EP1248828B1 - Dispositif et procede pour produire des gaz combustibles - Google Patents
Dispositif et procede pour produire des gaz combustibles Download PDFInfo
- Publication number
- EP1248828B1 EP1248828B1 EP01900000A EP01900000A EP1248828B1 EP 1248828 B1 EP1248828 B1 EP 1248828B1 EP 01900000 A EP01900000 A EP 01900000A EP 01900000 A EP01900000 A EP 01900000A EP 1248828 B1 EP1248828 B1 EP 1248828B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gasification
- zone
- updraught
- downdraught
- oxidation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/20—Apparatus; Plants
- C10J3/22—Arrangements or dispositions of valves or flues
- C10J3/24—Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
- C10J3/26—Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/725—Redox processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2200/00—Details of gasification apparatus
- C10J2200/15—Details of feeding means
- C10J2200/158—Screws
Definitions
- the invention relates to an apparatus and a method for producing Fuel gases according to the preambles of the independent claims.
- Fuel gas generators have long been known per se. In essence, you can A distinction is made between two principles: the direct current or downstream gasifier and the counterflow or upflow carburettors.
- Counterflow carburettors are suitable for Processing of slag-rich fuels. That from counterflow gasifiers Available fuel gas is generally rich in tar and others Pyrolysis products, which is either an immediate combustion of the still hot and above the condensation temperature of the pyrolysis gas or complex gas conditioning is required.
- the direct current gasifier principle allows tar and other pyrolysis products to complete split, but is not suitable for processing high-slag Products. In the case of the fuel gas generators that have been in use up to now, this also arises the problem of uneven heating in the reactor.
- the reactor oxygen supplied is generally after its penetration into the Fuel filled area quickly consumed. Therefore in Function of the distance from the mouth of the oxygen supply a decreasing Temperature. As soon as the reactor exceeds a certain diameter, arises for this reason an edge area in which the for splitting the Pyrolysis products necessary temperature is no longer reached. Therefore are available fuel gas generators are generally small and their performance is limited, which of course has a disadvantageous effect on their economy.
- a fuel gas generator is known from European patent EP-0 404 881, who works as an exhaust gasifier.
- the reactor of this fuel gas generator is in the Close to the air supply so narrow that its walls are two truncated cones form, of which the upper one expands upward, the lower one downward.
- On coaxial, axially displaceable counter cone protrudes into the lower truncated cone and serves as a grate element that closes off the reactor. This arrangement allows control of process speed, but solves the above problems mentioned.
- British Patent Application GB-489 640 discloses a fuel gas generator which also works as an exhaust gasifier.
- a reactor is made up of a grate element completed down.
- the Air supply into an empty space surrounding the mouth of an air supply tube, The empty space is maintained so that this mouth is not damaged.
- the present invention is based on the object of a device and to provide a method for the production of fuel gases which the Disadvantages of known fuel gas generators do not have.
- the Device and method for extremely economical gas generation enable, the gases produced should meet high purity requirements.
- the device and the method for the economical production of Fuel gases from slag-rich and possibly additionally tar-rich fuels be suitable.
- Fuel gas generator extends over an entire cross-sectional area of the shaft reactor Maintain void space in which the fed oxygen-containing gasifying agent, for example air, is supplied.
- This Empty space serves as a pre-combustion and mixing chamber.
- this causes White space also means that this is on the surface and therefore at the interface with the Empty space material evenly and regardless of the distance to the Mouth of the gasification agent supply and possibly to a shaft axis Oxygen is supplied. This also means that the material continues up to is evenly heated to the edge of the shaft when the shaft reactor has a large diameter.
- the even heating of the fuel is important so that the calorific value of the fuel can be used optimally and so that any difficultly volatile pyrolysis products are completely broken down and not, for example, along the wall of the reactor to the fuel gas outlet can reach and thus contaminate the fuel gas.
- a shaft reactor one fuel gas generator according to the invention can have a large diameter, Such a fuel gas generator can also be used as a larger system with a useful output be trained in the megawatt range and still have the highest demands on Purity of the fuel gas and after its combustion to the resulting exhaust gases fulfill.
- the fuel gas generator has both an outflow gasification zone and one located below it Upflow gasification zone.
- an exhaust gasifier with a Upflow gasifier is combined, low-pollution fuel gases can also are produced from fuels that are both rich in tar and others Pyrolysis products as well as slag.
- the deduction of the in the shaft reactor The resulting fuel gases occur between the waste gas and the Upflow gasification zone, preferably from a gas expansion and Gas discharge chamber serving empty space.
- Embodiment are in the operating state of the fuel gas generator Oxidation zone of the exhaust gasifier and / or the oxidation zone of the Upstream gasifier also provided with an empty space adjoining it, through which a gasifying agent from to those in the oxidation zone Materials. This allows the formation of a shaft reactor with one large diameter and the resulting economic production of Fuel gases.
- the fuel gas generator 1 shown in FIG . 1 with an outflow gasification zone is suitable for generating fuel gas from low-slag and possibly tar-rich fuels such as wood. It is held by a frame (not shown in the drawing) and has an essentially cylindrical outer wall 3 made of refractory material and defining an axis 2.
- a shaft reactor 5, which is attached essentially within the outer wall 3, has a shaft casing 7 and a loading device, designated 9 as a whole in the figure.
- the loading device 9 has one or more locks 11.
- Each lock has an upper and a lower flat slide 13 or 15. By opening the upper flat slide 13, each lock 11 can be filled with fuel 17 supplied by a feed device, not shown. By opening the lower flat slide valve 15, fuel passes from the lock 11 into a conveying area 19.
- each lock 11, the shaft reactor 5 and possibly also the conveying area 19 are provided with one or more filling level measuring devices which enable automated or manual control of the loading process. Every control step of the fuel transport can be controlled with a control device.
- the upper part 23 of the shaft reactor 5 serves as a drying and degassing zone for the filled fuel.
- the outflow gasification zone 27 is separated from this upper part 23 by a degassing grate 25.
- funnel means 31 which collect the fuel in the degassing zone 23 and can feed the outflow gasification zone 27 centrally and in a metered manner . Temperatures prevail in the lower region 29 of the degassing zone, which, depending on its chemical composition, can cause the fuel to split.
- This area 29 is therefore also referred to as the pyrolysis zone.
- the outflow gasification zone 27 has a constriction, so that its wall 28 forms two truncated cones, the upper of which extends upwards, the lower one downwards extended.
- An effluent gasification oxidation zone is formed in the effluent gasification zone 27 33 and below an outflow gasification reduction zone 35.
- the oxidation zone 33 has between the degassing grate 25 and that in it fuel located in an outflow gasification void 34.
- the void 34 extends at least substantially over the entire horizontal cross-sectional area of the shaft reactor, so that in the degassing zone and in the outflow gasification zone 27 completely from each other are separated.
- a counter cone coaxial with the truncated cones projects into the lower one Truncated cone into it and serves as an outflow gasification grate element 37, which the Downflow gasification zone 27 and thus the reduction zone 35 is limited at the bottom and as a passage for downward out of the effluent gasification zone transporting material.
- the downstream gasification grate element 37 is on attached to a shaft 39 which is attached to an outside of the reactor and in the figure not shown rotating and lifting device is connected.
- the turning and The lifting mechanism is now operated in this way and with the material feed into the Downstream gasification zone matched that always so much material through the opening 41 falls down that the surface of the fuel is slightly for example 5-15 cm and for example about 8 cm above the height of the constriction located.
- the oxidation zone 33 and the reduction zone 35 The fuel gas generator 1 also has sensors, not shown, for determining the in the different temperatures and levels.
- the fuel gas generator 1 has an outflow gasification agent supply 43 which as vertical pipe 3 centrally attached with respect to the outer wall is trained.
- the mouth 45 of the gasification agent supply 43 is located in the empty space 34 of the oxidation zone 33.
- An inlet 43 flows in oxygen-containing gasifying agent, for example air, into the oxidation zone.
- the Empty space 34 then serves as a pre-combustion and mixing chamber.
- the gasification agent acting after it flows out through the material located in the downstream gasification zone is sucked down.
- Oxidation reactions quickly deplete the oxygen of the gasifying agent, so that the oxidation zone 33 is only a little, typically a few cm and Example extends about 8 cm into the material.
- the material discharged from the effluent gasification zone passes through the opening 41 into a deashing zone 47. From there, the material from the Fuel gas generator removed. Two flat slides 49, 51, that delimit an ash room 53. The ash is discharged by first the upper and then the lower flat slide 49 opened and then is closed again.
- Essentially hollow cylindrical cavity 53 is formed between the outer wall 3 and the shaft casing 7 . That through that Downflow gasification grate element pulling down gas containing fuel gas enters the cavity 53 on the underside 55 of the shaft reactor and flows up in it. It heats the shaft casing 7 and thus ensures that in the drying and degassing zone 23 for drying and Degassing process necessary temperature is reached.
- Fuel gas discharge lines 57 the openings in the outer wall 3 penetrate, the gas is discharged. Possibly the gas drainage can still occur additionally existing valve or lock means 59 can be controlled.
- FIG. 2 shows a fuel gas generator 101 with an upflow gasification zone, which is suitable, for example, for generating fuel gases from fuels that are rich in slag but low in tar, such as sewage sludge. It has an essentially cylindrical, outer wall 103 defining an axis 102 and is held by frame means 104, which are not described in detail.
- the shaft reactor 105 has an inlet 109 for charging with fuel. In addition, it has a sensor 110 in the upper area for determining the fill level.
- the upper part 123 of the shaft reactor 105 serves as a drying and degassing zone.
- the fuel which has been dried and degassed there at rising temperatures passes through a degassing grate 125 which closes the drying and degassing zone 123 downward into the upflow gasification zone 127.
- This is divided into an upflow gasification reduction zone 135 in the upper region and an upflow gasification oxidation zone 133 in the lower region .
- the upstream gasification zone 127 is bounded at the bottom by a disc-shaped upstream gasification grate element 137. Similar to the outflow gasification grate element 37 of the fuel generator 1, this grate element 137 also serves as a passage for the material to be transported downward out of the gasification zone and is on a shaft 139 attached, which is connected to a rotary drive 140 mounted outside the reactor.
- the material throughput through the grate element 137 can be controlled by regulating the rotational speed of the rotary drive 140.
- the adjoining space of the fuel gas generator 101 located below the grate element 137 is designed as a slag and ash chamber 147 which serves at the same time for supplying gasification agent.
- the upper region of this slag and ash chamber 147, which is located directly below the grate element 137 and thus adjoins the oxidation zone 133, is kept free of solid material in the operating state of the fuel gas generator 101 and forms an upflow gasification empty space 134.
- the supply of gasification agent into the slag and ash chamber 137 takes place through an upflow gasifying agent supply 143 with a laterally attached supply nozzle 144 into this empty space 134, the gasifying agent possibly being passed through slag and / or ash located in the lower part of the slag and ash chamber 147 and thereby heating up.
- the slag and ash chamber also has an agitator 148 connected to the shaft 139, by means of which the slag and ash produced is continuously transported further into a discharge pipe serving as slag and ash discharge 150 and from there into a slag and ash container 152.
- the slag and ash container 152 can also be provided with a fill level indicator which is connected to sensors mounted in it and which, for example, indicates when the slag and ash container 152 is full and has to be transported away for emptying and possibly replaced by an empty container.
- the gas generated in the upflow gasification zone 127 passes from the Upflow gasification reduction zone 135 through the degassing grate 125 into one formed between the shaft reactor 105 and the outer wall 103, in Substantially hollow-cylindrical cavity 153.
- the shaft casing 107 heated and those in the drying and degassing zone after temperatures increasing below.
- the cavity 153 can still through Perforated plate 154 may be divided.
- the gas containing fuel gas is replaced by a Fuel gas discharge line 157 discharged
- a fuel gas generator with an outflow and upflow gasification zone is shown schematically in FIG .
- the fuel gas generator 201 has an outer wall 203 made of a refractory material and a shaft reactor 205.
- the fuel is supplied by means of a lock 211, which has an upper and a lower flat slide valve 213 and 215, respectively.
- a drying and degassing zone 223f is formed in the upper region of the shaft reactor.
- An outflow gasification agent supply 243 with an annular space 244 surrounding the shaft reactor is attached below this. The gasification agent flows from this annular space 244 through openings radially inwards and then downwards.
- combustion processes in the fuel material form an outflow gasification oxidation zone 233 of an outflow gasification zone 227, which extends downward from the height of the annular space 244.
- An outflow gasification reduction zone 235 then forms after this.
- this also has an upflow gasification agent feed 261, which likewise has an annular space 263, from which a gasification agent flows radially inwards and then upwards.
- An upflow gasification oxidation zone 275 is formed, and an upflow gasification reduction zone 273, which adjoins the latter, of an upflow gasification zone 271.
- the gases generated in the effluent gasification zone 227 and the effluent gasification zone 271 are drawn off by gas extraction means. These are formed by an annular cavity 253 in which the gases are collected and a suitable suction device. Below the upflow gasification zone 271 there is also a slag and ash chamber 247. From this the slag and the ash are discharged from the fuel gas generator with two flat slides 249 and 251, respectively.
- the fuel gas generator 301 shown in FIG. 4 with upstream and downstream gasification zones has an outer wall 303 made of refractory material, which has a substantially cylindrical main section 304 defining an axis 302, a bottom 306 adjoining the bottom with an opening 308 and one as a cylindrical one Extension in a horizontal section from sub-section 310 projecting downward from opening 308 and having a substantially smaller cross-sectional area than the main section.
- a shaft reactor 305 is formed by a main shaft reactor 312 fastened to the wall and the secondary section 310 serving as a secondary shaft reactor.
- the outer wall 303 is held flexibly by frame means 304 (not described in more detail below) in such a way that displacements caused by thermal expansions are compensated for can.
- Fuel is fed into the shaft reactor 305 through a fuel feed 314 into a degassing zone 323.
- An exhaust gas gasification zone 327 with an exhaust gas gasification oxidation zone 333 and an exhaust gas gasification reduction zone 335 is formed directly after this.
- the shaft reactor 305 has a constriction, which is formed by a section 328 of its wall made of refractory material. The wall forms two truncated cones, the upper of which widens upwards, the lower one downwards.
- A is formed in the downstream gasification zone 327.
- the effluent gasification zone 327 is bounded at the bottom by an effluent gasification grate element 337, which forms a passage for material to be transported downward from the effluent gasification zone 327.
- the grate element 337 is disc-shaped and gas-permeable. It is connected via a shaft 339 to a turning and lifting device, not shown in the figure.
- the size of an opening 341 formed between it and the wall 328 can be varied by vertical displacement of the grate element 337.
- the material throughput through the grate element can thus be controlled in the fuel gas generator 301 such that the surface of the material located in the degassing and outflow gasification zone is more or less always on the same level.
- the fuel gas generator 301 has an outflow gasification agent supply line 343 which is arranged centrally with respect to the outer wall 303.
- This has a vertical inner supply pipe 344 with a lower pipe end 345, a horizontal lower end cover 391 spaced from this pipe end 345 and also one of these Outer supply pipe 393 protruding upward and closed off from this with an opening 395 above the degassing zone 323.
- the gasification agent supplied through the inner supply pipe 344 flows down to its lower pipe end 345 and then between the inner and the outer supply pipe 393 up to its mouth 395. From the mouth 395, the gasification agent passes through the material in the degassing zone 323 to the oxidation zone 333.
- the inner and outer feed pipes 344 and 393 protrude so far that the end cover 391 is approximately at the level of the oxidation zone 333 of the outflow gasification zone 327 located. For this reason, the section of the outer feed pipe 393 adjoining the end cover 391 is surrounded by very hot material. Therefore, the gasification agent supplied is heated as it flows through this section prior to its introduction into the effluent gasification zone.
- a disk-shaped mixing grate 367 projecting radially outward from the axis 302. This is connected via the gasification agent supply 343 to a rotary drive, not shown, located outside the shaft reactor and serves to loosen and mix the fuel, which is approximately at the level of the oxidation zone 333 and the constriction.
- the material passes from the effluent gasification zone 327 through an as Gas vent and gas vent chamber serving gas vent void 369 in the upflow gasification zone 371 formed in the sub-section 310 Agitator 379, which is connected to the shaft 339, leads from the Downstream gasification zone 327 material dropped to the floor 306 Upflow gasification zone 371, above the upflow gasification zone 371 depending on which a flat slide 372 can still be present.
- the Upflow gasification zone 371 is divided into an upflow gasification reduction zone 373 and an upflow gasification oxidation zone 375.
- In the Upflow gasification oxidation zone 375 opens upstream gasification agent supply 361.
- the slag and ash removal takes place through a discharge pipe 385 adjoining the secondary section, which is guided by a Another flat slide 387 is separated from the upflow gasification zone 371.
- the fuel gas generator 301 has one Cavity 353 within the outer wall 303, in which the in the Downstream gasification and generated in the upstream gasification zone and from there in fuel gas which has reached the second empty space 369 can pass. By one or The fuel gas can then be connected to a plurality of fuel gas discharge lines 357 be dissipated.
- the fuel gas generator still has several sensors 389 for determining the in the different temperatures and the level of the zones with fuels or with slags and / or ashes.
- the fuel gas generator 401 shown in FIG. 5 is constructed essentially similarly to the fuel gas generator 301 of FIG. 4, but differs from it in that, in addition to the grate elements present in the latter, it also has a degassing grate element 425 and an upstream gasification grate element 480 instead of the flat slide valve 387 has.
- the degassing grate element 425 serves as a passage for the regulated material removal from the degassing zone 423 into the upflow gasification zone 427.
- an upflow gasification empty space 434 is formed between the degassing zone 423 and the upflow gasification zone 427 and extends over an entire horizontal cross-sectional area of the shaft reactor 405 and therefore completely separates the fuel in the degassing zone from the fuel in the upstream gasification zone.
- the mouth 495 of the outflow gasification agent supply 443 is located in the empty space 434, so that the gasification agent, in contrast to the fuel gas feeder 301, reaches the outflow gasification oxidation zone 433 directly and is not first passed through the degassing zone 423.
- the empty space 434 serves as a pre-combustion and mixing chamber and has the effect that the fuel gas generator 401 has the same advantages as the fuel gas generator 1.
- the upflow gasification grate element 480 serves as a passage for the regulated material removal from the upflow gasification zone into the discharge pipe 485. It creates an upflow gasification empty space 482 which extends on a horizontal sectional plane over the entire cross section of the shaft reactor.
- the upstream gasifier supply 461 opens into this void.
- the empty space 482 has the advantages analogous to the empty space 134 of the fuel gas generator.
- the fuel gas generator 501 of FIGS. 6 and 7 is a counterflow gasifier, ie it has an upflow gasification zone. It has an essentially cylindrical outer wall 503 defining an axis 502 and is held by frame means 504, which are not described in any more detail.
- the shaft reactor 505 has, in analogy to the shaft reactor 105, an inlet 509 for charging with fuel. Furthermore, a drying and degassing zone also forms in this shaft reactor in the operating state in an upper part 523, where the fuel is dried and degassed when the temperatures rise downward. Below this, an upflow gasification zone 527 is formed with an upflow gasification reduction zone 535 in the upper area and an upflow gasification oxidation zone 533 in the lower area.
- the upflow gasification zone 527 is bounded at the bottom by an upflow gasification grate element 537.
- this also has a section designed as a rotatable and liftable counter-cone grate 538.
- Such a counter-conical grate corresponds in principle and in terms of operation to the grate element 37 of the outflow gasifier 1.
- the shaft 539, to which the grate element 537 is attached, is connected to a rotary and lifting drive 540 arranged outside the reactor.
- the adjoining space of the fuel gas generator 501 located below the grate element 537 is designed as a slag and ash chamber 547 which serves at the same time for supplying gasification agent.
- this slag and ash chamber 547 which is located directly below the grate element 537 and thus adjoins the oxidation zone 533, is kept free of solid material in the operating state and forms an upflow gasification empty space 534.
- the supply of gasification agent in the slag and ash chamber 547 takes place through an upflow gasifying agent supply 543 with a laterally attached supply nozzle 544 and, depending on that, also through an ash discharge container 550 into this empty space 534.
- An additional gasifying agent supply takes place, for example, still through channels 540 arranged inside the shaft In addition to the gasification agent supply, cooling of the shaft 539 and the grate element 538 is also ensured.
- the slag and ash chamber also has an agitator 548 connected to the shaft 539, by means of which the slag and ash produced is continuously transported further into a discharge pipe serving as slag and ash discharge 550 and from there into a slag and ash container 552.
- the fuel gas generator 501 still has means for recycling the in the Degassing carbonization gases formed in the oxidation zone of the Aufstromvergasungszone. It should be noted here that, in contrast to the drawn example the carbonization gases also returned to the reduction zone can be; Generally speaking, a return to a gasification zone any height possible.
- the return means have one in the top Area of the degassing zone 523 or above this, for example, attached laterally Smelting gas discharge nozzle 571, unsigned smoldering gas transfer means and a carbonization gas supply nozzle 573.
- the through the smoldering gas discharge nozzle discharged carbonization gases can be carried out directly or through the carbonization gas supply nozzle 573 can be introduced indirectly into the oxidation zone 533 via the empty space 534.
- the temperature in this and in the transition to the reduction zone in Even hotter compared to an upstream gasifier without carbonization gas recirculation his.
- An important effect is above all that in the carbonization gas existing tar materials etc. split up in the upflow gasification zone and thus can be rendered harmless. So an upstream carburetor can also Gasification of solids and mixtures of substances used for Upflow carburettors were unsuitable.
- the gas generated in the upflow gasification zone 527 passes from the Upflow gasification reduction zone 535 into one between the shaft reactor 505 and the outer wall 503, essentially hollow cylindrical cavity 553.
- the shaft casing 507 is heated and those in the drying and degassing zone, down increasing temperatures.
- the cavity 553 can still baffles 554 , due to which the gas to be covered in the cavity 553 Path is larger and thereby an optimized heat transfer of the gas to the Degassing zone is effected.
- the gas containing fuel gas is replaced by a Fuel gas discharge line 557 discharged.
- the fuel gas generator 501 also has an annealing grate element 590.
- This is designed, for example, as a grid with relatively fine meshes. Fuel residues, which also after crossing the reduction and Oxidation zone are not yet completely annealed and therefore not as yet Ash dust is retained on this annealing grate element 590 and can still completely in the draft of the supplied gasification agent anneal.
- the screw conveyor 591 will no longer be degradable Fuel residues through a fuel residue discharge 592 in horizontal Transported away.
- the Screw conveyor 591 is fixed in place, while the glow grate element 590 the shaft is connected and is therefore rotatable.
- the screw conveyor 591 or the For example, screw conveyors are mounted eccentrically, i.e. they cross axis 502 Not.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Processing Of Solid Wastes (AREA)
- Gasification And Melting Of Waste (AREA)
- Hydrogen, Water And Hydrids (AREA)
Claims (16)
- Dispositif (1, 101, 201, 301, 401, 501) pour la production de gaz combustibles par la gazéification de combustibles solides en morceaux, qui contient un puits de réacteur (5, 105, 405, 505) qui doit être traversée dans une direction d'écoulement,
avec au moins une zone de gazéification (27, 127, 427, 471, 527) qui est divisée en une zone d'oxydation (33, 133, 433, 475, 533) et une zone de réduction (35, 135, 435, 473, 535),
avec une alimentation (43, 143, 443, 461, 543) en agent de gazéification,
avec un élément de grille (37, 137, 437, 480, 537) qui ferme la zone de gazéification (27, 127, 427, 471, 527) dans la direction d'écoulement, qui forme un passage pour l'évacuation du matériau hors de la zone de gazéification (27, 127, 427, 471, 527) avec un débit de matériau et qui est pourvue de moyens en vue de contrôler le débit de matériau,
dans lequel l'élément de grille (37, 137, 437, 480, 537) et les moyens de contrôle du débit de matériau sont configurés de façon à pouvoir, lorsque le dispositif est en utilisation, maintenir un espace vide (34, 134, 434, 482, 534) formé dans la zone d'oxydation (33, 133, 433, 475, 533) et/ou contigu à celle-ci
l'apport (43, 143, 443, 461, 543) en agent de gazéification débouchant dans cet espace vide (34, 134, 434, 482, 534),
caractérisé en ce que l'espace vide (34, 134, 434, 482, 534) s'étend sur toute la surface transversale du réacteur en puits (5, 105, 405, 505). - Dispositif (1, 401, 501) selon la revendication 1, caractérisé en ce que la ou une zone de gazéification possèdent une paroi (28, 428) qui forme deux cônes tronqués coaxiaux qui se rétrécissent en direction l'un de l'autre de telle manière que la zone de gazéification (27, 427, 527) présente un rétrécissement.
- Dispositif (1, 101, 201, 301, 401, 501) selon la revendication 1 ou 2, caractérisé en ce que dans la ou dans une zone de gazéification (27, 127, 427, 527) est prévue une zone de dégazage (23, 123, 423, 523) qui, en fonctionnement, peut être chauffée pour sécher et dégazer le combustible solide par chauffage direct ou indirect.
- Dispositif (501) selon la revendication 3,
caractérisé en ce que la ou une zone de gazéification est une zone de gazéification amont (527) et en ce que des moyens (571, 573) sont prévus pour renvoyer les gaz de distillation de la zone de dégazage (523) vers la zone de gazéification amont (527). - Dispositif (1, 101, 201, 301, 401, 501) selon la revendication 3 ou 4, caractérisé par des moyens de transfert de chaleur pour chauffer la zone de dégazage (23, 123, 423, 523) par la chaleur contenue dans le gaz de combustion, ces moyens de transfert de chaleur présentant de préférence un espace vide (53, 153, 453, 553) qui entoure au moins partiellement la zone de dégazage (23, 123, 423, 523) du réacteur en puits (5, 105, 405, 505) et qui, en utilisation, est traversé par du gaz de combustion, grâce à quoi de la chaleur est délivrée au réacteur en puits (5, 105, 405, 505).
- Dispositif (1, 101, 201, 301, 401, 501) selon l'une des revendications 1 à 5, caractérisé en ce que des moyens sont prévus pour chauffer au moins en partie l'agent de gazéification apporté, et ce avant son injection dans le réacteur en puits (105, 405).
- Dispositif (1, 101, 201, 301, 401) selon la revendication 6, caractérisé en ce que les moyens de chauffage sont configurés de telle manière que l'agent de gazéification est chauffé par la chaleur créée dans la zone de gazéification aval (427) et/ou contenue dans les scories et/ou les cendres à évacuer.
- Dispositif (501) selon l'une des revendications 1 à 7, caractérisé par un élément de grille de calcination (590) agencé en aval de l'élément de grille (537) dans la direction d'écoulement et doté de moyens (591) pour enlever les résidus de combustible retenus par l'élément de grille de calcination (537).
- Procédé pour produire des gaz combustibles par la gazéification de combustibles solides en morceaux dans un puits de réacteur (5, 105, 405, 505), les combustibles solides étant séchés et/ou dégazés et arrivant ensuite dans au moins une zone d'oxydation (33, 133, 433, 475, 533) et une zone de réduction (35, 135, 435, 473, 535) d'une zone de gazéification (27, 127, 427, 471, 527) du puits de réacteur (5, 105, 405, 505), un agent de gazéification étant amené dans au moins une zone d'oxydation (33, 133, 433, 475, 533),
au moins un espace vide (34, 134, 434, 482, 534) formé dans la zone d'oxydation (33, 133, 433, 475, 533) au moins présente et/ou attenant à celle-ci étant maintenu,
l'apport d'agent de gazéification s'effectuant dans cet espace vide (34, 134, 434, 482, 534),
caractérisé en ce que l'espace vide (34, 134, 434, 482, 534) s'étend sur toute la surface transversale du puits de réacteur (5, 105, 405, 505). - Dispositif (201, 301, 401), en particulier selon l'une des revendications 1 à 8, pour la production de gaz combustibles par la gazéification de combustibles solides en morceaux dans un puits de réacteur (205, 305, 405) que les combustibles doivent traverser dans la direction d'écoulement,
avec une zone de gazéification aval (227, 327, 427) divisée en une zone d'oxydation (233, 333, 433) et une zone de réduction (235, 335, 435),
avec un apport (243, 343, 443) d'agent de gazéification en aval pour l'apport d'agent de gazéification dans la zone d'oxydation (233, 333, 433),
caractérisé par une zone de gazéification amont (271, 371, 471) qui est disposée après la zone de gazéification (227, 327, 427) dans la direction d'écoulement et qui présente une zone d'oxydation et de gazéification amont (275, 375, 475), une zone de réduction et de gazéification amont (273, 373, 473) et un apport amont (261, 361, 461) d'agent de gazéification pour l'apport d'agent de gazéification dans la zone d'oxydation et de gazéification amont (275, 375, 475) et par des moyens d'évacuation des gaz disposés entre la zone de gazéification aval (227, 327 427) et la zone de gazéification amont (271, 371, 471). - Dispositif (301, 401) selon la revendication 10, caractérisé en ce qu'un élément de grille (337, 437) de gazéification aval est prévu et forme un passage pour l'évacuation du matériau hors de la zone de gazéification aval (327, 427) avec un débit de matériau et est doté de moyens en vue de contrôler le débit de matériau, et en ce que l'élément de grille (337, 437) et les moyens de contrôle du débit de matériau sont configurés de telle façon que, lorsque dispositif est en utilisation, au moins un espace vide (369, 469) d'évacuation des gaz puisse être maintenu entre la zone de gazéification aval (327 427) et la zone de gazéification amont (371, 471).
- Dispositif (301, 401) selon la revendication 11, caractérisé en ce que l'espace vide (369, 469) s'étend essentiellement sur toute une surface transversale du réacteur en puits (305, 405).
- Dispositif (401) selon l'une des revendications 11 à 12, caractérisé en ce que des éléments de grille sont prévus pour, en fonctionnement, maintenir à la fois un espace vide (434) formé dans la zone d'oxydation et de gazéification aval (433) et/ou contigu à celle-ci et un espace vide (482) attenant à la zone d'oxydation et de gazéification amont (475).
- Procédé, en particulier selon la revendication 9, pour produire des gaz combustibles par la gazéification de combustibles solides en morceaux dans un puits de réacteur (205, 305, 405),
les combustibles solides traversant le puits de réacteur dans une direction d'écoulement et passant successivement par une zone d'oxydation et de gazéification aval (233, 333, 433), une zone de réduction et de gazéification aval (235, 335, 435), une zone de réduction et de gazéification amont (273, 373, 473) et une zone d'oxydation et de gazéification amont (275, 375, 475),
un agent de gazéification étant amené dans la zone d'oxydation et de gazéification aval (233, 333, 433) et un agent de gazéification étant amené dans la zone d'oxydation et de gazéification amont (275, 375, 475),
les gaz qui sont produits dans la zone de gazéification aval (227, 327, 427) et dans la zone de gazéification amont (271, 371, 471) étant rassemblés et évacués entre la zone de gazéification aval (227, 327, 427) et la zone de gazéification amont (271, 371, 471). - Procédé selon la revendication 14, caractérisé en ce qu'entre la zone de gazéification aval (327, 427) et la zone de gazéification amont (371, 471) est maintenu un espace vide (369, 469) d'évacuation des gaz dans lequel les gaz qui sont produits dans la zone de gazéification aval (327, 427) et dans la zone de gazéification amont (371, 471) sont rassemblés et d'où ces gaz sont extraits du réacteur en puits (305, 405).
- Procédé selon la revendication 14 ou 15, caractérisé en ce qu'un espace vide (434) formé dans la zone de gazéification et d'oxydation aval (433) et/ou attenant à celle-ci et un espace vide (482) formé dans la zone d'oxydation et de gazéification amont (475) et/ou contigu à celle-ci sont maintenus.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH392000 | 2000-01-10 | ||
CH39002000 | 2000-01-10 | ||
PCT/CH2001/000001 WO2001051591A1 (fr) | 2000-01-10 | 2001-01-03 | Dispositif et procede pour produire des gaz combustibles |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1248828A1 EP1248828A1 (fr) | 2002-10-16 |
EP1248828B1 true EP1248828B1 (fr) | 2004-06-23 |
Family
ID=4266319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01900000A Expired - Lifetime EP1248828B1 (fr) | 2000-01-10 | 2001-01-03 | Dispositif et procede pour produire des gaz combustibles |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1248828B1 (fr) |
AT (1) | ATE269891T1 (fr) |
AU (1) | AU2001219811A1 (fr) |
WO (1) | WO2001051591A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202006009174U1 (de) * | 2006-06-08 | 2007-10-11 | Rudolf Hörmann GmbH & Co. KG | Vorrichtung zur Erzeugung von Brenngas aus einem festen Brennstoff |
DE102010033646B4 (de) * | 2010-02-05 | 2012-05-24 | Pyrox Gmbh | Verfahren und Schachtvergaser zur Erzeugung von Brenngas aus einem festen Brennstoff |
DE102014109107B4 (de) * | 2013-07-01 | 2021-07-01 | Josef Gelhart | Reaktor zum Vergasen von Biomasse, insbesondere Holz |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0325668D0 (en) * | 2003-11-04 | 2003-12-10 | Dogru Murat | Intensified and minaturized gasifier with multiple air injection and catalytic bed |
DE102004024672B4 (de) * | 2004-05-18 | 2007-06-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zur Erzeugung eines teerfreien Schwachgases durch Vergasung von Biomasse |
WO2007081296A1 (fr) * | 2006-01-16 | 2007-07-19 | Gep Yesil Enerji Uretim Teknolojileri Ltd. Sti. | Gazogene a ecoulement descendant/ascendant pour production de gaz de synthese a partir de dechets solides |
DE102007048673A1 (de) | 2007-10-10 | 2009-04-23 | Lurgi Gmbh | Gaserzeuger für die Druckvergasung fester körniger Brennstoffe |
US20110005135A1 (en) * | 2007-11-19 | 2011-01-13 | Omer Salman | Gasifier and gasification methods using thereof |
TR200800384A2 (tr) * | 2008-01-21 | 2009-08-21 | Mehmet Arslan Haci | Ters akışlı karıştırıcılı piroliz gazlaştırıcı reaktör |
US9115321B2 (en) | 2010-02-16 | 2015-08-25 | Big Dutchman International Gmbh | Gasification device and method |
EP2606105B1 (fr) | 2010-08-16 | 2022-10-26 | Singularity Energy Technologies, LLC | Procédé de gazéification en sandwich pour une conversion à haut rendement de combustibles carbonés pour nettoyer du gaz de synthèse à décharge de carbone résiduelle nulle |
DE202011004328U1 (de) * | 2011-03-22 | 2012-06-25 | Big Dutchman International Gmbh | Schachtvergaser zum Betrieb bei einer unterstöchiometrischen Oxidation |
WO2012175657A1 (fr) | 2011-06-23 | 2012-12-27 | Xylowatt S.A. | Gazeifieur de combustible solide carbone |
JP6344691B2 (ja) | 2011-09-05 | 2018-06-20 | キシロワット エス.エー. | 固体炭素燃料用ガス化装置、及びガス化装置を含む、ガスを生成し、燃焼させるためのユニット |
DE102013015920B4 (de) | 2013-09-20 | 2015-12-17 | Recom Patent & License Gmbh | Vorrichtung in Form eines 3-Zonen-Vergasers und Verfahren zum Betreiben eines solchen Vergasers zur thermischen Umwandlung von Abprodukten und Abfällen |
DE102013017854A1 (de) * | 2013-10-26 | 2015-04-30 | Bernhard Böcker-Riese | Reaktor sowie Verfahren zur Vergasung von Brennstoffen |
DE202016106184U1 (de) | 2016-11-04 | 2016-11-17 | Hartwig Streitenberger | Duplex-TEK-Mehrstufen-Vergaser |
DE102016121046B4 (de) | 2016-11-04 | 2018-08-02 | HS TechTransfer UG (haftungsbeschränkt) & Co. KG | Duplex-TEK-Mehrstufen-Vergaser |
RU199112U1 (ru) * | 2020-03-27 | 2020-08-17 | Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" (ФГАОУ ВО СФУ) | Газификатор углеродсодержащего сырья |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB489640A (en) * | 1935-12-28 | 1938-07-29 | Wilhelm Koester | Improvements in or relating to methods of and means for producing gas from solid fuel |
CH678973A5 (fr) * | 1988-11-02 | 1991-11-29 | Helmut Juch |
-
2001
- 2001-01-03 WO PCT/CH2001/000001 patent/WO2001051591A1/fr active IP Right Grant
- 2001-01-03 EP EP01900000A patent/EP1248828B1/fr not_active Expired - Lifetime
- 2001-01-03 AT AT01900000T patent/ATE269891T1/de active
- 2001-01-03 AU AU2001219811A patent/AU2001219811A1/en not_active Abandoned
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202006009174U1 (de) * | 2006-06-08 | 2007-10-11 | Rudolf Hörmann GmbH & Co. KG | Vorrichtung zur Erzeugung von Brenngas aus einem festen Brennstoff |
DE102010033646B4 (de) * | 2010-02-05 | 2012-05-24 | Pyrox Gmbh | Verfahren und Schachtvergaser zur Erzeugung von Brenngas aus einem festen Brennstoff |
DE102014109107B4 (de) * | 2013-07-01 | 2021-07-01 | Josef Gelhart | Reaktor zum Vergasen von Biomasse, insbesondere Holz |
Also Published As
Publication number | Publication date |
---|---|
ATE269891T1 (de) | 2004-07-15 |
WO2001051591A1 (fr) | 2001-07-19 |
EP1248828A1 (fr) | 2002-10-16 |
AU2001219811A1 (en) | 2001-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1248828B1 (fr) | Dispositif et procede pour produire des gaz combustibles | |
DE69313946T2 (de) | Vorrichtung für die Pyrolyse von organischen Abfallstoffen | |
EP0055840B1 (fr) | Procédé et installation pour la combustion de matières organiques | |
DE2929056C2 (fr) | ||
DE3335544A1 (de) | Reaktorvorrichtung zur erzeugung von generatorgas aus brennbaren abfallprodukten | |
WO2012126986A1 (fr) | Gazéificateur à cuve fonctionnant par oxydation sub-stœchiométrique | |
DE19608826C2 (de) | Gleichstrom-Vergasungsreaktor | |
DE102008058602B4 (de) | Vorrichtung in Form eines Bewegt-Bett-Vergasers und Verfahren zum Betreiben eines solchen in einer Anordnung zur thermischen Zersetzung von Abprodukten und Abfallstoffen | |
DE202006009174U1 (de) | Vorrichtung zur Erzeugung von Brenngas aus einem festen Brennstoff | |
EP3535356A1 (fr) | Gazéificateur multi-étagé à lit de carbone à expansion tourbillonnaire duplex | |
DE2800030C3 (de) | Verfahren zur Umsetzung von Naßabfall durch Pyrolyse | |
DD266836A5 (de) | Ofen | |
DD202176A5 (de) | Verfahren und einrichtung zur kontinuierlichen erzeugung von brenngas aus organischen abfallstoffen | |
EP1323809B1 (fr) | Réacteur à lit descendant à co-courant | |
DE102013015920B4 (de) | Vorrichtung in Form eines 3-Zonen-Vergasers und Verfahren zum Betreiben eines solchen Vergasers zur thermischen Umwandlung von Abprodukten und Abfällen | |
DE3317977C2 (fr) | ||
EP3037395A1 (fr) | Procédé et dispositif de production d'un produit contenant du phosphore sous une forme facile à utiliser pour les plantes provenant d'un produit en vrac d'origine au moins partiellement organique | |
DE3523765A1 (de) | Verfahren zur vergasung kohlenstoffhaltiger brennstoffe und vorrichtung zur durchfuehrung des verfahrens | |
DE69204948T2 (de) | Methode und Vorrichtung zum Vergasen von festen Brennstoffen, enthaltend schmelzbare nicht-brennbare Materien. | |
EP0531778B1 (fr) | Gazéificateur à équicourant | |
EP0033971A2 (fr) | Dispositif de déchargement pour installation de pyrolyse des déchets | |
EP1338847B1 (fr) | Réacteur vertical à cocourant | |
DE8328140U1 (de) | Reaktorvorrichtung zur Erzeugung von Generatorgas aus brennbaren Abfallprodukten | |
EP0568104B1 (fr) | Installation de pyrolyse et de combustion | |
DE4414579C1 (de) | Verfahren und Vorrichtung zur Vergasung und Wärmeerzeugung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020729 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17Q | First examination report despatched |
Effective date: 20030128 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20040623 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040623 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040623 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040623 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040623 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040623 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040623 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50102668 Country of ref document: DE Date of ref document: 20040729 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040923 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040923 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041004 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: FREI PATENTANWALTSBUERO |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20040623 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20040623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050103 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050131 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050131 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050324 |
|
EN | Fr: translation not filed | ||
BERE | Be: lapsed |
Owner name: *FURST ADRIAN Effective date: 20050131 |
|
BERE | Be: lapsed |
Owner name: *FURST ADRIAN Effective date: 20050131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041123 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: FUERST, ADRIAN, CH Free format text: FORMER OWNER: FUERST, ADRIAN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20190114 Year of fee payment: 19 Ref country code: DE Payment date: 20190123 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20190122 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50102668 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 269891 Country of ref document: AT Kind code of ref document: T Effective date: 20200103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200103 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 |