EP1323809A2 - Co-current shaft reactor - Google Patents

Co-current shaft reactor Download PDF

Info

Publication number
EP1323809A2
EP1323809A2 EP02027458A EP02027458A EP1323809A2 EP 1323809 A2 EP1323809 A2 EP 1323809A2 EP 02027458 A EP02027458 A EP 02027458A EP 02027458 A EP02027458 A EP 02027458A EP 1323809 A2 EP1323809 A2 EP 1323809A2
Authority
EP
European Patent Office
Prior art keywords
shaft
gas
lock
shaft body
reactor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02027458A
Other languages
German (de)
French (fr)
Other versions
EP1323809A3 (en
EP1323809B1 (en
Inventor
Jürgen Möser
Manfred Schulz
Thomas Flick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smile Beteiligungs GmbH
Original Assignee
Umweltkontor Renewable Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umweltkontor Renewable Energy AG filed Critical Umweltkontor Renewable Energy AG
Priority to SI200230833T priority Critical patent/SI1323809T1/en
Publication of EP1323809A2 publication Critical patent/EP1323809A2/en
Publication of EP1323809A3 publication Critical patent/EP1323809A3/en
Application granted granted Critical
Publication of EP1323809B1 publication Critical patent/EP1323809B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/32Devices for distributing fuel evenly over the bed or for stirring up the fuel bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/08Continuous processes with ash-removal in liquid state
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/10Continuous processes using external heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/14Continuous processes using gaseous heat-carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/04Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/02Shaft or like vertical or substantially vertical furnaces with two or more shafts or chambers, e.g. multi-storey
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • F27D3/0032Charging or loading melting furnaces with material in the solid state using an air-lock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0943Coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0996Calcium-containing inorganic materials, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1628Ash post-treatment
    • C10J2300/1634Ash vitrification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1869Heat exchange between at least two process streams with one stream being air, oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/16Waste feed arrangements using chute
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/18Waste feed arrangements using airlock systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/26Biowaste
    • F23G2209/261Woodwaste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/28Plastics or rubber like materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/70Incinerating particular products or waste
    • F23G2900/7004Incinerating contaminated animal meals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15081Reheating of flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2001/00Composition, conformation or state of the charge
    • F27M2001/05Waste materials, refuse
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2003/00Type of treatment of the charge
    • F27M2003/14Pyrolising

Definitions

  • the present invention relates to a DC shaft reactor for Melting and gasifying feedstocks of different types and Consistency, such as pollutant-free and / or contaminated woods, house and Bulky waste, alternative fuels, pelletized dusts or animal meal, Plastics, industrial and commercial waste.
  • feedstocks of different types and Consistency such as pollutant-free and / or contaminated woods, house and Bulky waste, alternative fuels, pelletized dusts or animal meal, Plastics, industrial and commercial waste.
  • a synthesis gas which is used to generate electrical energy and heat is suitable and / or as a basis for Synthesis processes are used.
  • a solid product creates a non-leachable slag and a materially processable Metal phase or a non-elutable liquid phase, which for a further processing is available.
  • a coke-heated cycle gas cupola is used material and / or energy recovery of waste materials described. It consists of a vertical furnace shaft with below the Facing large volume recycle gas vents through Channels and nozzles are connected to the melting and overheating zone, above which a large volume excess gas extraction level resulting gas from the process.
  • the furnace shaft part between recycle gas and excess gas suction opening queritessverjüngt is the furnace shaft part between recycle gas and excess gas suction opening quer4.000sverjüngt.
  • the heat transfer takes place as in DE 43 17 145 C1 due to the fact that the feedstock rises upwards in the countercurrent principle Process gases.
  • the multiple countercurrent flow of the gas through the moving bed allows despite some modifications by narrowing the cross-section in the shaft and expanding the cross-section in the Gas discharge does not mean processing a wide range of feed.
  • DE 198 16 864 A1 describes a cycle gas cupola, in which an excess gas extraction below the melting and Overheating zone is arranged. This results in a Counterflow gasification and heat transfer in the upper furnace shaft area, where the gas is sucked off through large-volume openings and through Channels / nozzles are directed into the melting and overheating zone. In the Subsequent DC gasification turns the gas at high temperatures reduced and longer-chain hydrocarbons split. Through this The chosen arrangement is the negative influence of short-circuit currents reduced. The spatial proximity of the endothermic processes to the range and the large-volume excess gas extraction removes from the melt necessary heat to the necessary under all operating conditions to ensure liquid discharge of the melt.
  • DE 100 07 115 A1 describes a reactor for gasifying and / or melting Feedstocks with a feed, pyrolysis, melting and Overheating section described.
  • the pyrolysis section has one Cross-sectional expansion as a gas supply space in which at least one Combustion chamber with at least one burner, through which hot Combustion gases are fed to a bulk cone that forms.
  • high-energy media are created using upper and lower Injection agents in the area of the melting and overheating zone as well introduced above the melt by means of oxygen lances and / or nozzles.
  • the disadvantage of this device is that it is enlarged by the cone Reactor surface in the area of the cross-sectional expansion of the pyrolysis, because Heat losses occur.
  • the object of the invention is a DC shaft reactor to create with that even when using different input materials
  • the inventive DC shaft reactor for melting and Gasification of feedstock has a vertical shaft body.
  • the feed material is dried and heated within the shaft body and gasified.
  • the shaft body can therefore usually be divided into the areas Divide the drying zone, degassing zone and gasification zone.
  • To the The shaft body is followed by a receiving body, which is used to hold molten feed. Within that body is the Melting zone of the reactor formed.
  • the shaft body and / or the Receiving bodies are equipped with a gas discharge device for removing the Produced useful gases generated within the reactor.
  • the Discharge device in the area between the shaft body and the Arranged body and designed as a tube.
  • the vertically aligned shaft body on a feed device through which the Feed material is fed to the shaft reactor.
  • a gas supply device for the Supply of gas connected to the manhole body.
  • the gas supplied at which is preferably air or oxygen-enriched air acts to dry the feed.
  • To be good and effective To achieve drying of the feed is the gas supplied preheated according to the invention.
  • To preheat the gas According to the invention, the gas supply device with the gas discharge device connected.
  • the hot gas discharged from the reactor is according to the invention thus used to preheat the gas supplied to the shaft body.
  • a lock arrangement is arranged downstream of the feed opening of the reactor, that controls the feeding of the feed. In the field of Lock arrangement is at least part of the gas supply device with the Lock chamber connected.
  • the use of the invention dissipated gas as an energy source leads to the preheating of the Gases no additional energy is required and the feed already undergoes a first drying in the lock arrangement.
  • the Lock arrangement is thereby in addition to drying the Input material used.
  • Another significant advantage of the invention is that heat is extracted from the gas that is removed. This is the further processing or use of this gas is simplified.
  • Feed material can be processed in the shaft reactor, because the Feed material stronger during his stay in the shaft reactor is heated and thus also with poorly processable materials Degassing and gasification can be achieved. In particular, this also means achieved that better degassing and gasification within the reactor takes place so that the useful gas has fewer particles.
  • inventive design of the DC shaft reactor possible to produce useful gases that have a significantly lower oil and Tar content and a significantly lower pollutant content.
  • the feed material is introduced into the shaft body via the Lock arrangement.
  • the Lock arrangement preferably has at least one lock chamber on. A first lock gate is thus opened in order to insert the feed material in bring in the lock chamber. Then this first lock gate closed so that the lock chamber is closed. In this Condition may contain any air contained in the lock chamber and / or be replaced by another gas. Then the second Lock gate leading towards the interior of the shaft reactor, opened and the feed material comes from the lock chamber into the Reactor.
  • the lock arrangement is advantageously designed such that the Introducing feed material into the DC shaft reactor almost free cone or low cone. This eliminates the danger reduces that larger pieces of the feed materials roll onto the reactor wall and segregation of the feed takes place. The adverse consequences segregation, such as melting of the furnace lining, Creation of flow channels for the entering gases and fluctuating gas qualities due to different reaction zones thereby greatly reduced.
  • a low-cone introduction of material into Shaft reactors can be achieved, for example, by the fact that the Reactor shaft, which follows the lock arrangement, a similar one Has cross-sectional geometry.
  • the drop height of the fed Good things should be as low as possible. In particular, not higher than three times the height of the feed material in the lock arrangement. In addition, that should open the second lock gate as quickly as possible so that the underside of the falling feedstock remains as horizontal as possible.
  • the feed material in the lock arrangement should not be possible itself already contain a cone. This can be done, for example thereby achieve that the lock chamber in the lock arrangement completely filled with feed and with the closing of the first Lock gates the material that does not fit in the lock chamber, is cut off from the feed material to be introduced. This is in advantageously the first lock gate as a slide with a cutting edge educated. As a result, the feed material to be introduced almost corresponds the geometry of the lock chamber and in particular has almost none Cone on.
  • the second lock gate can be opened as quickly as possible advantageously carried out as a flap or slide.
  • the DC shaft reactor has a shaft body 10.
  • the shaft body 10 can be converted into a Lock arrangement 12, one adjoining the lock arrangement 12 subsequent drying zone 14, one adjoining the drying zone 14 subsequent degassing zone 16 and a subsequent one Gasification zone 18 can be divided.
  • a receiving body 20 which is used for receiving of molten feed 22 is used.
  • the cross section of the Receiving body expanded so that a ring-shaped Gas collection chamber 24 is formed, the lower part of the gasification zone 18 surrounds.
  • the gas collecting space 24 is shown in FIG Embodiment designed as a tube gas discharge device 26th connected.
  • the feed material is fed into the shaft body 10 through a feed opening 28 introduced over the lock assembly 12. Feeding the Feed material takes place via the lock arrangement 12 for introduction large amounts of ambient air, through which the melting and Gasification process can be influenced in an uncontrolled manner to prevent.
  • the lock arrangement 12 has two lock devices or Lock gates 30, 32 between which the lock chamber 34 is formed, the lock chamber 34 already a part of the Manhole body 10 is.
  • the drying zone 14 of the A gas supply device 36 is provided in the shaft body 10.
  • the gas supply device 36 has a ring line surrounding the shaft body 10 38, which have a plurality of nozzles 40 distributed evenly around the circumference connected is.
  • About the gas feed device 36 is the feed in Area of the drying zone 14 preferably hot air, possibly with oxygen can be enriched, fed to dry the feed.
  • a further gas supply device 42 which is also a Has shaft body 10 surrounding ring line 44.
  • the ring line 44 is with several nozzles 46, which are preferably evenly distributed over the circumference connected. Energy-rich gases, Oxygen, air or other to control the melting and Gases suitable gases are fed to the feed.
  • nozzles 48 are provided in the gasification zone 18. Over the nozzles 48, in turn, high energy gas or other can melt and Gases or substances controlling the gasification process can be supplied. As well instead of the nozzles 48, burners can also be provided which are located in the Gasification zone 18 immediately supply heat to the feed.
  • the End region of the shaft body 10 which is rotationally symmetrical with respect to the longitudinal axis 50 is slightly tapered, so that the feed material in the Area of the gasification zone 18 is somewhat retained.
  • nozzles 54 are arranged in a side wall 52 of the receiving body 20 in a side wall 52 of the receiving body 20 in a side wall 52 of the receiving body 20 .
  • the nozzles 54 are used for insertion energy-rich gases or similar substances. Through the nozzles 54 is ensures that the melt 22 remains liquid.
  • Nozzles 54 may also be provided to burners.
  • the gas supply device 36 is connected to the gas discharge device 26.
  • the pipe of the gas discharge device 26 leads through the hot ones in gases produced in the reactor are discharged to a heat exchanger 56.
  • the discharged gases or useful gases flow through the heat exchanger 56 and are then preferably from a tube 58 to Further processing carried away.
  • the heat exchanger 56 Pipeline 60 connected. Air or another is passed through the pipeline 60
  • Gas passed into the heat exchanger 56 takes in the heat exchanger 56 Heat from the useful gas and is returned from the pipe 62 Heat exchanger derived.
  • the tube 62 is then over a heater 64 and a pipe 66 with the ring line 38 of the gas supply device 36 connected.
  • Heating the area by the gas supply 36 the drying zone 14 gas supplied to the feedstock is thus in operation preferably exclusively by the heat of the useful gases with the help of Heat exchanger 56 preheated.
  • the heater 64 where it are, for example, an electric heater or a burner can, the gas to be supplied via the gas supply device can additionally be warmed. Especially during the start cycle of the reactor, in no hot useful gases through the gas discharge device 26 be dissipated or the temperature of these groove gases is not yet high enough the heater 64 can be used to heat the gas.
  • part 35 of the Gas supply device 36 connected to the shaft body 10. Through this The feedstock is already connected in the lock arrangement 12 subjected to the first drying.
  • a side wall 68 of the lock arrangement 12 is preferably double-walled. This can cause heating and thus Drying of the feed material can be achieved in the lock chamber 34 by passing a hot medium through the double-walled side wall 68 becomes. It is preferably air or another gas that also by the useful gas, preferably with the help of the heat exchanger 56 is preheated.
  • the ideal material input preferably uses a homogeneous mixture ahead, especially when adding additives such as coke and lime.
  • entry takes place centrally on the axis of the reactor.
  • the reactor should be kept as full as possible during operation.
  • a Level monitoring is therefore preferably directly below the Lock gate 32 attached. Filling takes place at a high cycle rate. Through these measures, the false air entry is simultaneously reduced and improved pressure maintenance in the overall system.
  • the areas are lock arrangement 12, drying zone 14 and degassing zone 16 into the gasification zone 18 preferably cylindrical or slightly tapered downwards.
  • the transition between the zones takes place without step-like or abrupt Cross-sectional expansion, i.e. the transition is the same cross section and without the formation of voids, steps or edges that are free of fill layers.
  • the drying zone 14 can also be used, particularly in the case of larger designs be double-walled. This enables indirect heating of the Good column inside or ensuring an even temperature of the wall and a reduction in condensation on the Inside. Hot air is preferably also used as the heat transfer medium used. The use of the flue gas at the end of the process is also possible.
  • the drying zone 14 takes place Evaporation of the water takes place.
  • the temperature in the goods rises only slightly above 100 ° C.
  • gases such as nitrogen and carbon dioxide are released, which are not have arisen from fission reactions.
  • the temperature sets above 250 to 300 ° C Development of gases and vapors that are distilled off low molecular weight compounds and the first fission products. Another one Rising temperature causes the reactions that lead to formation of methane and hydrogen.
  • the degassing zone 16 can also continue the drying zone 14 be double-walled.
  • the double-walled version can be replaced by a silicate brickwork to be replaced.
  • An execution of the whole Drying and degassing zone 14, 16 with a ramming mass, also at a double-walled design is advantageous. Less wear and tear on the Steel structural shells stand for lower heat transfer and lower Resistance to temperature changes.
  • the gasification zone 18 is the main reaction zone within the Shaft reactor. This takes place at temperatures of 1,200 to 1,400 ° C Material and energetic implementation of the solids. From the solid Gases and solid products from coke to ash are produced as fuel. For the Complete and even response is critical to having a homogeneous Filling with the degassing gas already created and this gasification agent to be introduced is evenly flowed through.
  • the Gasification zone 18 must be of sufficient height for these reasons have. This is achieved in that the gasification zone 18 as a straight cylindrical area with a transition to a conical reduction of the cross section or immediately as an increasing taper. There themselves through the material implementations and related destructive forces reduce the grain of material, the increase Cavities inside the pillar. By reducing the Shaft cross-section in this area, the rate of descent Material column are equalized, flow channels are destroyed and the formation of larger voids in the bed is avoided.
  • the lower cylindrical or tapered area of the Gasification area 18 protrudes into the melting zone 20. On this part the column above it lies at least partially, at the same time the temperatures are high there. For securing the mechanical Strength and protection against excessive temperatures are cooled using indirect water cooling in shaft wall 70.
  • the from the expired degassing and Thermolysis reactions are longer chain hydrocarbons have been thermally split here and were at the same time running out Gasification processes involved.
  • a medium combustible gas is formed Calorific value with the main components carbon monoxide, carbon dioxide, Hydrogen and water vapor without components of condensable Hydrocarbons. Many of the chemical reactions that took place are endothermic. The temperature of the gas and the bed is reduced Consequently.
  • the gas is deflected by about 180 ° and reaches the free bed Room 24. Due to the endothermic processes described above, the Gas a temperature of approximately 1,000 ° C. After a certain calming of the gas and equalization, the gas is sucked out of the reactor above.
  • the gas collecting space 24 is already part of the melting zone 20, which the top is much wider than the protruding gasification zone 18.
  • the cylindrical melting zone 20 shrinks conically downwards and closes with the base plate, above which the melted phase collects.
  • the melting zone 20 is in its entirety with a multilayer Provide ramming compound or equipped with a lining. reason the high temperatures required for this. Only in the area of The gas collecting space may not need bricking.
  • the completely degassed and coked solid is already in places sintered or melted and sinks from the gasification zone 18 into the Melting zone 20.
  • a level with several oxygen nozzles is integrated into the melting zone 20 or injectors and / or oxidizing burners 54, which also are symmetrically distributed on the axis.
  • the supply of gas with a high proportion of oxygen leads to this strong exothermic reactions with the gas and the solid from the Gasification zone 18.
  • There are temperatures which are significantly above the The melting point of the material is usually about 1400 ° C to 1600 ° C. in the In the area of the oxygen nozzles there are even hot temperature zones from 1800 to 2000 ° C. Under these conditions and by adding Slag formers and / or materials that lower the melting point, all inorganic pollutants are melted safely.
  • the melted material collects as a melt at the bottom of the Reactor. This liquid melt is emptied as in the foundry usual via a tap hole and a gutter 72. A type with forehearth or Siphon is possible.
  • a preferred embodiment of the lock arrangement 12 consists in that the second lock gate 32 is designed as a quick-opening slide (Fig. 2).
  • the lock gate 32 is in particular made of several pieces. When the lock gate 32 is opened, this falls into the lock chamber 34 located feed material evenly in the drying zone 14 of the Shaft body 10. Previously, the feed material with the Lock chamber 34 connected part 35 of the gas supply device 36 pre-dried.
  • the second designed as a slide Lock gate 32 is advantageously provided with a cutting edge. As a result, when the second lock gate 32 is closed, Lock chamber 34 projecting part of the feed are cut off, whereby the lock chamber 34 can be closed again.
  • the first lock gate 30 executed as a slide with a cutting edge, the separates the upper part of the feed material from the lock chamber 34.
  • the in this embodiment, the first lock gate 30 can also be in several pieces be carried out.
  • the second is for introducing feed material into the shaft body 10 Lock gate 32 initially closed and the first lock gate 30 opened.
  • feed material gets into the lock chamber 34 Closing the first lock gate 30 becomes the second lock gate 32 opened, whereby the feed material falls into the shaft body 10.
  • additional feed material can already pass through the feed opening 28 be filled, which is provided on the first lock gate 30. Then the filling cycle begins again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

Direct flow shaft reactor comprises a vertical shaft body (10) for drying, heating and gasifying the material to be treated and having a feed opening (28) for introducing the material; a receiving body (20); a gas removing device (26) connected to the shaft body and/or the receiving body; and a gas feeding device (36) connected to the shaft body for introducing gas to the shaft and for drying the material. <??>Direct flow shaft reactor comprises a vertical shaft body (10) for drying, heating and gasifying the material to be treated and having a feed opening (28) for introducing the material; a receiving body (20) connected to the shaft body for receiving melted material; a gas removing device (26) connected to the shaft body and/or the receiving body; and a gas feeding device (36) connected to the shaft body for introducing gas to the shaft and for drying the material. Preferred Features: The gas feeding device and the gas removing device are connected together via a heat exchanger (56). The gas feeding device is connected to a heater (64). A sluice arrangement (12) is connected to the feed opening and has a sluice chamber. The gas feeding device is connected to the sluice chamber.

Description

Die vorliegende Erfindung betrifft einen Gleichstrom-Schacht-Reaktor zum Schmelzen und Vergasen von Einsatzstoffen unterschiedlicher Art und Konsistenz, wie schadstofffreie und/oder schadstoffbelastete Hölzer, Hausund Sperrmüll, Ersatzbrennstoffe, pelletierte Stäube bzw. Tiermehl, Kunststoffe, Industrie- und Gewerbeabfallstoffe.The present invention relates to a DC shaft reactor for Melting and gasifying feedstocks of different types and Consistency, such as pollutant-free and / or contaminated woods, house and Bulky waste, alternative fuels, pelletized dusts or animal meal, Plastics, industrial and commercial waste.

In Schacht-Reaktoren kann ein Synthesegas, welches zur Erzeugung von elektrischer Energie sowie Wärme geeignet ist und/oder als Basis für Syntheseprozesse Verwendung findet, erzeugt werden. Als festes Produkt entsteht eine nichtauslaugbare Schlacke und eine stofflich weiterverarbeitbare Metallphase oder eine nichteluierbare flüssige Phase, welche für eine weitergehende Verarbeitung zur Verfügung steht.In shaft reactors, a synthesis gas, which is used to generate electrical energy and heat is suitable and / or as a basis for Synthesis processes are used. As a solid product creates a non-leachable slag and a materially processable Metal phase or a non-elutable liquid phase, which for a further processing is available.

DE 43 17 145 C1 beschreibt ein Verfahren und eine Vorrichtung zur Entgasung von Abfallmaterialen auf Basis eines koksbeheizten Gegenstrom-Schachtofens. Hierbei wird das entstehende staubhaltige Gas vollständig abgezogen und in der darunter befindlichen Schmelz- und Überhitzungszone mit Sauerstoff bei hohen Temperaturen verbrannt. Die Gegenstromführung des Gases durch die sich nach unten bewegende Schüttung und die Absaugung zwischen der Kreislaufgasabsaugung und der Kreislaufgaszuführung ergeben eine Vielzahl von praktischen Problemen. Folge sind Kurzschlussströmungen im Schacht und ungenügende Wärmeübertragung in den oberen Schachtbereich, wodurch ein schadstoffbelastetes Gas mit Teer- und Staubbestandteilen entsteht. Hierdurch wird eine aufwendige Gasaufbereitung und -reinigung notwendig. Ferner besteht die Gefahr, dass durch Teer- und Staubablagerungen der kontinuierliche Betrieb gestört wird. Eine weitere permanente Gefahr für einen stabilen Betrieb ist die Führung von Pyrolyse- und Entgasungsgas mit Teerund Staubanteilen in Leitungen. Stellenweise oder vollständige Versetzung der Leitungen mit Teer- Staubablagerungen haben eine ungleichmäßige Kreislaufgasführung und damit eine ungleichmäßige Prozessführung im Schachtofen zur Folge.DE 43 17 145 C1 describes a method and a device for degassing of waste materials based on a coke-heated counterflow shaft furnace. The resulting dust-containing gas is completely drawn off and in the melting and superheating zone underneath with oxygen burned at high temperatures. The countercurrent flow of the gas through the moving bed and the suction between the Circulation gas extraction and the circulation gas supply result in a large number of practical problems. The result is short-circuit currents in the shaft and inadequate heat transfer to the upper shaft area, causing a polluted gas with tar and dust components is produced. hereby complex gas treatment and purification becomes necessary. Further there is a risk that the tar and dust deposits continuous operation is disrupted. Another permanent danger to you stable operation is the management of pyrolysis and degassing gas with tar Dust in lines. Partial or full transfer of the Lines with tar dust deposits have an uneven Recycle gas flow and thus an uneven process control in the Shaft furnace resulted.

In der DE 196 40 497 C2 wird ein koksbeheizter Kreislaufgaskupolofen zur stofflichen und/oder energetischen Verwertung von Abfallmaterialien beschrieben. Er besteht aus einem senkrechten Ofenschacht mit unterhalb der Begichtung liegenden großvolumigen Kreislaufgasabsaugöffnungen, die durch Kanäle und Düsen mit der Schmelz- und Überhitzungszone verbunden sind, oberhalb welcher eine großvolumige Überschussgasabsaugebene das entstehende Gas aus dem Prozess führt. Hierbei ist der Ofenschachtteil zwischen Kreislaufgas- und Überschussgasabsaugöffnung querschnittsverjüngt. Die Wärmeübertragung erfolgt wie auch in DE 43 17 145 C1 durch die im Gegenstromprinzip zum Einsatzmaterial nach oben steigenden Prozessgase. Auch die mehrfache Gegenstromführung des Gases durch die sich nach unten bewegende Schüttung ermöglicht trotz einiger Modifizierungen durch Querschnittsverengung im Schacht und Querschnittserweiterung im Gasabgang nicht die Verarbeitung eines breiten Spektrums an Einsatzmaterial.In DE 196 40 497 C2 a coke-heated cycle gas cupola is used material and / or energy recovery of waste materials described. It consists of a vertical furnace shaft with below the Facing large volume recycle gas vents through Channels and nozzles are connected to the melting and overheating zone, above which a large volume excess gas extraction level resulting gas from the process. Here is the furnace shaft part between recycle gas and excess gas suction opening querschnittsverjüngt. The heat transfer takes place as in DE 43 17 145 C1 due to the fact that the feedstock rises upwards in the countercurrent principle Process gases. The multiple countercurrent flow of the gas through the moving bed allows despite some modifications by narrowing the cross-section in the shaft and expanding the cross-section in the Gas discharge does not mean processing a wide range of feed.

Weiterführend ist in DE 198 16 864 A1 ein Kreislaufgaskupolofen beschrieben, bei welchem eine Überschussgasabsaugung unterhalb der Schmelz- und Überhitzungszone angeordnet ist. Hierdurch ergibt sich eine Gegenstromvergasung und Wärmeübertragung im oberen Ofenschachtbereich, wo das Gas mittels großvolumiger Öffnungen abgesaugt wird und durch Kanäle/ Düsen in die Schmelz- und Überhitzungszone geleitet wird. In der anschließenden Gleichstromvergasung wird das Gas bei hohen Temperaturen reduziert und längerkettige Kohlenwasserstoffe gespalten. Durch diese gewählte Anordnung wird der negative Einfluss von Kurzschlussströmungen verringert. Die räumliche Nähe der endothermen Prozesse zum Herdbereich und die großvolumige Überschussgasabsaugung entzieht der Schmelze notwendige Wärme, um unter allen Betriebsbedingungen den notwendigen flüssigen Austrag von Schmelze sicher zu stellen.Furthermore, DE 198 16 864 A1 describes a cycle gas cupola, in which an excess gas extraction below the melting and Overheating zone is arranged. This results in a Counterflow gasification and heat transfer in the upper furnace shaft area, where the gas is sucked off through large-volume openings and through Channels / nozzles are directed into the melting and overheating zone. In the Subsequent DC gasification turns the gas at high temperatures reduced and longer-chain hydrocarbons split. Through this The chosen arrangement is the negative influence of short-circuit currents reduced. The spatial proximity of the endothermic processes to the range and the large-volume excess gas extraction removes from the melt necessary heat to the necessary under all operating conditions to ensure liquid discharge of the melt.

In DE 100 07 115 A1 ist ein Reaktor zum Vergasen und/ oder Schmelzen von Einsatzstoffen mit einem Zuführ-, Pyrolyse-, Schmelz- und Überhitzungsabschnitt beschrieben. Der Pyrolyseabschnitt weist eine Querschnittserweiterung als Gaszuführraum auf, in den mindestens eine Brennkammer mit mindestens einem Brenner mündet, durch welche heiße Verbrennungsgase einem sich ausbildenden Schüttkegel zugeführt werden. Des weiteren werden energiereiche Medien mittels oberen und unteren Eindüsungsmitteln im Bereich der Schmelz- und Überhitzungszone sowie oberhalb der Schmelze mittels Sauerstofflanzen und/ oder Düsen eingebracht. Nachteilig ist bei dieser Vorrichtung die durch den Schüttkegel vergrößerte Reaktoroberfläche im Bereich der Querschnittserweiterung der Pyrolyse, da Wärmeverluste auftreten. Ferner rollen bei dem Schüttkegel die größeren Stücke der Einsatzstoffe an die Reaktorwand, wodurch eine nachteilige Entmischung auftritt. Die Folge ist eine stark einseitige Abschmelzung der Ofenausmauerung, die zu einer kürzeren Standzeit des Reaktors führt. Durch die Entmischung bilden sich in der Schüttung bevorzugte Strömungskanäle für die eintretenden Gase aus. Dies hat zur Folge, dass sich verschiedenartige inhomogene Reaktionszonen ausbilden, die zu schwankenden Gasqualitäten führen.DE 100 07 115 A1 describes a reactor for gasifying and / or melting Feedstocks with a feed, pyrolysis, melting and Overheating section described. The pyrolysis section has one Cross-sectional expansion as a gas supply space in which at least one Combustion chamber with at least one burner, through which hot Combustion gases are fed to a bulk cone that forms. Furthermore, high-energy media are created using upper and lower Injection agents in the area of the melting and overheating zone as well introduced above the melt by means of oxygen lances and / or nozzles. The disadvantage of this device is that it is enlarged by the cone Reactor surface in the area of the cross-sectional expansion of the pyrolysis, because Heat losses occur. Furthermore, the larger ones roll at the cone Pieces of the feed materials on the reactor wall, creating an adverse Segregation occurs. The result is a strongly one-sided melting of the Furnace lining, which leads to a shorter service life of the reactor. By the segregation forms preferred flow channels in the bed for the entering gases. This has the consequence that different form inhomogeneous reaction zones, the fluctuating gas qualities to lead.

Generell kann davon ausgegangen werden, dass bei Einsatzstoffen mit hohen Zündpunkten bei schlechter Wärmeleitung und bei Stoffen mit hoher Feuchte die zugeführte Wärme im Pyrolyseabschnitt nicht zu einer ausreichenden Erwärmung und Pyrolyse bzw. Entgasung der Stoffe führt. Die Prozesse der Ent- und Vergasung verschieben sich in den Bereich des Schmelz- und Überhitzungsabschnittes und verringern so die Reaktionszeit zur Zerstörung aller sich bildenden Teere und Öle in Form längerkettiger Kohlenwasserstoffe.In general, it can be assumed that materials with high Ignition points with poor heat conduction and with substances with high humidity the heat supplied in the pyrolysis section is not sufficient Heating and pyrolysis or degassing of the substances leads. The processes of Degassing and gasification shift into the area of melting and Overheating section and thus reduce the reaction time to destruction all tars and oils that form in the form of longer-chain hydrocarbons.

Sämtliche vorstehende beschriebene Schacht-Reaktoren sind nur für einen geringen Bereich an Einsatzstoffen einsetzbar. Ferner muss zum Vergasen der Einsatzstoffe eine erhebliche Menge an Energie zugeführt werden. Dies erfolgt durch unterschiedliche Düsensysteme, die in den vertikalen Schachtkörpern angeordnet sind, sowie über zusammen mit dem Schüttgut in den Schachtkörper eingebrachtes Brennmaterial, wie Koks oder dergleichen. Ferner besteht bei bekannten Schacht-Reaktoren unabhängig davon, ob sie im Gleichstrom- oder Gegenstromprinzip arbeiten, das Problem, dass das entnommene Gas stark partikelbelastet ist und somit vor einer Weiterverarbeitung beispielsweise gefiltert werden muss.All of the shaft reactors described above are only for one small range of feed materials can be used. Furthermore, to gasify the Feedstocks are fed a significant amount of energy. this happens through different nozzle systems in the vertical shaft bodies are arranged, as well as together with the bulk material in the Shaft body introduced fuel, such as coke or the like. Furthermore, known shaft reactors exist regardless of whether they are in the Co-current or counter-current principle work, the problem that that withdrawn gas is heavily contaminated with particles and thus in front of a Further processing, for example, must be filtered.

Die Aufgabe der Erfindung besteht darin, einen Gleichstrom-Schacht-Reaktor zu schaffen, mit dem auch beim Einsatz unterschiedlicher Einsatzstoffe Nutzgase, insbesondere brennbare Nutzgase mit einer geringen Partikelbelastung, erzeugt werden können, deren Energieinhalt für den Gleichstrom-Schacht-Reaktor genutzt werden kann.The object of the invention is a DC shaft reactor to create with that even when using different input materials Commercial gases, especially flammable commercial gases with a low Particle pollution can be generated, the energy content for the DC shaft reactor can be used.

Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.The object is achieved according to the invention by the features of Claim 1.

Der erfindungsgemäße Gleichstrom-Schacht-Reaktor zum Schmelzen und Vergasen von Einsatzmaterial, weist einen vertikalen Schachtkörper auf. Innerhalb des Schachtkörpers wird das Einsatzmaterial getrocknet, erwärmt und vergast. Der Schachtkörper lässt sich somit üblicherweise in die Bereiche Trockenzone, Entgasungszone und Vergasungszone unterteilen. An den Schachtkörper schließt sich ein Aufnahmekörper an, der zur Aufnahme von geschmolzenem Einsatzmaterial dient. Innerhalb dieses Körpers ist die Schmelzzone des Reaktors ausgebildet. Der Schachtkörper und/oder der Aufnahmekörper sind mit einer Gas-Abführeinrichtung zum Abführen der innerhalb des Reaktors erzeugten Nutzgase verbunden. Insbesondere ist die Abführeinrichtung im Bereich zwischen dem Schachtkörper und dem Aufnahmekörper angeordnet und als Rohr ausgebildet. Ferner weist der vertikal ausgerichtete Schachtkörper eine Zuführeinrichtung auf, durch die das Einsatzmaterial dem Schacht-Reaktor zugeführt wird.The inventive DC shaft reactor for melting and Gasification of feedstock has a vertical shaft body. The feed material is dried and heated within the shaft body and gasified. The shaft body can therefore usually be divided into the areas Divide the drying zone, degassing zone and gasification zone. To the The shaft body is followed by a receiving body, which is used to hold molten feed. Within that body is the Melting zone of the reactor formed. The shaft body and / or the Receiving bodies are equipped with a gas discharge device for removing the Produced useful gases generated within the reactor. In particular, the Discharge device in the area between the shaft body and the Arranged body and designed as a tube. Furthermore, the vertically aligned shaft body on a feed device through which the Feed material is fed to the shaft reactor.

Erfindungsgemäß ist mit dem Schachtkörper eine Gas-Zuführeinrichtung zum Zuführen von Gas in den Schachtkörper verbunden. Das zugeführte Gas, bei dem es sich vorzugsweise um Luft oder mit Sauerstoff angereicherte Luft handelt, dient zum Trocknen des Einsatzmaterials. Um eine gute und effektive Trocknung des Einsatzmaterials zu erzielen, ist das zugeführte Gas erfindungsgemäß vorgewärmt. Zum Vorwärmen des Gases ist erfindungsgemäß die Gas-Zuführeinrichtung mit der Gas-Abführeinrichtung verbunden. Das aus dem Reaktor abgeführte heiße Gas wird erfindungsgemäß somit zum Vorwärmen des dem Schachtkörper zugeführten Gases genutzt. Der Zuführöffnung des Reaktors ist eine Schleusenanordnung nachgeordnet, die das Einbringen des Einsatzmaterials steuert. Im Bereich der Schleusenanordnung ist zumindest ein Teil der Gaszuführeinrichtung mit der Schleusenkammer verbunden. Die erfindungsgemäße Nutzung des abgeführten Gases als Energieträger führt dazu, dass zum Vorwärmen des Gases keine zusätzliche Energie erforderlich ist und das Einsatzmaterial bereits in der Schleusenanordnung eine erste Trocknung erfährt. Die Schleusenanordnung wird dadurch zusätzlich zum Trocknen des Einsatzmaterials genutzt. Ein weiterer wesentlicher Vorteil der Erfindung besteht darin, dass dem abgeführten Gas Wärme entzogen wird. Hierdurch ist die Weiterverarbeitung bzw. Nutzung dieses Gases vereinfacht.According to the invention, a gas supply device for the Supply of gas connected to the manhole body. The gas supplied, at which is preferably air or oxygen-enriched air acts to dry the feed. To be good and effective To achieve drying of the feed is the gas supplied preheated according to the invention. To preheat the gas According to the invention, the gas supply device with the gas discharge device connected. The hot gas discharged from the reactor is according to the invention thus used to preheat the gas supplied to the shaft body. A lock arrangement is arranged downstream of the feed opening of the reactor, that controls the feeding of the feed. In the field of Lock arrangement is at least part of the gas supply device with the Lock chamber connected. The use of the invention dissipated gas as an energy source leads to the preheating of the Gases no additional energy is required and the feed already undergoes a first drying in the lock arrangement. The Lock arrangement is thereby in addition to drying the Input material used. Another significant advantage of the invention is that heat is extracted from the gas that is removed. This is the further processing or use of this gas is simplified.

Aufgrund des Vorwärmens des Einsatzmaterials, was erfindungsgemäß bereits unmittelbar nach dem Zuführen des Einsatzmaterials in der Schleusenanordnung erfolgt, kann eine größere Produktpalette an Einsatzmaterial in dem Schachtreaktor verarbeitet werden, da das Einsatzmaterial während seines Aufenthalts im Schachtreaktor stärker erwärmt wird und somit auch bei schlechter verarbeitbaren Materialien eine Ent- und Vergasung erzielt werden kann. Insbesondere ist hierdurch auch erreicht, dass innerhalb des Reaktors eine bessere Ent- und Vergasung stattfindet, so dass das Nutzgas weniger Partikel aufweist. Insbesondere ist es aufgrund der erfindungsgemäßen Ausgestaltung des Gleichstrom-Schacht-Reaktors möglich, Nutzgase zu erzeugen, die einen erheblich geringeren Ölund Teeranteil sowie einen erheblich geringeren Schadstoffgehalt aufweisen.Due to the preheating of the feed, which is already according to the invention immediately after feeding the feed into the Lock arrangement takes place, can offer a larger product range Feed material can be processed in the shaft reactor, because the Feed material stronger during his stay in the shaft reactor is heated and thus also with poorly processable materials Degassing and gasification can be achieved. In particular, this also means achieved that better degassing and gasification within the reactor takes place so that the useful gas has fewer particles. In particular it is due to the inventive design of the DC shaft reactor possible to produce useful gases that have a significantly lower oil and Tar content and a significantly lower pollutant content.

Das Einbringen von Einsatzmaterial in den Schachtkörper erfolgt über die Schleusenanordnung. Mit Hilfe der Schleusenanordnung kann sichergestellt werden, dass beispielsweise nur eine begrenzte Menge an Umgebungsluft in den Schachtreaktor über die Zuführöffnung gelangt. Hierdurch kann der Prozess innerhalb des Schachtreaktors besser gesteuert werden. Die Schleusenanordnung weist vorzugsweise mindestens eine Schleusenkammer auf. Es wird somit ein erstes Schleusentor geöffnet, um das Einsatzmaterial in die Schleusenkammer einzubringen. Sodann wird dieses erste Schleusentor geschlossen, so dass die Schleusenkammer verschlossen ist. In diesem Zustand kann ggf. enthaltene Luft aus der Schleusenkammer abgesaugt und/oder durch anderes Gas ersetzt werden. Anschließend wird das zweite Schleusentor, die in Richtung des Innenraums des Schachtreaktors führt, geöffnet und das Einsatzmaterial gelangt aus der Schleusenkammer in den Reaktor.The feed material is introduced into the shaft body via the Lock arrangement. With the help of the lock arrangement can be ensured that, for example, only a limited amount of ambient air in the shaft reactor passes through the feed opening. This allows the Process can be better controlled within the shaft reactor. The Lock arrangement preferably has at least one lock chamber on. A first lock gate is thus opened in order to insert the feed material in bring in the lock chamber. Then this first lock gate closed so that the lock chamber is closed. In this Condition may contain any air contained in the lock chamber and / or be replaced by another gas. Then the second Lock gate leading towards the interior of the shaft reactor, opened and the feed material comes from the lock chamber into the Reactor.

In vorteilhafter Weise ist die Schleusenanordnung so gestaltet, dass das Einbringen von Einsatzmaterial in den Gleichstrom-Schacht-Reaktor nahezu schüttkegelfrei bzw. schüttkegelarm erfolgt. Dadurch wird die Gefahr verringert, dass größere Stücke der Einsatzstoffe an die Reaktorwand rollen und eine Entmischung des Einsatzmaterials stattfindet. Die nachteiligen Folgen der Entmischung, wie beispielsweise Abschmelzung der Ofenausmauerung, Entstehung von Strömungskanälen für die eintretenden Gase und schwankende Gasqualitäten durch verschiedenartige Reaktionszonen, werden dadurch stark reduziert. Ein schüttkegelarmes Einbringen von Material in Schachtreaktoren lässt sich beispielsweise dadurch erreichen, dass der Reaktorschacht, welcher der Schleusenanordnung nachfolgt, eine ähnliche Querschnittsgeometrie aufweist. Ferner sollte die Fallhöhe des zugeführten Gutes möglichst niedrig sein. Insbesondere nicht höher als die dreifache Höhe des Einsatzmaterials in der Schleusenanordnung. Zusätzlich sollte sich das zweite Schleusentor möglichst schnell öffnen, damit die Unterseite des fallenden Einsatzmaterials möglichst waagerecht bleibt.The lock arrangement is advantageously designed such that the Introducing feed material into the DC shaft reactor almost free cone or low cone. This eliminates the danger reduces that larger pieces of the feed materials roll onto the reactor wall and segregation of the feed takes place. The adverse consequences segregation, such as melting of the furnace lining, Creation of flow channels for the entering gases and fluctuating gas qualities due to different reaction zones thereby greatly reduced. A low-cone introduction of material into Shaft reactors can be achieved, for example, by the fact that the Reactor shaft, which follows the lock arrangement, a similar one Has cross-sectional geometry. Furthermore, the drop height of the fed Good things should be as low as possible. In particular, not higher than three times the height of the feed material in the lock arrangement. In addition, that should open the second lock gate as quickly as possible so that the underside of the falling feedstock remains as horizontal as possible.

Ferner sollte das Einsatzmaterial in der Schleusenanordnung möglichst nicht selber bereits einen Schüttkegel enthalten. Dies lässt sich beispielsweise dadurch erreichen, dass die Schleusenkammer in der Schleusenanordnung vollständig mit Einsatzmaterial gefüllt wird und mit dem Schließen des ersten Schleusentores das Einsatzmaterial, das nicht in die Schleusenkammer passt, vom einzubringenden Einsatzmaterial abgeschnitten wird. Dazu ist in vorteilhafter Weise das erste Schleusentor als Schieber mit Schneidkante ausgebildet. Dadurch entspricht das einzubringende Einsatzmaterial nahezu der Geometrie der Schleusenkammer und weist insbesondere nahezu keinen Schüttkegel auf.Furthermore, the feed material in the lock arrangement should not be possible itself already contain a cone. This can be done, for example thereby achieve that the lock chamber in the lock arrangement completely filled with feed and with the closing of the first Lock gates the material that does not fit in the lock chamber, is cut off from the feed material to be introduced. This is in advantageously the first lock gate as a slide with a cutting edge educated. As a result, the feed material to be introduced almost corresponds the geometry of the lock chamber and in particular has almost none Cone on.

Damit das zweite Schleusentor möglichst schnell geöffnet werden kann, ist es in vorteilhafter Weise als Klappe oder Schieber ausgeführt.It is so that the second lock gate can be opened as quickly as possible advantageously carried out as a flap or slide.

Nachfolgend wird die Erfindung anhand einer bevorzugten Ausführungsform unter Bezugnahme auf die anliegende Zeichnung erläutert.

Figur 1
zeigt eine schematische Seitenansicht eines Gleichstrom-Schacht-Reaktors.
Figur 2
zeigt eine schematische Seitenansicht einer bevorzugten Ausgestaltung einer Schleusenanordnung.
The invention is explained below using a preferred embodiment with reference to the accompanying drawing.
Figure 1
shows a schematic side view of a DC shaft reactor.
Figure 2
shows a schematic side view of a preferred embodiment of a lock arrangement.

Der Gleichstrom-Schacht-Reaktor weist einen Schachtkörper 10 auf. Der Schachtkörper 10 kann im dargestellten Ausführungsbeispiel in eine Schleusenanordnung 12, eine sich an die Schleusenanordnung 12 anschließende Trocknungszone 14, eine sich an die Trocknungszone 14 anschließende Entgasungszone 16 sowie eine sich hieran anschließende Vergasungszone 18 unterteilt werden. An die Vergasungszone 18 des Schachtkörpers 10 schließt sich ein Aufnahmekörper 20 an, der zur Aufnahme von geschmolzenem Einsatzmaterial 22 dient. Im Grenzbereich zwischen der Vergasungszone 18 und dem Aufnahmekörper 20 ist der Querschnitt des Aufnahmekörpers erweitert, so dass ein ringförmig ausgebildeter Gassammelraum 24 ausgebildet ist, der den unteren Teil der Vergasungszone 18 umgibt. Der Gassammelraum 24 ist mit einer im dargestellten Ausführungsbeispiel als Rohr ausgebildeten Gas-Abführeinrichtung 26 verbunden.The DC shaft reactor has a shaft body 10. The In the exemplary embodiment shown, the shaft body 10 can be converted into a Lock arrangement 12, one adjoining the lock arrangement 12 subsequent drying zone 14, one adjoining the drying zone 14 subsequent degassing zone 16 and a subsequent one Gasification zone 18 can be divided. To the gasification zone 18 of the The shaft body 10 is followed by a receiving body 20, which is used for receiving of molten feed 22 is used. In the border area between the Gasification zone 18 and the receiving body 20 is the cross section of the Receiving body expanded so that a ring-shaped Gas collection chamber 24 is formed, the lower part of the gasification zone 18 surrounds. The gas collecting space 24 is shown in FIG Embodiment designed as a tube gas discharge device 26th connected.

Das Einsatzmaterial wird durch eine Zuführöffnung 28 in den Schachtkörper 10 über die Schleusenanordnung 12 eingeführt. Das Zuführen des Einsatzmaterials erfolgt über die Schleusenanordnung 12 um das Einbringen großer Mengen an Umgebungsluft, durch die der Schmelz- und Vergasungsprozess unkontrolliert beeinflusst werden kann, zu verhindern. Hierzu weist die Schleusenanordnung 12 zwei Schleuseneinrichtungen bzw. Schleusentore 30,32 auf, zwischen denen die Schleusenkammer 34 ausgebildet ist, wobei die Schleusenkammer 34 bereits ein Teil des Schachtkörpers 10 ist.The feed material is fed into the shaft body 10 through a feed opening 28 introduced over the lock assembly 12. Feeding the Feed material takes place via the lock arrangement 12 for introduction large amounts of ambient air, through which the melting and Gasification process can be influenced in an uncontrolled manner to prevent. For this purpose, the lock arrangement 12 has two lock devices or Lock gates 30, 32 between which the lock chamber 34 is formed, the lock chamber 34 already a part of the Manhole body 10 is.

Im dargestellten Ausführungsbeispiel ist im Bereich der Trockenzone 14 des Schachtkörpers 10 eine Gas-Zuführeinrichtung 36 vorgesehen. Die Gas-Zuführeinrichtung 36 weist eine den Schachtkörper 10 umgebende Ringleitung 38 auf, die mit mehreren gleichmäßig an Umfang verteilten Düsen 40 verbunden ist. Über die Gas-Zuführeinrichtung 36 wird dem Einsatzmaterial im Bereich der Trockenzone 14 vorzugsweise heiße Luft, die ggf. mit Sauerstoff angereichert sein kann, zum Trocknen des Einsatzmaterials zugeführt.In the illustrated embodiment, the drying zone 14 of the A gas supply device 36 is provided in the shaft body 10. The gas supply device 36 has a ring line surrounding the shaft body 10 38, which have a plurality of nozzles 40 distributed evenly around the circumference connected is. About the gas feed device 36 is the feed in Area of the drying zone 14 preferably hot air, possibly with oxygen can be enriched, fed to dry the feed.

In der sich an die Trockenzone 14 anschließenden Entgasungszone 16 ist eine weitere Gas-Zuführeinrichtung 42 angeordnet, die ebenfalls eine den Schachtkörper 10 umgebende Ringleitung 44 aufweist. Die Ringleitung 44 ist mit mehreren am Umfang vorzugsweise gleichmäßig verteilten Düse 46 verbunden. Über die Gas-Zuführeinrichtung 42 können energiereiche Gase, Sauerstoff, Luft oder andere zur Steuerung des Schmelz- und Vergasungsprozesses geeignete Gase dem Einsatzmaterial zugeführt werden.In the degassing zone 16 adjoining the drying zone 14 there is a arranged further gas supply device 42, which is also a Has shaft body 10 surrounding ring line 44. The ring line 44 is with several nozzles 46, which are preferably evenly distributed over the circumference connected. Energy-rich gases, Oxygen, air or other to control the melting and Gases suitable gases are fed to the feed.

Weitere Düsen 48 sind in der Vergasungszone 18 vorgesehen. Über die Düsen 48 kann wiederum energiereiches Gas oder andere den Schmelz- und Vergasungsprozess steuernde Gase oder Stoffe zugeführt werden. Ebenso können anstatt der Düsen 48 auch Brenner vorgesehen sein, die in der Vergasungszone 18 unmittelbar Wärme dem Einsatzmaterial zuführen. Der Endbereich des zur Längsachse 50 rotationssymmetrischen Schachtkörpers 10 ist sich leicht verjüngend konisch ausgebildet, so dass das Einsatzmaterial im Bereich der Vergasungszone 18 etwas zurückgehalten wird.Further nozzles 48 are provided in the gasification zone 18. Over the nozzles 48, in turn, high energy gas or other can melt and Gases or substances controlling the gasification process can be supplied. As well instead of the nozzles 48, burners can also be provided which are located in the Gasification zone 18 immediately supply heat to the feed. The End region of the shaft body 10 which is rotationally symmetrical with respect to the longitudinal axis 50 is slightly tapered, so that the feed material in the Area of the gasification zone 18 is somewhat retained.

In einer Seitenwand 52 des Aufnahmekörpers 20 sind ferner mehrere am Umfang verteilte Düsen 54 angeordnet. Die Düsen 54 dienen zum Einbringen energiereicher Gase oder entsprechender Stoffe. Durch die Düsen 54 ist sichergestellt, dass die Schmelze 22 flüssig bleibt. Ebenso können anstelle der Düsen 54 auch Brenner vorgesehen sein.In a side wall 52 of the receiving body 20 there are also a plurality of Circumferentially distributed nozzles 54 are arranged. The nozzles 54 are used for insertion energy-rich gases or similar substances. Through the nozzles 54 is ensures that the melt 22 remains liquid. Likewise, instead of Nozzles 54 may also be provided to burners.

Die Gas-Zuführeinrichtung 36 ist mit der Gas-Abführeinrichtung 26 verbunden. Hierzu führt das Rohr der Gas-Abführeinrichtung 26 durch das die heißen in dem Reaktor entstandenen Gase abgeführt werden, zu einem Wärmetauscher 56. Die abgeführten Gase bzw. Nutzgase strömen durch den Wärmetauscher 56 und werden sodann von einem Rohr 58 vorzugsweise zur Weiterverarbeitung abgeführt. Ferner ist mit dem Wärmetauscher 56 eine Rohrleitung 60 verbunden. Durch die Rohrleitung 60 wird Luft oder ein anderes Gas in den Wärmetauscher 56 geleitet, nimmt in dem Wärmetauscher 56 Wärme von dem Nutzgas auf und wird durch ein Rohr 62 wieder aus dem Wärmetauscher abgeleitet. Das Rohr 62 ist sodann über eine Heizeinrichtung 64 und ein Rohr 66 mit der Ringleitung 38 der Gas-Zuführeinrichtung 36 verbunden. Das Erwärmen der durch die Gas-Zuführeinrichtung 36 im Bereich der Trockenzone 14 dem Einsatzmaterial zugeführte Gas wird somit im Betrieb vorzugsweise ausschließlich durch die Wärme der Nutzgase mit Hilfe des Wärmetauschers 56 vorgewärmt. Mit Hilfe der Heizeinrichtung 64, bei der es sich beispielsweise um eine elektrische Heizung oder einen Brenner handeln kann, kann das über die Gas-Zuführeinrichtung zuzuführende Gas zusätzlich erwärmt werden. Insbesondere während des Start-Zyklus' des Reaktors, in dem noch keine heißen Nutzgase durch die Gas-Abführeinrichtung 26 abgeführt werden oder die Temperatur dieser Nutgase noch nicht hoch genug ist, kann die Heizeinrichtung 64 zum Erwärmen des Gases genutzt werden.The gas supply device 36 is connected to the gas discharge device 26. For this purpose, the pipe of the gas discharge device 26 leads through the hot ones in gases produced in the reactor are discharged to a heat exchanger 56. The discharged gases or useful gases flow through the heat exchanger 56 and are then preferably from a tube 58 to Further processing carried away. Furthermore, with the heat exchanger 56 Pipeline 60 connected. Air or another is passed through the pipeline 60 Gas passed into the heat exchanger 56 takes in the heat exchanger 56 Heat from the useful gas and is returned from the pipe 62 Heat exchanger derived. The tube 62 is then over a heater 64 and a pipe 66 with the ring line 38 of the gas supply device 36 connected. Heating the area by the gas supply 36 the drying zone 14 gas supplied to the feedstock is thus in operation preferably exclusively by the heat of the useful gases with the help of Heat exchanger 56 preheated. With the help of the heater 64, where it are, for example, an electric heater or a burner can, the gas to be supplied via the gas supply device can additionally be warmed. Especially during the start cycle of the reactor, in no hot useful gases through the gas discharge device 26 be dissipated or the temperature of these groove gases is not yet high enough the heater 64 can be used to heat the gas.

Erfindungsgemäß wird im Bereich der Schleusenanordnung 12 ein Teil 35 der Gas-Zuführeinrichtung 36 mit dem Schachtkörper 10 verbunden. Durch diese Verbindung wird das Einsatzgut bereits in der Schleusenanordnung 12 einer ersten Trocknung unterzogen.According to the invention, part 35 of the Gas supply device 36 connected to the shaft body 10. Through this The feedstock is already connected in the lock arrangement 12 subjected to the first drying.

Vorzugsweise ist eine Seitenwand 68 der Schleusenanordnung 12 doppelwandig ausgebildet. Hierdurch kann eine Erwärmung und somit eine Trocknung des Einsatzmaterials in der Schleusenkammer 34 erzielt werden indem ein heißes Medium durch die doppelwandige Seitenwand 68 geleitet wird. Vorzugsweise handelt es sich hierbei um Luft oder ein anderes Gas, das ebenfalls durch das Nutzgas vorzugsweise mit Hilfe des Wärmetauschers 56 vorgewärmt wird.A side wall 68 of the lock arrangement 12 is preferably double-walled. This can cause heating and thus Drying of the feed material can be achieved in the lock chamber 34 by passing a hot medium through the double-walled side wall 68 becomes. It is preferably air or another gas that also by the useful gas, preferably with the help of the heat exchanger 56 is preheated.

Der ideale Materialeintrag setzt vorzugsweise eine homogene Mischung voraus, insbesondere bei Zudosierung von Zusätzen wie Koks und Kalk. Der Eintrag erfolgt erfindungsgemäß zentral auf der Achse des Reaktors. Der Reaktor ist im laufenden Betrieb möglichst voll zu halten. Eine Füllstandsüberwachung ist demzufolge vorzugsweise direkt unter dem Schleusentor 32 angebracht. Die Befüllung erfolgt in einer hohen Taktrate. Durch diese Maßnahmen wird gleichzeitig der Falschlufteintrag verringert und die Druckhaltung im Gesamtsystem verbessert.The ideal material input preferably uses a homogeneous mixture ahead, especially when adding additives such as coke and lime. The According to the invention, entry takes place centrally on the axis of the reactor. The The reactor should be kept as full as possible during operation. A Level monitoring is therefore preferably directly below the Lock gate 32 attached. Filling takes place at a high cycle rate. Through these measures, the false air entry is simultaneously reduced and improved pressure maintenance in the overall system.

Erfindungsgemäß sind die Bereiche Schleusenanordnung 12, Trocknungszone 14 und Entgasungszone 16 bis in die Vergasungszone 18 vorzugsweise zylindrisch oder leicht konisch sich nach unten erweiternd ausgebildet. Der Übergang zwischen den Zonen erfolgt ohne stufenförmige oder sprunghafte Querschnittserweiterung, d.h. der Übergang ist gleichen Querschnitts und ohne Ausbildung von schüttschichtfreien Hohlräumen, Stufen oder Kanten.According to the invention, the areas are lock arrangement 12, drying zone 14 and degassing zone 16 into the gasification zone 18 preferably cylindrical or slightly tapered downwards. The The transition between the zones takes place without step-like or abrupt Cross-sectional expansion, i.e. the transition is the same cross section and without the formation of voids, steps or edges that are free of fill layers.

Die Trocknungszone 14 kann insbesondere bei größeren Bauarten ebenfalls doppelwandig ausgeführt sein. Dies ermöglicht die indirekte Erwärmung der Gutsäule im Innern bzw. die Sicherstellung einer gleichmäßigen Temperatur an der Wandung und eine Verringerung von Kondensationserscheinungen an der Innenseite. Als Wärmeträgermedium wird vorzugsweise ebenfalls heiße Luft eingesetzt. Der Einsatz des am Ende des Prozesses aufstehenden Rauchgases ist ebenfalls möglich.The drying zone 14 can also be used, particularly in the case of larger designs be double-walled. This enables indirect heating of the Good column inside or ensuring an even temperature of the wall and a reduction in condensation on the Inside. Hot air is preferably also used as the heat transfer medium used. The use of the flue gas at the end of the process is also possible.

Bei der Erwärmung des Ausgangsgutes findet in der Trocknungszone 14 die Verdampfung des Wassers statt. Die Temperatur im Gut steigt dabei nur wenig über 100°C an. Mit zunehmender Temperatur werden im weiteren Verlauf adsorbierte Gase wie Stickstoff und Kohlendioxid freigesetzt, welche nicht durch Spaltreaktionen entstanden sind. Spätestens hier kann von der Entgasung gesprochen werden. Oberhalb 250 bis 300 °C setzt dann die Entwicklung von Gasen und Dämpfen ein, bei denen es sich um abdestillierte niedrigmolekulare Verbindungen und erste Spaltprodukte handelt. Ein weiteres Ansteigen der Temperatur bewirkt den Ablauf von Reaktionen, die zur Bildung von Methan und Wasserstoff führen. When the starting material is heated, the drying zone 14 takes place Evaporation of the water takes place. The temperature in the goods rises only slightly above 100 ° C. As the temperature increases, as the process progresses adsorbed gases such as nitrogen and carbon dioxide are released, which are not have arisen from fission reactions. At the latest here from the Degassing can be spoken. The temperature then sets above 250 to 300 ° C Development of gases and vapors that are distilled off low molecular weight compounds and the first fission products. Another one Rising temperature causes the reactions that lead to formation of methane and hydrogen.

Die Entgasungszone 16 kann in Fortführung der Trocknungszone 14 ebenfalls doppelwandig gestaltet sein.The degassing zone 16 can also continue the drying zone 14 be double-walled.

Im unteren Drittel der Trocknungs- und Entgasungszone 14,16 ergibt sich ein Bereich, in welchem die Reaktorinnentemperatur größer als die Heißlufttemperatur ist. Hier kann die doppelwandige Ausführung durch eine silikatische Ausmauerung ersetzt werden. Eine Ausführung der gesamten Trocknungs- und Entgasungszone 14,16 mit einer Stampfmasse, auch bei einer doppelwandigen Gestaltung, ist vorteilhaft. Geringerem Verschleiß der Stahlbauhülle stehen geringerer Wärmeübergang und niedrigere Temperaturwechselbeständigkeit gegenüber.The result is in the lower third of the drying and degassing zone 14, 16 Area in which the internal reactor temperature is greater than that Hot air temperature is. Here, the double-walled version can be replaced by a silicate brickwork to be replaced. An execution of the whole Drying and degassing zone 14, 16 with a ramming mass, also at a double-walled design is advantageous. Less wear and tear on the Steel structural shells stand for lower heat transfer and lower Resistance to temperature changes.

Bei der weiteren Erwärmung der Schüttsäule ab etwa 700°C erfolgt neben der Spaltung des Brennstoffes unter dem Einfluss der Wärme die heterogene Reaktion zwischen dem Brennstoff und dem noch nicht reagierten Sauerstoff der Luft.If the bulk column is heated further from approx. 700 ° C, in addition to the Splitting of fuel under the influence of heat is heterogeneous Reaction between the fuel and the unreacted oxygen the air.

Die Vergasungszone 18 ist die Hauptreaktionszone innerhalb des Schachtreaktors. Hier erfolgt bei Temperaturen von 1.200 bis 1.400 °C die stoffliche und energetische Umsetzung der Feststoffe. Aus dem festen Brennstoff entstehen Gase und feste Produkte von Koks bis Asche. Für die vollständige und gleichmäßige Reaktion ist entscheidend, dass eine homogene Schüttung durch das bereits entstandene Entgasungsgas und das hier einzubringende Vergasungsmittel gleichmäßig durchströmt wird. Die Vergasungszone 18 muss aus diesen Gründen eine ausreichende Höhe besitzen. Dies wird insofern dadurch erreicht, dass die Vergasungszone 18 als ein gerader zylindrischer Bereich mit Übergang in eine konische Verkleinerung des Querschnittes oder sofort als zunehmende Verjüngung ausgebildet ist. Da sich durch die stofflichen Umsetzungen und damit zusammenhängende zerstörende Kräfte das Materialkorn verkleinert, vergrößern sich die Hohlräume innerhalb der Schüttsäule. Durch die Verkleinerung des Schachtquerschnittes in diesem Bereich kann die Sinkgeschwindigkeit der Materialsäule vergleichmäßigt werden, Strömungskanäle werden zerstört und die Ausbildung von größeren Hohlräumen in der Schüttung wird vermieden.The gasification zone 18 is the main reaction zone within the Shaft reactor. This takes place at temperatures of 1,200 to 1,400 ° C Material and energetic implementation of the solids. From the solid Gases and solid products from coke to ash are produced as fuel. For the Complete and even response is critical to having a homogeneous Filling with the degassing gas already created and this gasification agent to be introduced is evenly flowed through. The Gasification zone 18 must be of sufficient height for these reasons have. This is achieved in that the gasification zone 18 as a straight cylindrical area with a transition to a conical reduction of the cross section or immediately as an increasing taper. There themselves through the material implementations and related destructive forces reduce the grain of material, the increase Cavities inside the pillar. By reducing the Shaft cross-section in this area, the rate of descent Material column are equalized, flow channels are destroyed and the formation of larger voids in the bed is avoided.

In Fortführung der darüber befindlichen Entgasungszone 16 ist der Bereich der Vergasung ebenfalls mit einer silikatischen Masse ausgekleidet.In continuation of the degassing zone 16 located above, the area of Gasification also lined with a silicate mass.

Der untere zylindrische oder sich verjüngende Bereich des Vergasungsbereiches 18 ragt in die Schmelzzone 20 hinein. Auf diesen Teil liegt die darüber befindliche Schüttsäule zumindest teilweise auf, gleichzeitig herrschen dort hohe Temperaturen. Für die Sicherung der mechanischen Festigkeit und des Schutzes vor zu hohen Temperaturen erfolgt eine Kühlung mittels indirekter Wasserkühlung in der Schachtwand 70.The lower cylindrical or tapered area of the Gasification area 18 protrudes into the melting zone 20. On this part the column above it lies at least partially, at the same time the temperatures are high there. For securing the mechanical Strength and protection against excessive temperatures are cooled using indirect water cooling in shaft wall 70.

Das Gas durchströmte im Gleichstrom mit dem Einsatzmaterial die Zone der Hochtemperaturvergasung 18. Die aus den abgelaufenen Entgasungs- und Thermolysereaktionen entstandenen längerkettigen Kohlenwasserstoffe sind hier thermisch gespalten worden und waren gleichzeitig an den ablaufenden Vergasungsprozesse beteiligt. Es entsteht ein brennbares Gas mittleren Heizwertes mit den Hauptkomponenten Kohlenmonoxid, Kohlendioxid, Wasserstoff und Wasserdampf ohne Bestandteile an kondensierbaren Kohlenwasserstoffen. Viele der dabei abgelaufenen chemischen Reaktionen sind endotherm. Die Temperatur des Gases wie der Schüttung verringert sich somit.The gas flowed through the zone of the feedstock in cocurrent High temperature gasification 18. The from the expired degassing and Thermolysis reactions are longer chain hydrocarbons have been thermally split here and were at the same time running out Gasification processes involved. A medium combustible gas is formed Calorific value with the main components carbon monoxide, carbon dioxide, Hydrogen and water vapor without components of condensable Hydrocarbons. Many of the chemical reactions that took place are endothermic. The temperature of the gas and the bed is reduced Consequently.

Unterhalb des wassergekühlten Bereiches des Vergasungsbereiches 18 erfährt das Gas eine Umlenkung um etwa 180° und gelangt in den schüttschichtfreien Raum 24. Durch vorstehend beschriebene endotherme Vorgänge besitzt das Gas eine Temperatur von ca. 1.000 °C. Nach einer gewissen Gasberuhigung und -vergleichmäßigung wird das Gas oberhalb aus dem Reaktor abgesaugt.Experienced below the water-cooled area of the gasification area 18 the gas is deflected by about 180 ° and reaches the free bed Room 24. Due to the endothermic processes described above, the Gas a temperature of approximately 1,000 ° C. After a certain calming of the gas and equalization, the gas is sucked out of the reactor above.

Der Gassammelraum 24 ist bereits Bestandteil der Schmelzzone 20, welche oben wesentlich weiter als die hineinragende Vergasungszone 18 ist. Die zylindrische Schmelzzone 20 verkleinert sich konisch nach unten und schließt mit der Bodenplatte ab, oberhalb welcher sich die aufgeschmolzene Phase sammelt.The gas collecting space 24 is already part of the melting zone 20, which the top is much wider than the protruding gasification zone 18. The cylindrical melting zone 20 shrinks conically downwards and closes with the base plate, above which the melted phase collects.

Die Schmelzzone 20 ist in ihrer Gesamtheit mit einer mehrschichtigen Stampfmasse versehen oder mit einer Ausmauerung ausgestattet. Grund hierfür sind die notwendigen hohen Temperaturen. Nur im Bereich des Gassammelraumes ist unter Umständen eine Ausmauerung nicht notwendig.The melting zone 20 is in its entirety with a multilayer Provide ramming compound or equipped with a lining. reason the high temperatures required for this. Only in the area of The gas collecting space may not need bricking.

Der vollständig entgaste und verkokte Feststoff, ist stellenweise bereits gesintert bzw. geschmolzen und sinkt aus der Vergasungszone 18 weiter in die Schmelzzone 20.The completely degassed and coked solid is already in places sintered or melted and sinks from the gasification zone 18 into the Melting zone 20.

In die Schmelzzone 20 integriert ist eine Ebene mit mehreren Sauerstoffdüsen oder -Injektoren und/oder oxidierend betriebenen Brennern 54, welche ebenso symmetrisch auf der Achse verteilt sind.A level with several oxygen nozzles is integrated into the melting zone 20 or injectors and / or oxidizing burners 54, which also are symmetrically distributed on the axis.

Durch die Zuführung von Gas mit einem hohen Sauerstoffanteil kommt es zu starken exothermen Reaktionen mit dem Gas und dem Feststoff aus der Vergasungszone 18. Es ergeben sich Temperaturen, welche deutlich über dem Schmelzpunkt des Materials liegen, üblicherweise ca. 1400 °C bis 1600 °C. Im Bereich der Sauerstoffdüsen ergeben sich sogar heiße Temperaturzonen von 1800 bis 2000 °C. Unter diesen Bedingungen und durch die Zugabe von Schlackebildnern und/ oder Materialien, welche den Schmelzpunkt absenken, werden alle anorganischen Schadstoffen sicher aufgeschmolzen.The supply of gas with a high proportion of oxygen leads to this strong exothermic reactions with the gas and the solid from the Gasification zone 18. There are temperatures which are significantly above the The melting point of the material is usually about 1400 ° C to 1600 ° C. in the In the area of the oxygen nozzles there are even hot temperature zones from 1800 to 2000 ° C. Under these conditions and by adding Slag formers and / or materials that lower the melting point, all inorganic pollutants are melted safely.

Das aufgeschmolzene Material sammelt sich als Schmelze am Boden des Reaktors. Die Entleerung dieser flüssigen Schmelze erfolgt wie in der Gießerei üblich über ein Abstichloch und eine Rinne 72. Eine Bauart mit Vorherd oder Siphon ist möglich. The melted material collects as a melt at the bottom of the Reactor. This liquid melt is emptied as in the foundry usual via a tap hole and a gutter 72. A type with forehearth or Siphon is possible.

Bei ausreichend großer Bauart und entsprechender Verweilzeit der Schmelze wird sich die Schmelze in eine schwere metallhaltige Phase und eine darauf schwimmende Schlacke trennen. Hier besteht die Möglichkeit, über verschieden hohe Entleerungen eine verwertbare metallische Phase und eine Schlacke gewinnen zu können. Im Produkt Schlacke sind keine organischen Stoffe enthalten und die anorganischen Bestandteile sind in einer silikatischen Matrix stabil eingebaut. Die Nutzung als Material für den Hafen-, Deponie- und Straßenbau sind bekannt, ebenso möglich ist die Herstellung spezieller Gussformen und Produkten, wie sie in der Glasindustrie üblich sind.With a sufficiently large design and corresponding residence time of the melt the melt will turn into a heavy metal phase and one on top of it separate floating slag. There is a possibility here about different levels of drainage, a usable metallic phase and a To be able to win slag. There are no organic slags in the product Contain substances and the inorganic components are in a silicate Matrix installed stably. Use as material for port, landfill and Road construction is known, and the production of special ones is also possible Molds and products that are common in the glass industry.

Eine bevorzugte Ausführungsform der Schleusenanordnung 12 besteht darin, dass das zweite Schleusentor 32 als schnellöffnender Schieber ausgestaltet ist (Fig. 2). Dazu ist das Schleusentor 32 insbesondere mehrstückig ausgeführt. Beim Öffnen des Schleusentors 32 fällt das in der Schleusenkammer 34 befindliche Einsatzmaterial gleichmäßig in die Trocknungszone 14 des Schachtkörpers 10. Zuvor wurde das Einsatzmaterial mit dem mit der Schleusenkammer 34 verbundenen Teil 35 der Gas-Zuführeinrichtung 36 vorgetrocknet. Für den Fall, dass der Schachtkörper 10 mit soviel Einsatzmaterial gefüllt ist, dass ein Teil des Einsatzmaterials in die Schleusenkammer 34 hineinragt, ist das als Schieber ausgestaltete zweite Schleusentor 32 in vorteilhafter Weise mit einer Schneidkante versehen. Dadurch kann beim Schließen des zweiten Schleusentores 32 der in die Schleusenkammer 34 ragende Teil des Einsatzmaterials abgeschnitten werden, wodurch die Schleusenkammer 34 wieder geschlossen werden kann.A preferred embodiment of the lock arrangement 12 consists in that the second lock gate 32 is designed as a quick-opening slide (Fig. 2). For this purpose, the lock gate 32 is in particular made of several pieces. When the lock gate 32 is opened, this falls into the lock chamber 34 located feed material evenly in the drying zone 14 of the Shaft body 10. Previously, the feed material with the Lock chamber 34 connected part 35 of the gas supply device 36 pre-dried. In the event that the shaft body 10 with so much Feed material is filled that part of the feed material into the Protrudes lock chamber 34, is the second designed as a slide Lock gate 32 is advantageously provided with a cutting edge. As a result, when the second lock gate 32 is closed, Lock chamber 34 projecting part of the feed are cut off, whereby the lock chamber 34 can be closed again.

Damit sich in der Schleusenkammer 34 nahezu kein Schüttkegel ausbildet, wird die Schleusenkammer 34 vollständig gefüllt und der Teil des Einsatzmaterials, der nicht hereinpasst, abgeschnitten. Dazu ist das erste Schleusentor 30 als Schieber mit einer Schneidkante ausgeführt, der den oberen Teil des Einsatzmaterials von der Schleusenkammer 34 abtrennt. Das erste Schleusentor 30 kann in dieser Ausführungsform ebenfalls mehrstückig ausgeführt werden. So that almost no cone of bulk forms in the lock chamber 34, the lock chamber 34 is completely filled and the part of the Insert that does not fit, cut off. The first is Lock gate 30 executed as a slide with a cutting edge, the separates the upper part of the feed material from the lock chamber 34. The In this embodiment, the first lock gate 30 can also be in several pieces be carried out.

Zum Einbringen von Einsatzmaterial in den Schachtkörper 10 ist das zweite Schleusentor 32 zunächst geschlossen und das erste Schleusentor 30 geöffnet. Dadurch gelangt Einsatzmaterial in die Schleusenkammer 34. Nach dem Schließen des ersten Schleusentors 30 wird das zweite Schleusentor 32 geöffnet, wodurch das Einsatzmaterial in den Schachtkörper 10 fällt. Gleichzeitig kann durch die Zuführöffnung 28 bereits weiteres Einsatzmaterial eingefüllt werden, das auf dem ersten Schleusentor 30 bereitgestellt wird. Danach beginnt der Befüllungszyklus von Neuem.The second is for introducing feed material into the shaft body 10 Lock gate 32 initially closed and the first lock gate 30 opened. As a result, feed material gets into the lock chamber 34 Closing the first lock gate 30 becomes the second lock gate 32 opened, whereby the feed material falls into the shaft body 10. At the same time, additional feed material can already pass through the feed opening 28 be filled, which is provided on the first lock gate 30. Then the filling cycle begins again.

Claims (12)

Gleichstrom-Schacht-Reaktor zum Schmelzen und Vergasen von Einsatzmaterial, mit einem vertikalen Schachtkörper (10) zum Trocknen, Erwärmen und Vergasen des Einsatzmaterials, wobei der Schachtkörper (10) eine Zuführöffnung (28) zum Zuführen des Einsatzmaterials aufweist, einem sich an den Schachtkörper (10) anschließenden Aufnahmekörper (20) zur Aufnahme von geschmolzenem Einsatzmaterial (22), einer mit dem Schachtkörper (10) und/oder dem Aufnahmekörper (20) verbundenen Gas-Abführeinrichtung (26) zum Abführen entstandener Gase, einer mit dem Schachtkörper (10) verbundenen Gaszuführeinrichtung (36) zum Zuführen von Gas in den Schachtkörper (10) zum Trocknen des Einsatzmaterials, wobei die Gas-Zuführeinrichtung (36) zur Gaserwärmung mit der Gas-Abführeinrichtung (26) verbunden ist und einer Schleusenanordnung (12), die der Zuführöffnung (28) nachgeordnet ist, dadurch gekennzeichnet, dass im Bereich der Schleusenanordnung (12) zumindest ein Teil (35) der Gas-Zuführeinrichtung (36) und/ oder zumindest ein Teil der Gas-Abführeinrichtung (26) mit dem Schachtkörper (10) verbunden ist. DC shaft reactor for melting and gasifying feed, with a vertical shaft body (10) for drying, heating and gasifying the feed material, the shaft body (10) having a feed opening (28) for feeding the feed material, a receiving body (20) adjoining the shaft body (10) for receiving molten feed material (22), a gas discharge device (26) connected to the shaft body (10) and / or the receptacle body (20) for removing gases that have formed, a gas supply device (36) connected to the shaft body (10) for supplying gas into the shaft body (10) for drying the feed material, the gas supply device (36) for gas heating being connected to the gas discharge device (26) and a lock arrangement (12) which is arranged downstream of the feed opening (28), characterized in that in the region of the lock arrangement (12) at least part (35) of the gas supply device (36) and / or at least part of the gas discharge device ( 26) is connected to the shaft body (10). Gleichstrom-Schacht-Reaktor nach Anspruch 1, dadurch gekennzeichnet, dass die Gas-Zuführeinrichtung (36) und die Gas-Abführeinrichtung (26) über einen Wärmetauscher (56) miteinander verbunden sind.DC shaft reactor according to claim 1, characterized in that the gas supply device (36) and the gas discharge device (26) are connected to one another via a heat exchanger (56). Gleichstrom-Schacht-Reaktor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Gas-Zuführeinrichtung (36) mit einer Heizeinrichtung (64) verbunden ist.DC shaft reactor according to claim 1 or 2, characterized in that the gas supply device (36) is connected to a heating device (64). Gleichstrom-Schacht-Reaktor nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass die Schleusenanordnung (12) mindestens eine Schleusenkammer (34) aufweist.DC shaft reactor according to one of claims 1-3, characterized in that the lock arrangement (12) has at least one lock chamber (34). Gleichstrom-Schacht-Reaktor nach Anspruch 4, dadurch gekennzeichnet, dass die Gas-Zuführeinrichtung (36) mit der Schleusenkammer (34) verbunden ist.DC shaft reactor according to claim 4, characterized in that the gas supply device (36) is connected to the lock chamber (34). Gleichstrom-Schacht-Reaktor nach einem der Ansprüche 1-5, dadurch gekennzeichnet, dass die Schleusenanordnung (12) im Wesentlichen achssymmetrisch zum Schachtkörper (10) angeordnet ist.DC shaft reactor according to one of claims 1-5, characterized in that the lock arrangement (12) is arranged substantially axially symmetrical to the shaft body (10). Gleichstrom-Schacht-Reaktor nach einem der Ansprüche 1-6, dadurch gekennzeichnet, dass eine Seitenwand (68) des Schachtkörpers (10) insbesondere im Bereich der Schleusenanordnung (12) zum Erwärmen des Einsatzmaterials doppelwandig ist.DC shaft reactor according to one of Claims 1-6, characterized in that a side wall (68) of the shaft body (10) is double-walled, in particular in the region of the lock arrangement (12), for heating the feed material. Gleichstrom-Schacht-Reaktor nach Anspruch 7, dadurch gekennzeichnet, dass die doppelwandige Seitenwand (68) mit der Gas-Zuführeinrichtung (36) verbunden ist.DC shaft reactor according to claim 7, characterized in that the double-walled side wall (68) is connected to the gas supply device (36). Gleichstrom-Schacht-Reaktor nach einem der Ansprüche 1-8, dadurch gekennzeichnet, dass die Querschnittsfläche des Schachtkörpers (10) im Bereich der Trockenzone (14) ähnlich zur Querschnittsfläche der Schleusenanordnung (12) ist. DC shaft reactor according to one of claims 1-8, characterized in that the cross-sectional area of the shaft body (10) in the region of the drying zone (14) is similar to the cross-sectional area of the lock arrangement (12). Gleichstrom-Schacht-Reaktor nach einem der Ansprüche 1-9, gekennzeichnet durch ein erstes Schleusentor (30), das insbesondere als mit einer Schneidkante versehener Schieber ausgestaltet ist, und/oder ein schnell öffnendes zweites Schleusentor (32), das insbesondere als mit einer Schneidkante versehener Schieber ausgestaltet ist.DC shaft reactor according to one of claims 1-9, characterized by a first lock gate (30), which is designed in particular as a slide provided with a cutting edge, and / or a quick-opening second lock gate (32), in particular as a Cutting edge provided slider is designed. Gleichstrom-Schacht-Reaktor nach Anspruch 10, dadurch gekennzeichnet, dass das erste Schleusentor (30) und/ oder das zweite Schleusentor (32) mehrstückig ausgestaltet ist.DC shaft reactor according to claim 10, characterized in that the first lock gate (30) and / or the second lock gate (32) is designed in several pieces. Gleichstrom-Schacht-Reaktor nach einem der Ansprüche 1-11, dadurch gekennzeichnet, dass die Fallhöhe des über die Schleusenanordnung (12) eingebrachten Einsatzmaterials nicht höher als die dreifache Höhe der Schleusenkammer (34) ist.DC shaft reactor according to one of claims 1-11, characterized in that the drop height of the feed material introduced via the lock arrangement (12) is not higher than three times the height of the lock chamber (34).
EP02027458A 2001-12-14 2002-12-10 Co-current shaft reactor Expired - Lifetime EP1323809B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200230833T SI1323809T1 (en) 2001-12-14 2002-12-10 Co-current shaft reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE20120189U 2001-12-14
DE20120189U DE20120189U1 (en) 2001-12-14 2001-12-14 Co-current shaft reactor

Publications (3)

Publication Number Publication Date
EP1323809A2 true EP1323809A2 (en) 2003-07-02
EP1323809A3 EP1323809A3 (en) 2004-01-02
EP1323809B1 EP1323809B1 (en) 2009-04-01

Family

ID=7965116

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02027458A Expired - Lifetime EP1323809B1 (en) 2001-12-14 2002-12-10 Co-current shaft reactor

Country Status (4)

Country Link
EP (1) EP1323809B1 (en)
AT (1) ATE427347T1 (en)
DE (2) DE20120189U1 (en)
SI (1) SI1323809T1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1493799A1 (en) * 2003-07-04 2005-01-05 von Görtz &amp; Finger Technische Entwicklungs Ges.m.b.H. Flash water vapour gasification of biomass
WO2008000975A1 (en) * 2006-06-30 2008-01-03 Jean-Claude Fayard Burner for producing the combustion of substances believed to be difficult to burn
WO2009003436A1 (en) * 2007-07-04 2009-01-08 Dinano Ecotechnology Llc Device for loading an installation for treating raw materials containing carbon
WO2009040573A3 (en) * 2007-09-25 2009-08-13 Refgas Ltd Downdraft refuse gasification
WO2015036241A1 (en) * 2013-09-16 2015-03-19 Sgl Carbon Se Blast furnace and method for reconditioning a fluorine-containing waste product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10226862B3 (en) * 2002-06-15 2004-01-29 Gesellschaft für Nachhaltige Stoffnutzung mbH Method and device for generating a fuel gas from biomass
DE10327178B3 (en) * 2003-06-17 2005-05-04 Hans Ulrich Feustel Plant for producing metal and slag melts and synthesis gas from waste has gasification unit with tapping outlet at its base, unit being connected to gas quenching and cooling unit containing hydrocyclone and foam- and oil separator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156393A (en) * 1976-07-23 1979-05-29 Kraftanlagen Aktiengesellschaft Incinerator
US4530702A (en) * 1980-08-14 1985-07-23 Pyrenco, Inc. Method for producing fuel gas from organic material, capable of self-sustaining operation
US4584947A (en) * 1985-07-01 1986-04-29 Chittick Donald E Fuel gas-producing pyrolysis reactors
US4813179A (en) * 1986-04-01 1989-03-21 Distrigaz S.A. Process for the cocurrent gasification of coal
EP1167492A2 (en) * 2000-06-23 2002-01-02 Gesellschaft für Nachhaltige Stoffnutzung mbH Process and apparatus for the production of fuel gas from biomass

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE966459C (en) * 1952-06-29 1957-08-08 Paul Hahnel Dr Ing Process for the oxidizing and reducing treatment of oxidic ores in shaft furnaces
BR7706858A (en) * 1976-10-26 1978-07-04 Union Steel Corp South Africa PROCESS AND APPARATUS FOR THE CONTINUOUS PRODUCTION OF A REDUCING GAS CONTAINING CARBON AND HYDROGEN MONOXIDE
FR2610087B1 (en) * 1987-01-22 1989-11-24 Aerospatiale PROCESS AND DEVICE FOR THE DESTRUCTION OF SOLID WASTE BY PYROLYSIS
DE3734988A1 (en) * 1987-10-15 1989-04-27 Voest Alpine Ind Anlagen Process for continuously operating a heat recovery installation and apparatus for carrying out the process
CA2036581C (en) * 1990-02-23 1998-09-22 Gunter H. Kiss Method of transporting, intermediate storage and energetic and material utilization of waste goods of all kinds and device for implementing said method
DE4030554A1 (en) * 1990-09-27 1992-04-09 Bergmann Michael Dr Procedure and device for thermal treatment of waste materials - comprises reactor combustion zone charged with waste, coke and lime, and gas produced passes through hot coke be also located in reactor
DE4317145C1 (en) * 1993-05-24 1994-04-28 Feustel Hans Ulrich Dipl Ing Scrap disposal in coke-fired shaft furnace - involves circulation of organic content gasification gas to metal content melting zone
DE19640497C2 (en) * 1996-10-01 1999-01-28 Hans Ulrich Dipl Ing Feustel Coke-heated cycle gas cupola for material and / or energy recovery of waste materials
DE19816864C2 (en) * 1996-10-01 2001-05-10 Hans Ulrich Feustel Coke-heated cycle gas cupola furnace for material and / or energy recovery of waste materials of different compositions
DE10007115C2 (en) * 2000-02-17 2002-06-27 Masch Und Stahlbau Gmbh Rolan Process and reactor for gasifying and melting feedstocks with descending gas flow
JP2002081624A (en) * 2000-09-05 2002-03-22 Kawasaki Heavy Ind Ltd Waste gasification melting furnace and operation method of the melting furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156393A (en) * 1976-07-23 1979-05-29 Kraftanlagen Aktiengesellschaft Incinerator
US4530702A (en) * 1980-08-14 1985-07-23 Pyrenco, Inc. Method for producing fuel gas from organic material, capable of self-sustaining operation
US4584947A (en) * 1985-07-01 1986-04-29 Chittick Donald E Fuel gas-producing pyrolysis reactors
US4813179A (en) * 1986-04-01 1989-03-21 Distrigaz S.A. Process for the cocurrent gasification of coal
EP1167492A2 (en) * 2000-06-23 2002-01-02 Gesellschaft für Nachhaltige Stoffnutzung mbH Process and apparatus for the production of fuel gas from biomass

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1493799A1 (en) * 2003-07-04 2005-01-05 von Görtz &amp; Finger Technische Entwicklungs Ges.m.b.H. Flash water vapour gasification of biomass
WO2008000975A1 (en) * 2006-06-30 2008-01-03 Jean-Claude Fayard Burner for producing the combustion of substances believed to be difficult to burn
WO2009003436A1 (en) * 2007-07-04 2009-01-08 Dinano Ecotechnology Llc Device for loading an installation for treating raw materials containing carbon
GB2463444A (en) * 2007-07-04 2010-03-17 Dinano Ecotechnology Llc Device for loading an installation for treating raw materials containing carbon
WO2009040573A3 (en) * 2007-09-25 2009-08-13 Refgas Ltd Downdraft refuse gasification
GB2453111B (en) * 2007-09-25 2010-12-08 Refgas Ltd Gasification
AU2008303334B2 (en) * 2007-09-25 2012-09-27 Refgas Limited Downdraft refuse gasification
WO2015036241A1 (en) * 2013-09-16 2015-03-19 Sgl Carbon Se Blast furnace and method for reconditioning a fluorine-containing waste product

Also Published As

Publication number Publication date
SI1323809T1 (en) 2009-08-31
EP1323809A3 (en) 2004-01-02
DE20120189U1 (en) 2003-04-24
EP1323809B1 (en) 2009-04-01
DE50213409D1 (en) 2009-05-14
ATE427347T1 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
AT402964B (en) METHOD FOR THE USE OF DISPOSAL GOODS
EP1261827B1 (en) Reactor and method for gasifying and/or melting materials
DE69027302T2 (en) Process for preheating scrap by pyrolysis of the resinous residues with total recovery of their energy content and steel manufacturing process
EP1027407B1 (en) Method and device for producing combustible gas, synthesis gas and reducing gas from solid fuels
EP0055840B1 (en) Process and plant for the combustion of organic materials
CH615215A5 (en)
DE2735139A1 (en) WASTE INCINERATOR
DE19930071A1 (en) Method and device for pyrolysis and gasification of organic substances and mixtures
EP1248828B1 (en) Device and method for the production of fuel gases
DE4030554C2 (en)
DE3121205A1 (en) DEVICE FOR REMOVING SOLID WASTE
DE60033782T2 (en) METHOD FOR GASIFYING CARBON CONTAINING FUELS IN A FIXED BEDGED GASER
WO1993002162A1 (en) Process for producing synthetic or fuel gasses from solid or pasty residues and waste or low-grade fuels in a gasifying reactor
EP3535356A1 (en) Duplex-tek multi-stage gasifier
EP1187891B1 (en) Method and device for disposing of waste products
EP0767342B2 (en) Process for disposal of irregular waste
DE3614048A1 (en) METHOD AND DEVICE FOR GASIFYING LOW-QUALITY FUELS IN A FLUID METAL MELTING BATH
EP1323809B1 (en) Co-current shaft reactor
EP3580312B1 (en) Preparation of synthesegas from carbonated substances by means of a combined cocurrent-contercurrent process
DE19536383C2 (en) Method and device for the gasification of low calorific value fuels
EP1338847B1 (en) Cocurrent Shaft Reactor
DE102013015920B4 (en) Device in the form of a 3-zone carburetor and method for operating such a carburetor for the thermal conversion of waste products and wastes
EP1203060B1 (en) Method and apparatus for utilizing gas from a sedimentation basin
DE69204948T2 (en) Method and device for gasifying solid fuels containing meltable non-combustible materials.
EP1325950B1 (en) Co-current shaft reactor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OXYTEC ENERGY GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 23G 5/24 B

Ipc: 7C 10J 3/26 A

Ipc: 7C 10J 3/22 B

17P Request for examination filed

Effective date: 20040630

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

17Q First examination report despatched

Effective date: 20050117

17Q First examination report despatched

Effective date: 20050117

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UMWELTKONTOR RENEWABLE ENERGY AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMILE BETEILIGUNGS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50213409

Country of ref document: DE

Date of ref document: 20090514

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090712

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20091217

Year of fee payment: 8

Ref country code: CZ

Payment date: 20091201

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20091202

Year of fee payment: 8

Ref country code: SI

Payment date: 20091201

Year of fee payment: 8

26N No opposition filed

Effective date: 20100105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20091223

Year of fee payment: 8

BERE Be: lapsed

Owner name: SMILE BETEILIGUNGS G.M.B.H.

Effective date: 20091231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091229

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091210

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090702

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101210

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20110729

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 5719

Country of ref document: SK

Effective date: 20101210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50213409

Country of ref document: DE

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101210

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401