EP1248828B1 - Device and method for the production of fuel gases - Google Patents

Device and method for the production of fuel gases Download PDF

Info

Publication number
EP1248828B1
EP1248828B1 EP01900000A EP01900000A EP1248828B1 EP 1248828 B1 EP1248828 B1 EP 1248828B1 EP 01900000 A EP01900000 A EP 01900000A EP 01900000 A EP01900000 A EP 01900000A EP 1248828 B1 EP1248828 B1 EP 1248828B1
Authority
EP
European Patent Office
Prior art keywords
gasification
zone
updraught
downdraught
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01900000A
Other languages
German (de)
French (fr)
Other versions
EP1248828A1 (en
Inventor
Adrian Fürst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1248828A1 publication Critical patent/EP1248828A1/en
Application granted granted Critical
Publication of EP1248828B1 publication Critical patent/EP1248828B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/725Redox processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws

Definitions

  • the invention relates to an apparatus and a method for producing Fuel gases according to the preambles of the independent claims.
  • Fuel gas generators have long been known per se. In essence, you can A distinction is made between two principles: the direct current or downstream gasifier and the counterflow or upflow carburettors.
  • Counterflow carburettors are suitable for Processing of slag-rich fuels. That from counterflow gasifiers Available fuel gas is generally rich in tar and others Pyrolysis products, which is either an immediate combustion of the still hot and above the condensation temperature of the pyrolysis gas or complex gas conditioning is required.
  • the direct current gasifier principle allows tar and other pyrolysis products to complete split, but is not suitable for processing high-slag Products. In the case of the fuel gas generators that have been in use up to now, this also arises the problem of uneven heating in the reactor.
  • the reactor oxygen supplied is generally after its penetration into the Fuel filled area quickly consumed. Therefore in Function of the distance from the mouth of the oxygen supply a decreasing Temperature. As soon as the reactor exceeds a certain diameter, arises for this reason an edge area in which the for splitting the Pyrolysis products necessary temperature is no longer reached. Therefore are available fuel gas generators are generally small and their performance is limited, which of course has a disadvantageous effect on their economy.
  • a fuel gas generator is known from European patent EP-0 404 881, who works as an exhaust gasifier.
  • the reactor of this fuel gas generator is in the Close to the air supply so narrow that its walls are two truncated cones form, of which the upper one expands upward, the lower one downward.
  • On coaxial, axially displaceable counter cone protrudes into the lower truncated cone and serves as a grate element that closes off the reactor. This arrangement allows control of process speed, but solves the above problems mentioned.
  • British Patent Application GB-489 640 discloses a fuel gas generator which also works as an exhaust gasifier.
  • a reactor is made up of a grate element completed down.
  • the Air supply into an empty space surrounding the mouth of an air supply tube, The empty space is maintained so that this mouth is not damaged.
  • the present invention is based on the object of a device and to provide a method for the production of fuel gases which the Disadvantages of known fuel gas generators do not have.
  • the Device and method for extremely economical gas generation enable, the gases produced should meet high purity requirements.
  • the device and the method for the economical production of Fuel gases from slag-rich and possibly additionally tar-rich fuels be suitable.
  • Fuel gas generator extends over an entire cross-sectional area of the shaft reactor Maintain void space in which the fed oxygen-containing gasifying agent, for example air, is supplied.
  • This Empty space serves as a pre-combustion and mixing chamber.
  • this causes White space also means that this is on the surface and therefore at the interface with the Empty space material evenly and regardless of the distance to the Mouth of the gasification agent supply and possibly to a shaft axis Oxygen is supplied. This also means that the material continues up to is evenly heated to the edge of the shaft when the shaft reactor has a large diameter.
  • the even heating of the fuel is important so that the calorific value of the fuel can be used optimally and so that any difficultly volatile pyrolysis products are completely broken down and not, for example, along the wall of the reactor to the fuel gas outlet can reach and thus contaminate the fuel gas.
  • a shaft reactor one fuel gas generator according to the invention can have a large diameter, Such a fuel gas generator can also be used as a larger system with a useful output be trained in the megawatt range and still have the highest demands on Purity of the fuel gas and after its combustion to the resulting exhaust gases fulfill.
  • the fuel gas generator has both an outflow gasification zone and one located below it Upflow gasification zone.
  • an exhaust gasifier with a Upflow gasifier is combined, low-pollution fuel gases can also are produced from fuels that are both rich in tar and others Pyrolysis products as well as slag.
  • the deduction of the in the shaft reactor The resulting fuel gases occur between the waste gas and the Upflow gasification zone, preferably from a gas expansion and Gas discharge chamber serving empty space.
  • Embodiment are in the operating state of the fuel gas generator Oxidation zone of the exhaust gasifier and / or the oxidation zone of the Upstream gasifier also provided with an empty space adjoining it, through which a gasifying agent from to those in the oxidation zone Materials. This allows the formation of a shaft reactor with one large diameter and the resulting economic production of Fuel gases.
  • the fuel gas generator 1 shown in FIG . 1 with an outflow gasification zone is suitable for generating fuel gas from low-slag and possibly tar-rich fuels such as wood. It is held by a frame (not shown in the drawing) and has an essentially cylindrical outer wall 3 made of refractory material and defining an axis 2.
  • a shaft reactor 5, which is attached essentially within the outer wall 3, has a shaft casing 7 and a loading device, designated 9 as a whole in the figure.
  • the loading device 9 has one or more locks 11.
  • Each lock has an upper and a lower flat slide 13 or 15. By opening the upper flat slide 13, each lock 11 can be filled with fuel 17 supplied by a feed device, not shown. By opening the lower flat slide valve 15, fuel passes from the lock 11 into a conveying area 19.
  • each lock 11, the shaft reactor 5 and possibly also the conveying area 19 are provided with one or more filling level measuring devices which enable automated or manual control of the loading process. Every control step of the fuel transport can be controlled with a control device.
  • the upper part 23 of the shaft reactor 5 serves as a drying and degassing zone for the filled fuel.
  • the outflow gasification zone 27 is separated from this upper part 23 by a degassing grate 25.
  • funnel means 31 which collect the fuel in the degassing zone 23 and can feed the outflow gasification zone 27 centrally and in a metered manner . Temperatures prevail in the lower region 29 of the degassing zone, which, depending on its chemical composition, can cause the fuel to split.
  • This area 29 is therefore also referred to as the pyrolysis zone.
  • the outflow gasification zone 27 has a constriction, so that its wall 28 forms two truncated cones, the upper of which extends upwards, the lower one downwards extended.
  • An effluent gasification oxidation zone is formed in the effluent gasification zone 27 33 and below an outflow gasification reduction zone 35.
  • the oxidation zone 33 has between the degassing grate 25 and that in it fuel located in an outflow gasification void 34.
  • the void 34 extends at least substantially over the entire horizontal cross-sectional area of the shaft reactor, so that in the degassing zone and in the outflow gasification zone 27 completely from each other are separated.
  • a counter cone coaxial with the truncated cones projects into the lower one Truncated cone into it and serves as an outflow gasification grate element 37, which the Downflow gasification zone 27 and thus the reduction zone 35 is limited at the bottom and as a passage for downward out of the effluent gasification zone transporting material.
  • the downstream gasification grate element 37 is on attached to a shaft 39 which is attached to an outside of the reactor and in the figure not shown rotating and lifting device is connected.
  • the turning and The lifting mechanism is now operated in this way and with the material feed into the Downstream gasification zone matched that always so much material through the opening 41 falls down that the surface of the fuel is slightly for example 5-15 cm and for example about 8 cm above the height of the constriction located.
  • the oxidation zone 33 and the reduction zone 35 The fuel gas generator 1 also has sensors, not shown, for determining the in the different temperatures and levels.
  • the fuel gas generator 1 has an outflow gasification agent supply 43 which as vertical pipe 3 centrally attached with respect to the outer wall is trained.
  • the mouth 45 of the gasification agent supply 43 is located in the empty space 34 of the oxidation zone 33.
  • An inlet 43 flows in oxygen-containing gasifying agent, for example air, into the oxidation zone.
  • the Empty space 34 then serves as a pre-combustion and mixing chamber.
  • the gasification agent acting after it flows out through the material located in the downstream gasification zone is sucked down.
  • Oxidation reactions quickly deplete the oxygen of the gasifying agent, so that the oxidation zone 33 is only a little, typically a few cm and Example extends about 8 cm into the material.
  • the material discharged from the effluent gasification zone passes through the opening 41 into a deashing zone 47. From there, the material from the Fuel gas generator removed. Two flat slides 49, 51, that delimit an ash room 53. The ash is discharged by first the upper and then the lower flat slide 49 opened and then is closed again.
  • Essentially hollow cylindrical cavity 53 is formed between the outer wall 3 and the shaft casing 7 . That through that Downflow gasification grate element pulling down gas containing fuel gas enters the cavity 53 on the underside 55 of the shaft reactor and flows up in it. It heats the shaft casing 7 and thus ensures that in the drying and degassing zone 23 for drying and Degassing process necessary temperature is reached.
  • Fuel gas discharge lines 57 the openings in the outer wall 3 penetrate, the gas is discharged. Possibly the gas drainage can still occur additionally existing valve or lock means 59 can be controlled.
  • FIG. 2 shows a fuel gas generator 101 with an upflow gasification zone, which is suitable, for example, for generating fuel gases from fuels that are rich in slag but low in tar, such as sewage sludge. It has an essentially cylindrical, outer wall 103 defining an axis 102 and is held by frame means 104, which are not described in detail.
  • the shaft reactor 105 has an inlet 109 for charging with fuel. In addition, it has a sensor 110 in the upper area for determining the fill level.
  • the upper part 123 of the shaft reactor 105 serves as a drying and degassing zone.
  • the fuel which has been dried and degassed there at rising temperatures passes through a degassing grate 125 which closes the drying and degassing zone 123 downward into the upflow gasification zone 127.
  • This is divided into an upflow gasification reduction zone 135 in the upper region and an upflow gasification oxidation zone 133 in the lower region .
  • the upstream gasification zone 127 is bounded at the bottom by a disc-shaped upstream gasification grate element 137. Similar to the outflow gasification grate element 37 of the fuel generator 1, this grate element 137 also serves as a passage for the material to be transported downward out of the gasification zone and is on a shaft 139 attached, which is connected to a rotary drive 140 mounted outside the reactor.
  • the material throughput through the grate element 137 can be controlled by regulating the rotational speed of the rotary drive 140.
  • the adjoining space of the fuel gas generator 101 located below the grate element 137 is designed as a slag and ash chamber 147 which serves at the same time for supplying gasification agent.
  • the upper region of this slag and ash chamber 147, which is located directly below the grate element 137 and thus adjoins the oxidation zone 133, is kept free of solid material in the operating state of the fuel gas generator 101 and forms an upflow gasification empty space 134.
  • the supply of gasification agent into the slag and ash chamber 137 takes place through an upflow gasifying agent supply 143 with a laterally attached supply nozzle 144 into this empty space 134, the gasifying agent possibly being passed through slag and / or ash located in the lower part of the slag and ash chamber 147 and thereby heating up.
  • the slag and ash chamber also has an agitator 148 connected to the shaft 139, by means of which the slag and ash produced is continuously transported further into a discharge pipe serving as slag and ash discharge 150 and from there into a slag and ash container 152.
  • the slag and ash container 152 can also be provided with a fill level indicator which is connected to sensors mounted in it and which, for example, indicates when the slag and ash container 152 is full and has to be transported away for emptying and possibly replaced by an empty container.
  • the gas generated in the upflow gasification zone 127 passes from the Upflow gasification reduction zone 135 through the degassing grate 125 into one formed between the shaft reactor 105 and the outer wall 103, in Substantially hollow-cylindrical cavity 153.
  • the shaft casing 107 heated and those in the drying and degassing zone after temperatures increasing below.
  • the cavity 153 can still through Perforated plate 154 may be divided.
  • the gas containing fuel gas is replaced by a Fuel gas discharge line 157 discharged
  • a fuel gas generator with an outflow and upflow gasification zone is shown schematically in FIG .
  • the fuel gas generator 201 has an outer wall 203 made of a refractory material and a shaft reactor 205.
  • the fuel is supplied by means of a lock 211, which has an upper and a lower flat slide valve 213 and 215, respectively.
  • a drying and degassing zone 223f is formed in the upper region of the shaft reactor.
  • An outflow gasification agent supply 243 with an annular space 244 surrounding the shaft reactor is attached below this. The gasification agent flows from this annular space 244 through openings radially inwards and then downwards.
  • combustion processes in the fuel material form an outflow gasification oxidation zone 233 of an outflow gasification zone 227, which extends downward from the height of the annular space 244.
  • An outflow gasification reduction zone 235 then forms after this.
  • this also has an upflow gasification agent feed 261, which likewise has an annular space 263, from which a gasification agent flows radially inwards and then upwards.
  • An upflow gasification oxidation zone 275 is formed, and an upflow gasification reduction zone 273, which adjoins the latter, of an upflow gasification zone 271.
  • the gases generated in the effluent gasification zone 227 and the effluent gasification zone 271 are drawn off by gas extraction means. These are formed by an annular cavity 253 in which the gases are collected and a suitable suction device. Below the upflow gasification zone 271 there is also a slag and ash chamber 247. From this the slag and the ash are discharged from the fuel gas generator with two flat slides 249 and 251, respectively.
  • the fuel gas generator 301 shown in FIG. 4 with upstream and downstream gasification zones has an outer wall 303 made of refractory material, which has a substantially cylindrical main section 304 defining an axis 302, a bottom 306 adjoining the bottom with an opening 308 and one as a cylindrical one Extension in a horizontal section from sub-section 310 projecting downward from opening 308 and having a substantially smaller cross-sectional area than the main section.
  • a shaft reactor 305 is formed by a main shaft reactor 312 fastened to the wall and the secondary section 310 serving as a secondary shaft reactor.
  • the outer wall 303 is held flexibly by frame means 304 (not described in more detail below) in such a way that displacements caused by thermal expansions are compensated for can.
  • Fuel is fed into the shaft reactor 305 through a fuel feed 314 into a degassing zone 323.
  • An exhaust gas gasification zone 327 with an exhaust gas gasification oxidation zone 333 and an exhaust gas gasification reduction zone 335 is formed directly after this.
  • the shaft reactor 305 has a constriction, which is formed by a section 328 of its wall made of refractory material. The wall forms two truncated cones, the upper of which widens upwards, the lower one downwards.
  • A is formed in the downstream gasification zone 327.
  • the effluent gasification zone 327 is bounded at the bottom by an effluent gasification grate element 337, which forms a passage for material to be transported downward from the effluent gasification zone 327.
  • the grate element 337 is disc-shaped and gas-permeable. It is connected via a shaft 339 to a turning and lifting device, not shown in the figure.
  • the size of an opening 341 formed between it and the wall 328 can be varied by vertical displacement of the grate element 337.
  • the material throughput through the grate element can thus be controlled in the fuel gas generator 301 such that the surface of the material located in the degassing and outflow gasification zone is more or less always on the same level.
  • the fuel gas generator 301 has an outflow gasification agent supply line 343 which is arranged centrally with respect to the outer wall 303.
  • This has a vertical inner supply pipe 344 with a lower pipe end 345, a horizontal lower end cover 391 spaced from this pipe end 345 and also one of these Outer supply pipe 393 protruding upward and closed off from this with an opening 395 above the degassing zone 323.
  • the gasification agent supplied through the inner supply pipe 344 flows down to its lower pipe end 345 and then between the inner and the outer supply pipe 393 up to its mouth 395. From the mouth 395, the gasification agent passes through the material in the degassing zone 323 to the oxidation zone 333.
  • the inner and outer feed pipes 344 and 393 protrude so far that the end cover 391 is approximately at the level of the oxidation zone 333 of the outflow gasification zone 327 located. For this reason, the section of the outer feed pipe 393 adjoining the end cover 391 is surrounded by very hot material. Therefore, the gasification agent supplied is heated as it flows through this section prior to its introduction into the effluent gasification zone.
  • a disk-shaped mixing grate 367 projecting radially outward from the axis 302. This is connected via the gasification agent supply 343 to a rotary drive, not shown, located outside the shaft reactor and serves to loosen and mix the fuel, which is approximately at the level of the oxidation zone 333 and the constriction.
  • the material passes from the effluent gasification zone 327 through an as Gas vent and gas vent chamber serving gas vent void 369 in the upflow gasification zone 371 formed in the sub-section 310 Agitator 379, which is connected to the shaft 339, leads from the Downstream gasification zone 327 material dropped to the floor 306 Upflow gasification zone 371, above the upflow gasification zone 371 depending on which a flat slide 372 can still be present.
  • the Upflow gasification zone 371 is divided into an upflow gasification reduction zone 373 and an upflow gasification oxidation zone 375.
  • In the Upflow gasification oxidation zone 375 opens upstream gasification agent supply 361.
  • the slag and ash removal takes place through a discharge pipe 385 adjoining the secondary section, which is guided by a Another flat slide 387 is separated from the upflow gasification zone 371.
  • the fuel gas generator 301 has one Cavity 353 within the outer wall 303, in which the in the Downstream gasification and generated in the upstream gasification zone and from there in fuel gas which has reached the second empty space 369 can pass. By one or The fuel gas can then be connected to a plurality of fuel gas discharge lines 357 be dissipated.
  • the fuel gas generator still has several sensors 389 for determining the in the different temperatures and the level of the zones with fuels or with slags and / or ashes.
  • the fuel gas generator 401 shown in FIG. 5 is constructed essentially similarly to the fuel gas generator 301 of FIG. 4, but differs from it in that, in addition to the grate elements present in the latter, it also has a degassing grate element 425 and an upstream gasification grate element 480 instead of the flat slide valve 387 has.
  • the degassing grate element 425 serves as a passage for the regulated material removal from the degassing zone 423 into the upflow gasification zone 427.
  • an upflow gasification empty space 434 is formed between the degassing zone 423 and the upflow gasification zone 427 and extends over an entire horizontal cross-sectional area of the shaft reactor 405 and therefore completely separates the fuel in the degassing zone from the fuel in the upstream gasification zone.
  • the mouth 495 of the outflow gasification agent supply 443 is located in the empty space 434, so that the gasification agent, in contrast to the fuel gas feeder 301, reaches the outflow gasification oxidation zone 433 directly and is not first passed through the degassing zone 423.
  • the empty space 434 serves as a pre-combustion and mixing chamber and has the effect that the fuel gas generator 401 has the same advantages as the fuel gas generator 1.
  • the upflow gasification grate element 480 serves as a passage for the regulated material removal from the upflow gasification zone into the discharge pipe 485. It creates an upflow gasification empty space 482 which extends on a horizontal sectional plane over the entire cross section of the shaft reactor.
  • the upstream gasifier supply 461 opens into this void.
  • the empty space 482 has the advantages analogous to the empty space 134 of the fuel gas generator.
  • the fuel gas generator 501 of FIGS. 6 and 7 is a counterflow gasifier, ie it has an upflow gasification zone. It has an essentially cylindrical outer wall 503 defining an axis 502 and is held by frame means 504, which are not described in any more detail.
  • the shaft reactor 505 has, in analogy to the shaft reactor 105, an inlet 509 for charging with fuel. Furthermore, a drying and degassing zone also forms in this shaft reactor in the operating state in an upper part 523, where the fuel is dried and degassed when the temperatures rise downward. Below this, an upflow gasification zone 527 is formed with an upflow gasification reduction zone 535 in the upper area and an upflow gasification oxidation zone 533 in the lower area.
  • the upflow gasification zone 527 is bounded at the bottom by an upflow gasification grate element 537.
  • this also has a section designed as a rotatable and liftable counter-cone grate 538.
  • Such a counter-conical grate corresponds in principle and in terms of operation to the grate element 37 of the outflow gasifier 1.
  • the shaft 539, to which the grate element 537 is attached, is connected to a rotary and lifting drive 540 arranged outside the reactor.
  • the adjoining space of the fuel gas generator 501 located below the grate element 537 is designed as a slag and ash chamber 547 which serves at the same time for supplying gasification agent.
  • this slag and ash chamber 547 which is located directly below the grate element 537 and thus adjoins the oxidation zone 533, is kept free of solid material in the operating state and forms an upflow gasification empty space 534.
  • the supply of gasification agent in the slag and ash chamber 547 takes place through an upflow gasifying agent supply 543 with a laterally attached supply nozzle 544 and, depending on that, also through an ash discharge container 550 into this empty space 534.
  • An additional gasifying agent supply takes place, for example, still through channels 540 arranged inside the shaft In addition to the gasification agent supply, cooling of the shaft 539 and the grate element 538 is also ensured.
  • the slag and ash chamber also has an agitator 548 connected to the shaft 539, by means of which the slag and ash produced is continuously transported further into a discharge pipe serving as slag and ash discharge 550 and from there into a slag and ash container 552.
  • the fuel gas generator 501 still has means for recycling the in the Degassing carbonization gases formed in the oxidation zone of the Aufstromvergasungszone. It should be noted here that, in contrast to the drawn example the carbonization gases also returned to the reduction zone can be; Generally speaking, a return to a gasification zone any height possible.
  • the return means have one in the top Area of the degassing zone 523 or above this, for example, attached laterally Smelting gas discharge nozzle 571, unsigned smoldering gas transfer means and a carbonization gas supply nozzle 573.
  • the through the smoldering gas discharge nozzle discharged carbonization gases can be carried out directly or through the carbonization gas supply nozzle 573 can be introduced indirectly into the oxidation zone 533 via the empty space 534.
  • the temperature in this and in the transition to the reduction zone in Even hotter compared to an upstream gasifier without carbonization gas recirculation his.
  • An important effect is above all that in the carbonization gas existing tar materials etc. split up in the upflow gasification zone and thus can be rendered harmless. So an upstream carburetor can also Gasification of solids and mixtures of substances used for Upflow carburettors were unsuitable.
  • the gas generated in the upflow gasification zone 527 passes from the Upflow gasification reduction zone 535 into one between the shaft reactor 505 and the outer wall 503, essentially hollow cylindrical cavity 553.
  • the shaft casing 507 is heated and those in the drying and degassing zone, down increasing temperatures.
  • the cavity 553 can still baffles 554 , due to which the gas to be covered in the cavity 553 Path is larger and thereby an optimized heat transfer of the gas to the Degassing zone is effected.
  • the gas containing fuel gas is replaced by a Fuel gas discharge line 557 discharged.
  • the fuel gas generator 501 also has an annealing grate element 590.
  • This is designed, for example, as a grid with relatively fine meshes. Fuel residues, which also after crossing the reduction and Oxidation zone are not yet completely annealed and therefore not as yet Ash dust is retained on this annealing grate element 590 and can still completely in the draft of the supplied gasification agent anneal.
  • the screw conveyor 591 will no longer be degradable Fuel residues through a fuel residue discharge 592 in horizontal Transported away.
  • the Screw conveyor 591 is fixed in place, while the glow grate element 590 the shaft is connected and is therefore rotatable.
  • the screw conveyor 591 or the For example, screw conveyors are mounted eccentrically, i.e. they cross axis 502 Not.

Abstract

The invention relates to a fuel gas generator (401), for the generation of fuel gases by the gasification of organic or inorganic fuels in a reactor shaft (405), which comprises a descending flow gasification zone (427) and an ascending flow gasification zone (471), arranged beneath the above and, between the two gasification zones, a gas withdrawal unit. Both the downward flow gasification zone (427) and the upward flow gasification zone (471) are each divided into an oxidation zone (433, 475) and a reduction zone (435, 473), whereby the gasification agent introduction occurs in the oxidation zone (433, 475). Within the shaft reactor (405), void spaces are maintained by means of grating elements (423, 437, 480), with adjustable material throughflow, namely a descending flow gasification void space (434), which either borders on to the descending flow gasification oxidation zone (433), or is formed therein and through which the introduction of gasification agent to the descending gasification oxidation zone (433) occurs, or an ascending flow gasification void space (482) through which the gasification agent for the ascending flow oxidation zone (475) is introduced and a gas removal void space (469), formed between the descending flow gasification zone (427) and the ascending flow gasification zone (471).

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Erzeugung von Brenngasen gemäss den Oberbegriffen der unabhängigen Ansprüche.The invention relates to an apparatus and a method for producing Fuel gases according to the preambles of the independent claims.

Brenngaserzeuger sind an sich schon seit langem bekannt. Im Wesentlichen können zwei Prinzipien unterschieden werden: Die Gleichstrom- oder Abstromvergaser und die Gegenstrom- oder Aufstromvergaser. Gegenstromvergaser sind geeignet zur Verarbeitung von schlackereichen Brennstoffen. Das aus Gegenstromvergasern erhältliche Brenngas ist aber im Allgemeinen reich an Teer und weiteren Pyrolyseprodukten, was entweder eine sofortige Verbrennung des noch heissen und über der Kondensationstemperatur der Pyrolyseprodukte gehaltenen Gases oder aber eine aufwändige Gasaufbereitung bedingt. Das Gleichstromvergaser-Prinzip, andererseits, ermöglicht, dass Teer und weitere Pyrolyseprodukte vollständig aufgespalten werden, ist aber nicht geeignet zur Verarbeitung von schlackereichen Produkten. Bei den bisher gebräuchlichen Brenngaserzeugern stellt sich zusätzlich das Problem der ungleichmässigen Erwärmung im Reaktor. Der dem Reaktor zugeführte Sauerstoff ist im Allgemeinen nach seinem Eindringen in den mit Brennstoffmaterial gefüllten Bereich schnell verbraucht. Deshalb ergibt sich in Funktion des Abstandes von der Mündung der Sauerstoffzuführung eine abnehmende Temperatur. Sobald der Reaktor einen gewissen Durchmesser überschreitet, entsteht aus diesem Grund ein Randbereich, in dem die zur Aufspaltung der Pyrolyseprodukte notwendige Temperatur nicht mehr erreicht wird. Daher sind erhältliche Brenngaserzeuger im Allgemeinen klein und ihre Leistung ist beschränkt, was sich natürlich unvorteilhaft auf ihre Wirtschaftlichkeit auswirkt.Fuel gas generators have long been known per se. In essence, you can A distinction is made between two principles: the direct current or downstream gasifier and the counterflow or upflow carburettors. Counterflow carburettors are suitable for Processing of slag-rich fuels. That from counterflow gasifiers Available fuel gas is generally rich in tar and others Pyrolysis products, which is either an immediate combustion of the still hot and above the condensation temperature of the pyrolysis gas or complex gas conditioning is required. The direct current gasifier principle, on the other hand, allows tar and other pyrolysis products to complete split, but is not suitable for processing high-slag Products. In the case of the fuel gas generators that have been in use up to now, this also arises the problem of uneven heating in the reactor. The reactor oxygen supplied is generally after its penetration into the Fuel filled area quickly consumed. Therefore in Function of the distance from the mouth of the oxygen supply a decreasing Temperature. As soon as the reactor exceeds a certain diameter, arises for this reason an edge area in which the for splitting the Pyrolysis products necessary temperature is no longer reached. Therefore are available fuel gas generators are generally small and their performance is limited, which of course has a disadvantageous effect on their economy.

Aus der Europäischen Patentschrift EP-0 404 881 ist ein Brenngaserzeuger bekannt, der als Abstromvergaser arbeitet. Der Reaktor dieses Brenngaserzeugers ist in der Nähe der Luftzuführung derart verengt, dass seine Wandungen zwei Kegelstümpfe bilden, von denen sich der obere nach oben, der untere nach unten erweitert. Ein koaxialer, axial verschiebbarer Gegenkegel ragt in den unteren Kegelstumpf hinein und dient als Rost-Element, das den Reaktor nach unten abschliesst. Diese Anordung erlaubt eine Steuerung der Prozessgeschwindigkeit, löst aber die vorstehend genannten Probleme nicht.A fuel gas generator is known from European patent EP-0 404 881, who works as an exhaust gasifier. The reactor of this fuel gas generator is in the Close to the air supply so narrow that its walls are two truncated cones form, of which the upper one expands upward, the lower one downward. On coaxial, axially displaceable counter cone protrudes into the lower truncated cone and serves as a grate element that closes off the reactor. This arrangement allows control of process speed, but solves the above problems mentioned.

Die britische Offenlegungsschrift GB-489 640 offenbart einen Brenngaserzeuger, welcher ebenfalls als Abstromvergaser arbeitet. Ein Reaktor wird durch ein Rost-Element nach unten abgeschlossen. Gemäss einer Ausführungsform erfolgt die Luftzuführung in einen die Mündung einer Luftzuführröhre umgebenden Leerraum, Der Leerraum wird aufrechterhalten, damit diese Mündung nicht beschädigt wird. Eine Lösung der vorstehend genannten Probleme wird nicht vorgeschlagen.British Patent Application GB-489 640 discloses a fuel gas generator which also works as an exhaust gasifier. A reactor is made up of a grate element completed down. According to one embodiment, the Air supply into an empty space surrounding the mouth of an air supply tube, The empty space is maintained so that this mouth is not damaged. A solution to the above problems is not suggested.

Der vorliegenden Erfindung liegt nun als Aufgabe zu Grunde, eine Vorrichtung und ein Verfahren zur Erzeugung von Brenngasen zur Verfügung zu stellen, welche die Nachteile bekannter Brenngaserzeuger nicht aufweisen. Insbesondere sollen die Vorrichtung und das Verfahren eine äusserst wirtschaftliche Gaserzeugung ermöglichen, wobei die erzeugten Gase hohe Reinheitsanforderungen erfüllen sollen. Ferner sollen die Vorrichtung und das Verfahren zur wirtschaftlichen Erzeugung von Brenngasen aus schlackereichen und eventuell zusätzlich teerreichen Brennstoffen geeignet sein. The present invention is based on the object of a device and to provide a method for the production of fuel gases which the Disadvantages of known fuel gas generators do not have. In particular, the Device and method for extremely economical gas generation enable, the gases produced should meet high purity requirements. Furthermore, the device and the method for the economical production of Fuel gases from slag-rich and possibly additionally tar-rich fuels be suitable.

Die Aufgabe wird durch die Vorrichtung und das Verfahren gelöst, wie sie in den unabhängigen Patentansprüchen definiert sind. Vorteilhafte Ausgestaltungen der erfindungsgemäsen Vorrichtung und des erfindungsgemässen Verfahrens gehen aus den abhängigen Ansprüchen hervor. The object is achieved by the device and the method as described in the independent claims are defined. Advantageous embodiments of the The inventive device and the inventive method go out the dependent claims.

Gemäss einer ersten Ausführungsform der Erfindung wird im erfindungsgemässen Brenngaserzeuger ein sich über eine ganze Querschnittsfläche des Schachtreaktors erstreckender Leerraum aufrecht erhalten, in den das zugeführte sauerstoffhaltige Vergasungsmittel, beispielsweise Luft, zugeführt wird. Dieser Leerraum dient als Vorbrenn- und Mischkammer. Zusätzlich bewirkt dieser Leerraum auch, dass das sich an der Oberfläche und also an der Grenzfläche zum Leerraum befindliche Material gleichmässig und unabhängig vom Abstand zur Mündung der Vergasungsmittel-Zuführung und eventuell zu einer Schachtachse mit Sauerstoff versorgt wird. Daraus resultiert auch, dass das Material auch dann bis hin zum Schachtrand gleichmässig aufgeheizt wird, wenn der Schachtreaktor einen grossen Durchmesser hat. Das gleichmässige Aufheizen des Brennmaterials ist wichtig, damit der Brennwert des Brennstoffs optimal genutzt werden kann und damit eventuelle schwerflüchtige Pyrolyseprodukte restlos aufgespalten werden und nicht beispielsweise entlang der Wandung des Reaktors bis zum Brenngas-Abzug gelangen und somit das Brenngas verunreinigen können. Da ein Schachtreaktor eines erfindungsgemässen Brenngaserzeugers einen grössen Durchmesser aufweisen kann, kann ein solcher Brenngaserzeuger auch als grössere Anlage mit einer Nutzleistung im Megawattbereich ausgebildet sein und trotzdem höchste Anforderungen an die Reinheit des Brenngases und nach dessen Verbrennung an die entstandenen Abgase erfüllen.According to a first embodiment of the invention Fuel gas generator extends over an entire cross-sectional area of the shaft reactor Maintain void space in which the fed oxygen-containing gasifying agent, for example air, is supplied. This Empty space serves as a pre-combustion and mixing chamber. In addition, this causes White space also means that this is on the surface and therefore at the interface with the Empty space material evenly and regardless of the distance to the Mouth of the gasification agent supply and possibly to a shaft axis Oxygen is supplied. This also means that the material continues up to is evenly heated to the edge of the shaft when the shaft reactor has a large diameter. The even heating of the fuel is important so that the calorific value of the fuel can be used optimally and so that any difficultly volatile pyrolysis products are completely broken down and not, for example, along the wall of the reactor to the fuel gas outlet can reach and thus contaminate the fuel gas. Because a shaft reactor one fuel gas generator according to the invention can have a large diameter, Such a fuel gas generator can also be used as a larger system with a useful output be trained in the megawatt range and still have the highest demands on Purity of the fuel gas and after its combustion to the resulting exhaust gases fulfill.

Gemäss einer bevorzugten Ausführungsform weist der Brenngaserzeuger sowohl eine Abstromvergasungszone als auch eine unterhalb dieser angebrachte Aufstromvergasungszone auf. Indem ein Abstromvergaser mit einem Aufstromvergaser kombiniert wird, können verunreinigungsarme Brenngase auch aus Brennstoffen erzeugt werden, die sowohl reich an Teer und anderen Pyrolyseprodukten als auch an Schlacke sind. Der Abzug der im Schachtreaktor entstandenen Brenngase erfolgt zwischen der Abstromvergasungs- und der Aufstromvergasungszone, vorzugsweise aus einem als Gasentspannungs- und Gasabzugskammer dienenden Leerraum. Gemäss einem bevorzugten Ausführungsbeispiel sind im Betriebszustand des Brenngaserzeugers die Oxidationszone des Abstromvergasers und/oder die Oxidationszone des Aufstromvergasers ebenfalls mit einem an sie anschliessenden Leerraum versehen, durch den ein Vergasungsmittel aus zu den sich in der Oxidationszone befindlichen Materialien gelangt. Dies erlaubt die Bildung eines Schachtreaktors mit einem grossen Durchmesser und die sich daraus ergebende wirtschaftliche Produktion von Brenngasen.According to a preferred embodiment, the fuel gas generator has both an outflow gasification zone and one located below it Upflow gasification zone. By an exhaust gasifier with a Upflow gasifier is combined, low-pollution fuel gases can also are produced from fuels that are both rich in tar and others Pyrolysis products as well as slag. The deduction of the in the shaft reactor The resulting fuel gases occur between the waste gas and the Upflow gasification zone, preferably from a gas expansion and Gas discharge chamber serving empty space. According to a preferred one Embodiment are in the operating state of the fuel gas generator Oxidation zone of the exhaust gasifier and / or the oxidation zone of the Upstream gasifier also provided with an empty space adjoining it, through which a gasifying agent from to those in the oxidation zone Materials. This allows the formation of a shaft reactor with one large diameter and the resulting economic production of Fuel gases.

Im Folgenden werden noch Ausführungsbeispiele des Brenngaserzeugers in seinem Betriebszustand sowie des erfindungsgemässen Verfahrens anhand von Zeichnungen näher erläutert. Dabei zeigen:

Figur 1
einen schematischen vertikalen Längsschnitt durch einen erfindungsgemässen Brenngaserzeuger,
Figur 2
einen vertikalen Längsschnitt durch eine Variante des erfindungsgemässen Brenngaserzeugers,
Figur 3
einen sehr schematischen vertikalen Längsschnitt durch einen Brenngaserzeuger nach Anspruch 9 und
Figuren 4 und 5
einen vertikalen Längsschnitt durch je einen weiteren Brenngaserzeuger, und
Figuren 6 und 7
je einen vertikalen Längsschnitt durch einen weiteren Brenngaserzeuger, wobei die Schnittebenen der Längsschnitte zueinander rechtwinklig sind.
Exemplary embodiments of the fuel gas generator in its operating state and the method according to the invention are explained in more detail below with reference to drawings. Show:
Figure 1
2 shows a schematic vertical longitudinal section through a fuel gas generator according to the invention,
Figure 2
a vertical longitudinal section through a variant of the fuel gas generator according to the invention,
Figure 3
a very schematic vertical longitudinal section through a fuel gas generator according to claim 9 and
Figures 4 and 5
a vertical longitudinal section through a further fuel gas generator, and
Figures 6 and 7
each a vertical longitudinal section through a further fuel gas generator, the sectional planes of the longitudinal sections being mutually perpendicular.

Der in der Figur 1 dargestellte Brenngaserzeuger 1 mit einer Abstromvergasungszone ist geeignet zur Erzeugung von Brenngas aus schlackearmen und eventuell teerreichen Brennstoffen wie beispielsweise Holz. Er ist je nach dem durch ein in der Zeichnung nicht dargestelltes Gestell gehalten und besitzt eine im Wesentlichen zylindrische und eine Achse 2 definierende äussere Wandung 3 aus feuerfestem Material. Ein im Wesentlichen innerhalb der äusseren Wandung 3 angebrachter Schachtreaktor 5 besitzt einen Schachtmantel 7 und eine in der Figur als Ganzes mit 9 bezeichnete Beschickungsvorrichtung. Die Beschickungsvorrichtung 9 weist eine oder mehrere Schleusen 11 auf. Jede Schleuse besitzt einen oberen und einen unteren Flachschieber 13 bzw. 15 Durch Öffnen des oberen Flachschiebers 13 kann jede Schleuse 11 mit von einer nicht gezeichneten Zuführungsvorrichtung zugeführtem Brennstoff 17 gefüllt werden. Durch Öffnen des unteren Flachschiebers 15 gelangt Brennstoff aus der Schleuse 11 in einen Förderbereich 19. Dieser ist mit Fördermitteln 21, beispielsweise einer Förderschnecke, versehen. Durch diese gelangt der Brennstoff in den Schachtreaktor 5. Vorzugsweise ist jede Schleuse 11, der Schachtreaktor 5 und möglicherweise auch der Förderbereich 19 mit einem oder mehreren Füllstandsmessgeräten versehen, die eine automatisierte oder manuelle Steuerung des Beschickungsvorganges ermöglichen. Mit einem Regelgerät kann dadurch jeder Transportschritt des Brennstofftransportes geregelt werden. Der obere Teil 23 des Schachtreaktors 5 dient als Trocknungs- und Entgasungszone für den eingefüllten Brennstoff. Von diesem oberen Teil 23 durch einen Entgasungsrost 25 abgetrennt ist die Abstromvergasungszone 27. Oberhalb des Entgasungsrostes 25 im unteren Bereich 29 der Entgasungszone 23 befinden sich beispielsweise noch Trichtermittel 31, die den Brennstoff in der Entgasungszone 23 sammeln und der Abstromvergasungszone 27 zentral und dosiert zuführen können. Im unteren Bereich 29 der Entgasungszone herrschen Temperaturen, die je nach dessen chemischer Zusammensetzung eine Aufspaltung des Brennstoffes bewirken können. Dieser Bereich 29 wird deshalb auch als Pyrolysezone bezeichnet.The fuel gas generator 1 shown in FIG . 1 with an outflow gasification zone is suitable for generating fuel gas from low-slag and possibly tar-rich fuels such as wood. It is held by a frame (not shown in the drawing) and has an essentially cylindrical outer wall 3 made of refractory material and defining an axis 2. A shaft reactor 5, which is attached essentially within the outer wall 3, has a shaft casing 7 and a loading device, designated 9 as a whole in the figure. The loading device 9 has one or more locks 11. Each lock has an upper and a lower flat slide 13 or 15. By opening the upper flat slide 13, each lock 11 can be filled with fuel 17 supplied by a feed device, not shown. By opening the lower flat slide valve 15, fuel passes from the lock 11 into a conveying area 19. This is provided with conveying means 21, for example a conveying screw. The fuel passes through this into the shaft reactor 5. Preferably, each lock 11, the shaft reactor 5 and possibly also the conveying area 19 are provided with one or more filling level measuring devices which enable automated or manual control of the loading process. Every control step of the fuel transport can be controlled with a control device. The upper part 23 of the shaft reactor 5 serves as a drying and degassing zone for the filled fuel. The outflow gasification zone 27 is separated from this upper part 23 by a degassing grate 25. Above the degassing grate 25 in the lower region 29 of the degassing zone 23 there are, for example, funnel means 31 which collect the fuel in the degassing zone 23 and can feed the outflow gasification zone 27 centrally and in a metered manner , Temperatures prevail in the lower region 29 of the degassing zone, which, depending on its chemical composition, can cause the fuel to split. This area 29 is therefore also referred to as the pyrolysis zone.

Die Abstromvergasungszone 27 weist eine Verengung auf, so dass ihre Wandung 28 zwei Kegelstümpfe bildet, von denen sich der obere nach oben, der untere nach unten erweitert. In der Abstromvergasungszone 27 bilden sich eine Abstromvergasungs-Oxidationszone 33 und darunter eine Abstromvergasungs-Reduktionszone 35 aus. Die Oxidationszone 33 besitzt zwischen dem Entgasungsrost 25 und dem sich in ihr befindenden Brennstoff einen Abstromvergasungs-Leerraum 34. Der Leerraum 34 erstreckt sich dabei mindestens im Wesentlichen über die ganze Horizontal-Querschnittsfläche des Schachtreaktors, so dass die in der Entgasungszone und die in der Abstromvergasungszone 27 befindlichen Materialien vollständig voneinander getrennt sind. Ein zu den Kegelstümpfen koaxialer Gegenkegel ragt in den unteren Kegelstumpf hinein und dient als Abstromvergasungs-Rostelement 37, das die Abstromvergasungszone 27 und also die Reduktionszone 35 nach unten begrenzt und als Durchlass für aus der Abstromvergasungszone weg nach unten zu transportierendes Material dient. Das Abstromvergasungs-Rostelement 37 ist an einer Welle 39 befestigt, die mit einer ausserhalb des Reaktors angebrachten und in der Figur nicht dargestellten Dreh- und Hubvorrichtung verbunden ist. Durch eine axiale Verschiebung der Welle 39 und des daran befestigten, kegelförmigen Abstromvergasungs-Rostelementes 37 kann die Grösse einer sich um dieses herum ergebenden, ringförmigen Öffnung 41 zwischen der Wandung 28 und dem Gegenkegel variiert werden. Durch Regelung der Grösse dieser Öffnung und der Drehgeschwindigkeit des Gegenkegels kann der Materialdurchsatz des Material-Wegtransportes aus der Abstromvergasungszone gesteuert werden. Der Dreh- und Hubmechanismus wird nun derart betätigt und mit der Materialzuführung in die Abstromvergasungszone abgestimmt, dass immer so viel Material durch die Öffnung 41 nach unten fällt, dass sich die Oberfläche des Brennmaterials ein wenig, beispielsweise 5-15 cm und zum Beispiel ca. 8 cm über der Höhe der Verengung befindet. In der Entgasungs- 23 der Oxidations- 33 und der Reduktionszone 35 besitzt der Brenngaserzeuger 1 ferner nicht gezeichnete Fühler zur Ermittlung der in den verschiedenen Zonen herrschenden Temperaturen sowie des Füllstandes.The outflow gasification zone 27 has a constriction, so that its wall 28 forms two truncated cones, the upper of which extends upwards, the lower one downwards extended. An effluent gasification oxidation zone is formed in the effluent gasification zone 27 33 and below an outflow gasification reduction zone 35. The oxidation zone 33 has between the degassing grate 25 and that in it fuel located in an outflow gasification void 34. The void 34 extends at least substantially over the entire horizontal cross-sectional area of the shaft reactor, so that in the degassing zone and in the outflow gasification zone 27 completely from each other are separated. A counter cone coaxial with the truncated cones projects into the lower one Truncated cone into it and serves as an outflow gasification grate element 37, which the Downflow gasification zone 27 and thus the reduction zone 35 is limited at the bottom and as a passage for downward out of the effluent gasification zone transporting material. The downstream gasification grate element 37 is on attached to a shaft 39 which is attached to an outside of the reactor and in the figure not shown rotating and lifting device is connected. By a axial displacement of the shaft 39 and the attached conical Downflow gasification grate member 37 may be the size of one around it resulting annular opening 41 between the wall 28 and the Counter cone can be varied. By regulating the size of this opening and the The speed of rotation of the counter cone can be the material throughput of the material transport away be controlled from the effluent gasification zone. The turning and The lifting mechanism is now operated in this way and with the material feed into the Downstream gasification zone matched that always so much material through the opening 41 falls down that the surface of the fuel is slightly for example 5-15 cm and for example about 8 cm above the height of the constriction located. In the degassing zone 23, the oxidation zone 33 and the reduction zone 35 The fuel gas generator 1 also has sensors, not shown, for determining the in the different temperatures and levels.

Der Brenngaserzeuger 1 besitzt eine Abstrom-Vergasungsmittelzuführung 43 die als vertikales und bezüglich der äusseren Wandung 3 zentral angebrachtes Rohr ausgebildet ist. Die Mündung 45 der Vergasungsmittel-Zuführung 43 befindet sich im Leerraum 34 der Oxidationszone 33. Durch die Zuführung 43 strömt ein sauerstoffhaltiges Vergasungsmittel, beispielsweise Luft, in die Oxidationszone. Der Leerraum 34 dient dann als Vorbrenn- und Mischkammer. Durch einen von unten her wirkenden Sog wird das Vergasungsmittel nach seinem Ausströmen durch das in der Abstromvergasungszone befindliche Material nach unten gesaugt. Durch die in der Nähe seiner Oberfläche bei hohen Temperaturen ablaufenden Oxidationsreaktionen wird der Sauerstoff des Vergasungsmittels rasch aufgebraucht, so dass sich die Oxidationszone 33 nur wenig, typischerweise einige cm und zum Beispiel ca. 8 cm in das Material hinein erstreckt. Aus diesem Grund befindet sich der Übergang von der Oxidations- 33 zu der Reduktionszone 35 ungefähr auf Höhe der Verengung, das heisst in der horizontalen Ebene, in der die Wandung 28 einen minimalen Querschnitt umschliesst. Durch die Existenz des Leeraumes 34 und eine homogene Materialdichte des Brennmateriales läuft der Oxidationsvorgang unabhängig vom Abstand von der Schachtachse 2 ab. Aus diesem Grund kann der Durchmesser des Schachtes praktisch in einer beliebigen Grösse dimensioniert werden, ohne dass dies am Rand der Oxidationszone ein Sauerstoffmangel bewirken würde, so dass die notwendigen Temperaturen zur Aufspaltung von Pyrolyseprodukten nicht erreicht werden.The fuel gas generator 1 has an outflow gasification agent supply 43 which as vertical pipe 3 centrally attached with respect to the outer wall is trained. The mouth 45 of the gasification agent supply 43 is located in the empty space 34 of the oxidation zone 33. An inlet 43 flows in oxygen-containing gasifying agent, for example air, into the oxidation zone. The Empty space 34 then serves as a pre-combustion and mixing chamber. By one from below The gasification agent acting after it flows out through the material located in the downstream gasification zone is sucked down. By in near its surface at high temperatures Oxidation reactions quickly deplete the oxygen of the gasifying agent, so that the oxidation zone 33 is only a little, typically a few cm and Example extends about 8 cm into the material. For this reason there is the transition from the oxidation zone 33 to the reduction zone 35 is approximately level the narrowing, that is, in the horizontal plane in which the wall 28 is one encloses minimal cross section. Due to the existence of the empty space 34 and one The oxidation process runs homogeneous material density of the fuel regardless of the distance from the shaft axis 2. For this reason, the The shaft diameter is practically dimensioned in any size without causing a lack of oxygen at the edge of the oxidation zone would, so the temperatures necessary for splitting Pyrolysis products cannot be achieved.

Das aus der Abstromvergasungszone abgeführte Material gelangt durch die Öffnung 41 in eine Entaschungszone 47. Von dort wird das Material aus dem Brenngaserzeuger ausgeschleust. Diesem Zweck dienen zwei Flachschieber 49, 51, die einen Ascheraum 53 begrenzen. Das Ausschleusen der Asche erfolgt, indem zuerst der obere und dann der untere Flachschieber 49 geöffnet und anschliessend wieder geschlossen wird.The material discharged from the effluent gasification zone passes through the opening 41 into a deashing zone 47. From there, the material from the Fuel gas generator removed. Two flat slides 49, 51, that delimit an ash room 53. The ash is discharged by first the upper and then the lower flat slide 49 opened and then is closed again.

Zwischen der äusseren Wandung 3 und dem Schachtmantel 7 ist ein im Wesentlichen hohlzylinderförmiger Hohlraum 53 ausgebildet. Das durch das Abstromvergasungs-Rostelement nach unten abziehende, brenngashaltige Gas gelangt auf der Unterseite 55 des Schachtreaktors in diesen Hohlraum 53 und strömt in ihm nach oben. Dabei erwärmt es den Schachtmantel 7 und sorgt somit dafür, dass in der Trocknungs- und Entgasungszone 23 die für den Trockungungs- und Entgasungsvorgang notwendige Temperatur erreicht wird. Durch eine oder mehrere Brenngas-Abführungsleitungen 57, die Öffnungen in der äusseren Wandung 3 durchdringen, wird das Gas abgeführt. Eventuell kann der Gasabfluss noch durch zusätzlich vorhandene Ventil- oder Schleusemittel 59 gesteuert werden.Between the outer wall 3 and the shaft casing 7 is in Essentially hollow cylindrical cavity 53 is formed. That through that Downflow gasification grate element pulling down gas containing fuel gas enters the cavity 53 on the underside 55 of the shaft reactor and flows up in it. It heats the shaft casing 7 and thus ensures that in the drying and degassing zone 23 for drying and Degassing process necessary temperature is reached. By one or more Fuel gas discharge lines 57, the openings in the outer wall 3 penetrate, the gas is discharged. Possibly the gas drainage can still occur additionally existing valve or lock means 59 can be controlled.

In der Figur 2 ist ein Brenngaserzeuger 101 mit Aufstromvergasungszone dargestellt, der beispielsweise geeignet ist zur Erzeugung von Brenngasen aus schlackereichen, aber teerarmen Brennstoffen wie beispielsweise Klärschlamm. Er besitzt eine im Wesentlichen zylindrische, eine Achse 102 definierende äussere Wandung 103 und ist durch nicht näher beschriebene Gestellmittel 104 gehalten. Der Schachtreaktor 105 besitzt einen Einlass 109 zur Beschickung mit Brennstoff. Zusätzliche weist er im oberen Bereich einen Fühler 110 zur Ermittlung des Füllstandes auf. Der obere Teil 123 des Schachtreaktors 105 dient als Trocknungsund Entgasungszone. Der dort bei nach unten ansteigenden Temperaturen getrocknete und entgaste Brennstoff gelangt durch einen die Trocknungs- und Entgasungszone 123 nach unten abschliessenden Entgasungsrost 125 in die Aufstromvergasungszone 127. Diese ist aufgeteilt in eine Aufstromvergasungs-Reduktionszone 135 im oberen und eine Aufstromvergasungs-Oxidationszone 133 im unteren Bereich. Die Aufstromvergasungszone 127 ist nach unten begrenzt durch ein scheibenförmig ausgebildetes Aufstromvergasungs-Rostelement 137. Ähnlich wie das Abstromvergasungs-Rostelement 37 des Brennstofferzeugers 1 dient auch dieses Rostelement 137 als Durchlass für das aus der Vergasungszone weg nach unten zu transportierende Material und ist an einer Welle 139 befestigt, die mit einem ausserhalb des Reaktors angebrachten Drehantrieb 140 verbunden ist. Durch Regelung der Drehgeschwindigkeit des Drehantriebs 140 kann der Materialdurchsatz durch das Rostelement 137 gesteuert werden. Der unterhalb des Rostelementes 137 befindliche anschliessende Raum des Brenngaserzeugers 101 ist als gleichzeitig zur Zuführung von Vergasungsmittel dienende Schlacken- und Aschenkammer 147 ausgebildet. Der obere, direkt unterhalb des Rostelementes 137 befindliche und also an die Oxidationszone 133 anschliessende Bereich dieser Schlacke- und Aschekammer 147 wird im Betriebszustand des Brenngaserzeugers 101 frei von festem Material gehalten und bildet einen Aufstromvergasungs-Leerraum 134. Die Zufuhr von Vergasungsmittel in die Schlacke- und Aschekammer 137 erfolgt durch eine Aufstrom-Vergasungsmittelzuführung 143 mit einem seitlich angebrachten Zuführstutzen 144 in diesen Leerraum 134, wobei das Vergasungsmittel eventuell noch durch im unteren Teil der Schlacke- und Aschekammer 147 befindliche Schlacke und/oder Asche hihdurchgeleitet wird und sich dabei erwärmt. Ferner besitzt die Schlacke- und Aschekammer auch noch ein mit der Welle 139 verbundenes Rührwerk 148, durch das ein fortlaufender Weitertransport der anfallenden Schlacke und Asche in ein als Schlacke- und Ascheaustrag 150 dienendes Abführungsrohr und von dort in einen Schlacke- und Aschebehälter 152 erfolgt. Der Schlacke- und Aschebehälter 152 kann noch mit einer Füllstandsanzeige versehen sein, die mit in ihm angebrachten Fühlern verbunden ist und die beispielsweise anzeigt, wenn der Schlacke- und Aschebehälter 152 voll ist und zur Entleerung wegtransportiert und eventuell durch einen leeren Behälter ersetzt werden muss. FIG. 2 shows a fuel gas generator 101 with an upflow gasification zone, which is suitable, for example, for generating fuel gases from fuels that are rich in slag but low in tar, such as sewage sludge. It has an essentially cylindrical, outer wall 103 defining an axis 102 and is held by frame means 104, which are not described in detail. The shaft reactor 105 has an inlet 109 for charging with fuel. In addition, it has a sensor 110 in the upper area for determining the fill level. The upper part 123 of the shaft reactor 105 serves as a drying and degassing zone. The fuel which has been dried and degassed there at rising temperatures passes through a degassing grate 125 which closes the drying and degassing zone 123 downward into the upflow gasification zone 127. This is divided into an upflow gasification reduction zone 135 in the upper region and an upflow gasification oxidation zone 133 in the lower region , The upstream gasification zone 127 is bounded at the bottom by a disc-shaped upstream gasification grate element 137. Similar to the outflow gasification grate element 37 of the fuel generator 1, this grate element 137 also serves as a passage for the material to be transported downward out of the gasification zone and is on a shaft 139 attached, which is connected to a rotary drive 140 mounted outside the reactor. The material throughput through the grate element 137 can be controlled by regulating the rotational speed of the rotary drive 140. The adjoining space of the fuel gas generator 101 located below the grate element 137 is designed as a slag and ash chamber 147 which serves at the same time for supplying gasification agent. The upper region of this slag and ash chamber 147, which is located directly below the grate element 137 and thus adjoins the oxidation zone 133, is kept free of solid material in the operating state of the fuel gas generator 101 and forms an upflow gasification empty space 134. The supply of gasification agent into the slag and ash chamber 137 takes place through an upflow gasifying agent supply 143 with a laterally attached supply nozzle 144 into this empty space 134, the gasifying agent possibly being passed through slag and / or ash located in the lower part of the slag and ash chamber 147 and thereby heating up. Furthermore, the slag and ash chamber also has an agitator 148 connected to the shaft 139, by means of which the slag and ash produced is continuously transported further into a discharge pipe serving as slag and ash discharge 150 and from there into a slag and ash container 152. The slag and ash container 152 can also be provided with a fill level indicator which is connected to sensors mounted in it and which, for example, indicates when the slag and ash container 152 is full and has to be transported away for emptying and possibly replaced by an empty container.

Das in der Aufstromvergasungszone 127 erzeugte Gas gelangt von der Aufstromvergasungs-Reduktionszone 135 durch den Entgasungsrost 125 in einen zwischen dem Schachtreaktor 105 und der äusseren Wandung 103 ausgebildeten, im Wesentlichen hohlzylinderförmigen Hohlraum 153. Dabei wird der Schachtmantel 107 erwärmt und die in der Trocknungs- und Entgasungszone herrschenden, nach unten zunehmenden Temperaturen erzeugt. Der Hohlraum 153 kann noch durch ein Lochblech 154 unterteilt sein. Das Brenngas enthaltende Gas wird durch eine Brenngas-Abführungsleitung 157 abgeführt The gas generated in the upflow gasification zone 127 passes from the Upflow gasification reduction zone 135 through the degassing grate 125 into one formed between the shaft reactor 105 and the outer wall 103, in Substantially hollow-cylindrical cavity 153. The shaft casing 107 heated and those in the drying and degassing zone after temperatures increasing below. The cavity 153 can still through Perforated plate 154 may be divided. The gas containing fuel gas is replaced by a Fuel gas discharge line 157 discharged

Ein Brenngaserzeuger mit Abstrom- und Aufstromvergasungszone ist schematisch in der Figur 3 dargestellt. Der Brenngaserzeuger 201 besitzt eine äussere Wandung 203 aus einem feuerfesten Material und einen Schachtreaktor 205. Die Beschickung mit Brennstoff erfolgt mittels einer Schleuse 211, die einen oberen und einen unteren Flachschieber 213 bzw. 215 besitzt. Im oberen Bereich des Schachtreaktors ist eine Trocknungs- und Entgasungszone 223f ausgebildet. Unterhalb dieser ist eine Abstrom-Vergasungsmittelzuführung 243 mit einem den Schachtreaktor umgebenden Ringraum 244 angebracht. Von diesem Ringraum 244 strömt das Vergasungsmittel durch Öffnungen radial nach innen und anschliessend nach unten. Dabei bildet sich durch Verbrennungsprozesse im Brennmaterial eine Abstromvergasungs-Oxidationszone 233 einer Abstromvergasungszone 227 aus, die sich von der Höhe des Ringraumes 244 nach unten erstreckt. An diese anschliessend bildet sich eine Abstromvergasungs-Reduktionszone 235 aus. Im unteren Bereich des Schachtreaktors 205 besitzt dieser ferner eine Aufstrom-Vergasungsmittelzuführung 261, die ebenfalls einen Ringraum 263 aufweist, von dem ein Vergasungsmittel radial nach innen und anschliessend nach oben strömt. Dabei bilden sich eine Aufstromvergasungs-Oxidationszone 275 und eine oberhalb dieser an diese anschliessende Aufstromvergasungs-Reduktionszone 273 einer Aufstromvergasungszone 271 aus. Zwischen der Abstromvergasungszone 227 und der Aufstromvergasungszone 271 werden die in der Abstromvergasungszone 227 und der Aufstromvergasungszone 271 entstandenen Gase durch Gasabzugsmittel abgezogen. Diese werden durch einen ringförmigen Hohlraum 253, in dem die Gase gesammelt werden und einer geeigneten Absaugvorrichtung gebildet. Unterhalb der Aufstromvergasungszone 271 befindet sich noch eine Schlacke- und Aschekammer 247. Von dieser wird die Schlacke und die Asche aus dem Brenngaserzeuger mit zwei Flachschiebem 249 bzw. 251 ausgeschleust.A fuel gas generator with an outflow and upflow gasification zone is shown schematically in FIG . The fuel gas generator 201 has an outer wall 203 made of a refractory material and a shaft reactor 205. The fuel is supplied by means of a lock 211, which has an upper and a lower flat slide valve 213 and 215, respectively. A drying and degassing zone 223f is formed in the upper region of the shaft reactor. An outflow gasification agent supply 243 with an annular space 244 surrounding the shaft reactor is attached below this. The gasification agent flows from this annular space 244 through openings radially inwards and then downwards. In the process, combustion processes in the fuel material form an outflow gasification oxidation zone 233 of an outflow gasification zone 227, which extends downward from the height of the annular space 244. An outflow gasification reduction zone 235 then forms after this. In the lower region of the shaft reactor 205, this also has an upflow gasification agent feed 261, which likewise has an annular space 263, from which a gasification agent flows radially inwards and then upwards. An upflow gasification oxidation zone 275 is formed, and an upflow gasification reduction zone 273, which adjoins the latter, of an upflow gasification zone 271. Between the effluent gasification zone 227 and the effluent gasification zone 271, the gases generated in the effluent gasification zone 227 and the effluent gasification zone 271 are drawn off by gas extraction means. These are formed by an annular cavity 253 in which the gases are collected and a suitable suction device. Below the upflow gasification zone 271 there is also a slag and ash chamber 247. From this the slag and the ash are discharged from the fuel gas generator with two flat slides 249 and 251, respectively.

Der in Figur 4 dargestellte Brenngaserzeuger 301 mit Aufstrom- und Abstromvergasungszone weist eine äussere Wandung 303 aus feuerfestem Material auf, die einen im Wesentlichen zylindrischen und eine Achse 302 definierenden Hauptabschnitt 304, einen unten an diesen anschliessenden Boden 306 mit einer Öffnung 308 sowie einen als zylindrischen Fortsatz von der Öffnung 308 nach unten ragenden Nebenabschnitt 310 mit einer im Vergleich zum Hauptabschnitt wesentlich kleineren Querschnittsfläche in einem Horizontalschnitt auf. Ein Schachtreaktor 305 wird gebildet durch einen an der Wandung befestigten Haupt-Schachtreaktor 312 sowie den als Neben-Schachtreaktor dienenden Nebenabschnitt 310. Die äussere Wandung 303 wird durch im Folgenden nicht näher beschriebene Gestellmittel 304 flexibel so gehalten, dass durch thermische Ausdehnungen entstandene Verschiebungen ausgeglichen werden können. Die Zuführung von Brennstoff in den Schachtreaktor 305 erfolgt durch eine Brennstoff-Zuführung 314 in eine Entgasungszone 323. Direkt an diese anschliessend bildet sich eine Abstromvergasungszone 327 mit einer Abstromvergasungs-Oxidationszone 333 und einer Abstromvergasungs-Reduktionszone 335 aus. Im Bereich der Entgasungs- und der Oxidationszone besitzt der Schachtreaktor 305 eine Verengung, die durch einen aus feuerfestem Material bestehenden Abschnitt 328 seiner Wandung gebildet wird. Dabei bildet die Wandung zwei Kegelstümpfe, von denen sich der obere nach oben, der untere nach unten erweitert. In der Abstromvergasungszone 327 bilden sich ein aus. Die Abstromvergasungszone 327 wird durch ein Abstromvergasungs-Rostelement 337 nach unten begrenzt, das einen Durchlass für aus der Abstromvergasungszone 327 weg nach unten zu transportierendes Material bildet. Das Rostelement 337 ist scheibenförmig ausgebildet und gasdurchlässig. Es ist über eine Welle 339 mit einer in der Figur nicht dargestellten Dreh- und Hubvorrichtung verbunden. Durch eine vertikale Verschiebung des Rostelementes 337 kann die Grösse einer sich zwischen diesem und der Wandung 328 ausbildenden Öffnung 341 variiert werden. Analog zum Brenngaserzeuger 1 kann somit beim Brenngaserzeuger 301 der Materialdurchsatz durch das Rostelement so gesteuert werden, dass die Oberfläche des sich in der Entgasungs- und Abstromvergasungszone befindenden Materials mehr oder weniger immer auf derselben Ebene befindet. Der Brenngaserzeuger 301 besitzt eine bezüglich der äusseren Wandung 303 zentral angebrachte Abstrom-Vergasungsmittetzuführung 343. Diese besitzt ein vertikales inneres Zuführungsrohr 344 mit einem unteren Rohr-Ende 345, eine zu diesem Rohr-Ende 345 in Abstand stehende horizontale untere Stirnabdeckung 391 sowie ein von dieser nach oben ragendes und von dieser nach unten abgeschlossenes äusseres Zuführungsrohr 393 mit einer Mündung 395 oberhalb der Entgasungszone 323. Das durch das innere Zuführungsrohr 344 zugeführte Vergasungsmittel strömt bis zu dessen unterem Rohr-Ende 345 nach unten und anschliessend zwischen dem inneren und dem äusseren Zuführungsrohr 393 bis zu dessen Mündung 395 nach oben. Von der Mündung 395 gelangt das Vergasungsmittel durch das in der Entgasungszone 323 befindliche Material zur Oxidationszone 333. Das innere und das äussere Zuführungsrohr 344 bzw. 393 ragen so weit nach unten, dass sich die Stirnabdeckung 391 ungefähr auf der Höhe der Oxidationszone 333 der Abstromvergasungszone 327 befindet. Aus diesem Grund ist der an die Stirnabdeckung 391 anschliessende Abschnitt des äusseren Zuführungsrohres 393 von sehr heissem Material umgeben. Daher wird das zugeführte Vergasungsmittel bei seinem Durchfluss durch diesen Abschnitt vor seiner Einführung in die Abstromvergasungszone beheizt. An die Vergasungsmittel-Zuführung 343 und nämlich an die Stirnabdeckung 391 schliesst noch ein von der Achse 302 radial nach aussen ragender, scheibenförmiger Mischrost 367 an. Dieser ist über die Vergasungsmittel- Zuführung 343 mit einem nicht gezeichneten, sich ausserhalb des Schachtreaktors befindenden Drehantrieb verbunden und dient der Auflockerung und Mischung des Brennmaterials, das sich ungefähr auf der Höhe der Oxidationszone 333 und der Verengung befindet.The fuel gas generator 301 shown in FIG. 4 with upstream and downstream gasification zones has an outer wall 303 made of refractory material, which has a substantially cylindrical main section 304 defining an axis 302, a bottom 306 adjoining the bottom with an opening 308 and one as a cylindrical one Extension in a horizontal section from sub-section 310 projecting downward from opening 308 and having a substantially smaller cross-sectional area than the main section. A shaft reactor 305 is formed by a main shaft reactor 312 fastened to the wall and the secondary section 310 serving as a secondary shaft reactor. The outer wall 303 is held flexibly by frame means 304 (not described in more detail below) in such a way that displacements caused by thermal expansions are compensated for can. Fuel is fed into the shaft reactor 305 through a fuel feed 314 into a degassing zone 323. An exhaust gas gasification zone 327 with an exhaust gas gasification oxidation zone 333 and an exhaust gas gasification reduction zone 335 is formed directly after this. In the area of the degassing and the oxidation zone, the shaft reactor 305 has a constriction, which is formed by a section 328 of its wall made of refractory material. The wall forms two truncated cones, the upper of which widens upwards, the lower one downwards. A is formed in the downstream gasification zone 327. The effluent gasification zone 327 is bounded at the bottom by an effluent gasification grate element 337, which forms a passage for material to be transported downward from the effluent gasification zone 327. The grate element 337 is disc-shaped and gas-permeable. It is connected via a shaft 339 to a turning and lifting device, not shown in the figure. The size of an opening 341 formed between it and the wall 328 can be varied by vertical displacement of the grate element 337. Analogous to the fuel gas generator 1, the material throughput through the grate element can thus be controlled in the fuel gas generator 301 such that the surface of the material located in the degassing and outflow gasification zone is more or less always on the same level. The fuel gas generator 301 has an outflow gasification agent supply line 343 which is arranged centrally with respect to the outer wall 303. This has a vertical inner supply pipe 344 with a lower pipe end 345, a horizontal lower end cover 391 spaced from this pipe end 345 and also one of these Outer supply pipe 393 protruding upward and closed off from this with an opening 395 above the degassing zone 323. The gasification agent supplied through the inner supply pipe 344 flows down to its lower pipe end 345 and then between the inner and the outer supply pipe 393 up to its mouth 395. From the mouth 395, the gasification agent passes through the material in the degassing zone 323 to the oxidation zone 333. The inner and outer feed pipes 344 and 393 protrude so far that the end cover 391 is approximately at the level of the oxidation zone 333 of the outflow gasification zone 327 located. For this reason, the section of the outer feed pipe 393 adjoining the end cover 391 is surrounded by very hot material. Therefore, the gasification agent supplied is heated as it flows through this section prior to its introduction into the effluent gasification zone. Connected to the gasification agent supply 343 and namely to the end cover 391 is a disk-shaped mixing grate 367 projecting radially outward from the axis 302. This is connected via the gasification agent supply 343 to a rotary drive, not shown, located outside the shaft reactor and serves to loosen and mix the fuel, which is approximately at the level of the oxidation zone 333 and the constriction.

Von der Abstromvergasungszone 327 gelangt das Material durch einen als Gasentspannungs- und Gasabzugskammer dienenden Gasabzugs-Leerraum 369 in die im Nebenabschnitt 310 ausgebildete Aufstromvergasungszone 371. Ein Rührwerk 379, das mit der Welle 339 verbunden ist, führt das aus der Abstromvergasungszone 327 auf den Boden 306 gefallene Material der Aufstromvergasungszone 371 zu, wobei oberhalb der Aufstromvergasungszone 371 je nach dem noch ein Flachschieber 372 vorhanden sein kann. Die Aufstromvergasungszone 371 ist auftgeteilt in eine Aufstromvergasungs-Reduktionszone 373 und eine Aufstromvergasungs-Oxidationszone 375. In die Aufstromvergasungs-Oxidationszone 375 mündet eine Aufstrom-Vergasungsmittelzuführung 361. Die Schlacken- und Aschenabführung erfolgt durch ein an den Nebenabschnitt anschliessendes Abführungsrohr 385, das durch einen weiteren Flachschieber 387 von der Aufstromvergasungszone 371 abgetrennt ist.The material passes from the effluent gasification zone 327 through an as Gas vent and gas vent chamber serving gas vent void 369 in the upflow gasification zone 371 formed in the sub-section 310 Agitator 379, which is connected to the shaft 339, leads from the Downstream gasification zone 327 material dropped to the floor 306 Upflow gasification zone 371, above the upflow gasification zone 371 depending on which a flat slide 372 can still be present. The Upflow gasification zone 371 is divided into an upflow gasification reduction zone 373 and an upflow gasification oxidation zone 375. In the Upflow gasification oxidation zone 375 opens upstream gasification agent supply 361. The slag and ash removal takes place through a discharge pipe 385 adjoining the secondary section, which is guided by a Another flat slide 387 is separated from the upflow gasification zone 371.

Genau wie der Brenngaserzeuger 1 besitzt der Brenngaserzeuger 301 einen Hohlraum 353 innerhalb der äusseren Wandung 303, in den das in der Abstromvergasungs- und in der Aufstromvergasungszone erzeugte und von dort in den zweiten Leerraum 369 gelangte Brenngas gelangen kann. Durch eine oder mehrere Brenngas-Abführungsleitungen 357 kann das Brenngas anschliessend abgeführt werden.Just like the fuel gas generator 1, the fuel gas generator 301 has one Cavity 353 within the outer wall 303, in which the in the Downstream gasification and generated in the upstream gasification zone and from there in fuel gas which has reached the second empty space 369 can pass. By one or The fuel gas can then be connected to a plurality of fuel gas discharge lines 357 be dissipated.

Der Brenngaserzeuger besitzt noch mehrere Fühler 389 zur Ermittlung der in den verschiedenen Zonen herrschenden Temperaturen sowie des Füllstandes der Zonen mit Brennstoffen bzw. mit Schlacken und/oder Asche.The fuel gas generator still has several sensors 389 for determining the in the different temperatures and the level of the zones with fuels or with slags and / or ashes.

Der in Figur 5 dargestellte Brenngaserzeuger 401 ist im Wesentlichen ähnlich aufgebaut wie der Brenngaserzeuger 301 von Figur 4, unterscheidet sich aber von diesem dadurch, dass er zusätzlich zu den bei diesem vorhandenen Rostelementen noch ein Entgasungsrostelement 425 sowie anstelle des Flachschiebers 387 ein Aufstromvergasungs-Rostelement 480 besitzt. Das Entgasungsrostelement 425 dient als Durchlass für den geregelten Material-Wegtransport aus der Entgasungszone 423 in die Aufstromvergasungszone 427. Dadurch bildet sich zwischen der Entgasungszone 423 und der Aufstromvergasungszone 427 ein Aufstromvergasungs-Leerraum 434 aus, der sich über eine ganze horizontale Querschnittsfläche des Schachtreaktors 405 erstreckt und daher den in der Entgasungszone befindlichen Brennstoff vollständig von dem in der Aufstromvergasungszone befindlichen Brennstoff trennt. Die Mündung 495 der Abstrom-Vergasungsmittelzuführung 443 befindet sich im Leerraum 434, so dass das Vergasungsmittel im Unterschied zum Brenngaserzueger 301 direkt zur Abstromvergasungs-Oxidationszone 433 gelangt und nicht zuerst durch die Entgasungszone 423 geleitet wird. Der Leerraum 434 dient analog zum Leerraum 34 des Brenngaserzeugers 1 als Vorbrenn- und Mischkammer und bewirkt, dass der Brenngaserzeuger 401 dieselben Vorteile wie der Brenngaserzeuger 1 aufweist. Das Aufstromvergasungs-Rostelement 480 dient als Durchlass für den geregelten Material-Wegtransport aus der Aufstromvergasungszone in das Abführungsrohr 485. Es bewirkt einen Aufstromvergasungs-Leerraum 482, der sich auf einer horizontalen Schnittebene über den ganzen Querschnitt des Schachtreaktors erstreckt. Die Aufstrom-Vergasungsmittel-Zuführung 461 mündet in diesen Leerraum. Der Leerraum 482 besitzt die zum Leerraum 134 des Brenngaserzeugers analogen Vorteile.The fuel gas generator 401 shown in FIG. 5 is constructed essentially similarly to the fuel gas generator 301 of FIG. 4, but differs from it in that, in addition to the grate elements present in the latter, it also has a degassing grate element 425 and an upstream gasification grate element 480 instead of the flat slide valve 387 has. The degassing grate element 425 serves as a passage for the regulated material removal from the degassing zone 423 into the upflow gasification zone 427. As a result, an upflow gasification empty space 434 is formed between the degassing zone 423 and the upflow gasification zone 427 and extends over an entire horizontal cross-sectional area of the shaft reactor 405 and therefore completely separates the fuel in the degassing zone from the fuel in the upstream gasification zone. The mouth 495 of the outflow gasification agent supply 443 is located in the empty space 434, so that the gasification agent, in contrast to the fuel gas feeder 301, reaches the outflow gasification oxidation zone 433 directly and is not first passed through the degassing zone 423. Analogously to the empty space 34 of the fuel gas generator 1, the empty space 434 serves as a pre-combustion and mixing chamber and has the effect that the fuel gas generator 401 has the same advantages as the fuel gas generator 1. The upflow gasification grate element 480 serves as a passage for the regulated material removal from the upflow gasification zone into the discharge pipe 485. It creates an upflow gasification empty space 482 which extends on a horizontal sectional plane over the entire cross section of the shaft reactor. The upstream gasifier supply 461 opens into this void. The empty space 482 has the advantages analogous to the empty space 134 of the fuel gas generator.

Der Brenngaserzeuger 501 der Figuren 6 und 7 ist wie der Brenngaserzeuger 101 ein Gegenstromvergaser, d.h. er besitzt eine Aufstromvergasungszone. Er weist eine im Wesentlichen zylindrische, eine Achse 502 definierende äussere Wandung 503 auf und ist durch nicht näher beschriebene Gestellmittel 504 gehalten. Der Schachtreaktor 505 besitzt analog zum Schachtreaktor 105 einen Einlass 509 zur Beschickung mit Brennstoff. Weiter bildet sich auch bei diesem Schachtreaktor im Betriebszustand in einem oberen Teil 523 eine Trocknungs- und Entgasungszone, wo der Brennstoff bei nach unten ansteigenden Temperaturen getrocknet und entgast wird. Unterhalb dieser wird eine Aufstromvergasungszone 527 mit einer Aufstromvergasungs-Reduktionszone 535 im oberen und eine Aufstromvergasungs-Oxidationszone 533 im unteren Bereich gebildet. Die Aufstromvergasungszone 527 ist nach unten begrenzt durch ein Aufstromvergasungs-Rostelement 537. Dieses weist neben einem scheibenförmigen Abschnitt 536 auch einen als dreh- und hebbarer Gegenkegelrost 538 ausgebildeten Abschnitt auf. Ein solcher Gegenkegelrost entspricht vom Prinzip und von der Funktionsweise her dem Rostelement 37 des Abstromvergasers 1. Die Welle 539, an der das Rostelement 537 befestigt ist, ist mit einem ausserhalb des Reaktors angeordneten Dreh- und Hubantrieb 540 verbunden. Der unterhalb des Rostelementes 537 befindliche anschliessende Raum des Brenngaserzeugers 501 ist als gleichzeitig zur Zuführung von Vergasungsmittel dienende Schlacken- und Aschenkammer 547 ausgebildet. Auch beim hier beschriebenen Brenngaserzeuger 501 wird der obere, direkt unterhalb des Rostelementes 537 befindliche und also an die Oxidationszone 533 anschliessende Bereich dieser Schlacke- und Aschekammer 547 im Betriebszustand frei von festem Material gehalten und bildet einen Aufstromvergasungs-Leerraum 534. Die Zufuhr von Vergasungsmittel in die Schlacke- und Aschekammer 547 erfolgt durch eine Aufstrom-Vergasungsmittelzuführung 543 mit einem seitlich angebrachten Zuführstutzen 544 und je nach dem noch durch einen Ascheaustragbehälter 550 in diesen Leerraum 534. Eine zusätzliche Vergasungsmittelzuführung erfolgt bspw. noch durch im Innern der Welle angeordnete Kanäle 540. Dadurch ist zusätzlich zur Vergasungsmittelzuführung auch noch die Kühlung der Welle 539 und des Rostelements 538 gewährleistet. Ferner besitzt auch die Schlacke- und Aschekammer noch ein mit der Welle 539 verbundenes Rührwerk 548, durch das ein fortlaufender Weitertransport der anfallenden Schlacke und Asche in ein als Schlacke- und Ascheaustrag 550 dienendes Abführungsrohr und von dort in einen Schlacke- und Aschebehälter 552 erfolgt.The fuel gas generator 501 of FIGS. 6 and 7 , like the fuel gas generator 101, is a counterflow gasifier, ie it has an upflow gasification zone. It has an essentially cylindrical outer wall 503 defining an axis 502 and is held by frame means 504, which are not described in any more detail. The shaft reactor 505 has, in analogy to the shaft reactor 105, an inlet 509 for charging with fuel. Furthermore, a drying and degassing zone also forms in this shaft reactor in the operating state in an upper part 523, where the fuel is dried and degassed when the temperatures rise downward. Below this, an upflow gasification zone 527 is formed with an upflow gasification reduction zone 535 in the upper area and an upflow gasification oxidation zone 533 in the lower area. The upflow gasification zone 527 is bounded at the bottom by an upflow gasification grate element 537. In addition to a disk-shaped section 536, this also has a section designed as a rotatable and liftable counter-cone grate 538. Such a counter-conical grate corresponds in principle and in terms of operation to the grate element 37 of the outflow gasifier 1. The shaft 539, to which the grate element 537 is attached, is connected to a rotary and lifting drive 540 arranged outside the reactor. The adjoining space of the fuel gas generator 501 located below the grate element 537 is designed as a slag and ash chamber 547 which serves at the same time for supplying gasification agent. In the fuel gas generator 501 described here, too, the upper region of this slag and ash chamber 547, which is located directly below the grate element 537 and thus adjoins the oxidation zone 533, is kept free of solid material in the operating state and forms an upflow gasification empty space 534. The supply of gasification agent in the slag and ash chamber 547 takes place through an upflow gasifying agent supply 543 with a laterally attached supply nozzle 544 and, depending on that, also through an ash discharge container 550 into this empty space 534. An additional gasifying agent supply takes place, for example, still through channels 540 arranged inside the shaft In addition to the gasification agent supply, cooling of the shaft 539 and the grate element 538 is also ensured. Furthermore, the slag and ash chamber also has an agitator 548 connected to the shaft 539, by means of which the slag and ash produced is continuously transported further into a discharge pipe serving as slag and ash discharge 550 and from there into a slag and ash container 552.

Der Brenngaserzeuger 501 besitzt noch Mittel zur Rückführung der in der Entgasungszone entstandenen Schwelgase in die Oxidationszone der Aufstromvergasungszone. Es sei hier noch festgestellt, dass im Unterschied zum gezeichneten Beispiel die Schwelgase auch in die Reduktionszone zurückgeführt werden können; ganz allgemein ist eine Rückführung in eine Vergasungszone auf einer beliebigen Höhe möglich. Die Mittel zur Rückführung weisen einen im oberen Bereich der Entgasungszone 523 oder oberhalb dieser bspw. seitlich angebrachten Schwelgas-Abführstutzen 571, nicht gezeichnete Schwelgas-Überführungsmittel und einen Schwelgas-Zuführstutzen 573 auf. Die durch den Schwelgas-Abführstutzen abgeführten Schwelgase können durch den Schwelgas-Zuführstutzen 573 direkt oder indirekt über den Leerraum 534 in die Oxidationszone 533 eingebracht werden. Dadurch kann die Temperatur in dieser und im Übergang zur Reduktionszone im Vergleich zu einem Aufstromvergaser ohne Schwelgas-Rückführung noch heisser sein. Ein wichtiger Effekt ist aber vor allem, dass im Schwelgas eventuell vorhandene Teerstoffe etc. in der Aufstromvergasungszone aufgespalten und damit unschädlich gemacht werden können. So kann ein Aufstromvergaser auch zur Vergasung von Feststoffen und Stoffgemischen verwendet werden, welche bisher für Aufstromvergaser ungeeignet waren.The fuel gas generator 501 still has means for recycling the in the Degassing carbonization gases formed in the oxidation zone of the Aufstromvergasungszone. It should be noted here that, in contrast to the drawn example the carbonization gases also returned to the reduction zone can be; Generally speaking, a return to a gasification zone any height possible. The return means have one in the top Area of the degassing zone 523 or above this, for example, attached laterally Smelting gas discharge nozzle 571, unsigned smoldering gas transfer means and a carbonization gas supply nozzle 573. The through the smoldering gas discharge nozzle discharged carbonization gases can be carried out directly or through the carbonization gas supply nozzle 573 can be introduced indirectly into the oxidation zone 533 via the empty space 534. As a result, the temperature in this and in the transition to the reduction zone in Even hotter compared to an upstream gasifier without carbonization gas recirculation his. An important effect is above all that in the carbonization gas existing tar materials etc. split up in the upflow gasification zone and thus can be rendered harmless. So an upstream carburetor can also Gasification of solids and mixtures of substances used for Upflow carburettors were unsuitable.

Das in der Aufstromvergasungszone 527 erzeugte Gas gelangt von der Aufstromvergasungs-Reduktionszone 535 in einen zwischen dem Schachtreaktor 505 und der äusseren Wandung 503 ausgebildeten, im Wesentlichen hohlzylinderförmigen Hohlraum 553. Dabei wird der Schachtmantel 507 erwärmt und die in der Trocknungs- und Entgasungszone herrschenden, nach unten zunehmenden Temperaturen erzeugt. Der Hohlraum 553 kann noch Schikanen 554 aufweisen, aufgrund derer der durch das Gas im Hohlraum 553 zurückzulegende Weg grösser ist und wodurch eine optimierte Wärmeabgabe des Gases an die Entgasungszone bewirkt wird. Das Brenngas enthaltende Gas wird durch eine Brenngas-Abführungsleitung 557 abgeführt.The gas generated in the upflow gasification zone 527 passes from the Upflow gasification reduction zone 535 into one between the shaft reactor 505 and the outer wall 503, essentially hollow cylindrical cavity 553. The shaft casing 507 is heated and those in the drying and degassing zone, down increasing temperatures. The cavity 553 can still baffles 554 , due to which the gas to be covered in the cavity 553 Path is larger and thereby an optimized heat transfer of the gas to the Degassing zone is effected. The gas containing fuel gas is replaced by a Fuel gas discharge line 557 discharged.

Im Bereich des Leerraums 534 besitzt der Brenngaserzeuger 501 noch ein Ausglüh-Rostelement 590. Dieses ist bspw. als Gitter mit relativ feinen Maschen ausgebildet. Brennstoffrückstände, welche auch nach der Durchquerung der Reduktions- und der Oxidationszone noch nicht vollständig verglüht sind und deshalb noch nicht als Aschestaub vorliegen, werden auf diesem Ausglüh-Rostelement 590 zurückgehalten und können im Luftzug des zugeführten Vergasungsmittels noch vollständig ausglühen. Durch mindestens eine in der Figur 7 besonders gut sichtbare Förderschnecke 591 werden dabei von Zeit zu Zeit die nicht weiter abbaubaren Brennstoffrückstände durch einen Brennstoffrückstand-Austrag 592 in horizontaler Richtung wegbefördert. Im gezeichneten Ausführungsbeispiel ist dabei die Förderschnecke 591 ortsfest angebracht, während das Ausglüh-Rostelement 590 mit der Welle verbunden ist und also drehbar ist. Die Förderschnecke 591 oder die Förderschnecken sind bspw. exzentrisch angebracht, d.h. sie kreuzen die Achse 502 nicht.In the area of the empty space 534, the fuel gas generator 501 also has an annealing grate element 590. This is designed, for example, as a grid with relatively fine meshes. Fuel residues, which also after crossing the reduction and Oxidation zone are not yet completely annealed and therefore not as yet Ash dust is retained on this annealing grate element 590 and can still completely in the draft of the supplied gasification agent anneal. By at least one that is particularly well visible in FIG From time to time, the screw conveyor 591 will no longer be degradable Fuel residues through a fuel residue discharge 592 in horizontal Transported away. In the illustrated embodiment, the Screw conveyor 591 is fixed in place, while the glow grate element 590 the shaft is connected and is therefore rotatable. The screw conveyor 591 or the For example, screw conveyors are mounted eccentrically, i.e. they cross axis 502 Not.

Claims (16)

  1. A device (1, 101, 201, 301, 401, 501) for producing combustible gases by way of gasification of solid fuels present in pieces, comprising a reactor shaft (5, 105, 405, 505) to be traversed in a flow-through direction
    with at least one gasification zone (27, 127, 427, 471, 527) which is divided up into an oxidation zone (33, 133, 433, 475, 533) and into a reduction zone (35, 135, 435, 473, 535)
    with a gasification means supply (43, 143, 443, 461, 543) and
    with a grate element (37, 137, 437, 480, 537) which terminates the gasification zone (27, 127, 427, 471, 527) in the flow-through direction and which forms a passage for the transport-away of material from the gasification zone (27, 127, 427, 471, 527) and which is provided with means for controlling the material throughput,
    wherein the grate element (37, 137, 437, 480, 537) and the means for controlling the material throughput are designed such that in the operating condition of the device at least one cavity (34, 134, 434, 482, 534) formed in the oxidation zone (33, 133, 433, 475, 533) and/or connecting to this may be maintained and
    the gasification means supply (43, 143, 443, 461, 543) runs into this cavity (34, 134, 434, 482, 534),
    characterised in that,
    the cavity (34, 134, 434, 482, 534) extends over a whole cross sectional area of the shaft reactor (5, 105, 405, 505).
  2. A device (1, 401, 501) according to claim 1, characterised in that the or one gasification zone has a wall (28, 428) which forms two coaxial truncated cones which narrow towards one another so that the gasification zone (7, 427, 527) comprises a narrowing.
  3. A device (1, 101, 201, 301, 401, 501) according to claim 1 or 2, characterised in that above the or one gasification zone (27, 127, 427, 527) there is provided a degasification zone (23, 123, 423, 523) which in the operational condition may be heated by way of direct or indirect heating for the purpose of drying or degasification of the solid fuel.
  4. A device (501) according to claim 3, characterised in that the or one gasification zone is an updraught gasification zone (527) and there are present means (571, 573) for leading back carbonisation gases from the degasification zone (523) into the updraught gasification zone (527).
  5. A device (1, 101, 201, 301, 401, 501) according to claim 3 or 4, characterised by heat transfer means for heating the degasification zone (23, 123, 423, 523) by way of the heat contained in the combustion gas, wherein these heat transfer means preferably comprise a cavity (53,153, 453, 553) which at least partly surrounds the degasification zone (23, 123, 423, 523) of the shaft reactor (5, 105, 405, 505) and through which combustion gas flows in the operating condition, by which means heat is delivered to the shaft reactor (5, 105, 405, 505).
  6. A device (1, 101, 201, 301, 401, 501) according to one of the claims 1 to 5, characterised in that there are present means in order to heat the supplied gasification means at least partly before its introduction into the shaft reactor (105, 405).
  7. A device (1, 101, 201, 301, 401) according to claim 6, characterised in that the means for heating are designed such that the heating of the gasification means is effected by the heat produced in the downdraught gasification zone (427) and/or by way of the heat contained in the slag and/or ash to be led away.
  8. A device (501) according to one of the claims 1 to 7, characterised by a burn-out grate element (590) arranged after the grate element (537) in the flow-through direction, with means (591) for conveying away fuel residues kept back by the burn-out grate element (537).
  9. A method for producing combustible gases by way of gasification of solid fuels present as pieces, in a reactor shaft (5, 105, 405, 505), wherein the solid fuels are dried and/or degasified and subsequently get into at least one oxidation zone (33, 133, 433, 475, 533) and a reduction zone (35, 135, 435, 473, 535) of a gasification zone (27, 127, 427, 471, 527) of the reactor shaft (5, 105, 405, 505), wherein a gasification means is supplied in the at least one oxidation zone (33, 133, 433, 475, 533),
    wherein at least one cavity (34, 134, 434, 482, 534) formed in the at least one oxidation zone (33, 133, 433, 475, 533) and/or connecting to this is maintained, and
    the supply of gasification means into this cavity (34, 134, 434, 482, 534) is effected,
    characterised in that
    the cavity (34, 134, 434, 482, 534) extends over a whole cross sectional area of the shaft reactor (5, 105, 405, 505).
  10. A device (201, 301, 401), in particular according to one of the claims 1 to 8, for producing combustible gases by way of gasification solid fuels present as pieces in a reactor shaft (205, 305, 405) to be traversed by the fuels in a flow-through direction
    with a downdraught gasification zone (227, 327, 427) which is divided up into an oxidation zone (233, 333, 433) and into a reduction zone (235, 335, 435),
    with a downdraught gasification means supply (243, 343, 443) for supplying gasification means into the oxidation zone (233, 333, 433),
    characterised by
    an updraught gasification zone (271, 371, 471) which is arranged after the downdraught gasification zone (227, 327, 427) in the flow-through direction, with an updraught gasification oxidation zone (275, 375, 475), with an updraught gasification reduction zone (273, 323, 473) and with an updraught gasification means supply (261, 361, 461) for supplying gasification means into the updraught gasification oxidation zone (275, 375, 475),
    and by
    gas discharge means arranged between the downdraught gasification zone (227, 327, 427) and the updraught gasification zone (271, 371, 471).
  11. A device (301, 401) according to claim 10, characterised in that a downstream gasification grate element (337, 437) is present which forms a passage for the transport away of material from the downdraught gasification zone (327, 427) and which is provided with means for controlling the material throughput, and that the grate element (337, 437) and the means for controlling the material throughput are designed such that in the operating condition of the device at least one gas discharge cavity (369, 469) may be maintained between the downdraught gasification zone (327, 427) and the updraught gasification zone (371, 471).
  12. A device (301, 401) according to claim 11, characterised in that the gas discharge cavity (369, 469) extends essentially over a whole cross sectional area of the shaft reactor (305, 405).
  13. A device (401) according to one of the claims 11 to 12, characterised in that grate elements are present in order in the operating condition to maintain a cavity (434, 482) which is formed in the downdraught gasification oxidation zone (433) and/or which connects to this as well as one which connects to the updraught gasification oxidation zone (475).
  14. A method, in particular according to claim 9, for producing combustible gases by gasification solid fuels present as pieces, in a reactor shaft (205, 305, 405),
    wherein the solid fuels traverse the reactor shaft in a flow-through direction and with this successively run through a downdraught gasification oxidation zone (233, 333, 433), a downdraught gasification reduction zone (235, 335, 435), an updraught gasification reduction zone (273, 373, 473) and an updraught gasification oxidation zone (275, 375, 475),
    wherein gasification means are supplied to the downdraught gasification oxidation zone (233, 333, 433) and to the updraught gasification oxidation zone (275, 375, 475), and
    wherein the gases arising in the downdraught gasification zone (227, 327, 427) and the updraught gasification zone (271, 371, 471) are collected and discharged between the downdraught gasification zone (227, 327, 427) and the updraught gasifiation zone (271, 371, 471).
  15. A method according to claim 14, characterised in that between the downdraught gasification zone (327, 427) and the updraught gasifiation zone (371, 471) a gas discharge cavity (369, 469) is maintained in which gases arising in the downdraught gasification zone (327, 427) and the updraught gasification zone (371, 471) are collected and from where these gases are led out of the shaft reactor (305, 405).
  16. A method according to claim 14 or 15, characterised in that a cavity (434, 482) which is formed in the downdraught gasification oxidation zone (433) and/or which connects to this as well as one which connects to the updraught gasification oxidation zone (475) is maintained.
EP01900000A 2000-01-10 2001-01-03 Device and method for the production of fuel gases Expired - Lifetime EP1248828B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH392000 2000-01-10
CH39002000 2000-01-10
PCT/CH2001/000001 WO2001051591A1 (en) 2000-01-10 2001-01-03 Device and method for the production of fuel gases

Publications (2)

Publication Number Publication Date
EP1248828A1 EP1248828A1 (en) 2002-10-16
EP1248828B1 true EP1248828B1 (en) 2004-06-23

Family

ID=4266319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01900000A Expired - Lifetime EP1248828B1 (en) 2000-01-10 2001-01-03 Device and method for the production of fuel gases

Country Status (4)

Country Link
EP (1) EP1248828B1 (en)
AT (1) ATE269891T1 (en)
AU (1) AU2001219811A1 (en)
WO (1) WO2001051591A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006009174U1 (en) * 2006-06-08 2007-10-11 Rudolf Hörmann GmbH & Co. KG Apparatus for producing fuel gas from a solid fuel
DE102010033646B4 (en) * 2010-02-05 2012-05-24 Pyrox Gmbh Method and shaft carburetor for producing fuel gas from a solid fuel
DE102014109107B4 (en) * 2013-07-01 2021-07-01 Josef Gelhart Reactor for gasifying biomass, especially wood

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0325668D0 (en) * 2003-11-04 2003-12-10 Dogru Murat Intensified and minaturized gasifier with multiple air injection and catalytic bed
DE102004024672B4 (en) * 2004-05-18 2007-06-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for producing a tar-free lean gas by gasification of biomass
WO2007081296A1 (en) * 2006-01-16 2007-07-19 Gep Yesil Enerji Uretim Teknolojileri Ltd. Sti. Downdraft/updraft gasifier for syngas production from solid waste
DE102007048673A1 (en) * 2007-10-10 2009-04-23 Lurgi Gmbh Gas generators for the pressure gasification of solid granular fuels
WO2009066187A1 (en) * 2007-11-19 2009-05-28 Gep Yesil Enerji Uretim Teknolojileri Ltd. Sti. A gasifier and gasification methods using thereof
TR200800384A2 (en) * 2008-01-21 2009-08-21 Mehmet Arslan Haci Pyrolysis gasifier reactor with reverse flow mixer
RU2542319C2 (en) 2010-02-16 2015-02-20 Биг Дачман Интернэшнл Гмбх Device for gasification and method of gasification
WO2012024274A2 (en) 2010-08-16 2012-02-23 Energy & Environmental Research Center Foundation Sandwich gasification process for high-efficiency conversion of carbonaceous fuels to clean syngas with zero residual carbon discharge
DE202011004328U1 (en) 2011-03-22 2012-06-25 Big Dutchman International Gmbh Manhole carburetor for operation in substoichiometric oxidation
EP2723832B1 (en) 2011-06-23 2017-06-21 Xylowatt S.A. Carbonaceous solid fuel gasifier
SI2753677T1 (en) 2011-09-05 2017-09-29 Xylowatt S.A. Carbonaceous solid fuel gasifier.
DE102013015920B4 (en) 2013-09-20 2015-12-17 Recom Patent & License Gmbh Device in the form of a 3-zone carburetor and method for operating such a carburetor for the thermal conversion of waste products and wastes
DE102013017854A1 (en) * 2013-10-26 2015-04-30 Bernhard Böcker-Riese Reactor and process for the gasification of fuels
DE202016106184U1 (en) 2016-11-04 2016-11-17 Hartwig Streitenberger Duplex-TEK multistage gasifier
DE102016121046B4 (en) 2016-11-04 2018-08-02 HS TechTransfer UG (haftungsbeschränkt) & Co. KG Duplex-TEK multistage gasifier
RU199112U1 (en) * 2020-03-27 2020-08-17 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" (ФГАОУ ВО СФУ) CARBON-CONTAINING RAW MATERIAL GASIFICATOR

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB489640A (en) * 1935-12-28 1938-07-29 Wilhelm Koester Improvements in or relating to methods of and means for producing gas from solid fuel
CH678973A5 (en) * 1988-11-02 1991-11-29 Helmut Juch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006009174U1 (en) * 2006-06-08 2007-10-11 Rudolf Hörmann GmbH & Co. KG Apparatus for producing fuel gas from a solid fuel
DE102010033646B4 (en) * 2010-02-05 2012-05-24 Pyrox Gmbh Method and shaft carburetor for producing fuel gas from a solid fuel
DE102014109107B4 (en) * 2013-07-01 2021-07-01 Josef Gelhart Reactor for gasifying biomass, especially wood

Also Published As

Publication number Publication date
AU2001219811A1 (en) 2001-07-24
ATE269891T1 (en) 2004-07-15
WO2001051591A1 (en) 2001-07-19
EP1248828A1 (en) 2002-10-16

Similar Documents

Publication Publication Date Title
EP1248828B1 (en) Device and method for the production of fuel gases
EP0055840B1 (en) Process and plant for the combustion of organic materials
DE2929056C2 (en)
EP2688986B1 (en) Shaft gasifier
DE3335544A1 (en) REACTOR DEVICE FOR GENERATING GENERATOR GAS FROM COMBUSTIBLE WASTE PRODUCTS
DE102008058602B4 (en) In the form of a moving bed gasifier and method of operating such in an arrangement for the thermal decomposition of waste products and waste
DE19608826C2 (en) DC gasification reactor
DE202006009174U1 (en) Apparatus for producing fuel gas from a solid fuel
EP3535356A1 (en) Duplex-tek multi-stage gasifier
DE2800030C3 (en) Process for converting wet waste by pyrolysis
DD266836A5 (en) OVEN
EP2454013B1 (en) Reactor, and method for the gasification of biomass
DD202176A5 (en) METHOD AND DEVICE FOR CONTINUOUS PRODUCTION OF FUEL GAS FROM ORGANIC WASTE MATERIAL
EP1323809B1 (en) Co-current shaft reactor
EP3037395B1 (en) Method and device for obtaining a product containing phosphorus in a form that is easily used by plants from bulk material of at least partially organic origin
DE102013015920B4 (en) Device in the form of a 3-zone carburetor and method for operating such a carburetor for the thermal conversion of waste products and wastes
DE3317977C2 (en)
DE1301868B (en) Shaft firing for waste incineration
DE3523765A1 (en) Process for gasifying carbonaceous fuels and equipment for carrying out the process
EP0033971A2 (en) Discharging device for a of waste material system
EP0531778B1 (en) Co-current gasifier
EP1338847A1 (en) Cocurrent Shaft Reactor
EP0568104B1 (en) Pyrolysis and combustion installation
DE4414579C1 (en) Method of gassing and degassing or burning dry or wet fine bodied biomass
AT249239B (en) Method and device for incinerating and / or dismantling household and industrial waste

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030128

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040623

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040623

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040623

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040623

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040623

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040623

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50102668

Country of ref document: DE

Date of ref document: 20040729

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040923

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040923

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041004

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040623

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050103

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050324

EN Fr: translation not filed
BERE Be: lapsed

Owner name: *FURST ADRIAN

Effective date: 20050131

BERE Be: lapsed

Owner name: *FURST ADRIAN

Effective date: 20050131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FUERST, ADRIAN, CH

Free format text: FORMER OWNER: FUERST, ADRIAN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190114

Year of fee payment: 19

Ref country code: DE

Payment date: 20190123

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190122

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50102668

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 269891

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200103

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131