EP1320906A1 - Mixed oxide active material, electrode and method of manufacturing the electrode and electrochemical cell comprising it - Google Patents
Mixed oxide active material, electrode and method of manufacturing the electrode and electrochemical cell comprising itInfo
- Publication number
- EP1320906A1 EP1320906A1 EP01972803A EP01972803A EP1320906A1 EP 1320906 A1 EP1320906 A1 EP 1320906A1 EP 01972803 A EP01972803 A EP 01972803A EP 01972803 A EP01972803 A EP 01972803A EP 1320906 A1 EP1320906 A1 EP 1320906A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrode
- mixed oxide
- approximately
- oxide material
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 239000011149 active material Substances 0.000 title description 2
- 239000000463 material Substances 0.000 claims abstract description 65
- 229910052751 metal Inorganic materials 0.000 claims abstract description 41
- 239000002184 metal Substances 0.000 claims abstract description 37
- 150000001875 compounds Chemical class 0.000 claims abstract description 32
- 229910052742 iron Inorganic materials 0.000 claims abstract description 5
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 4
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 4
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 4
- 229910052788 barium Inorganic materials 0.000 claims abstract description 4
- 229910052796 boron Inorganic materials 0.000 claims abstract description 4
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 4
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 4
- 229910052745 lead Inorganic materials 0.000 claims abstract description 4
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 4
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 4
- 229910052701 rubidium Inorganic materials 0.000 claims abstract description 4
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 4
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 4
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 4
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 4
- 239000000758 substrate Substances 0.000 claims description 20
- 239000003792 electrolyte Substances 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 150000002739 metals Chemical class 0.000 claims description 8
- 239000011230 binding agent Substances 0.000 claims description 6
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(IV) oxide Inorganic materials O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims description 6
- 239000003990 capacitor Substances 0.000 description 26
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 23
- 239000000725 suspension Substances 0.000 description 16
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 11
- 239000000843 powder Substances 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 9
- 239000010970 precious metal Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 6
- 239000000446 fuel Substances 0.000 description 6
- 229910021508 nickel(II) hydroxide Inorganic materials 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 229910052707 ruthenium Inorganic materials 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 229910052741 iridium Inorganic materials 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000010422 painting Methods 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 238000006479 redox reaction Methods 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 229910005580 NiCd Inorganic materials 0.000 description 2
- 229910005813 NiMH Inorganic materials 0.000 description 2
- 229910002640 NiOOH Inorganic materials 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 229910002810 Sm0.5Sr0.5CoO3−δ Inorganic materials 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 229910052953 millerite Inorganic materials 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- -1 platinum metal cation Chemical group 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910003962 NiZn Inorganic materials 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000001566 impedance spectroscopy Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910021518 metal oxyhydroxide Inorganic materials 0.000 description 1
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Cobaltates
- C01G51/66—Cobaltates containing alkaline earth metals, e.g. SrCoO3
- C01G51/68—Cobaltates containing alkaline earth metals, e.g. SrCoO3 containing rare earth, e.g. La0.3Sr0.7CoO3
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/46—Metal oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
- H01M4/9025—Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9033—Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
- C01P2002/34—Three-dimensional structures perovskite-type (ABO3)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3289—Noble metal oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3296—Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
- H01M12/06—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
Definitions
- the invention relates firstly to a mixed oxide material with a high electron conductivity.
- a material of this type is known from DE-C-196 40 926.
- A denotes a metal cation selected from group Ila (alkaline-earth metals) or from the lanthanides from the Periodic System, or a mixture thereof; B represents a platinum metal cation, while C represents a metal cation selected from groups IVb, Vb, VIb, Vllb, Vlllb and lib of the Periodic System of the Elements, or a mixture thereof.
- the applicant has carried out extensive research into mixed oxide materials of this type, investigating in particular whether a mixed oxide material of this type could also be made without using elements from the platinum group, i.e. without using metals from the group consisting of Pt, Ru, Ir, Rh, Ni and Pd.
- ABO y an empirical formula ABO y , where y ⁇ 3 and where A comprises at least one metal selected from Na, K, Rb, Ca, Ba, La, Pr, Sr, Ce, Nb, Pb, Nd, Sm and Gd, and B comprises at least one metal selected from the group consisting of Cu, Mg, Ti, V, Cr, Mn, Fe, Co, Nb, Mo, W and Zr, where A and B cannot both be Nb and where the compound SrV0 2 . 5 is excluded.
- the mixed oxide material according to the invention as described above may be such that both A and B are a single material; expediently, A and/or B comprise (s) a metal which is doped with another metal, the doping metals for A and B being selected from the options given above for A and B.
- A is Sm x Sr ( ⁇ _ x) , with x lying in the range from approximately 0.4 to approximately 0.6.
- A is Nd x Sr (1 _ x) , with x lying in the range from approximately 0.4 to approximately 0.6.
- composition of B is composed of a plurality of metals, such as, in an advantageous embodiment, Co and/or Fe.
- B comprises Co ( ⁇ _ x) Fe x , with x lying in the range from approximately 0.2 to approximately 0.6.
- the invention also relates to an electrode for an electrochemical cell which can be produced from a material with a high electron conductivity which is characterized in that the electrode comprises a mixed oxide material according to the invention as defined above.
- the invention also relates to a method for producing an electrode for an electrochemical cell, comprising the steps of providing a suitable substrate, and forming a cohesive layer of a mixed oxide thereon by applying a mixture of a mixed oxide, one or more binders and at least one solvent, followed by removal of the solvent and, if appropriate, followed by a heat treatment, which is characterized in that a cohesive layer which includes a mixed oxide material as defined above in accordance with the invention is formed on the substrate.
- the substrate may be a strip of thin metal or an (optionally conductive) plastic.
- the mixed oxide material according to the invention using a suitable binder and a solvent, will be brought into the form of a suspension or paste, after which a layer of the suspension or paste can be applied to the substrate by spreading, dipping, brushing or screen printing. After removal of the solvent (drying) , it is optionally also possible for a heat treatment to take place, in order to provide the mixed oxide with the desired activity and/or to form the mixed oxide into a cohesive structure.
- the method can also be carried out by the substrate being a matrix and by the mixed oxide being accommodated in the matrix and forming a cohesive unit therewith.
- the paste or suspension described above can also be used to fill the matrix.
- the substrate may also have a release property, so that the layer which comprises the mixed oxide material, after application on the substrate, is removed and is subjected to a heat treatment if appropriate.
- a layer of mixed oxide material, optionally on a substrate, is obtained, the mixed oxide material being a material according to the invention with a high electron conductivity.
- the invention also relates to an electrochemical cell which comprises at least two electrodes and an electrolyte and which is characterized in that at least one electrode is an electrode as defined above in accordance with the invention.
- Both electrodes may be an electrode according to the invention; it is also possible for one of the electrodes to be selected from a carbon electrode, an Ru0 2 electrode and an Ru0 2 .xH 2 0 electrode .
- the mixed oxide material according to the invention can be used for numerous purposes, such as electrodes in electrochemical cells, heating elements and the like.
- electrodes in electrochemical cells When used as an electrode in an electrochemical cell, this is understood, in its broadest sense, as meaning use of an electrode in combination with an electrolyte and other electrodes.
- Electrodes of this type are used in processes for the electrochemical conversion and storage of electricity, as are found in electrochemical capacitors, also known as supercapacitors or ultracapacitors, batteries, in particular including rechargeable batteries of the alkaline type or the metal/air type, fuel cells, such as the polymer electrolyte fuel cell, electrolysis equipment and sensors.
- An electrochemical capacitor (or supercapacitor or ultra- capacitor) is a device in which electricity can be stored and then removed again, in particular with a high power density (in W/kg and W/l) , by using electrical double-layer capacitance or what is known as pseudo-capacitance which is linked to Faraday processes, such as redox reactions or intercalation processes.
- Applications include, inter alia, the (short-term) storage and/or emission of peak power levels and the reduction of duty cycles of batteries, as arises, inter alia, in battery or hybrid or fuel-cell vehicles, in installations or equipment which ensure the quality of central or local power networks or supplies, and in optionally portable electronic equipment, such as laptops and mobile telephones.
- An electrochemical capacitor of this type has two electrodes, an anode and a cathode, at which electrons are respectively released and collected. Furthermore, the capacitor includes an electrolyte, for example an aqueous or organic solution, and a separator, and the entire assembly can be fitted in a metal or plastic housing. At least one of the two electrodes may be an electrode according to the invention.
- the charge which is positive at one electrode and negative at the other, is stored in the electrical double-layer capacitance at the interface of electrode and electrolyte, in the pseudo-capacitance resulting from highly reversible redox reactions or intercalation processes at this interface or in the bulk of the electrode material, or in a combination of double- layer capacitance and pseudo-capacitance.
- the specific capacitance (in ⁇ F/cm 2 ) which is determined by the type of electrode material and the electrolyte used, the specific surface area of the electrode material (in cm 2 /g) and the resulting effective capacitance (in F/g) .
- the type of electrolyte is important for the acceptable potentials on the electrodes. These determine, in the case of pseudo-capacitance together with the effective potential range around the Nernst equilibrium potentials of the related reactions or processes, the operational voltage range of the capacitor, which should preferably be as high as possible.
- the composition and microstructure of the electrode materials, the microstructure of the separator and the composition of the electrolyte partly, but not completely, determine the internal resistance R ⁇ (in ⁇ ) of the capacitor, which should preferably be as low as possible.
- E E (in J) and the power P (in W) of the capacitor with capacitance C (in F) and charged to voltage V (in V)
- electrochemical capacitors with electrodes which have activated carbon as the most important constituent and which predominantly use electrical double-layer capacitance are known. It is important that the activated carbon forms a porous structure with a high specific surface area which is accessible to the electrolyte, in order to form a capacitance which is as high as possible, and with an electron conductivity which is as high as possible, in order to produce a resistance which is as low as possible and to utilize as much electrode material as possible. The highest energy and power densities are obtained in this way, which is a requirement for most applications.
- Carbon electrodes which predominantly use double-layer capacitance can be used as anodes and as cathodes; in this way, it is possible to make symmetrical capacitors.
- Carbon electrodes can be used in combination with an aqueous electrolyte, the permissible capacitor voltage being at most approx. 1.2 V and a low internal resistance being obtained, or in combination with an organic electrolyte, in which case the maximum voltage is approx. 2.4 V, but the internal resistance which can be obtained is generally less low.
- these compounds In combination with aqueous electrolytes, such as for example KOH solutions, these compounds have a high effective capacitance in F/g based on redox reactions and can be used as anodes and as cathodes. They also have a good electrical conductivity.
- Drawbacks of these compounds when used in (symmetrical) electrochemical capacitors are the limited operational voltage range and the very high costs of material of the desired purity. Considerable research is being undertaken into alternative pseudo-capacitance materials which are able to counteract these drawbacks while still allowing the desired higher capacitance and energy density to be achieved.
- These restrictions in terms of the electrical conductivity require the use of additives, such as for example graphite, and the use of conductive matrices, such as for example foamed metals or metal mats, in order to enclose the material with additive. This restricts the electrode thickness which can be utilized beneficially and entails additional costs, weight and volume. This also makes the production of electrodes more complicated and more expensive.
- Ni (OH) 2 limits the acceptable operational conditions for the electrode to the conditions in which the desired ⁇ phase is stable. Furthermore, an Ni(0H) 2 electrode can only be used as an anode, and consequently it is impossible to make symmetrical capacitors and, by way of example, a carbon counterelectrode is required. This limits the improvements in capacitance and energy density which can be achieved compared to the symmetrical carbon capacitor.
- Ni(OH) 2 and in particular the nickel constituent and, if appropriate, the nickel required for the preparation, are also believed to have disadvantageous properties for the environment and health. Consequently, requirements and regulations apply with regard to its treatment and processing, which entail additional costs. These also impose limitations on its application areas, for example to the applications and markets for which collection and/or reuse are regulated.
- a (rechargeable) battery is a known item of equipment. It can be used to store electricity and then to release it again, in particular with a high energy density (in Wh/kg and Wh/1) , by using electrochemical conversion of electrical energy into chemical energy and vice versa.
- the structure of batteries of this type corresponds to the structure of electrochemical capacitors described above, although their design and operation may differ.
- (rechargeable) batteries of the nickel- cadmium, nickel-zinc and nickel-iron type, of the nickel- hydrogen type, of the nickel-metal hydride type, and of the metal/air type, such as iron/air, zinc/air, aluminium/air and lithium/air are known. At least one of the two electrodes of batteries of this type can now profitably be replaced by an electrode according to the invention.
- the nickel electrodes, the cadmium electrode and the air electrodes are suitable for this purpose.
- (rechargeable) batteries of the NiCd, NiZn, NiFe, NiH 2 and NiMH type are known, in which the "nickel electrode” consists of the same Ni(OH) 2 compound and has the same action as that described above for electrochemical capacitors.
- the same drawbacks in terms of the restrictions in electrical conductivity and the same problems with regard to the environment and health apply.
- Batteries of the Fe/air, Zn/air, Al/air and Li/air types are also known, in which during the discharge oxygen is consumed at the air electrode by electrochemical reduction; batteries of this type are "mechanically recharged" by renewal of the anode.
- Bidirectional air electrodes which, as well as reducing oxygen, are also able to evolve oxygen in the reverse process and therefore allow electrically rechargeable metal/air batteries, are also known.
- the compounds which have been described above only enable moderate performance to be achieved, on account of limited conductivity and catalytic activity, and are often expensive.
- the materials according to the invention make it possible to produce high-performance electrodes which do not have the above drawbacks, i.e. which are inexpensive to produce, do not have any restrictions in terms of the thickness which can be beneficially utilized, and do not cause any environmental problems .
- an electrode for an electrochemical cell can be produced by using a compound comprising a perovskite of the type AB0 3 _ ⁇ , in which ⁇ ⁇ 0, where A comprises a metal selected from the group consisting of Na, K, Rb, Ca, Ba, La, Pr, Sr, Ce, Nb, Pb, Nd, Sm and Gd, and B comprises a metal selected from the group consisting of Cu, Mg, Ti, V, Cr, Mn, Fe, Co, Nb, Mo, W and/or Zr, and in which there is no metal from the group consisting of Pt, Ru, Ir, Rh, Ni and Pd, and in which A and B cannot both be Nb, and SrV0 2 .
- A comprises a metal selected from the group consisting of Na, K, Rb, Ca, Ba, La, Pr, Sr, Ce, Nb, Pb, Nd, Sm and Gd
- B comprises a metal selected from the group consisting of Cu, Mg, Ti, V,
- perovskites of the type AB0 3 _s is also understood as meaning perovskites of the type either AlA2B0 3 _ ⁇ or ABlB20 3 _ ⁇ or A1A2B1B20 3 _ S , where ⁇ ⁇ 0 and ⁇ in particular is within the limits indicated above. Examples include Sm 0 . 5 Sro. 5 Co0 3 - ⁇ , Nd 0 . 5 Sro. 5 Co0 3 _ ⁇ and Nd 0 . 4 Sro. 6 C ⁇ o. 8 Feo. 2 0 3 _ ⁇ , although the invention is not restricted to these examples.
- an electrode for an electrochemical cell by using a compound comprising a Brown-Millerite ABO (2 . 5 _ ⁇ ), where ⁇ ⁇ 0, and A and B are selected from the groups described above.
- a high capacitance and/or conversion rate or catalytic activity and a good electrical conductivity can be achieved in particular for values for ⁇ of between -0.2 and -0.05 or between +0.05 and +0.3.
- One example of a compound of this type is SrCo0 (2 . 5 _ ⁇ ) , although the invention is not restricted to this example.
- - li lt should be understood than an electrode may comprise more than one of the corresponding perovskites and/or Brown-Millerites .
- an electrode of this type at least in the vicinity of the surface, comprises a porous structure which comprises at least 30% and preferably more than 70% of one or more of the abovementioned compounds.
- an electrochemical capacitor it has been found that electrodes of this type have a high pseudo- capacitance.
- the electrical conductivity is of the same high level as that of Pb 2 Ru 2 0 7
- the capacitance in ⁇ F/cm 2 is of the same high level as that of Ni(0H) 2 .
- the expensive ruthenium it is also possible, with an electrode according to the invention, although not necessary, to avoid the heavy metal lead.
- Table 1 Comparison of properties between electrodes *1 according to the prior art and an Sm 0 . 5 Sr 0 . 5 CoO 3 _ ⁇ electrode *1 according to the invention.
- C is the capacitance
- ⁇ is the electrical conductivity
- A is the effective surface area.
- Maximum voltage V and maximum voltage drop ⁇ V apply to the entire cell .
- the electrodes may also, although not necessarily, contain a binder for the purpose of forming a cohesive structure.
- a structure of this type may, but does not have to, be arranged in a matrix. It is also possible, although not necessary, for the electrodes to have undergone a heat treatment or calcining treatment or a sintering treatment.
- Figure 1 shows results of measurements carried out on electrochemical capacitors with a carbon electrode and, respectively, an Ni(OH) 2 (indicated by ⁇ ) electrode which is known from the prior art and an Smo. 5 Sro. 5 CoO 3 .-e electrode (indicated by D) according to the present invention.
- electrodes according to the invention up to greater thicknesses without employing additives, such as for example graphite, or conductive matrices, such as for example foamed metals.
- additives such as for example graphite, or conductive matrices, such as for example foamed metals.
- conductive matrices such as for example foamed metals.
- a matrix with a lower conductivity than that of, for example, a foamed metal for example a matrix of a conductive plastic or a conductive polymer, so that reductions in weight and costs can also be achieved.
- independent, relatively thick electrode layers for example by printing, casting or dipping, optionally onto other (electrical or electronic) components, and which have a high capacitance and do not use expensive precious-metal elements.
- electrodes according to the invention can also be made as thin films, for example by printing, casting, dipping, painting or spraying, and can be used in this form.
- the electrodes according to the invention are not restricted to asymmetric capacitors or to capacitors with the structure indicated; they can also be put to good use in symmetrical electrochemical capacitors, in batteries and in fuel cells, reversible fuel cells, electrolysis equipment and sensors.
- an electrode comprising one or more compounds according to the invention may replace the known Ni(0H) 2 electrode in an alkaline battery, for example an NiCd or NiMH battery.
- the composition of the electrode according to the invention is then selected in such a way that the capacitance lies within the potential range which is desired for the battery.
- An electrode according to the invention is characterized by a specific oxygen non-stoichiometry, i.e. a specific range of values for ⁇ and/or ⁇ , and by the complete avoidance of precious- metal elements, in particular ruthenium and iridium, by a high pseudo-capacitance (of the same level as for Ni(0H) 2 ) and/or a high catalytic activity and/or a high conversion rate, by a high electrical conductivity (of the same level as for Pb 2 Ru 2 0 7 ) , virtually irrespective of the charge state or polarization, by a high stability, on account of the absence of undesired phases, and by a useful voltage range.
- a specific oxygen non-stoichiometry i.e. a specific range of values for ⁇ and/or ⁇
- precious- metal elements in particular ruthenium and iridium
- a high pseudo-capacitance of the same level as for Ni(0H) 2
- an electrode according to the invention it is also possible to avoid the use of environmentally harmful elements, such as nickel and lead, which occur in electrodes according to the prior art.
- an electrode according to the invention compared to those which are known in the prior art, can be less expensive, can have a higher round-trip efficiency, in particular at relatively high current intensities, can be produced more easily, can be use in the form of a thin film or a thick layer, and may optionally be enclosed in a matrix which may also comprise a lightweight, inexpensive plastic material of moderate conductivity.
- an electrode according to the invention also permits designs other than those which are known in the prior art for capacitors, supercapacitors, batteries, fuel cells, electrolysers and sensors.
- the electrode it is now possible for the electrode to be printed as a layer onto another component and, in this way, to add a function to this component. This component may, for example, form part of a photovoltaic solar cell or of an electrochromic window.
- Example 1 The present invention will be explained in more detail below with reference to a number of examples.
- Example 1 The present invention will be explained in more detail below with reference to a number of examples.
- Electrode according to the invention produced by the application of a layer of suspension, ink or paste to a substrate.
- the substrate may, for example, be a metal foil or a plastic film.
- the suspension, ink or paste comprises one or more compounds according to the invention, a solvent, and possibly auxiliaries, such as dispersing agents, surfactants, wetting agents and the like.
- the compounds according to the invention may in this case be added in the form of a powder with a high specific surface area.
- the suspension, ink or paste may if appropriate also contain a binder.
- the application is effected by means of spreading, painting, spraying, dipping, printing, casting, slip casting or rolling. After its application, the layer may firstly be dried, during which process solvent and auxiliaries are completely or partially removed.
- the substrate bearing the layer which may have characteristic thicknesses of between approx. 2 ⁇ m and approx. 1 000 ⁇ m and which may have a porosity of between approx. 5% and approx. 40%, is used in a supercapacitor or battery.
- Electrode produced by the application of a suspension, ink or paste in a matrix may be foamed metal or a metal mat, metal gauze, polymer foam, polymer gauze or some other porous structure.
- the suspension, ink or paste comprises one or more perovskite and/or Brown-Millerite compounds according to the invention, and may furthermore contain constituents as described in Example 1.
- the perovskite and/or Brown-Millerite compounds may in this case be added in the form of a powder with a high specific surface area.
- the suspension, ink or paste may be applied using the methods described in Example 1. After the application, the steps as described in Example 1 may follow. Typical thicknesses of the electrode structure which is formed will lie between appox. 100 ⁇ m and approx. 1 500 ⁇ m.
- Figure 3 shows the results for a cell in which a platinum reference electrode is also incorporated in the separator.
- the potential curve of the electrode during charging and discharging with a current of 0.37 A/g reveals an effective capacitance for the compound according to the invention of > 120 F/g.
- Electrode produced by the application of a layer of suspension, ink or paste to a substrate comprises one or more perovskite and/or Brown-Millerite compounds according to the invention, a solvent and possibly auxiliaries, such as dispersing agents, surfactants, wetting agents and the like.
- the perovskite and/or Brown-Millerite compounds may in this case be added in the form of a powder with a high specific surface area.
- the suspension, ink or paste may also contain a binder.
- the substrate is a smooth surface. The suspension is distributed over the surface by spreading, painting, printing or casting and is dried. Then, the tape which is formed is removed from the smooth surface as an independent electrode layer. If appropriate, for use in a capacitor, battery, fuel cell, electrolyser or sensor, it is also possible for heat treatments, calcining steps or sintering steps to be carried out on the tape.
- One or more compounds according to the invention are packaged in powder form in an envelope of porous plastic material, which is inert with respect to the electrolyte which is to be used and is electrically insulating.
- an envelope of porous plastic material which is inert with respect to the electrolyte which is to be used and is electrically insulating.
- powder material, envelope and a wire or strip of metal are pressed together in such a manner that there is contact between the powder particles themselves and between the wire or strip and the powder.
- the structure formed in this way is used as an electrode in an electrochemical cell .
- the electrode was likewise used in the same way as in Example 1 in a laboratory supercapacitor, fitted with a Pt reference electrode and a counterelectrode.
- the results of the charging and discharging experiments are shown in Figure 4. At a charging and discharging current intensity of 200 mA/g, the mean capacitance is approx. 160 F/g.
- the characterizing use of perovskites and/or Brown-Millerites in the electrodes according to the invention means that, compared to the known materials and electrodes, there are numerous possible ways of influencing the properties and adapting them to specific use requirements.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
- Conductive Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Hybrid Cells (AREA)
Abstract
Description
Claims
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1015886 | 2000-08-07 | ||
NL1015886A NL1015886C2 (en) | 2000-08-07 | 2000-08-07 | Mixed oxide material with high electron conductivity, used in production of electrode for electrochemical cell, does not contain metals from platinum group |
NL1017632A NL1017632C1 (en) | 2001-03-19 | 2001-03-19 | Mixed oxide material with high electron conductivity, used in production of electrode for electrochemical cell, does not contain metals from platinum group |
NL1017632 | 2001-03-19 | ||
NL1018266 | 2001-06-12 | ||
NL1018266A NL1018266C1 (en) | 2001-06-12 | 2001-06-12 | Mixed oxide material with high electron conductivity, used in production of electrode for electrochemical cell, does not contain metals from platinum group |
PCT/NL2001/000621 WO2002013302A1 (en) | 2000-08-07 | 2001-07-26 | Mixed oxide material, electrode and method of manufacturing the electrode and electrochemical cell comprising it |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1320906A1 true EP1320906A1 (en) | 2003-06-25 |
Family
ID=27351236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01972803A Withdrawn EP1320906A1 (en) | 2000-08-07 | 2001-07-26 | Mixed oxide active material, electrode and method of manufacturing the electrode and electrochemical cell comprising it |
Country Status (12)
Country | Link |
---|---|
US (1) | US20040089540A1 (en) |
EP (1) | EP1320906A1 (en) |
JP (1) | JP2004506302A (en) |
KR (1) | KR20030038687A (en) |
AU (1) | AU2001292443A1 (en) |
CA (1) | CA2417013A1 (en) |
CZ (1) | CZ2003246A3 (en) |
HU (1) | HUP0302080A2 (en) |
IL (1) | IL154204A0 (en) |
NZ (1) | NZ523942A (en) |
PL (1) | PL360437A1 (en) |
WO (1) | WO2002013302A1 (en) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7758992B2 (en) * | 2002-11-15 | 2010-07-20 | Battelle Memorial Institute | Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices |
US20040214070A1 (en) * | 2003-04-28 | 2004-10-28 | Simner Steven P. | Low sintering lanthanum ferrite materials for use as solid oxide fuel cell cathodes and oxygen reduction electrodes and other electrochemical devices |
JP4992185B2 (en) * | 2005-02-24 | 2012-08-08 | トヨタ自動車株式会社 | Catalyst for fuel cell, membrane electrode composite, and solid polymer electrolyte fuel cell |
US7265891B1 (en) * | 2006-06-20 | 2007-09-04 | Eclipse Energy Systems | Electrochromic device with self-forming ion transfer layer and lithium-fluoro-nitride electrolyte |
US8354011B2 (en) * | 2006-07-22 | 2013-01-15 | Ceramatec, Inc. | Efficient reversible electrodes for solid oxide electrolyzer cells |
RU2331143C1 (en) * | 2007-04-27 | 2008-08-10 | Общество с ограниченной ответственностью "Национальная инновационная компания "Новые энергетические проекты" | Cathode material for sofc on basis of cobalt containing perovskite-like oxides of transition metals |
WO2010009469A2 (en) * | 2008-07-18 | 2010-01-21 | Peckerar Martin C | Thin flexible rechargeable electrochemical energy cell and method of fabrication |
JP2010170998A (en) * | 2008-12-24 | 2010-08-05 | Mitsubishi Heavy Ind Ltd | Electrode catalyst for fuel cell and its selection method |
US8313634B2 (en) | 2009-01-29 | 2012-11-20 | Princeton University | Conversion of carbon dioxide to organic products |
US20110143192A1 (en) * | 2009-06-15 | 2011-06-16 | Kensuke Nakura | Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same |
US20110136001A1 (en) * | 2009-06-15 | 2011-06-09 | Kensuke Nakura | Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same |
US20110135810A1 (en) * | 2009-12-03 | 2011-06-09 | Marina Yakovleva | Finely deposited lithium metal powder |
US8721866B2 (en) | 2010-03-19 | 2014-05-13 | Liquid Light, Inc. | Electrochemical production of synthesis gas from carbon dioxide |
US8500987B2 (en) | 2010-03-19 | 2013-08-06 | Liquid Light, Inc. | Purification of carbon dioxide from a mixture of gases |
US8845877B2 (en) | 2010-03-19 | 2014-09-30 | Liquid Light, Inc. | Heterocycle catalyzed electrochemical process |
US8524066B2 (en) * | 2010-07-29 | 2013-09-03 | Liquid Light, Inc. | Electrochemical production of urea from NOx and carbon dioxide |
US8845878B2 (en) | 2010-07-29 | 2014-09-30 | Liquid Light, Inc. | Reducing carbon dioxide to products |
US8568581B2 (en) | 2010-11-30 | 2013-10-29 | Liquid Light, Inc. | Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide |
US8961774B2 (en) | 2010-11-30 | 2015-02-24 | Liquid Light, Inc. | Electrochemical production of butanol from carbon dioxide and water |
US9090976B2 (en) | 2010-12-30 | 2015-07-28 | The Trustees Of Princeton University | Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction |
US8562811B2 (en) | 2011-03-09 | 2013-10-22 | Liquid Light, Inc. | Process for making formic acid |
CA2841062A1 (en) | 2011-07-06 | 2013-01-10 | Liquid Light, Inc. | Reduction of carbon dioxide to carboxylic acids, glycols, and carboxylates |
CA2839004A1 (en) | 2011-07-06 | 2013-01-10 | Liquid Light, Inc. | Carbon dioxide capture and conversion to organic products |
FR2981508B1 (en) * | 2011-10-12 | 2013-11-15 | Areva | ELECTRODE FOR ELECTROCHEMICAL CELL AND METHOD FOR MANUFACTURING SUCH ELECTRODE |
GB201118429D0 (en) * | 2011-10-25 | 2011-12-07 | Univ St Andrews | Photocatalyst |
KR101430139B1 (en) * | 2012-06-29 | 2014-08-14 | 성균관대학교산학협력단 | Manufacturing technology perovskite-based mesoporous thin film solar cell |
JP6131038B2 (en) * | 2012-12-20 | 2017-05-17 | 株式会社ノリタケカンパニーリミテド | Conductive paste composition for solar cell |
KR102099970B1 (en) * | 2013-11-01 | 2020-04-10 | 삼성전자주식회사 | Transparent conductive thin film |
CN114665131B (en) * | 2022-02-24 | 2024-01-16 | 南京工业大学 | H for representing oxygen electrode material 3 O + Method of transmissibility |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5591315A (en) * | 1987-03-13 | 1997-01-07 | The Standard Oil Company | Solid-component membranes electrochemical reactor components electrochemical reactors use of membranes reactor components and reactor for oxidation reactions |
US5244753A (en) * | 1990-05-29 | 1993-09-14 | Matsushita Electric Industrial Co., Ltd. | Solid electrolyte fuel cell and method for manufacture of same |
US5616223A (en) * | 1992-05-11 | 1997-04-01 | Gas Research Institute | Mixed ionic-electronic conducting composites for oxygen separation and electrocatalysis |
DE4406276B4 (en) * | 1993-02-26 | 2007-10-11 | Kyocera Corp. | Electrically conductive ceramic material |
US5604048A (en) * | 1993-02-26 | 1997-02-18 | Kyocera Corporation | Electrically conducting ceramic and fuel cell using the same |
US5621609A (en) * | 1994-12-09 | 1997-04-15 | The United States Of America As Represented By The Secretary Of The Army | Composite electrode materials for high energy and high power density energy storage devices |
US5789218A (en) * | 1997-01-17 | 1998-08-04 | Smithkline Beecham P.L.C. | DNA encoding valyl tRNA synthetase from Staphylococcus aureus |
DE19839202B4 (en) * | 1997-08-29 | 2009-09-10 | Mitsubishi Materials Corp. | Conductive substance of mixed oxide ions and their use |
ES2204042T3 (en) * | 1998-10-07 | 2004-04-16 | Haldor Topsoe A/S | CERAMIC LAMINARY MATERIAL. |
CA2298850A1 (en) * | 1999-02-17 | 2000-08-17 | Matsushita Electric Industrial Co., Ltd. | Mixed ionic conductor and device using the same |
US6471921B1 (en) * | 1999-05-19 | 2002-10-29 | Eltron Research, Inc. | Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing |
-
2001
- 2001-07-26 PL PL36043701A patent/PL360437A1/en unknown
- 2001-07-26 CZ CZ2003246A patent/CZ2003246A3/en unknown
- 2001-07-26 JP JP2002518555A patent/JP2004506302A/en active Pending
- 2001-07-26 US US10/344,083 patent/US20040089540A1/en not_active Abandoned
- 2001-07-26 CA CA002417013A patent/CA2417013A1/en not_active Abandoned
- 2001-07-26 KR KR10-2003-7001740A patent/KR20030038687A/en not_active Application Discontinuation
- 2001-07-26 EP EP01972803A patent/EP1320906A1/en not_active Withdrawn
- 2001-07-26 NZ NZ523942A patent/NZ523942A/en unknown
- 2001-07-26 WO PCT/NL2001/000621 patent/WO2002013302A1/en not_active Application Discontinuation
- 2001-07-26 HU HU0302080A patent/HUP0302080A2/en unknown
- 2001-07-26 AU AU2001292443A patent/AU2001292443A1/en not_active Abandoned
- 2001-07-26 IL IL15420401A patent/IL154204A0/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO0213302A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2002013302A1 (en) | 2002-02-14 |
IL154204A0 (en) | 2003-07-31 |
HUP0302080A2 (en) | 2003-09-29 |
NZ523942A (en) | 2004-07-30 |
PL360437A1 (en) | 2004-09-06 |
AU2001292443A1 (en) | 2002-02-18 |
JP2004506302A (en) | 2004-02-26 |
CZ2003246A3 (en) | 2003-06-18 |
KR20030038687A (en) | 2003-05-16 |
US20040089540A1 (en) | 2004-05-13 |
CA2417013A1 (en) | 2002-02-14 |
WO2002013302A8 (en) | 2002-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040089540A1 (en) | Mixed oxide material, electrode and method of manufacturing the electrode and electrochemical cell comprising it | |
US20060078798A1 (en) | Compound having a high conductivity for electrons, electrode for an electrochemical cell which comprises this compound, method for preparing an electrode and electrochemical cell | |
KR100278835B1 (en) | Powder materials, electrode structures, methods for their preparation and secondary batteries | |
Li et al. | A High‐Rate, High‐Capacity, Nanostructured Tin Oxide Electrode | |
EP1741153B1 (en) | Electrochemical cell | |
US5875092A (en) | Proton inserted ruthenium oxide electrode material for electrochemical capacitors | |
US20060201801A1 (en) | Electrochemical cell suitable for use in electronic device | |
CN104662729A (en) | Lithium ion batteries with high energy density, excellent cycling capability and low internal impedance | |
KR102182496B1 (en) | Electrochemical device electrode including cobalt oxyhydroxide | |
WO2020096022A1 (en) | Material for oxygen evolution (oer) electrode catalyst, and use thereof | |
WO2004054015A2 (en) | Electrochemical cell | |
WO2018187323A1 (en) | Electrochemical cells with a high voltage cathode | |
US20100124531A1 (en) | Nickel-manganese binary compound electrode materials for an electrochemical supercapacitor and method for preparing the same | |
RU2276430C2 (en) | Mixed oxide active material, electrode, method for electrode manufacture, and electrochemical cell incorporating this electrode | |
EP3893294B1 (en) | Positive electrode having excellent alkali resistance, method of manufacturing the same, and metal-air battery and electrochemical device including the positive electrode | |
NL1015886C2 (en) | Mixed oxide material with high electron conductivity, used in production of electrode for electrochemical cell, does not contain metals from platinum group | |
US20010044050A1 (en) | Active material for positive electrode of alkaline storage battery and method for producing the same, and alkaline storage battery using the same | |
AU2002239153A1 (en) | Compound having a high conductivity for electrons; electrode for an electrochemical cell which comprises this compound, method for preparing an electrode and electrochemical cell | |
NL1017632C1 (en) | Mixed oxide material with high electron conductivity, used in production of electrode for electrochemical cell, does not contain metals from platinum group | |
Li | Novel design and synthesis of transition metal hydroxides and oxides for energy storage device applications | |
NL1017633C1 (en) | New high conductive compound having potassium nickel fluorite structure for electrode for vehicle electrochemical cell | |
NL1018267C2 (en) | New high conductive compound having potassium nickel fluorite structure for electrode for vehicle electrochemical cell | |
JP2000123882A (en) | Electrode material for electrochemical capacitor, electrochemical capacitor using the same, and manufacture of its electrode material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030214 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ELZINGA, GERARD, DOUWE Inventor name: PLOMP, LAMBERTUS Inventor name: VAN HEUVELN, FREDERIK, HENDRIK |
|
17Q | First examination report despatched |
Effective date: 20031030 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20070105 |