming mass or equipped with a lining. The reason for this is the necessary high temperatures. Only in the area of the gas collection room a lining may not be necessary.
  • the completely degassed and coked solid is already partially sintered or melted and sinks from the gasification zone 18 into the molten zone 20.
  • Integrated into the molten zone 20 is a plane with a plurality of oxygen nozzles or injectors and / or oxidatively operated burners 54, which are also distributed symmetrically on the axis.
  • the molten material collects as a melt at the bottom of the reactor.
  • the emptying of this liquid melt takes place as usual in the foundry via a tap hole and a gutter 72.
  • a design with a forehearth or siphon is possible.
  • the melt With sufficiently large design and appropriate residence time of the melt, the melt will separate into a heavy metal-containing phase and a slag floating on it.
  • the product slag contains no organic substances and the inorganic components are stably incorporated into a silicate matrix.
  • the use as a material for harbor, landfill and road construction are known, as is possible the production of special molds and products, as they are common in the glass industry.
  • a preferred embodiment of the lock arrangement 12 is that the second lock gate 32 is designed as a quick-opening slide ( Fig. 2 ).
  • the floodgate 32 is designed in particular in several pieces.
  • the feed material contained in the lock chamber 34 falls evenly into the drying zone 14 of the shaft body 10. Previously, the feed was pre-dried with the part 35 of the gas feeder 36 connected to the lock chamber 34.
  • designed as a slide second lock gate 32 is advantageously provided with a cutting edge. As a result, the part of the feed material protruding into the lock chamber 34 can be cut off when the second lock gate 32 is closed, as a result of which the lock chamber 34 can be closed again.
  • the lock chamber 34 is completely filled and the part of the feed material which does not fit in is cut off.
  • the first lock gate 30 is designed as a slide with a cutting edge, which separates the upper part of the feed from the lock chamber 34.
  • the first lock gate 30 can also be made in several pieces in this embodiment.
  • the second lock gate 32 is initially closed and the first lock gate 30 is opened. As a result, feed material enters the lock chamber 34. After closing the first lock gate 30, the second lock gate 32 is opened, whereby the feed material falls into the shaft body 10. At the same time, additional feed material can already be introduced through the feed opening 28 which is provided on the first lock gate 30. Thereafter, the filling cycle begins again.

Abstract

Direct flow shaft reactor comprises a vertical shaft body (10) for drying, heating and gasifying the material to be treated and having a feed opening (28) for introducing the material; a receiving body (20); a gas removing device (26) connected to the shaft body and/or the receiving body; and a gas feeding device (36) connected to the shaft body for introducing gas to the shaft and for drying the material. <??>Direct flow shaft reactor comprises a vertical shaft body (10) for drying, heating and gasifying the material to be treated and having a feed opening (28) for introducing the material; a receiving body (20) connected to the shaft body for receiving melted material; a gas removing device (26) connected to the shaft body and/or the receiving body; and a gas feeding device (36) connected to the shaft body for introducing gas to the shaft and for drying the material. Preferred Features: The gas feeding device and the gas removing device are connected together via a heat exchanger (56). The gas feeding device is connected to a heater (64). A sluice arrangement (12) is connected to the feed opening and has a sluice chamber. The gas feeding device is connected to the sluice chamber.

Description

Die vorliegende Erfindung betrifft einen Gleichstrom-Schacht-Reaktor zum Schmelzen und Vergasen von Einsatzstoffen unterschiedlicher Art und Konsistenz, wie schadstofffreie und/oder schadstoffbelastete Hölzer, Hausund Sperrmüll, Ersatzbrennstoffe, pelletierte Stäube bzw. Tiermehl, Kunststoffe, Industrie- und Gewerbeabfallstoffe.The present invention relates to a DC shaft reactor for melting and gasifying feedstocks of different types and consistencies, such as pollutant-free and / or contaminated wood, domestic and bulky refuse, substitute fuels, pelleted dusts or animal meal, plastics, industrial and commercial waste.

In Schacht-Reaktoren kann ein Synthesegas, welches zur Erzeugung von elektrischer Energie sowie Wärme geeignet ist und/oder als Basis für Syntheseprozesse Verwendung findet, erzeugt werden. Als festes Produkt entsteht eine nichtauslaugbare Schlacke und eine stofflich weiterverarbeitbare Metallphase oder eine nichteluierbare flüssige Phase, welche für eine weitergehende Verarbeitung zur Verfügung steht.In shaft reactors, a synthesis gas which is suitable for generating electrical energy and heat and / or is used as a basis for synthesis processes can be produced. The solid product formed is a non-leachable slag and a material processable metal phase or a non-recoverable liquid phase, which is available for further processing.

DE 43 17 145 C1 beschreibt ein Verfahren und eine Vorrichtung zur Entgasung von Abfallmaterialen auf Basis eines koksbeheizten Gegenstrom-Schachtofens. Hierbei wird das entstehende staubhaltige Gas vollständig abgezogen und in der darunter befindlichen Schmelz- und Überhitzungszone mit Sauerstoff bei hohen Temperaturen verbrannt. Die Gegenstromführung des Gases durch die sich nach unten bewegende Schüttung und die Absaugung zwischen der Kreislaufgasabsaugung und der Kreislaufgaszuführung ergeben eine Vielzahl von praktischen Problemen. Folge sind Kurzschlussströmungen im Schacht und ungenügende Wärmeübertragung in den oberen Schachtbereich, wodurch ein schadstoffbelastetes Gas mit Teer- und Staubbestandteilen entsteht. Hierdurch wird eine aufwendige Gasaufbereitung und -reinigung notwendig. Ferner besteht die Gefahr, dass durch Teer- und Staubablagerungen der kontinuierliche Betrieb gestört wird. Eine weitere permanente Gefahr für einen stabilen Betrieb ist die Führung von Pyrolyse- und Entgasungsgas mit Teerund Staubanteilen in Leitungen. Stellenweise oder vollständige Versetzung der Leitungen mit Teer- Staubablagerungen haben eine ungleichmäßige Kreislaufgasführung und damit eine ungleichmäßige Prozessführung im Schachtofen zur Folge. DE 43 17 145 C1 describes a method and apparatus for degassing waste materials based on a coke-heated countercurrent shaft furnace. Here, the resulting dust-containing gas is completely removed and burned in the underlying melting and overheating zone with oxygen at high temperatures. The countercurrent flow of the gas through the downwardly moving bed and the suction between the Kreislaufgasausaugung and the recirculation gas supply result in a variety of practical problems. The result is short circuit flows in the shaft and insufficient heat transfer to the upper shaft area, which creates a contaminated gas with tar and dust components. As a result, a complex gas treatment and purification is necessary. Furthermore, there is the danger that tar and dust deposits disrupt the continuous operation. Another permanent danger for a stable operation is the guidance of pyrolysis gas and degassing gas with tar and dust particles in pipes. Partial or complete dislocation of the lines with tar-dust deposits result in uneven circulating gas guidance and thus uneven process control in the shaft furnace.

In der DE 196 40 497 C2 wird ein koksbeheizter Kreislaufgaskupolofen zur stofflichen und/oder energetischen Verwertung von Abfallmaterialien beschrieben. Er besteht aus einem senkrechten Ofenschacht mit unterhalb der Begichtung liegenden großvolumigen Kreislaufgasabsaugöffnungen, die durch Kanäle und Düsen mit der Schmelz- und Überhitzungszone verbunden sind, oberhalb welcher eine großvolumige Überschussgasabsaugebene das entstehende Gas aus dem Prozess führt. Hierbei ist der Ofenschachtteil zwischen Kreislaufgas- und Überschussgasabsaugöffnung querschnittsverjüngt. Die Wärmeübertragung erfolgt wie auch in DE 43 17 145 C1 durch die im Gegenstromprinzip zum Einsatzmaterial nach oben steigenden Prozessgase. Auch die mehrfache Gegenstromführung des Gases durch die sich nach unten bewegende Schüttung ermöglicht trotz einiger Modifizierungen durch Querschnittsverengung im Schacht und Querschnittserweiterung im Gasabgang nicht die Verarbeitung eines breiten Spektrums an Einsatzmaterial.In the DE 196 40 497 C2 a coke-heated Kreislaufgaskupolofen for material and / or energy recovery of waste materials is described. It consists of a vertical furnace shaft with below-the-aeration large-volume Kreislaufgasabsaugöffnungen, which are connected by channels and nozzles with the melting and superheating zone, above which a large-volume excess gas discharge level, the resulting gas from the process. In this case, the furnace shaft part is narrowed in cross-section between the circulation gas and excess gas suction openings. The heat transfer takes place as well as in DE 43 17 145 C1 by the countercurrent principle to the feedstock rising process gases. The multiple countercurrent flow of the gas through the downwardly moving bed, despite some modifications due to cross-sectional constriction in the shaft and cross-sectional widening in the gas outlet does not allow the processing of a wide range of feedstock.

Weiterführend ist in DE 198 16 864 A1 ein Kreislaufgaskupolofen beschrieben, bei welchem eine Überschussgasabsaugung unterhalb der Schmelz- und Überhitzungszone angeordnet ist. Hierdurch ergibt sich eine Gegenstromvergasung und Wärmeübertragung im oberen Ofenschachtbereich, wo das Gas mittels großvolumiger Öffnungen abgesaugt wird und durch Kanäle/ Düsen in die Schmelz- und Überhitzungszone geleitet wird. In der anschließenden Gleichstromvergasung wird das Gas bei hohen Temperaturen reduziert und längerkettige Kohlenwasserstoffe gespalten. Durch diese gewählte Anordnung wird der negative Einfluss von Kurzschlussströmungen verringert. Die räumliche Nähe der endothermen Prozesse zum Herdbereich und die großvolumige Überschussgasabsaugung entzieht der Schmelze notwendige Wärme, um unter allen Betriebsbedingungen den notwendigen flüssigen Austrag von Schmelze sicher zu stellen.It continues in DE 198 16 864 A1 a cycle gas cupola is described in which an excess gas suction is arranged below the melting and superheating zone. This results in a countercurrent gasification and heat transfer in the upper furnace shaft area, where the gas is sucked by means of large-volume openings and through Channels / nozzles is passed into the melting and overheating zone. In the subsequent DC gasification, the gas is reduced at high temperatures and split longer-chain hydrocarbons. This selected arrangement reduces the negative influence of short-circuit currents. The spatial proximity of the endothermic processes to the hearth area and the large-volume excess gas extraction draws the necessary heat from the melt in order to ensure the necessary liquid discharge of melt under all operating conditions.

In DE 100 07 115 A1 ist ein Reaktor zum Vergasen und/ oder Schmelzen von Einsatzstoffen mit einem Zuführ-, Pyrolyse-, Schmelz- und Überhitzungsabschnitt beschrieben. Der Pyrolyseabschnitt weist eine Querschnittserweiterung als Gaszuführraum auf, in den mindestens eine Brennkammer mit mindestens einem Brenner mündet, durch welche heiße Verbrennungsgase einem sich ausbildenden Schüttkegel zugeführt werden. Des weiteren werden energiereiche Medien mittels oberen und unteren Eindüsungsmitteln im Bereich der Schmelz- und Überhitzungszone sowie oberhalb der Schmelze mittels Sauerstofflanzen und/ oder Düsen eingebracht. Nachteilig ist bei dieser Vorrichtung die durch den Schüttkegel vergrößerteIn DE 100 07 115 A1 For example, a reactor for gasifying and / or melting feedstocks with a feed, pyrolysis, melt and superheat section is described. The pyrolysis section has a cross-sectional widening as a gas feed space, into which at least one combustion chamber opens with at least one burner, through which hot combustion gases are fed to a forming bulk cone. Furthermore, high-energy media are introduced by means of upper and lower injection means in the region of the melting and superheating zone and above the melt by means of oxygen lances and / or nozzles. The disadvantage of this device is increased by the bulk cone

Reaktoroberfläche im Bereich der Querschnittserweiterung der Pyrolyse, da Wärmeverluste auftreten. Ferner rollen bei dem Schüttkegel die größeren Stücke der Einsatzstoffe an die Reaktorwand, wodurch eine nachteilige Entmischung auftritt. Die Folge ist eine stark einseitige Abschmelzung der Ofenausmauerung, die zu einer kürzeren Standzeit des Reaktors führt. Durch die Entmischung bilden sich in der Schüttung bevorzugte Strömungskanäle für die eintretenden Gase aus. Dies hat zur Folge, dass sich verschiedenartige inhomogene Reaktionszonen ausbilden, die zu schwankenden Gasqualitäten führen.Reactor surface in the area of cross-sectional expansion of pyrolysis, since heat losses occur. Furthermore, in the bulk cone, the larger pieces of feedstock roll to the reactor wall, causing a disadvantageous segregation occurs. The result is a strong one-sided melting of the Ofenausmauerung, which leads to a shorter service life of the reactor. As a result of the segregation, preferred flow channels for the incoming gases are formed in the bed. This has the consequence that form various heterogeneous reaction zones, which lead to fluctuating gas qualities.

Aus US 4,813,179 ist ein Gleichstrom-Schacht-Reaktor zum Schmelzen und Vergasen von Einsatzmaterial bekannt, dessen Schachtkörper ein Schleusenbereich mit Schleusen vorgelagert ist. Der Schleusenbereich endet bei einer Förderschnecke, die Einsatzmaterial in den Schachtkörper einbringt. Das eingebrachte Einsatzmaterial wird anschließend in vertikaler Richtung durch eine Zuführöffnung des Schachtkörpers mit Hilfe einer weiteren Förderschnecke zu einem rotierenden Verteilteller hin gefördert, der das Einsatzmaterial über die gesamte Querschnittsfläche des Schachtkörpers verstreut. Im Bereich der weiteren Förderschnecke wird zur Trocknung des Einsatzmaterials über eine Gaszuführeinrichtung vorgewärmtes Reaktionsgas zugeführt.Out US 4,813,179 is a DC-shaft reactor for melting and gasifying feed known, the shaft body a Lock area is upstream with locks. The lock area ends at a screw conveyor, which introduces feed into the shaft body. The introduced feed is then conveyed in the vertical direction through a feed opening of the shaft body by means of a further screw conveyor to a rotating distribution plate, which spreads the feed over the entire cross-sectional area of the shaft body. In the area of the further screw conveyor, preheated reaction gas is fed for drying the feedstock via a gas supply device.

Generell kann davon ausgegangen werden, dass bei Einsatzstoffen mit hohen Zündpunkten bei schlechter Wärmeleitung und bei Stoffen mit hoher Feuchte die zugeführte Wärme im Pyrolyseabschnitt nicht zu einer ausreichenden Erwärmung und Pyrolyse bzw. Entgasung der Stoffe führt. Die Prozesse der Ent- und Vergasung verschieben sich in den Bereich des Schmelz- und Überhitzungsabschnittes und verringern so die Reaktionszeit zur Zerstörung aller sich bildenden Teere und Öle in Form längerkettiger Kohlenwasserstoffe.In general, it can be assumed that in the case of feedstocks with high ignition points in poor heat conduction and in the case of substances with high humidity, the heat supplied in the pyrolysis section is not sufficient Heating and pyrolysis or degassing of the substances leads. The degassing and gasification processes shift to the melting and overheating section, reducing the reaction time to destroy all the tars and oils that form in the form of longer-chain hydrocarbons.

Sämtliche vorstehende beschriebene Schacht-Reaktoren sind nur für einen geringen Bereich an Einsatzstoffen einsetzbar. Ferner muss zum Vergasen der Einsatzstoffe eine erhebliche Menge an Energie zugeführt werden. Dies erfolgt durch unterschiedliche Düsensysteme, die in den vertikalen Schachtkörpern angeordnet sind, sowie über zusammen mit dem Schüttgut in den Schachtkörper eingebrachtes Brennmaterial, wie Koks oder dergleichen. Ferner besteht bei bekannten Schacht-Reaktoren unabhängig davon, ob sie im Gleichstrom- oder Gegenstromprinzip arbeiten, das Problem, dass das entnommene Gas stark partikelbelastet ist und somit vor einer Weiterverarbeitung beispielsweise gefiltert werden muss.All of the above described shaft reactors can only be used for a small range of starting materials. Furthermore, a significant amount of energy must be supplied for gasifying the feedstocks. This is done by different nozzle systems, which are arranged in the vertical shaft bodies, as well as introduced via together with the bulk material in the shaft body fuel, such as coke or the like. Furthermore, in known shaft reactors, irrespective of whether they operate on the cocurrent or countercurrent principle, there is the problem that the withdrawn gas is heavily loaded with particles and thus has to be filtered before further processing, for example.

Die Aufgabe der Erfindung besteht darin, einen Gleichstrom-Schacht-Reaktor zu schaffen, mit dem auch beim Einsatz unterschiedlicher Einsatzstoffe Nutzgase, insbesondere brennbare Nutzgase mit einer geringen Partikelbelastung, erzeugt werden können, deren Energieinhalt für den Gleichstrom-Schacht-Reaktor genutzt werden kann.The object of the invention is to provide a direct current shaft reactor, with which useful gases, in particular combustible useful gases with a low particle load, can be produced even when different starting materials are used, the energy content of which can be used for the direct current shaft reactor.

Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.The object is achieved according to the invention by the features of claim 1.

Der erfindungsgemäße Gleichstrom-Schacht-Reaktor zum Schmelzen und Vergasen von Einsatzmaterial, weist einen vertikalen Schachtkörper auf. Innerhalb des Schachtkörpers wird das Einsatzmaterial getrocknet, erwärmt und vergast. Der Schachtkörper lässt sich somit üblicherweise in die Bereiche Trockenzone, Entgasungszone und Vergasungszone unterteilen. An den Schachtkörper schließt sich ein Aufnahmekörper an, der zur Aufnahme von geschmolzenem Einsatzmaterial dient. Innerhalb dieses Körpers ist die Schmelzzone des Reaktors ausgebildet. Der Schachtkörper und/oder der Aufnahmekörper sind mit einer Gas-Abführeinrichtung zum Abführen der innerhalb des Reaktors erzeugten Nutzgase verbunden. Insbesondere ist die Abführeinrichtung im Bereich zwischen dem Schachtkörper und dem Aufnahmekörper angeordnet und als Rohr ausgebildet. Ferner weist der vertikal ausgerichtete Schachtkörper eine Zuführeinrichtung auf, durch die das Einsatzmaterial dem Schacht-Reaktor zugeführt wird.The inventive DC-shaft reactor for melting and gasifying feedstock, has a vertical shaft body. Within the shaft body, the feedstock is dried, heated and gasified. The shaft body can thus usually be subdivided into the areas of drying zone, degassing zone and gasification zone. The shaft body is followed by a receiving body, which serves to receive molten feedstock. Within this body is the Melting zone of the reactor formed. The shaft body and / or the receiving body are connected to a gas discharge device for discharging the Nutzgase generated within the reactor. In particular, the discharge device is arranged in the region between the shaft body and the receiving body and designed as a tube. Further, the vertically oriented shaft body has a feeder through which the feedstock is fed to the shaft reactor.

Erfindungsgemäß ist mit dem Schachtkörper eine Gas-Zuführeinrichtung zum Zuführen von Gas in den Schachtkörper verbunden. Das zugeführte Gas, bei dem es sich vorzugsweise um Luft oder mit Sauerstoff angereicherte Luft handelt, dient zum Trocknen des Einsatzmaterials. Um eine gute und effektive Trocknung des Einsatzmaterials zu erzielen, ist das zugeführte Gas erfindungsgemäß vorgewärmt. Zum Vorwärmen des Gases ist erfindungsgemäß die Gas-Zuführeinrichtung mit der Gas-Abführeinrichtung verbunden. Das aus dem Reaktor abgeführte heiße Gas wird erfindungsgemäß somit zum Vorwärmen des dem Schachtkörper zugeführten Gases genutzt. Der Zuführöffnung des Reaktors ist eine Schleusenanordnung nachgeordnet, die das Einbringen des Einsatzmaterials steuert. Im Bereich der Schleusenanordnung ist zumindest ein Teil der Gaszuführeinrichtung mit der Schleusenkammer verbunden. Die erfindungsgemäße Nutzung des abgeführten Gases als Energieträger führt dazu, dass zum Vorwärmen des Gases keine zusätzliche Energie erforderlich ist und das Einsatzmaterial bereits in der Schleusenanordnung eine erste Trocknung erfährt. Die Schleusenanordnung wird dadurch zusätzlich zum Trocknen des Einsatzmaterials genutzt. Ein weiterer wesentlicher Vorteil der Erfindung besteht darin, dass dem abgeführten Gas Wärme entzogen wird. Hierdurch ist die Weiterverarbeitung bzw. Nutzung dieses Gases vereinfacht.According to the invention, a gas supply device for supplying gas into the shaft body is connected to the shaft body. The supplied gas, which is preferably air or oxygen-enriched air, serves to dry the feedstock. In order to achieve a good and effective drying of the feedstock, the gas supplied is preheated according to the invention. For preheating the gas, the gas supply device according to the invention is connected to the gas discharge device. The discharged from the reactor hot gas is thus used according to the invention for preheating the gas supplied to the shaft body. The feed opening of the reactor is followed by a lock arrangement which controls the introduction of the feedstock. In the area of the lock arrangement, at least part of the gas supply device is connected to the lock chamber. The inventive use of the discharged gas as an energy source means that no additional energy is required for preheating the gas and the feed already undergoes a first drying in the lock assembly. The lock arrangement is thereby additionally used for drying the feedstock. Another essential advantage of the invention is that heat is removed from the discharged gas. This simplifies the further processing or use of this gas.

Aufgrund des Vorwärmens des Einsatzmaterials, was erfindungsgemäß bereits unmittelbar nach dem Zuführen des Einsatzmaterials in der Schleusenanordnung erfolgt, kann eine größere Produktpalette an Einsatzmaterial in dem Schachtreaktor verarbeitet werden, da das Einsatzmaterial während seines Aufenthalts im Schachtreaktor stärker erwärmt wird und somit auch bei schlechter verarbeitbaren Materialien eine Ent- und Vergasung erzielt werden kann. Insbesondere ist hierdurch auch erreicht, dass innerhalb des Reaktors eine bessere Ent- und Vergasung stattfindet, so dass das Nutzgas weniger Partikel aufweist. Insbesondere ist es aufgrund der erfindungsgemäßen Ausgestaltung des Gleichstrom-Schacht-Reaktors möglich, Nutzgase zu erzeugen, die einen erheblich geringeren Ölund Teeranteil sowie einen erheblich geringeren Schadstoffgehalt aufweisen.Due to the preheating of the feedstock, which according to the invention already takes place immediately after feeding the feedstock in the lock arrangement, a larger product range can Feedstock can be processed in the shaft reactor, since the feedstock is heated more during his stay in the shaft reactor and thus even with less processable materials degassing and gasification can be achieved. In particular, this also achieves that within the reactor better degassing and gasification takes place, so that the Nutzgas has fewer particles. In particular, it is possible due to the inventive design of the DC-shaft reactor to produce Nutzgase having a significantly lower oil and tar content and a significantly lower pollutant content.

Das Einbringen von Einsatzmaterial in den Schachtkörper erfolgt über die Schleusenanordnung. Mit Hilfe der Schleusenanordnung kann sichergestellt werden, dass beispielsweise nur eine begrenzte Menge an Umgebungsluft in den Schachtreaktor über die Zuführöffnung gelangt. Hierdurch kann der Prozess innerhalb des Schachtreaktors besser gesteuert werden. Die Schleusenanordnung weist vorzugsweise mindestens eine Schleusenkammer auf. Es wird somit ein erstes Schleusentor geöffnet, um das Einsatzmaterial in die Schleusenkammer einzubringen. Sodann wird dieses erste Schleusentor geschlossen, so dass die Schleusenkammer verschlossen ist. In diesem Zustand kann ggf. enthaltene Luft aus der Schleusenkammer abgesaugt und/oder durch anderes Gas ersetzt werden. Anschließend wird das zweite Schleusentor, die in Richtung des Innenraums des Schachtreaktors führt, geöffnet und das Einsatzmaterial gelangt aus der Schleusenkammer in den Reaktor.The introduction of feed into the shaft body via the lock assembly. With the help of the lock arrangement can be ensured that, for example, only a limited amount of ambient air enters the shaft reactor via the feed opening. This allows better control of the process within the shaft reactor. The lock arrangement preferably has at least one lock chamber. Thus, a first lock gate is opened to introduce the feed into the lock chamber. Then this first lock gate is closed, so that the lock chamber is closed. In this state, possibly contained air can be sucked out of the lock chamber and / or replaced by another gas. Subsequently, the second lock gate, which leads in the direction of the interior of the shaft reactor, opened and the feed material passes from the lock chamber into the reactor.

In vorteilhafter Weise ist die Schleusenanordnung so gestaltet, dass das Einbringen von Einsatzmaterial in den Gleichstrom-Schacht-Reaktor nahezu schüttkegelfrei bzw. schüttkegelarm erfolgt. Dadurch wird die Gefahr verringert, dass größere Stücke der Einsatzstoffe an die Reaktorwand rollen und eine Entmischung des Einsatzmaterials stattfindet. Die nachteiligen Folgen der Entmischung, wie beispielsweise Abschmelzung der Ofenausmauerung, Entstehung von Strömungskanälen für die eintretenden Gase und schwankende Gasqualitäten durch verschiedenartige Reaktionszonen, werden dadurch stark reduziert. Ein schüttkegelarmes Einbringen von Material in Schachtreaktoren lässt sich beispielsweise dadurch erreichen, dass der Reaktorschacht, welcher der Schleusenanordnung nachfolgt, eine ähnliche Querschnittsgeometrie aufweist. Ferner sollte die Fallhöhe des zugeführten Gutes möglichst niedrig sein. Insbesondere nicht höher als die dreifache Höhe des Einsatzmaterials in der Schleusenanordnung. Zusätzlich sollte sich das zweite Schleusentor möglichst schnell öffnen, damit die Unterseite des fallenden Einsatzmaterials möglichst waagerecht bleibt.Advantageously, the lock arrangement is designed so that the introduction of feed into the DC shaft reactor takes place almost free of freeze or low-shear. This reduces the risk of larger pieces of feedstock rolling to the reactor wall and segregation of the feedstock. The adverse consequences of demixing, such as melting of Ofenausmauerung, emergence of flow channels for the incoming gases and fluctuating gas qualities due to different reaction zones are thereby greatly reduced. A low-shear introduction of material into shaft reactors can be achieved, for example, by the fact that the reactor shaft, which follows the lock arrangement, has a similar cross-sectional geometry. Furthermore, the drop height of the supplied goods should be as low as possible. In particular not higher than three times the height of the feed in the lock arrangement. In addition, the second floodgate should open as quickly as possible, so that the underside of the falling feed remains as horizontal as possible.

Ferner sollte das Einsatzmaterial in der Schleusenanordnung möglichst nicht selber bereits einen Schüttkegel enthalten. Dies lässt sich beispielsweise dadurch erreichen, dass die Schleusenkammer in der Schleusenanordnung vollständig mit Einsatzmaterial gefüllt wird und mit dem Schließen des ersten Schleusentores das Einsatzmaterial, das nicht in die Schleusenkammer passt, vom einzubringenden Einsatzmaterial abgeschnitten wird. Dazu ist in vorteilhafter Weise das erste Schleusentor als Schieber mit Schneidkante ausgebildet. Dadurch entspricht das einzubringende Einsatzmaterial nahezu der Geometrie der Schleusenkammer und weist insbesondere nahezu keinen Schüttkegel auf.Furthermore, the feedstock in the lock assembly should not as far as possible already contain a bulk cone. This can be achieved, for example, in that the lock chamber in the lock arrangement is completely filled with feed material and, as the first lock gate is closed, the feed which does not fit into the lock chamber is cut off from the feed material to be introduced. For this purpose, the first lock gate is designed as a slide with cutting edge in an advantageous manner. As a result, the feedstock to be introduced almost corresponds to the geometry of the lock chamber and in particular has almost no bulk cone on.

Damit das zweite Schleusentor möglichst schnell geöffnet werden kann, ist es in vorteilhafter Weise als Klappe oder Schieber ausgeführt.Thus, the second lock gate can be opened as quickly as possible, it is carried out in an advantageous manner as a flap or slide.

Nachfolgend wird die Erfindung anhand einer bevorzugten Ausführungsform unter Bezugnahme auf die anliegende Zeichnung erläutert.

Figur 1
zeigt eine schematische Seitenansicht eines Gleichstrom-Schacht-Reaktors.
Figur 2
zeigt eine schematische Seitenansicht einer bevorzugten Ausgestaltung einer Schleusenanordnung.
The invention will be explained with reference to a preferred embodiment with reference to the accompanying drawings.
FIG. 1
shows a schematic side view of a DC reactor shaft.
FIG. 2
shows a schematic side view of a preferred embodiment of a lock assembly.

Der Gleichstrom-Schacht-Reaktor weist einen Schachtkörper 10 auf. Der Schachtkörper 10 kann im dargestellten Ausführungsbeispiel in eine Schleusenanordnung 12, eine sich an die Schleusenanordnung 12 anschließende Trocknungszone 14, eine sich an die Trocknungszone 14 anschließende Entgasungszone 16 sowie eine sich hieran anschließende Vergasungszone 18 unterteilt werden. An die Vergasungszone 18 des Schachtkörpers 10 schließt sich ein Aufnahmekörper 20 an, der zur Aufnahme von geschmolzenem Einsatzmaterial 22 dient. Im Grenzbereich zwischen der Vergasungszone 18 und dem Aufnahmekörper 20 ist der Querschnitt des Aufnahmekörpers erweitert, so dass ein ringförmig ausgebildeter Gassammelraum 24 ausgebildet ist, der den unteren Teil der Vergasungszone 18 umgibt. Der Gassammelraum 24 ist mit einer im dargestellten Ausführungsbeispiel als Rohr ausgebildeten Gas-Abführeinrichtung 26 verbunden.The DC shaft reactor has a shaft body 10. In the exemplary embodiment illustrated, the shaft body 10 can be subdivided into a lock arrangement 12, a drying zone 14 adjoining the lock arrangement 12, a degassing zone 16 adjoining the drying zone 14, and a gasification zone 18 connected thereto. At the gasification zone 18 of the shaft body 10, a receiving body 20 connects, which serves to receive molten feedstock 22. In the boundary region between the gasification zone 18 and the receiving body 20, the cross-section of the receiving body is widened, so that an annularly formed gas collecting space 24 is formed, which surrounds the lower part of the gasification zone 18. The gas collecting space 24 is connected to a gas discharge device 26 designed as a pipe in the illustrated embodiment.

Das Einsatzmaterial wird durch eine Zuführöffnung 28 in den Schachtkörper 10 über die Schleusenanordnung 12 eingeführt. Das Zuführen des Einsatzmaterials erfolgt über die Schleusenanordnung 12 um das Einbringen großer Mengen an Umgebungsluft, durch die der Schmelz- und Vergasungsprozess unkontrolliert beeinflusst werden kann, zu verhindern. Hierzu weist die Schleusenanordnung 12 zwei Schleuseneinrichtungen bzw. Schleusentore 30,32 auf, zwischen denen die Schleusenkammer 34 ausgebildet ist, wobei die Schleusenkammer 34 bereits ein Teil des Schachtkörpers 10 ist.The feed is introduced through a supply port 28 into the well body 10 via the gate assembly 12. The feeding of the feed material takes place via the lock arrangement 12 in order to prevent the introduction of large amounts of ambient air, by means of which the melting and gasification process can be influenced in an uncontrolled manner. For this purpose, the lock arrangement 12 has two lock devices or lock gates 30, 32, between which the lock chamber 34 is formed, the lock chamber 34 already being part of the shaft body 10.

Im dargestellten Ausführungsbeispiel ist im Bereich der Trockenzone 14 des Schachtkörpers 10 eine Gas-Zuführeinrichtung 36 vorgesehen. Die Gas-Zuführeinrichtung 36 weist eine den Schachtkörper 10 umgebende Ringleitung 38 auf, die mit mehreren gleichmäßig an Umfang verteilten Düsen 40 verbunden ist. Über die Gas-Zuführeinrichtung 36 wird dem Einsatzmaterial im Bereich der Trockenzone 14 vorzugsweise heiße Luft, die ggf. mit Sauerstoff angereichert sein kann, zum Trocknen des Einsatzmaterials zugeführt.In the illustrated embodiment, a gas supply device 36 is provided in the region of the drying zone 14 of the shaft body 10. The gas supply device 36 has a ring conduit 38 surrounding the shaft body 10, which is connected to a plurality of nozzles 40 distributed uniformly around the circumference. About the gas feeder 36 is the feed in Area of the drying zone 14 preferably hot air, which may optionally be enriched with oxygen, fed to dry the feedstock.

In der sich an die Trockenzone 14 anschließenden Entgasungszone 16 ist eine weitere Gas-Zuführeinrichtung 42 angeordnet, die ebenfalls eine den Schachtkörper 10 umgebende Ringleitung 44 aufweist. Die Ringleitung 44 ist mit mehreren am Umfang vorzugsweise gleichmäßig verteilten Düse 46 verbunden. Über die Gas-Zuführeinrichtung 42 können energiereiche Gase, Sauerstoff, Luft oder andere zur Steuerung des Schmelz- und Vergasungsprozesses geeignete Gase dem Einsatzmaterial zugeführt werden.In the subsequent to the drying zone 14 degassing zone 16, a further gas supply means 42 is arranged, which also has a surrounding the shaft body 10 ring line 44. The ring line 44 is connected to a plurality of circumferentially preferably uniformly distributed nozzle 46. High-energy gases, oxygen, air or other gases suitable for controlling the melting and gasification process can be supplied to the feedstock via the gas feed device 42.

Weitere Düsen 48 sind in der Vergasungszone 18 vorgesehen. Über die Düsen 48 kann wiederum energiereiches Gas oder andere den Schmelz- und Vergasungsprozess steuernde Gase oder Stoffe zugeführt werden. Ebenso können anstatt der Düsen 48 auch Brenner vorgesehen sein, die in der Vergasungszone 18 unmittelbar Wärme dem Einsatzmaterial zuführen. Der Endbereich des zur Längsachse 50 rotationssymmetrischen Schachtkörpers 10 ist sich leicht verjüngend konisch ausgebildet, so dass das Einsatzmaterial im Bereich der Vergasungszone 18 etwas zurückgehalten wird.Further nozzles 48 are provided in the gasification zone 18. High-energy gas or other gases or substances controlling the melting and gasification process can in turn be supplied via the nozzles 48. Likewise, instead of the nozzles 48, it is also possible to provide burners which directly supply heat to the feedstock in the gasification zone 18. The end region of the shaft body 10, which is rotationally symmetrical with respect to the longitudinal axis 50, has a slightly tapered conical shape, so that the feed material is retained somewhat in the region of the gasification zone 18.

In einer Seitenwand 52 des Aufnahmekörpers 20 sind ferner mehrere am Umfang verteilte Düsen 54 angeordnet. Die Düsen 54 dienen zum Einbringen energiereicher Gase oder entsprechender Stoffe. Durch die Düsen 54 ist sichergestellt, dass die Schmelze 22 flüssig bleibt. Ebenso können anstelle der Düsen 54 auch Brenner vorgesehen sein.In a side wall 52 of the receiving body 20 a plurality of circumferentially distributed nozzles 54 are further arranged. The nozzles 54 serve to introduce high-energy gases or corresponding substances. By the nozzles 54 it is ensured that the melt 22 remains liquid. Likewise, burners may be provided instead of the nozzles 54.

Die Gas-Zuführeinrichtung 36 ist mit der Gas-Abführeinrichtung 26 verbunden. Hierzu führt das Rohr der Gas-Abführeinrichtung 26 durch das die heißen in dem Reaktor entstandenen Gase abgeführt werden, zu einem Wärmetauscher 56. Die abgeführten Gase bzw. Nutzgase strömen durch den Wärmetauscher 56 und werden sodann von einem Rohr 58 vorzugsweise zur Weiterverarbeitung abgeführt. Ferner ist mit dem Wärmetauscher 56 eine Rohrleitung 60 verbunden. Durch die Rohrleitung 60 wird Luft oder ein anderes Gas in den Wärmetauscher 56 geleitet, nimmt in dem Wärmetauscher 56 Wärme von dem Nutzgas auf und wird durch ein Rohr 62 wieder aus dem Wärmetauscher abgeleitet. Das Rohr 62 ist sodann über eine Heizeinrichtung 64 und ein Rohr 66 mit der Ringleitung 38 der Gas-Zuführeinrichtung 36 verbunden. Das Erwärmen der durch die Gas-Zuführeinrichtung 36 im Bereich der Trockenzone 14 dem Einsatzmaterial zugeführte Gas wird somit im Betrieb vorzugsweise ausschließlich durch die Wärme der Nutzgase mit Hilfe des Wärmetauschers 56 vorgewärmt. Mit Hilfe der Heizeinrichtung 64, bei der es sich beispielsweise um eine elektrische Heizung oder einen Brenner handeln kann, kann das über die Gas-Zuführeinrichtung zuzuführende Gas zusätzlich erwärmt werden. Insbesondere während des Start-Zyklus' des Reaktors, in dem noch keine heißen Nutzgase durch die Gas-Abführeinrichtung 26 abgeführt werden oder die Temperatur dieser Nutgase noch nicht hoch genug ist, kann die Heizeinrichtung 64 zum Erwärmen des Gases genutzt werden.The gas supply device 36 is connected to the gas discharge device 26. For this purpose, the tube of the gas discharge device 26 through which the hot gases produced in the reactor are discharged, to a heat exchanger 56. The discharged gases or Nutzgase flow through the heat exchanger 56 and are then discharged from a pipe 58 preferably for further processing. Further, with the heat exchanger 56 a Pipeline 60 connected. Through the pipe 60, air or other gas is passed into the heat exchanger 56, takes in the heat exchanger 56 heat from the useful gas and is discharged through a pipe 62 back out of the heat exchanger. The tube 62 is then connected via a heater 64 and a pipe 66 to the ring line 38 of the gas supply device 36. The heating of the gas supplied to the feed material by the gas feed device 36 in the region of the drying zone 14 is thus preferably preheated in operation exclusively by the heat of the useful gases with the aid of the heat exchanger 56. By means of the heating device 64, which may be, for example, an electric heater or a burner, the gas to be supplied via the gas supply device can be additionally heated. In particular, during the start cycle of the reactor in which no hot useful gases are still discharged through the gas discharge device 26 or the temperature of these groove gases is not high enough, the heater 64 can be used to heat the gas.

Erfindungsgemäß wird im Bereich der Schleusenanordnung 12 ein Teil 35 der Gas-Zuführeinrichtung 36 mit dem Schachtkörper 10 verbunden. Durch diese Verbindung wird das Einsatzgut bereits in der Schleusenanordnung 12 einer ersten Trocknung unterzogen.According to the invention, a part 35 of the gas feed device 36 is connected to the shaft body 10 in the region of the lock arrangement 12. Through this connection, the feedstock is already subjected to a first drying in the lock assembly 12.

Vorzugsweise ist eine Seitenwand 68 der Schleusenanordnung 12 doppelwandig ausgebildet. Hierdurch kann eine Erwärmung und somit eine Trocknung des Einsatzmaterials in der Schleusenkammer 34 erzielt werden indem ein heißes Medium durch die doppelwandige Seitenwand 68 geleitet wird. Vorzugsweise handelt es sich hierbei um Luft oder ein anderes Gas, das ebenfalls durch das Nutzgas vorzugsweise mit Hilfe des Wärmetauschers 56 vorgewärmt wird.Preferably, a side wall 68 of the lock assembly 12 is double-walled. In this way, heating and thus drying of the feed material in the lock chamber 34 can be achieved by passing a hot medium through the double-walled side wall 68. This is preferably air or another gas, which is likewise preheated by the useful gas, preferably with the aid of the heat exchanger 56.

Der ideale Materialeintrag setzt vorzugsweise eine homogene Mischung voraus, insbesondere bei Zudosierung von Zusätzen wie Koks und Kalk. Der Eintrag erfolgt erfindungsgemäß zentral auf der Achse des Reaktors. Der Reaktor ist im laufenden Betrieb möglichst voll zu halten. Eine Füllstandsüberwachung ist demzufolge vorzugsweise direkt unter dem Schleusentor 32 angebracht. Die Befüllung erfolgt in einer hohen Taktrate. Durch diese Maßnahmen wird gleichzeitig der Falschlufteintrag verringert und die Druckhaltung im Gesamtsystem verbessert.The ideal material input preferably requires a homogeneous mixture, in particular when adding additives such as coke and lime. The entry is carried out according to the invention centrally on the axis of the reactor. Of the Reactor should be kept as full as possible during operation. A level monitoring is therefore preferably mounted directly below the lock gate 32. The filling takes place in a high clock rate. These measures simultaneously reduce the false air intake and improve the pressure maintenance in the overall system.

Erfindungsgemäß sind die Bereiche Schleusenanordnung 12, Trocknungszone 14 und Entgasungszone 16 bis in die Vergasungszone 18 vorzugsweise zylindrisch oder leicht konisch sich nach unten erweiternd ausgebildet. Der Übergang zwischen den Zonen erfolgt ohne stufenförmige oder sprunghafte Querschnittserweiterung, d.h. der Übergang ist gleichen Querschnitts und ohne Ausbildung von schüttschichtfreien Hohlräumen, Stufen oder Kanten.According to the invention, the areas of the lock arrangement 12, the drying zone 14 and the degassing zone 16 are preferably cylindrical or slightly conically widening down to the gasification zone 18. The transition between the zones takes place without a step-shaped or sudden cross-sectional enlargement, i. the transition is the same cross-section and without formation of shake-free cavities, steps or edges.

Die Trocknungszone 14 kann insbesondere bei größeren Bauarten ebenfalls doppelwandig ausgeführt sein. Dies ermöglicht die indirekte Erwärmung der Gutsäule im Innern bzw. die Sicherstellung einer gleichmäßigen Temperatur an der Wandung und eine Verringerung von Kondensationserscheinungen an der Innenseite. Als Wärmeträgermedium wird vorzugsweise ebenfalls heiße Luft eingesetzt. Der Einsatz des am Ende des Prozesses aufstehenden Rauchgases ist ebenfalls möglich.The drying zone 14 can also be designed with double walls, in particular for larger types. This allows indirect heating of the Gutsäule inside or ensuring a uniform temperature on the wall and a reduction of condensation phenomena on the inside. The heat transfer medium is preferably also hot air used. The use of standing up at the end of the process flue gas is also possible.

Bei der Erwärmung des Ausgangsgutes findet in der Trocknungszone 14 die Verdampfung des Wassers statt. Die Temperatur im Gut steigt dabei nur wenig über 100°C an. Mit zunehmender Temperatur werden im weiteren Verlauf adsorbierte Gase wie Stickstoff und Kohlendioxid freigesetzt, welche nicht durch Spaltreaktionen entstanden sind. Spätestens hier kann von der Entgasung gesprochen werden. Oberhalb 250 bis 300 °C setzt dann die Entwicklung von Gasen und Dämpfen ein, bei denen es sich um abdestillierte niedrigmolekulare Verbindungen und erste Spaltprodukte handelt. Ein weiteres Ansteigen der Temperatur bewirkt den Ablauf von Reaktionen, die zur Bildung von Methan und Wasserstoff führen.When heating the starting material takes place in the drying zone 14, the evaporation of the water. The temperature in the estate rises only slightly above 100 ° C. With increasing temperature adsorbed gases such as nitrogen and carbon dioxide are released in the further course, which are not caused by cleavage reactions. At the latest here can be spoken of the degassing. Above 250 to 300 ° C then begins the development of gases and vapors, which are distilled low molecular weight compounds and first cleavage products. A further increase in temperature causes the course of reactions that lead to the formation of methane and hydrogen.

Die Entgasungszone 16 kann in Fortführung der Trocknungszone 14 ebenfalls doppelwandig gestaltet sein.The degassing zone 16 can also be designed double-walled in continuation of the drying zone 14.

Im unteren Drittel der Trocknungs- und Entgasungszone 14,16 ergibt sich ein Bereich, in welchem die Reaktorinnentemperatur größer als die Heißlufttemperatur ist. Hier kann die doppelwandige Ausführung durch eine silikatische Ausmauerung ersetzt werden. Eine Ausführung der gesamten Trocknungs- und Entgasungszone 14,16 mit einer Stampfmasse, auch bei einer doppelwandigen Gestaltung, ist vorteilhaft. Geringerem Verschleiß der Stahlbauhülle stehen geringerer Wärmeübergang und niedrigere Temperaturwechselbeständigkeit gegenüber.In the lower third of the drying and degassing zone 14,16 results in a range in which the internal reactor temperature is greater than the hot air temperature. Here, the double-walled version can be replaced by a silicate brick lining. An embodiment of the entire drying and degassing zone 14,16 with a ramming mass, even with a double-walled design, is advantageous. Less wear of the steel construction shell is offset by lower heat transfer and lower thermal shock resistance.

Bei der weiteren Erwärmung der Schüttsäule ab etwa 700°C erfolgt neben der Spaltung des Brennstoffes unter dem Einfluss der Wärme die heterogene Reaktion zwischen dem Brennstoff und dem noch nicht reagierten Sauerstoff der Luft.In the further heating of the pouring column from about 700 ° C is carried out in addition to the cleavage of the fuel under the influence of heat, the heterogeneous reaction between the fuel and the unreacted oxygen in the air.

Die Vergasungszone 18 ist die Hauptreaktionszone innerhalb des Schachtreaktors. Hier erfolgt bei Temperaturen von 1.200 bis 1.400 °C die stoffliche und energetische Umsetzung der Feststoffe. Aus dem festen Brennstoff entstehen Gase und feste Produkte von Koks bis Asche. Für die vollständige und gleichmäßige Reaktion ist entscheidend, dass eine homogene Schüttung durch das bereits entstandene Entgasungsgas und das hier einzubringende Vergasungsmittel gleichmäßig durchströmt wird. Die Vergasungszone 18 muss aus diesen Gründen eine ausreichende Höhe besitzen. Dies wird insofern dadurch erreicht, dass die Vergasungszone 18 als ein gerader zylindrischer Bereich mit Übergang in eine konische Verkleinerung des Querschnittes oder sofort als zunehmende Verjüngung ausgebildet ist. Da sich durch die stofflichen Umsetzungen und damit zusammenhängende zerstörende Kräfte das Materialkorn verkleinert, vergrößern sich die Hohlräume innerhalb der Schüttsäule. Durch die Verkleinerung des Schachtquerschnittes in diesem Bereich kann die Sinkgeschwindigkeit der Materialsäule vergleichmäßigt werden, Strömungskanäle werden zerstört und die Ausbildung von größeren Hohlräumen in der Schüttung wird vermieden.The gasification zone 18 is the main reaction zone within the shaft reactor. Here, at temperatures of 1,200 to 1,400 ° C, the material and energetic conversion of the solids. The solid fuel produces gases and solid products from coke to ash. For the complete and uniform reaction, it is crucial that a homogeneous bed is flowed through uniformly by the degassing gas already produced and the gasification agent to be introduced here. The gasification zone 18 must have a sufficient height for these reasons. This is achieved in that the gasification zone 18 is formed as a straight cylindrical portion with transition into a conical reduction of the cross section or immediately as an increasing taper. Since the material grain is reduced by the material transformations and related destructive forces, the cavities increase within the pouring column. By reducing the size of the shaft cross section in this area, the sinking speed of the Material column are evened out, flow channels are destroyed and the formation of larger voids in the bed is avoided.

In Fortführung der darüber befindlichen Entgasungszone 16 ist der Bereich der Vergasung ebenfalls mit einer silikatischen Masse ausgekleidet.In continuation of the degassing zone 16 above, the region of the gasification is likewise lined with a silicate mass.

Der untere zylindrische oder sich verjüngende Bereich des Vergasungsbereiches 18 ragt in die Schmelzzone 20 hinein. Auf diesen Teil liegt die darüber befindliche Schüttsäule zumindest teilweise auf, gleichzeitig herrschen dort hohe Temperaturen. Für die Sicherung der mechanischen Festigkeit und des Schutzes vor zu hohen Temperaturen erfolgt eine Kühlung mittels indirekter Wasserkühlung in der Schachtwand 70.The lower cylindrical or tapered region of the gasification region 18 projects into the molten zone 20. On this part, the Schüttsäule located above it at least partially, at the same time prevail there high temperatures. To secure the mechanical strength and the protection against excessively high temperatures, cooling takes place by means of indirect water cooling in the shaft wall 70.

Das Gas durchströmte im Gleichstrom mit dem Einsatzmaterial die Zone der Hochtemperaturvergasung 18. Die aus den abgelaufenen Entgasungs- und Thermolysereaktionen entstandenen längerkettigen Kohlenwasserstoffe sind hier thermisch gespalten worden und waren gleichzeitig an den ablaufenden Vergasungsprozesse beteiligt. Es entsteht ein brennbares Gas mittleren Heizwertes mit den Hauptkomponenten Kohlenmonoxid, Kohlendioxid, Wasserstoff und Wasserdampf ohne Bestandteile an kondensierbaren Kohlenwasserstoffen. Viele der dabei abgelaufenen chemischen Reaktionen sind endotherm. Die Temperatur des Gases wie der Schüttung verringert sich somit.The gas flowed through the zone of high-temperature gasification in co-current with the feed material. The longer-chain hydrocarbons formed from the expired degassing and thermolysis reactions were thermally split here and at the same time participated in the gasification processes taking place. The result is a combustible gas average calorific value with the main components carbon monoxide, carbon dioxide, hydrogen and water vapor without constituents of condensable hydrocarbons. Many of the chemical reactions that have taken place are endothermic. The temperature of the gas as well as the bed thus decreases.

Unterhalb des wassergekühlten Bereiches des Vergasungsbereiches 18 erfährt das Gas eine Umlenkung um etwa 180° und gelangt in den schüttschichtfreien Raum 24. Durch vorstehend beschriebene endotherme Vorgänge besitzt das Gas eine Temperatur von ca. 1.000 °C. Nach einer gewissen Gasberuhigung und -vergleichmäßigung wird das Gas oberhalb aus dem Reaktor abgesaugt.Below the water-cooled region of the gasification region 18, the gas undergoes a deflection by about 180 ° and enters the shake-free space 24. By the above-described endothermic processes, the gas has a temperature of about 1,000 ° C. After a certain gas calming and -gleichmäßigung the gas is sucked out of the reactor above.

Der Gassammelraum 24 ist bereits Bestandteil der Schmelzzone 20, welche oben wesentlich weiter als die hineinragende Vergasungszone 18 ist. Die zylindrische Schmelzzone 20 verkleinert sich konisch nach unten und schließt mit der Bodenplatte ab, oberhalb welcher sich die aufgeschmolzene Phase sammelt.The gas collection chamber 24 is already part of the melting zone 20, which is substantially further up than the projecting gasification zone 18 above. The Cylindrical melt zone 20 tapers conically downward and closes with the bottom plate above which the molten phase collects.

Die Schmelzzone 20 ist in ihrer Gesamtheit mit einer mehrschichtigen Stampfmasse versehen oder mit einer Ausmauerung ausgestattet. Grund hierfür sind die notwendigen hohen Temperaturen. Nur im Bereich des Gassammelraumes ist unter Umständen eine Ausmauerung nicht notwendig.The melting zone 20 is provided in its entirety with a multi-layer ramming mass or equipped with a lining. The reason for this is the necessary high temperatures. Only in the area of the gas collection room a lining may not be necessary.

Der vollständig entgaste und verkokte Feststoff, ist stellenweise bereits gesintert bzw. geschmolzen und sinkt aus der Vergasungszone 18 weiter in die Schmelzzone 20.The completely degassed and coked solid is already partially sintered or melted and sinks from the gasification zone 18 into the molten zone 20.

In die Schmelzzone 20 integriert ist eine Ebene mit mehreren Sauerstoffdüsen oder -Injektoren und/oder oxidierend betriebenen Brennern 54, welche ebenso symmetrisch auf der Achse verteilt sind.Integrated into the molten zone 20 is a plane with a plurality of oxygen nozzles or injectors and / or oxidatively operated burners 54, which are also distributed symmetrically on the axis.

Durch die Zuführung von Gas mit einem hohen Sauerstoffanteil kommt es zu starken exothermen Reaktionen mit dem Gas und dem Feststoff aus der Vergasungszone 18. Es ergeben sich Temperaturen, welche deutlich über dem Schmelzpunkt des Materials liegen, üblicherweise ca. 1400 °C bis 1600 °C. Im Bereich der Sauerstoffdüsen ergeben sich sogar heiße Temperaturzonen von 1800 bis 2000 °C. Unter diesen Bedingungen und durch die Zugabe von Schlackebildnern und/ oder Materialien, welche den Schmelzpunkt absenken, werden alle anorganischen Schadstoffen sicher aufgeschmolzen.The supply of gas with a high oxygen content leads to strong exothermic reactions with the gas and the solid from the gasification zone 18. This results in temperatures which are significantly above the melting point of the material, usually about 1400 ° C to 1600 ° C. , In the area of the oxygen nozzles even hot temperature zones of 1800 to 2000 ° C arise. Under these conditions and by the addition of slag formers and / or materials which lower the melting point, all inorganic pollutants are safely melted.

Das aufgeschmolzene Material sammelt sich als Schmelze am Boden des Reaktors. Die Entleerung dieser flüssigen Schmelze erfolgt wie in der Gießerei üblich über ein Abstichloch und eine Rinne 72. Eine Bauart mit Vorherd oder Siphon ist möglich.The molten material collects as a melt at the bottom of the reactor. The emptying of this liquid melt takes place as usual in the foundry via a tap hole and a gutter 72. A design with a forehearth or siphon is possible.

Bei ausreichend großer Bauart und entsprechender Verweilzeit der Schmelze wird sich die Schmelze in eine schwere metallhaltige Phase und eine darauf schwimmende Schlacke trennen. Hier besteht die Möglichkeit, über verschieden hohe Entleerungen eine verwertbare metallische Phase und eine Schlacke gewinnen zu können. Im Produkt Schlacke sind keine organischen Stoffe enthalten und die anorganischen Bestandteile sind in einer silikatischen Matrix stabil eingebaut. Die Nutzung als Material für den Hafen-, Deponie- und Straßenbau sind bekannt, ebenso möglich ist die Herstellung spezieller Gussformen und Produkten, wie sie in der Glasindustrie üblich sind.With sufficiently large design and appropriate residence time of the melt, the melt will separate into a heavy metal-containing phase and a slag floating on it. Here it is possible to gain a usable metallic phase and a slag via different high emptying. The product slag contains no organic substances and the inorganic components are stably incorporated into a silicate matrix. The use as a material for harbor, landfill and road construction are known, as is possible the production of special molds and products, as they are common in the glass industry.

Eine bevorzugte Ausführungsform der Schleusenanordnung 12 besteht darin, dass das zweite Schleusentor 32 als schnellöffnender Schieber ausgestaltet ist (Fig. 2). Dazu ist das Schleusentor 32 insbesondere mehrstückig ausgeführt. Beim Öffnen des Schleusentors 32 fällt das in der Schleusenkammer 34 befindliche Einsatzmaterial gleichmäßig in die Trocknungszone 14 des Schachtkörpers 10. Zuvor wurde das Einsatzmaterial mit dem mit der Schleusenkammer 34 verbundenen Teil 35 der Gas-Zuführeinrichtung 36 vorgetrocknet. Für den Fall, dass der Schachtkörper 10 mit soviel Einsatzmaterial gefüllt ist, dass ein Teil des Einsatzmaterials in die Schleusenkammer 34 hineinragt, ist das als Schieber ausgestaltete zweite Schleusentor 32 in vorteilhafter Weise mit einer Schneidkante versehen. Dadurch kann beim Schließen des zweiten Schleusentores 32 der in die Schleusenkammer 34 ragende Teil des Einsatzmaterials abgeschnitten werden, wodurch die Schleusenkammer 34 wieder geschlossen werden kann.A preferred embodiment of the lock arrangement 12 is that the second lock gate 32 is designed as a quick-opening slide ( Fig. 2 ). For this purpose, the floodgate 32 is designed in particular in several pieces. When opening the lock gate 32, the feed material contained in the lock chamber 34 falls evenly into the drying zone 14 of the shaft body 10. Previously, the feed was pre-dried with the part 35 of the gas feeder 36 connected to the lock chamber 34. In the event that the shaft body 10 is filled with so much feed material that a portion of the feed material protrudes into the lock chamber 34, designed as a slide second lock gate 32 is advantageously provided with a cutting edge. As a result, the part of the feed material protruding into the lock chamber 34 can be cut off when the second lock gate 32 is closed, as a result of which the lock chamber 34 can be closed again.

Damit sich in der Schleusenkammer 34 nahezu kein Schüttkegel ausbildet, wird die Schleusenkammer 34 vollständig gefüllt und der Teil des Einsatzmaterials, der nicht hereinpasst, abgeschnitten. Dazu ist das erste Schleusentor 30 als Schieber mit einer Schneidkante ausgeführt, der den oberen Teil des Einsatzmaterials von der Schleusenkammer 34 abtrennt. Das erste Schleusentor 30 kann in dieser Ausführungsform ebenfalls mehrstückig ausgeführt werden.In order that almost no pour cone is formed in the lock chamber 34, the lock chamber 34 is completely filled and the part of the feed material which does not fit in is cut off. For this purpose, the first lock gate 30 is designed as a slide with a cutting edge, which separates the upper part of the feed from the lock chamber 34. The first lock gate 30 can also be made in several pieces in this embodiment.

Zum Einbringen von Einsatzmaterial in den Schachtkörper 10 ist das zweite Schleusentor 32 zunächst geschlossen und das erste Schleusentor 30 geöffnet. Dadurch gelangt Einsatzmaterial in die Schleusenkammer 34. Nach dem Schließen des ersten Schleusentors 30 wird das zweite Schleusentor 32 geöffnet, wodurch das Einsatzmaterial in den Schachtkörper 10 fällt. Gleichzeitig kann durch die Zuführöffnung 28 bereits weiteres Einsatzmaterial eingefüllt werden, das auf dem ersten Schleusentor 30 bereitgestellt wird. Danach beginnt der Befüllungszyklus von Neuem.For introducing feed into the shaft body 10, the second lock gate 32 is initially closed and the first lock gate 30 is opened. As a result, feed material enters the lock chamber 34. After closing the first lock gate 30, the second lock gate 32 is opened, whereby the feed material falls into the shaft body 10. At the same time, additional feed material can already be introduced through the feed opening 28 which is provided on the first lock gate 30. Thereafter, the filling cycle begins again.

Claims (10)

  1. A co-current shaft reactor for melting and gasifying feedstock, comprising
    a vertical shaft body (10) for drying, heating and gasifying the feedstock, said shaft body (10) comprising a feed opening (28) for feeding the feedstock,
    a receiving body (20) adjoining the shaft body (10), for receiving molten feedstock (22),
    a gas discharge means (26) for discharging gases produced, said gas discharge means being connected with the shaft body (10) and/or the receiving body (20),
    a gas feed means (36) connected with the shaft body (10), for feeding gas into the shaft body (10) to dry the feedstock, said gas feed means (36) being connected with the gas discharge means (36) to heat up the gas, and
    a lock arrangement (12) comprising at least one lock chamber (34),
    characterized in that
    the lock arrangement (12) is arranged downstream of the feed opening (28), and
    at least a part (35) of the gas feed means (36) and/or at least a part of the gas discharge means (26) is connected with the lock chamber (34).
  2. The co-current shaft reactor of claim 1, characterized in that the gas feed means (36) and the gas discharge means (26) are interconnected via a heat exchanger (56).
  3. The co-current shaft reactor of claim 1 or 2, characterized in that the gas feed means (36) is connected with a heating means (64).
  4. The co-current shaft reactor of one of claims 1-3, characterized in that the lock arrangement (12) is arranged substantially asymmetrically with respect to the shaft body (10).
  5. The co-current shaft reactor of one of claims 1-4, characterized in that a side wall (68) of the shaft body (10) is of a double-walled structure, especially in the region of the lock arrangement (12) for heating the feedstock.
  6. The co-current shaft reactor of claim 5, characterized in that the double side wall (68) is connected with the gas feed means (36).
  7. The co-current shaft reactor of one of claims 1-6, characterized in that, in the region of the drying zone (14), the cross-sectional area of the shaft body (10) is similar to the cross-sectional surface of the lock arrangement (12).
  8. The co-current shaft reactor of one of claims 1-7, characterized by a first lock gate (30) which is designed in particular as a slide with a cutting edge, and/or a quick-opening second lock gate (32) which is designed in particular as a slide with a cutting edge.
  9. The co-current shaft reactor of claim 8, characterized in that the first lock gate (30) and/or the second lock gate (32) are of multi-part design.
  10. The co-current shaft reactor of one of claims 1-9, characterized in that the drop height of the feedstock introduced via the lock arrangement (12) is not higher than three times the height of the lock chamber (34).
EP02027458A 2001-12-14 2002-12-10 Co-current shaft reactor Expired - Lifetime EP1323809B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200230833T SI1323809T1 (en) 2001-12-14 2002-12-10 Co-current shaft reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE20120189U 2001-12-14
DE20120189U DE20120189U1 (en) 2001-12-14 2001-12-14 Co-current shaft reactor

Publications (3)

Publication Number Publication Date
EP1323809A2 EP1323809A2 (en) 2003-07-02
EP1323809A3 EP1323809A3 (en) 2004-01-02
EP1323809B1 true EP1323809B1 (en) 2009-04-01

Family

ID=7965116

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02027458A Expired - Lifetime EP1323809B1 (en) 2001-12-14 2002-12-10 Co-current shaft reactor

Country Status (4)

Country Link
EP (1) EP1323809B1 (en)
AT (1) ATE427347T1 (en)
DE (2) DE20120189U1 (en)
SI (1) SI1323809T1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10226862B3 (en) * 2002-06-15 2004-01-29 Gesellschaft für Nachhaltige Stoffnutzung mbH Method and device for generating a fuel gas from biomass
DE10327178B3 (en) * 2003-06-17 2005-05-04 Hans Ulrich Feustel Plant for producing metal and slag melts and synthesis gas from waste has gasification unit with tapping outlet at its base, unit being connected to gas quenching and cooling unit containing hydrocyclone and foam- and oil separator
EP1493799A1 (en) * 2003-07-04 2005-01-05 von Görtz &amp; Finger Technische Entwicklungs Ges.m.b.H. Flash water vapour gasification of biomass
FR2903168B1 (en) * 2006-06-30 2008-08-22 Fayard Eliane BURNER FOR REALIZING THE COMBUSTION OF SUBSTANCES REPUTEES DIFFICULTLY COMBUSTIBLE
MD3959C2 (en) * 2007-07-04 2010-04-30 Dinano Ecotechnology Llc Loader of the carboniferous raw material processing installation
GB2453111B (en) * 2007-09-25 2010-12-08 Refgas Ltd Gasification
DE102013218521A1 (en) * 2013-09-16 2015-03-19 Sgl Carbon Se Shaft furnace and process for working up a fluorine-containing waste product

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE966459C (en) * 1952-06-29 1957-08-08 Paul Hahnel Dr Ing Process for the oxidizing and reducing treatment of oxidic ores in shaft furnaces
DE2633128C3 (en) * 1976-07-23 1980-06-26 Kernforschungsanlage Juelich, Gmbh, 5170 Juelich Firing grate for a device for incinerating waste materials
BR7706858A (en) * 1976-10-26 1978-07-04 Union Steel Corp South Africa PROCESS AND APPARATUS FOR THE CONTINUOUS PRODUCTION OF A REDUCING GAS CONTAINING CARBON AND HYDROGEN MONOXIDE
US4530702A (en) * 1980-08-14 1985-07-23 Pyrenco, Inc. Method for producing fuel gas from organic material, capable of self-sustaining operation
US4584947A (en) * 1985-07-01 1986-04-29 Chittick Donald E Fuel gas-producing pyrolysis reactors
FR2596409B1 (en) * 1986-04-01 1988-07-08 Distrigaz Sa CO-CURRENT COAL GASIFICATION METHOD AND APPARATUS
FR2610087B1 (en) * 1987-01-22 1989-11-24 Aerospatiale PROCESS AND DEVICE FOR THE DESTRUCTION OF SOLID WASTE BY PYROLYSIS
DE3734988A1 (en) * 1987-10-15 1989-04-27 Voest Alpine Ind Anlagen Process for continuously operating a heat recovery installation and apparatus for carrying out the process
CA2036581C (en) * 1990-02-23 1998-09-22 Gunter H. Kiss Method of transporting, intermediate storage and energetic and material utilization of waste goods of all kinds and device for implementing said method
DE4030554A1 (en) * 1990-09-27 1992-04-09 Bergmann Michael Dr Procedure and device for thermal treatment of waste materials - comprises reactor combustion zone charged with waste, coke and lime, and gas produced passes through hot coke be also located in reactor
DE4317145C1 (en) * 1993-05-24 1994-04-28 Feustel Hans Ulrich Dipl Ing Scrap disposal in coke-fired shaft furnace - involves circulation of organic content gasification gas to metal content melting zone
DE19640497C2 (en) * 1996-10-01 1999-01-28 Hans Ulrich Dipl Ing Feustel Coke-heated cycle gas cupola for material and / or energy recovery of waste materials
DE19816864C2 (en) * 1996-10-01 2001-05-10 Hans Ulrich Feustel Coke-heated cycle gas cupola furnace for material and / or energy recovery of waste materials of different compositions
DE10007115C2 (en) * 2000-02-17 2002-06-27 Masch Und Stahlbau Gmbh Rolan Process and reactor for gasifying and melting feedstocks with descending gas flow
DE10127138C2 (en) * 2000-06-23 2003-12-24 Nachhaltige Stoffnutzung Mbh G Method and device for generating a fuel gas from biomass
JP2002081624A (en) * 2000-09-05 2002-03-22 Kawasaki Heavy Ind Ltd Waste gasification melting furnace and operation method of the melting furnace

Also Published As

Publication number Publication date
ATE427347T1 (en) 2009-04-15
DE20120189U1 (en) 2003-04-24
DE50213409D1 (en) 2009-05-14
EP1323809A2 (en) 2003-07-02
EP1323809A3 (en) 2004-01-02
SI1323809T1 (en) 2009-08-31

Similar Documents

Publication Publication Date Title
DE19930071C2 (en) Method and device for pyrolysis and gasification of organic substances and mixtures
AT402964B (en) METHOD FOR THE USE OF DISPOSAL GOODS
EP2082013B1 (en) Method for producing a product gas rich in hydrogen
EP1261827B1 (en) Reactor and method for gasifying and/or melting materials
EP0055840B1 (en) Process and plant for the combustion of organic materials
EP1248828B1 (en) Device and method for the production of fuel gases
DE112011100718T5 (en) Carbon conversion system with integrated processing zones
CH615215A5 (en)
DE69724617T2 (en) MELTING PROCESS FOR GASIFYING SOLID WASTE
DE4030554C2 (en)
DE60033782T2 (en) METHOD FOR GASIFYING CARBON CONTAINING FUELS IN A FIXED BEDGED GASER
EP1187891B1 (en) Method and device for disposing of waste products
DE102016121046B4 (en) Duplex-TEK multistage gasifier
EP0767342B2 (en) Process for disposal of irregular waste
EP1323809B1 (en) Co-current shaft reactor
DE3614048A1 (en) METHOD AND DEVICE FOR GASIFYING LOW-QUALITY FUELS IN A FLUID METAL MELTING BATH
DD202176A5 (en) METHOD AND DEVICE FOR CONTINUOUS PRODUCTION OF FUEL GAS FROM ORGANIC WASTE MATERIAL
EP1338847B1 (en) Cocurrent Shaft Reactor
DE202009002781U1 (en) Reactor for the thermal treatment of a feedstock
DE3005205C2 (en) Discharge device for a waste pyrolysis plant
DE19937188C1 (en) Processing of industrial or domestic refuse to produce synthesis gas includes aspirating gases from a coolant water settling tank
DE102013015920A1 (en) Device in the form of a 3-zone carburetor and method for operating such a carburetor for the thermal conversion of waste products and wastes
EP1325950B1 (en) Co-current shaft reactor
EP0704658A2 (en) Process for thermal treatment of waste material, especially refuse, and rotary drum furnace for carrying out the process
DE102015009458A1 (en) reduction recycling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OXYTEC ENERGY GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 23G 5/24 B

Ipc: 7C 10J 3/26 A

Ipc: 7C 10J 3/22 B

17P Request for examination filed

Effective date: 20040630

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

17Q First examination report despatched

Effective date: 20050117

17Q First examination report despatched

Effective date: 20050117

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UMWELTKONTOR RENEWABLE ENERGY AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMILE BETEILIGUNGS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50213409

Country of ref document: DE

Date of ref document: 20090514

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090712

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20091217

Year of fee payment: 8

Ref country code: CZ

Payment date: 20091201

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20091202

Year of fee payment: 8

Ref country code: SI

Payment date: 20091201

Year of fee payment: 8

26N No opposition filed

Effective date: 20100105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20091223

Year of fee payment: 8

BERE Be: lapsed

Owner name: SMILE BETEILIGUNGS G.M.B.H.

Effective date: 20091231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091229

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091210

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090702

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101210

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20110729

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 5719

Country of ref document: SK

Effective date: 20101210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50213409

Country of ref document: DE

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101210

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401