WO2020096022A1 - Material for oxygen evolution (oer) electrode catalyst, and use thereof - Google Patents

Material for oxygen evolution (oer) electrode catalyst, and use thereof Download PDF

Info

Publication number
WO2020096022A1
WO2020096022A1 PCT/JP2019/043779 JP2019043779W WO2020096022A1 WO 2020096022 A1 WO2020096022 A1 WO 2020096022A1 JP 2019043779 W JP2019043779 W JP 2019043779W WO 2020096022 A1 WO2020096022 A1 WO 2020096022A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
oxide
oxygen
coo
oer
Prior art date
Application number
PCT/JP2019/043779
Other languages
French (fr)
Japanese (ja)
Inventor
芳尚 青木
ダミアン コヴァルスキー
浩樹 幅▲ざき▼
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2020555609A priority Critical patent/JPWO2020096022A1/en
Publication of WO2020096022A1 publication Critical patent/WO2020096022A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to materials for oxygen generating (OER) electrocatalysts and uses thereof.
  • OER oxygen generating
  • Oxygen evolution (OER) electrocatalysts are important as anodes for alkaline electrolysis clean hydrogen production and as cathodes for metal-air batteries.
  • various crystalline Co-based oxides have been studied as oxygen generating electrode catalysts (Non-Patent Documents 1-3), and their surface active species have been identified.
  • Ba 0.5 Sr 0.5 Co 0.4 Fe 0.6 O 3 which is known as a highly oxidizing active catalyst, becomes amorphous when it becomes higher than the oxygen generation potential in an alkaline solution and becomes an active species (Non-Patent Document 4).
  • an amorphous Fe 1-x Co x O y solid solution exhibits high oxygen generating electrocatalytic activity (Non-Patent Document 5).
  • Non-Patent Document 6 a material having a CoOOH nanosheet structure has been reported as an example of an OER catalyst having a new structure.
  • This material was prepared by sonicating an ⁇ -Co (OH) 2 sheet in the presence of Cl anions and water to delaminate and then oxidize with NaClO.
  • the particle size is 200 to 300 nm.
  • the XRD result of Fig. 1d it has crystallinity.
  • Patent Document 1 WO2015 / 115592
  • Non-Patent Document 1 T. Maiyalagan, et al., Nature Commun., 5, 3949 (2014).
  • Non-Patent Document 2 A. Grimoud et al, Nature Chem., 9, 457 (2017).
  • Non-Patent Document 3 Y. Matsumoto et al, J. Electrochem. Soc., 127, 811 (1980).
  • Non-Patent Document 4 K. J. May et al, J. Phys. Chem. Lett., 3, 3264 (2012).
  • Non-Patent Document 5 L. Wei et al., Adv. Mater., 10.1002 / adma.201701410.
  • Non-Patent Document 6 J. Huang, et al., Angewandte_Chemie_International_Edition 2015, 54, 8722-8727.
  • the entire descriptions of Patent Document 1 and Non-Patent Documents 1 to 6 are specifically incorporated herein by reference.
  • the brown mirrorlite type transition metal oxide A 2 B 2 O 5 containing two kinds of transition metals described in Patent Document 1 exhibits OER activity superior to that of a noble metal catalyst.
  • OER activity superior to that of a noble metal catalyst.
  • the material described in Non-Patent Document 3 has a complicated manufacturing method and its OER activity is not high, and thus there is room for further improvement.
  • an object of the present invention is to develop a new transition metal oxide catalyst having a higher OER activity, and further provide a catalyst for an air electrode, a catalyst for a water electrolysis anode, an air electrode and an air secondary battery using this catalyst. Especially.
  • the present invention is as follows. [1] A Co oxide nanocluster having an atomic arrangement structure that is the same as or similar to that of a ⁇ -CoOOH type and has an oxygen defect, in which a part of Co in the nanocluster is replaced with Fe and / or Ni. An optional Co oxide material. [2] The material according to [1], wherein the Co oxide nanocluster has a particle diameter of 10 nm or less.
  • CoO 6 octahedra are formed by connecting two-dimensionally by Ling sharing [CoO x] plane monolayer protons for charge compensation is coordinated [CoO x H y] plane monolayer n layer
  • [CoO x H y ] Part of Co in the planar monolayer May be substituted with Fe and / or Ni, and the CoO 6 octahedron may be partially deficient in oxygen.
  • the substitution amount of Co for Fe and / or Ni is in the range of Co: Fe atomic ratio obtained by Auger spectroscopic analysis or Co: Fe atomic ratio obtained by elemental analysis by ICP analysis in the range of 100: 0.1 to 10
  • the Fe salt, the Ni salt, and the Co salt are nitrates, respectively, and the alkali is an alkali metal hydroxide [11].
  • a catalyst for an air electrode comprising the material according to any one of [1] to [7] or the material produced by the method according to any one of [9] to [12].
  • a catalyst for a water electrolysis anode containing the material according to any one of [1] to [7] or the material produced by the method according to any one of [9] to [12].
  • An air electrode for a metal-air secondary battery containing the catalyst according to [13] or [14].
  • the air electrode according to [15] wherein the material is contained as a catalyst for oxygen generation and further includes a catalyst for oxygen reduction.
  • a metal-air secondary battery comprising the air electrode according to [15] or [16], a negative electrode containing a negative electrode active material, and an electrolyte interposed between the air electrode and the negative electrode.
  • the metal-air secondary battery according to [17] further including an oxygen reduction air electrode containing an oxygen reduction catalyst.
  • a new material useful as an OER catalyst having a high OER activity and stable activity for a long period of time is provided. Furthermore, by using this material, it is possible to provide a catalyst for an air electrode or a catalyst for a water electrolysis anode that exhibits excellent OER activity for a long period of time, and it is possible to provide an air electrode and an air secondary battery that are superior to conventional products.
  • 3A is a high-resolution TEM image of (a) Brown mirror type Ca 2 FeCoO 5 + ⁇ (before OER polarization) and (b) Ca 2 FeCoO 5 + ⁇ after OER polarization for 1 hour at 1.6 V vs RHE.
  • the lattice fringes in (a) correspond to the 110 plane spacing of the Brown mirror phase.
  • nanoclusters having some periodic structures are surrounded by a yellow broken line.
  • the interpolated figure shows the electron diffraction image measured near the center of the TEM image.
  • CFC Ca 2 FeCoO 5
  • (c) and (d) also show the fitting results (dotted line) using the ⁇ -CoOOH structural model (FIG. 6). Shows a crystal structure model of ⁇ -CoOOH (hexagonal). Red spheres (small), blue spheres (large) and white spheres (small, isolated between layers) represent oxygen, cobalt and hydrogen atoms, respectively. Is an OER equipotential polarization curve of CFC before and after one month OER polarization. The results of ⁇ -CoOOH prepared by pyrolysis are also shown.
  • the Co oxide material of the present invention is a Co oxide nanocluster having an atomic arrangement structure that is the same as or similar to the ⁇ -CoOOH type atomic arrangement structure and has an oxygen defect. It is a Co oxide material that may be partially substituted with Fe and / or Ni.
  • the Co oxide material of the present invention is a Co oxide nanocluster, and the Co oxide nanocluster is characterized by the following (1) to (3).
  • (1) It has an atomic arrangement structure that is the same as or similar to the atomic arrangement structure of ⁇ -CoOOH type and has an oxygen defect:
  • the ⁇ -CoOOH type atomic arrangement structure is an atomic arrangement structure of a ⁇ -CoOOH (hexagonal) crystal structure model, and FIG. 6 shows a ⁇ -CoOOH (hexagonal) crystal structure model.
  • Red spheres (small), blue spheres (large) and white spheres (small, isolated between layers) in the figure represent oxygen atoms, cobalt atoms and hydrogen atoms, respectively.
  • ⁇ -CoOOH has a layered structure in which a [CoO 2 ] planar molecular layer formed by stacking of CoO 6 octahedra is laminated on the c-axis by hydrogen bonding via protons.
  • the Co oxide material of the present invention has an atomic arrangement structure that is the same as or similar to the crystal structure model of ⁇ -CoOOH (hexagonal) shown in FIG.
  • the Co oxide material of the present invention has the same atomic arrangement structure as the crystal structure model of ⁇ -CoOOH (hexagonal) in the case of [CoO 2 ] planar molecular layer single layer, and in other cases, ⁇ -It will have an atomic arrangement structure similar to the crystal structure model of CoOOH (hexagonal). Although such an atomic structure will be described later in the manufacturing method, rearrangement of atoms occurs due to OER polarization, and a Co-rich oxide portion is formed in the oxide matrix, which has an arrangement structure similar to ⁇ -CoOOH. It is presumed that the FIG. 1 shows nanoclusters in the Co oxide of the present invention observed by high-resolution TEM.
  • the nanoclusters have the same or similar atomic arrangement structure as the ⁇ -CoOOH type atomic arrangement structure. Since the nanocluster of the present invention has an oxygen deficiency, the portion with the oxygen deficiency is not the same as the ⁇ -CoOOH type atomic arrangement structure, and has an atomic arrangement structure similar to that of the ⁇ -CoOOH type , is defined.
  • the Co oxide material of the present invention has oxygen deficiency.
  • the degree of oxygen deficiency (less than stoichiometric ratio) is not particularly limited, but may be, for example, more than 0 and 25% or less of the total valence of elements other than oxygen. However, there may be more oxygen deficiencies than this.
  • FIG. 1 shows nanoclusters in the Co oxide of the present invention prepared from a raw material containing Ca 2 CoFeO 5 (CFC) observed by high-resolution TEM in Test Example 1.
  • This nanocluster is a nanocluster having an atomic arrangement structure that is the same as or similar to the atomic arrangement structure of the ⁇ -CoOOH type arrangement structure as described above.
  • the high-resolution TEM image shown in FIG. 1 confirmed that these nanoclusters had a diameter of 10 nm or less.
  • the nanoclusters were about 0.5-2 nm. Further, in the XRD pattern of the Co oxide of the present invention, the fact that it can be observed and no natural molecular structure-derived peak can be confirmed supports that the cluster diameter is 10 nm or less.
  • the XRD patterns of Fe 0.05 Co 0.95 O x H y , Fe 0.1 Co 0.9 O x H y and Ni 0.1 Co 0.95 O x H y shown in (5) of Example 2 are very broad.
  • the crystallite size is estimated to be about 8 to 15 nm from the 002 peak half-width of around 20 °, and the nanoclusters in the Co oxide of the present invention prepared from the raw materials prepared by the coprecipitation method are It can be a cluster having a diameter of 20 nm or less, preferably 5 nm or more and 15 nm or less.
  • the Co oxide of the present invention is a material according to Non-Patent Document 6 in which a clear X peak appears because at least a diffraction peak due to a crystal is not observed by these particle diameters and XRD, or is very broad even when observed. Is a material that is clearly different from.
  • Co oxide material in which part of Co in the nanocluster may be substituted with Fe and / or Ni The Co oxide material of the present invention prepared in Example 1 shows that a part of Co in the nanocluster is replaced with Fe from the result of composition analysis by Auger spectroscopy.
  • the substitution amount of Co for Fe is, for example, the upper limit substitution range of the Co: Fe atomic ratio obtained by Auger spectroscopic analysis, which is 100: 10 or less, preferably 100: 5 or less.
  • the lower limit is 100: 0.1 or more, preferably 100: 1 or more.
  • the range of 100: 0.1-10 is preferable, and the range of 100: 1-5 is more preferable.
  • the substitution amount of Co for Fe and / or Ni is, for example, the upper limit substitution range of the Co: Fe and / or Ni atomic ratio by ICP of 100: 10 or less, preferably 100: 5 or less.
  • the lower limit is 100: 0.1 or more, preferably 100: 1 or more.
  • the range of 100: 0.1-10 is preferable, and the range of 100: 1-5 is more preferable.
  • Co oxide material of the present invention more specifically, [CoO x] protons for charge compensation is coordinated to the plane monolayer [CoO x H y] plane monolayer, through hydrogen bonds [CoO x H y ] n molecular layer is a Co oxide material containing nanoclusters of a sheet-like material formed by stacking n layers vertically in the plane direction, x is in the range of 1.5 to 2.0, and y is 0.01 Is in the range of 1 to 1, n is the number of stacks of the plane monolayer in the direction perpendicular to the plane of the molecular layer (c-axis direction), and is in the range of 1 to 25, [CoO x H y ] plane monolayer.
  • the above-mentioned material, in which a part of Co in the layer may be replaced with Fe and / or Ni.
  • Nanoclusters of Co oxide material of the present invention [CoO x] protons for charge compensation in the plane monolayer coordinated [CoO x H y] plane monolayer n layer laminated to a plane perpendicular It is a nanocluster of [CoO x H y ] n molecular layer sheet material.
  • the oxygen coordination number around Co was 5.1 for 1-hour polarization and about 5.3 for 1-month polarization (Table 2).
  • the Co coordination number in the [CoO 2 ] n molecular layer sheet having no oxygen deficiency is 6.
  • the nanocluster of the Co oxide material of the present invention shown in the experimental example is a material having a [CoO x H y ] n molecular layer sheet having oxygen deficiency as a basic skeleton.
  • the nano-cluster of the Co oxide material of the present invention was identified as a [CoO X H y ] n molecular layer sheet-like substance in which stacks in the plane vertical direction are present but not developed.
  • the atomic arrangement structure of such a [CoO X H y ] n molecular layer sheet material is not the same as the ⁇ -CoOOH type atomic arrangement structure, and has an atomic arrangement structure similar to the ⁇ -CoOOH type atomic arrangement structure. Can be said.
  • x is in the range of 1.5 to 2.0, preferably 1.6 to 1.9
  • y is in the range of 0.01 to 1, preferably 0.05 to 0.5
  • n is 1
  • the range is up to 25.
  • the maximum outer diameter of the nanocluster of the Co oxide material of the present invention observed in the TEM image is in the range of 0.3 to 10 nm, preferably 0.6 to 7 nm, and more preferably 0.9 to 5 nm.
  • the CoO 6 octahedron has a diameter of about 0.29 nm (approximately 0.3 nm), and the [CoO X H y ] monolayer has an interlayer distance of about 0.4 nm.
  • the number of CoO X H y octahedral molecules in the [CoO X H y ] monolayer is 10 / 0.29 x 10 / 0.29 ( About 1200), 7 / 0.29 x 7 / 0.29 (about 580) in the maximum diameter range of 7 nm, and 5 / 0.29 x 5 / 0.29 (about 300) in the maximum diameter range of 5 nm.
  • the nano-cluster of the Co oxide material of the present invention is a [CoO X H y ] n molecular layer sheet-like substance in which stacking in the direction perpendicular to the plane exists but has not been developed, and n is a plane single molecule. It is the number of layers stacked in the direction perpendicular to the molecular layer plane of the layer (c-axis direction). Assuming clusters with a maximum diameter of 0.3-10 nm, n is 1-10 / 0.4 (about 25). Therefore, the above n is in the range of 1 to 25. Further, n is 2 to 7 / 0.4 (about 18) in the diameter range of 0.6 to 7 nm, and n is 2 or 3 to 5 / 0.4 (about 12) in the diameter range of 0.9 to 5 nm.
  • the Co oxide material of the present invention is extremely useful as an OER catalyst.
  • the catalyst will be described later.
  • the Co oxide material of the present invention includes, for example, (a) a method including placing a raw material containing Ca 2 CoFeO 5 and / or Ca 2 CoNiO 5 under anodic polarization, or immersing the raw material in an alkaline aqueous solution, or ( b) a step of adding an alkali to an aqueous solution containing an Fe salt and / or a Ni salt and a Co salt to precipitate a hydroxide containing Fe and / or Ni and Co, and recovering the precipitate; And / or Ni and Co containing hydroxide precipitates in an oxygen containing atmosphere to obtain an oxyhydroxide containing Fe and / or Ni and Co. it can.
  • Ca 2 CoFeO 5 and Ca 2 CoNiO 5 are one of the brown mirrorlite type transition metal oxides, and are prepared by the solid-state reaction method using each metal oxide as a raw material with reference to the method described in Patent Document 1. can do.
  • the liquid phase reaction method can also be used for the synthesis.
  • salts of respective metals such as nitrates, acetates and citrates are used as raw materials of respective metal oxides.
  • Ca salt e.g., Ca (NO 3) 2)
  • Fe salts e.g., Fe (NO 3) 3) ⁇ 9H 2 O
  • Ni salts e.g., Ni (NO 3) 3) ⁇ 9H 2 O
  • a Co salt for example, Co (NO 3 ) 2 ) ⁇ 6H 2 O
  • citric acid as a gelling agent as a solvent
  • the ratio of each metal salt is appropriately determined in consideration of the composition of the target metal oxide.
  • the amount of citric acid used as a gelling agent can be in the range of, for example, 10 to 1000 parts by mass with respect to 100 parts by mass of the metal salt.
  • EDTA ethylenediaminetetraacetic acid
  • glycine glycine
  • the mixture is gelled by heating the mixture to, for example, 50 to 90 ° C. to remove the solvent.
  • the gelled product is calcined in air at 300 to 500 ° C. (eg 450 ° C.) for 10 minutes to 6 hours (eg 1 hour) to synthesize a precursor.
  • this precursor is calcined in the air at 600 to 800 ° C. for 1 to 24 hours, whereby Brown mirror light type Ca 2 FeCoO 5 or Ca 2 CoNiO 5 can be synthesized.
  • the firing conditions for example, after firing at 600 ° C. for a predetermined time (1 to 12 hours), the temperature may be increased and firing at 800 ° C. for a predetermined time (6 to 12 hours) may be performed.
  • Anodic polarization method Anode polarization is performed by using a raw material containing Ca 2 CoFeO 5 (CFC) and / or Ca 2 CoNiO 5 (CNC) as an electrode, and for a voltage in the range of 1.5 to 2.0 V with respect to RHE. It is appropriate to carry out an electric current of a predetermined amount or more at such a current density.
  • the amount of electricity equal to or more than a predetermined value can be appropriately selected from the amount of electricity generated by a desired nanocluster, depending on the composition and concentration of the alkaline aqueous solution, the temperature, the structure of the electrode using the raw material as an electrode, and the like.
  • the amount of CFC applied was 10 mg cm -2
  • the carbon sheet electrode was used as the electrode substrate
  • the platinum plate was the counter electrode (cathode)
  • the reference electrode for the anode electrode was used.
  • the OER polarization was repeated for 2 hours in a KOH aqueous solution under an inert atmosphere of argon under the constant oxidation current condition of 40 mA cm -2 with the current being zero.
  • the amount of electricity used for anodic polarization in this case is 288 coulombs per cm 2 with OER polarization once for 2 hours.
  • the polarization condition can be selected using this amount of electricity as a guide.
  • the alkaline aqueous solution used as an electrolytic solution for polarization in the alkaline aqueous solution can be, for example, an alkaline aqueous solution in the range of 0.1M to 10M, and preferably an alkaline aqueous solution in the range of 1M to 6M.
  • the nanocluster material of the present invention can be recovered from the anode electrode, but the anode electrode formed with the nanocluster material of the present invention can also be used as a product as it is.
  • the alkaline aqueous solution immersion is performed by using a raw material containing Ca 2 CoFeO 5 (CFC) and / or Ca 2 CoNiO 5 (CNC), for example, an alkali metal hydroxide or an alkaline earth metal hydroxide. It can be carried out by immersing in an aqueous solution at a temperature range of 0 to 100 ° C., for example. The temperature is preferably in the range of 60 to 90 ° C.
  • the concentration of the alkaline aqueous solution is not particularly limited, but can be, for example, 0.1 M to 10 M, preferably 1 M to 6 M.
  • the time until the desired nanoclusters are formed can be appropriately determined in consideration of the type of raw material, the immersion temperature, the concentration of the alkaline aqueous solution, and the like.
  • the immersion in the alkaline aqueous solution is preferably performed in the alkaline aqueous solution having a concentration of 1 M or more for 1 day or more from the viewpoint of forming desired nanoclusters.
  • the immersed product After the immersion in the alkaline aqueous solution, the immersed product can be collected and washed with water to obtain the nanocluster material of the present invention.
  • Manufacturing method (b) In this production method, an alkali is added to an aqueous solution containing a Fe salt and / or a Ni salt and a Co salt to precipitate a hydroxide containing Fe and / or Ni and Co, and a precipitate is recovered. OH hydroxide containing Fe and / or Ni and Co by calcining the obtained precipitate of hydroxide containing Fe and / or Ni and Co in an oxygen-containing atmosphere To get
  • the Fe salt, Ni salt, and Co salt are not particularly limited as long as each salt is water-soluble, and for example, they can be nitrates, and chlorides can be used in addition to nitrates.
  • the alkali is not particularly limited as long as it is water-soluble, and for example, alkali metal hydroxide can be used, and lithium hydroxide, sodium hydroxide, potassium hydroxide and the like can be used. It can be manufactured by a method including. The coprecipitation method can be performed at room temperature, but can also be performed under cooling or under heating.
  • an alkaline aqueous solution for the addition of the alkali to the aqueous solution containing the Fe salt and / or the Ni salt and the Co salt, it is appropriate to use an alkaline aqueous solution.
  • the salt concentration of the aqueous solution containing the Fe salt and / or the Ni salt and the Co salt, and the alkali concentration of the alkaline aqueous solution can be appropriately determined.
  • the precipitate of hydroxide containing Fe and / or Ni and Co prepared by the coprecipitation method is fired in an oxygen-containing atmosphere.
  • the oxygen-containing atmosphere may contain oxygen and may be pure oxygen or air which is an oxygen-containing atmosphere, but it is an oxygen atmosphere from the viewpoint of easily obtaining oxyhydroxide. Is preferred.
  • the firing temperature may be any temperature at which oxyhydroxide can be obtained, and can be, for example, in the range of 50 to 200 ° C, preferably in the range of 80 to 150 ° C.
  • the heating time can be appropriately determined in consideration of the heating temperature and the degree of the product of oxyhydroxide.
  • the present invention includes a cathode catalyst containing the material of the present invention. Further, the present invention includes a catalyst for a water electrolysis anode containing the material of the present invention.
  • the air electrode catalyst and the water electrolysis anode catalyst of the present invention may contain the above-mentioned CFC as a raw material in addition to the material of the present invention.
  • the air electrode catalyst and the water electrolysis anode catalyst containing the material of the present invention can have a surface area of, for example, 1 to 100 m 2 / g, and preferably 10 to 100 m 2 / g. However, it is not intended to be limited to this range.
  • the material of the present invention is extremely useful as an air electrode, and is extremely promising as an air electrode for hydrogen production by photo-water decomposition and a metal-air secondary battery expected as a next-generation high-capacity secondary battery.
  • the reaction at the anode of water electrolysis is represented by the following reaction formula.
  • Both reactions are oxygen evolution reactions (OER).
  • the material of the present invention has an excellent OER activity, and is extremely useful as a catalyst for a water electrolysis anode.
  • the air electrode usually has a porous structure and contains a conductive material in addition to the oxygen reaction catalyst. Further, the air electrode may include an oxygen reduction (ORR) catalyst, a binder, etc., if necessary.
  • ORR oxygen reduction
  • the air electrode in the secondary battery needs to have an OER catalytic activity as a function during charging and an ORR catalytic activity as a function during discharging. Since the catalyst of the present invention is an OER catalyst, the air electrode can contain an ORR catalyst in addition to this catalyst.
  • ORR oxygen reduction
  • the content of the catalyst of the present invention (OER catalyst) in the air electrode is not particularly limited, but from the viewpoint of enhancing the oxygen reaction performance of the air electrode, it is preferably 1 to 90% by mass, and particularly 10 to 60% by mass. %, And more preferably 30 to 50% by mass.
  • ORR catalyst examples include, for example, Pt or Pt-based materials (for example, PtCo, PtCoCr, Pt-W 2 C, Pt-RuOx, etc.), Pd-based materials (for example, PdTi, PdCr, PdCo). , etc.), metal oxides PdCoAu (e.g., ZrO 2-x, TiO x , TaN x O y, etc. Irmo x), complex type (Co- porphyrin complexes), and the like other (PtMoRuSeO x, etc. RuSe) it can. Furthermore, LaNiO 3 (Nat. Chem.
  • the conductive material is not particularly limited as long as it is a material that can be generally used as a conductive auxiliary agent, and a suitable material is conductive carbon. Specific examples include mesoporous carbon, graphite, acetylene black, carbon nanotubes and carbon fibers. Conductive carbon having a large specific surface area is preferable because it provides many reaction fields at the air electrode. Specifically, conductive carbon having a specific surface area of 1 to 3000 m 2 / g, particularly 500 to 1500 m 2 / g is preferable.
  • the catalyst of the air electrode may be supported on a conductive material.
  • the content of the electrically conductive material in the air electrode is not particularly limited, but from the viewpoint of increasing the discharge capacity, it is preferably 10 to 99% by mass, particularly preferably 20 to 80% by mass, and 20 to It is more preferably 50% by mass.
  • the binder is not particularly limited, and examples thereof include polyvinylidene fluoride (PVDF) and its copolymer, polytetrafluoroethylene (PTFE) and its copolymer, styrene butadiene rubber (SBR), and the like.
  • the content of the binder in the air electrode is not particularly limited, but from the viewpoint of the binding force between the carbon (conductive material) and the catalyst, it is preferably 1 to 40% by mass, particularly 5 to 35% by mass. It is preferable that the amount is 10 to 35% by mass.
  • the air electrode can be formed, for example, by applying a slurry prepared by dispersing the above-mentioned air electrode constituent materials in an appropriate solvent onto a base material and drying.
  • the solvent is not particularly limited, and examples thereof include acetone, N, N-dimethylformamide, N-methyl-2-pyrrolidone (NMP) and the like.
  • the mixing of the air electrode constituent material and the solvent is usually performed for 3 hours or more, preferably 4 hours.
  • the mixing method is not particularly limited, and a general method can be adopted.
  • the base material to which the slurry is applied is not particularly limited, and examples thereof include a glass plate and a Teflon (registered trademark) plate. These base materials are peeled off from the obtained air electrode after the slurry is dried. Alternatively, the current collector of the air electrode or the solid electrolyte layer can be treated as the base material. In this case, the base material is used as it is as a constituent member of the metal-air secondary battery without being peeled off.
  • the method for applying the slurry and the method for drying the slurry are not particularly limited, and general methods can be adopted.
  • a coating method such as a spray method, a doctor blade method, a gravure printing method, or a drying method such as heat drying or reduced pressure drying can be employed.
  • the thickness of the air electrode is not particularly limited and may be appropriately set according to the application of the metal-air secondary battery, etc., but is usually 5 to 100 ⁇ m, 10 to 60 ⁇ m, and particularly preferably 20 to 50 ⁇ m.
  • the air electrode is usually connected to an air electrode current collector that collects current from the air electrode.
  • the material and shape of the air electrode current collector are not particularly limited. Examples of the material of the air electrode current collector include stainless steel, aluminum, iron, nickel, titanium, carbon, and the like. Examples of the shape of the air electrode current collector include a foil shape, a plate shape, a mesh (grid shape), a fibrous shape, and the like, and among them, a porous shape such as a mesh shape is preferable. This is because the porous collector has excellent oxygen supply efficiency to the air electrode.
  • the metal-air secondary battery of the present invention has an air electrode containing a catalyst containing the material of the present invention, a negative electrode containing a negative electrode active material, and an electrolyte interposed between the air electrode and the negative electrode.
  • the air electrode of the metal-air secondary battery of the present invention contains a catalyst containing the material of the present invention, and this catalyst exhibits excellent OER catalytic properties. Therefore, by using the air electrode using this catalyst, the metal-air secondary battery of the present invention becomes excellent in charging speed and charging voltage.
  • the air electrode can coexist with a catalyst having ORR catalytic activity as described above.
  • an air electrode for oxygen reduction (ORR) containing a catalyst having an ORR catalytic activity can be provided separately from an air electrode for oxygen generation (OER) containing a catalyst containing the material of the present invention.
  • the metal-air secondary battery has an air electrode for oxygen reduction and an air electrode for oxygen generation (three-electrode system). An air electrode for oxygen reduction is used during discharging, and an air electrode for oxygen generation is used during charging.
  • the catalyst having the ORR catalytic activity is as described above, and an oxygen-generating air electrode can be obtained by using this catalyst and the conductive material, the binder and the like described in the description of the air electrode.
  • FIG. 12 is a cross-sectional view showing one example of the metal-air secondary battery of the present invention.
  • the metal-air secondary battery 1 collects current from an air electrode 2 having oxygen as an active material, a negative electrode 3 containing a negative electrode active material, an electrolyte 4 that carries out ion conduction between the air electrode 2 and the negative electrode 3, and an air electrode 2. It is composed of an air electrode current collector 5 and a negative electrode current collector 6 that collects current from the negative electrode 3, and these are housed in a battery case (not shown).
  • An air electrode current collector 5 that collects current from the air electrode 2 is electrically connected to the air electrode 2, and the air electrode current collector 5 has a porous structure capable of supplying oxygen to the air electrode 2.
  • a negative electrode current collector 6 that collects current from the negative electrode 3 is electrically connected to the negative electrode 3, and one of the ends of the air electrode current collector 5 and the negative electrode current collector 6 projects from the battery case. There is.
  • the negative electrode contains a negative electrode active material.
  • a negative electrode active material for general air batteries can be used, and it is not particularly limited.
  • the negative electrode active material is usually capable of inserting and extracting metal ions.
  • Specific examples of the negative electrode active material include metals such as Li, Na, K, Mg, Ca, Zn, Al, and Fe, alloys of these metals, oxides and nitrides, and carbon materials.
  • the zinc-air secondary battery is excellent in safety and is expected as a next-generation secondary battery. From the viewpoint of high voltage and high output, lithium-air secondary batteries and magnesium-air secondary batteries are promising.
  • An example of the zinc-air secondary battery will be described below, and the reaction formula is as follows.
  • a material capable of inserting and extracting zinc ions is used as the negative electrode.
  • a zinc alloy can be used in addition to metallic zinc.
  • the zinc alloy include a zinc alloy containing one or more elements selected from aluminum, indium, magnesium, tin, titanium, and copper.
  • Examples of the negative electrode active material of a lithium-air secondary battery include metallic lithium; lithium alloys such as lithium aluminum alloy, lithium tin alloy, lithium lead alloy, and lithium silicon alloy; tin oxide, silicon oxide, lithium titanium oxide, Metal oxides such as niobium oxide and tungsten oxide; metal sulfides such as tin sulfide and titanium sulfide; metal nitrides such as lithium cobalt nitride, lithium iron nitride, lithium manganese nitride; and graphite Examples thereof include carbon materials, and among them, metallic lithium is preferable.
  • the negative electrode active material of the magnesium-air secondary battery a material capable of inserting and extracting magnesium ions is used.
  • magnesium alloy such as magnesium aluminum, magnesium silicon, and magnesium gallium can be used in addition to magnesium metal.
  • the foil-shaped or plate-shaped negative electrode active material can be used as the negative electrode itself.
  • the negative electrode only needs to contain at least the negative electrode active material, but may contain a binder that fixes the negative electrode active material, if necessary. Since the kind and amount of the binder used are the same as those of the above-mentioned air electrode, the description thereof is omitted here.
  • the negative electrode is usually connected to a negative electrode current collector that collects the current of the negative electrode.
  • the material and shape of the negative electrode current collector are not particularly limited. Examples of the material of the negative electrode current collector include stainless steel, copper, nickel and the like. Examples of the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh (grid shape).
  • the electrolyte is arranged between the air electrode and the negative electrode. Metal ion conduction is performed between the negative electrode and the air electrode via the electrolyte.
  • the form of the electrolyte is not particularly limited, and examples thereof include a liquid electrolyte, a gel electrolyte, and a solid electrolyte.
  • the electrolytic solution may be an alkaline aqueous solution such as an aqueous solution of potassium hydroxide containing zinc oxide or an aqueous solution of sodium hydroxide, or zinc chloride or zinc perchlorate.
  • An aqueous solution containing zinc perchlorate or a non-aqueous solvent containing zinc bis (trifluoromethylsulfonyl) imide may be used.
  • the negative electrode is magnesium or its alloy, for example, a non-aqueous solvent containing magnesium perchlorate or magnesium bis (trifluoromethylsulfonyl) imide may be used.
  • non-aqueous solvent examples include conventional secondary batteries such as ethylene carbonate (EC), propylene carbonate (PC), ⁇ -butyrolactone ( ⁇ -BL), diethyl carbonate (DEC), and dimethyl carbonate (DMC).
  • the organic solvent used for the capacitor may be used. These may be used alone or in combination of two or more.
  • an ionic liquid such as N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethylsulfonyl) imide (am) can be used.
  • the electrolytic solution preferably contains a dendrite formation inhibitor. It is considered that the dendrite generation inhibitor is adsorbed on the surface of the negative electrode during charging to reduce the energy difference between the crystal planes and prevent preferential orientation, thereby suppressing generation of dendrites.
  • the dendrite formation inhibitor is not particularly limited, but may be at least one selected from the group consisting of polyalkyleneimines, polyallylamines and asymmetric dialkylsulfones (for example, JP 2009 -93983).
  • the amount of the dendrite formation inhibitor used is not particularly limited, but may be, for example, an amount sufficient to saturate the electrolytic solution at room temperature and normal pressure, or may be used as a solvent.
  • the liquid electrolyte having lithium ion conductivity is usually a non-aqueous electrolytic solution containing a lithium salt and a non-aqueous solvent.
  • the lithium salt include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 ; and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , Examples thereof include organic lithium salts such as LiC (CF 3 SO 2 ) 3 .
  • non-aqueous solvent examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), butylene carbonate, ⁇ -butyrolactone, sulfolane, acetonitrile, Examples thereof include 1,2-dimethoxymethane, 1,3-dimethoxypropane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran and a mixture thereof.
  • An ionic liquid can also be used as the non-aqueous solvent.
  • the concentration of the lithium salt in the non-aqueous electrolyte is not particularly limited, but is preferably in the range of 0.1 mol / L to 3 mol / L, and preferably 1 mol / L.
  • a low-volatile liquid such as an ionic liquid may be used as the non-aqueous electrolyte.
  • the gel electrolyte having lithium ion conductivity can be obtained, for example, by adding a polymer to the above non-aqueous electrolyte and gelling the polymer.
  • a polymer such as polyethylene oxide (PEO), polyvinylidene fluoride (PVDF, product name Kynar manufactured by Arkema, etc.) polyacrylonitrile (PAN) or polymethylmethacrylate (PMMA) is added to the non-aqueous electrolyte solution. By doing so, gelation can be performed.
  • the solid electrolyte having lithium ion conductivity is not particularly limited, and a general solid electrolyte that can be used in a lithium metal air secondary battery can be used.
  • a general solid electrolyte such as Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ; Li 2 S—P 2 S 5 compound, Li 2 S—SiS 2 compound, Li 2 S—GeS 2 Compounds such as sulfide solid electrolytes;
  • the thickness of the electrolyte varies greatly depending on the configuration of the battery, but it is preferably in the range of 10 ⁇ m to 5000 ⁇ m, for example.
  • a separator is preferably arranged between the air electrode and the negative electrode in order to ensure electrical insulation between these electrodes.
  • the separator is not particularly limited as long as it can ensure electrical insulation between the air electrode and the negative electrode and has a structure in which an electrolyte can intervene between the air electrode and the negative electrode.
  • separator examples include porous membranes such as polyethylene, polypropylene, cellulose, polyvinylidene fluoride, and glass ceramics; and nonwoven fabrics such as resin nonwoven fabric and glass fiber nonwoven fabric. Of these, a glass ceramic separator is preferable.
  • a battery case for accommodating the metal-air secondary battery a battery case of a general metal-air secondary battery can be used.
  • the shape of the battery case is not particularly limited as long as it can hold the air electrode, the negative electrode, and the electrolyte described above, but specific examples include a coin type, a flat plate type, a cylindrical type, and a laminated type. You can
  • the metal-air secondary battery of the present invention can be discharged by supplying oxygen, which is an active material, to the air electrode.
  • oxygen supply source include oxygen gas and the like in addition to air, and oxygen gas is preferable.
  • the pressure of air or oxygen gas to be supplied is not particularly limited and may be set appropriately.
  • the air electrode catalyst containing the material of the present invention is useful not only for metal-air secondary batteries, but also in other fields where OER electrode catalysts are used.
  • OER electrocatalyst has been studied or used as a counter electrode reaction of various electrochemical reactions for a long time, and can be used for alkali metal plating, electrolytic degreasing, and cathodic protection technology. Further, recently, it is expected to be applied to a highly efficient and clean hydrogen production technology by combining with a solar cell or a photocatalyst.
  • Example 1 Experimental method Ca 2 CoFeO 5 + ⁇ (CFC) was prepared by the following method. Ca (NO 3) 2 hydrate, Co and (NO 3) 2 hydrate and Fe (NO 3) 2 hydrate Ca: Co: molar ratio of Fe 2: 1: 1 so as purified water After dissolution and addition of an appropriate amount of citric acid, the mixture was evaporated to dryness at 120 ° C and then calcined at 500 ° C. It was prepared by firing the finally fired powder in oxygen at 800 ° C. for 8 hours.
  • OER polarization was performed by repeating the above two steps alternately for one month, and then the polarized material was recovered to obtain a Co oxide material by OER polarization for one month.
  • a Co oxide material was obtained by performing OER polarization for 1 hour under the same constant oxidation current condition as above and recovering the polarized material.
  • the OER current-voltage curve was measured for the CFC electrode before and after the OER polarization for one month, and the OER activity was evaluated.
  • the polarization measurement was performed in a 4 mol dm -3 KOH aqueous solution using a three-electrode system with Hg / HgO / 4 mol dm -3 KOH as a reference electrode and a platinum plate as a counter electrode.
  • the ORR polarization measurement was performed in an oxygen saturated atmosphere, and the OER polarization measurement was performed in an argon saturated atmosphere.
  • Comparative Example 1 For comparison experiments, experiments were conducted using ⁇ -CoOOH as a catalyst.
  • ⁇ -CoOOH was prepared by firing commercially available Co (OH) 2 at 125 ° C for 6 hours.
  • the polarization measurement was performed in a 4 mol dm -3 KOH aqueous solution using a three-electrode system with Hg / HgO / 4 mol dm -3 KOH as a reference electrode and a platinum plate as a counter electrode.
  • the ORR polarization measurement was performed in an oxygen saturated atmosphere, and the OER polarization measurement was performed in an argon saturated atmosphere.
  • Test example 1 The composition of CFC particles was analyzed by Auger spectroscopy for CFC electrodes before and after one month OER polarization. JEOL-2000A was used for spectroscopic measurement, and the electron beam probe system was narrowed down to about 10 nm to evaluate the CFC single particles exposed on the electrode surface. Further, the obtained spectrum was fitted based on the X-ray emission efficiency and emission energy of each element to determine the surface composition.
  • EXAFS measurement was performed on the BL28XU line of spring 8 for the CFC electrode before and after OER polarization for one month. The measurement was performed by the transmission method.
  • FIG. 1 shows high-resolution TEM images of the CFC catalyst before and after polarization when the CFC coated on the GC electrode was OER-polarized at 1.6 V vs. RHE for 1 hour.
  • Pre-polarized samples showed a clean lattice fringe corresponding to the 110 plane spacing of the Brown mirror type phase, and electron diffraction also revealed spots that matched the Brown mirror type structure. You can see that it is being done.
  • the sample polarized for 1 hour it is apparent that the bulk crystal structure collapses and the phase transitions to the amorphous phase.
  • FIG. 2 shows a voltage-time curve at the time of constant current repetitive polarization for one month.
  • the potential gradually increased from 1.6 to 1.8 V vs RHE until 20 hours after the start of the current, but thereafter remained constant for one month. It was confirmed that this initial potential rise was an overvoltage rise due to poor conduction to the CFC due to the AB particles being consumed by oxidation. Therefore, it was confirmed that the nano-clustered CFC did not deteriorate the OER activity even if the OER reaction was carried out continuously for one month, and it was found that the CFC had excellent durability.
  • FIG. 3 shows the XRD pattern after 1 hour and 1 month of polarization.
  • the CFC particles before OER polarization for one month showed a composition close to the Ca / Fe / Co ratio of the starting material, Brown mirror type phase, that is, 2/1/1.
  • the Co oxide material of the present invention prepared by OER polarization for one month has almost no Ca and almost no Fe.
  • Ca and Fe were eluted during the polarization of CFC and changed into oxides or hydrated oxides containing Co as the main component.
  • this chemical composition was the composition obtained when the amorphous matrix disappeared and became nanoclusters alone, and the influence when the amorphous matrix was mixed was eliminated.
  • the chemical composition of the Co oxide nanocluster immediately after generation (1 hour after polarization) is also considered to be similar to this composition from the results of the voltage-time curve, EXAFS fitting results, and OER current-voltage curve.
  • ⁇ -CoOOH has a layered structure in which [CoO 2 ] planar monolayers formed by the co-occurrence of CoO 6 octahedra are stacked on the c-axis by hydrogen bonding via protons (Fig. 6).
  • the Co oxide material of the present invention causes the rearrangement of atoms by OER to form a Co-rich oxide portion in the oxide matrix, which forms an arrangement structure much like ⁇ -CoOOH.
  • the nanoclusters observed by the high-resolution TEM in Fig. 1 were determined to be the nanoclusters having this ⁇ -CoOOH type array structure or an array structure similar to it.
  • the oxygen coordination number around Co is 5.1 for 1-hour polarization and about 5.3 for 1-month polarization (Table 2).
  • the Co coordination number in the [CoO 2 ] planar monolayer having no oxygen deficiency is 6. Therefore, the nanoclusters formed in the Co oxide material of the present invention are considered to be materials having a basic skeleton of a [CoO 1.8 ] planar monolayer having oxygen deficiency.
  • the nanoclusters have some stacking in the c-axis direction, although it can be inferred from the particle size observed in the TEM image, but they do not develop.
  • the nanoclusters formed in the Co oxide material of the present invention have some stacking in the direction perpendicular to the plane, but this stacking is not so well developed.
  • [CoO 1.8 ] Planar monolayer and charge compensation was identified as a [CoO 1.8 H y ] n molecular layer sheet material.
  • FIG. 7 shows the OER current-voltage curves of the CFC sample and ⁇ -CoOOH powder before and after the one month OER reaction. It was confirmed that the curves were almost the same before and after one month of polarization, and thus the OER activity was not changed at all. Furthermore, when the starting potential of OER is defined to be at 5 mA cm -2 current, the starting potentials of nanoclustered CFC and ⁇ -CoOOH powder after one month polarization are 1.47 V vs RHE and 1.58 V vs RHE, respectively. The OER current values at 1.6 V vs RHE were 100 mA cm -2 and 12 mA cm -2 , respectively.
  • nanoclustered CFCs showed much higher activity than ⁇ -CoOOH. From the above, it is suggested that the high activity cannot be obtained only by having the ⁇ -CoOOH type structure, and that the size thereof is about several nm is important for exhibiting the high activity. Further, it is suggested that a part of Co is replaced with Fe.
  • Example 2 (1) Preparation of Fe- or Ni-dope CoOOH
  • Fe-dope CoOOH and Ni-dope CoOOH were carried out by the coprecipitation method.
  • Co (NO 3) 3 ⁇ 6H 2 O and Fe (NO 3) 3 ⁇ 6H 2 O or Ni (NO 3) 3 ⁇ 6H 2 O were mixed dissolved in pure water at a predetermined molar ratio metal ions (Co + 50 cm 3 of a solution containing 0.2 M of Fe or Co + Ni) was prepared. Subsequently, this mixed solution was gently added to 50 cm 3 of a 2M KOH aqueous solution while stirring at 200 rpm to obtain a hydroxide precipitate.
  • Fe-dope CoOOH Fe-dope CoOOH or Ni-dope CoOOH.
  • the amount of ink applied was adjusted so that the amount of Fe-dope CoOOH or Ni-dope CoOOH was 10 mg cm -2 .
  • (5) XRD The Fe 0.05 Co 0.95 was prepared in (1) O x H y, the XRD of Fe 0.1 Co 0.9 O x H y and Ni 0.1 Co 0.95 O x H y is measured, and the results are shown in Fig. The XRD pattern of ⁇ -CoOOH is also shown. Fe 0.05 Co 0.95 O x H y , Fe 0.1 Co 0.9 O x H y and Ni 0.1 Co 0.95 O x H y all showed the same XRD pattern as ⁇ -CoOOH, and thus had a ⁇ -CoOOH type layered structure.
  • Example 3 Ca 2 CoFeO 5 + ⁇ (CFC) was prepared in the same manner as in Example 1, the prepared CFC was immersed in 4 M KOH, and airtight Ar bubbling was performed at 50 ° C. for 3 days. After that, wash well with Milli-Q water, A sample was obtained by filtration.
  • the Ca / Fe / Co (ICP emission analysis) of the KOH-treated product was 0.03 / 0.21 / 0.76.
  • the BET measured before KOH treatment was 2.92 m 2 g -1 , whereas after BET treatment it increased to 230, about 80 times.
  • FIG. 10 shows the XRD of the sample (CFC) before the KOH treatment and the KOH-treated product
  • FIG. 11 shows the OER polarization curve.
  • the EXAFS of the KOH-treated product was similar to that of the 1-hour OER-polarized product of Example 1 shown in FIG.
  • the present invention is useful in the fields of secondary batteries, metal-air secondary batteries expected as next-generation high-capacity secondary batteries, and hydrogen production by water electrolysis and photolysis.

Abstract

The present invention relates to: a Co oxide material which is a Co oxide nanocluster having an atomic arrangement structure that is identical or similar to a γ-CoOOH-type atomic arrangement structure and also having an oxygen defect, wherein some of Co atoms in the nanocluster may be substituted by Fe and/or Ni; and a method for producing the Co oxide material. The Co oxide nanocluster has a particle diameter of 10 nm or less. The Co oxide material according to the present invention is a transition metal oxide catalyst having a higher OER activity. The present invention also provides a catalyst for air electrodes, a catalyst for water electrolysis anodes, an air electrode and an air secondary battery, in each of which the above-mentioned catalyst is used.

Description

酸素発生(OER)電極触媒用材料およびその利用Oxygen generating (OER) electrode catalyst material and use thereof
 本発明は、酸素発生(OER)電極触媒用材料およびその利用に関する。
関連出願の相互参照
 本出願は、2018年11月8日出願の日本特願2018-210890号の優先権を主張し、その全記載は、ここに特に開示として援用される。
The present invention relates to materials for oxygen generating (OER) electrocatalysts and uses thereof.
Cross Reference of Related Applications This application claims the priority of Japanese Patent Application No. 2018-210890 filed on Nov. 8, 2018, the entire description of which is specifically incorporated herein by reference.
 酸素発生(OER)電極触媒は、アルカリ電解クリーン水素生成のアノード、および金属空気電池の空気極として重要である。これまでに、様々な結晶性Co系酸化物が酸素発生電極触媒として検討されてきており(非特許文献1-3)、またその表面活性種の同定も進んでいる。最近では高酸化活性触媒として知られるBa0.5Sr0.5Co0.4Fe0.6O3がアルカリ溶液中酸素発生電位以上になるとアモルファス化し、これが活性種となることが報告されている(非特許文献4)。また更に最近では非晶質Fe1-xCoxOy固溶体が,高い酸素発生電極触媒活性を示すことが報告されている(非特許文献5)。 Oxygen evolution (OER) electrocatalysts are important as anodes for alkaline electrolysis clean hydrogen production and as cathodes for metal-air batteries. Until now, various crystalline Co-based oxides have been studied as oxygen generating electrode catalysts (Non-Patent Documents 1-3), and their surface active species have been identified. Recently, it has been reported that Ba 0.5 Sr 0.5 Co 0.4 Fe 0.6 O 3, which is known as a highly oxidizing active catalyst, becomes amorphous when it becomes higher than the oxygen generation potential in an alkaline solution and becomes an active species (Non-Patent Document 4). Further, more recently, it has been reported that an amorphous Fe 1-x Co x O y solid solution exhibits high oxygen generating electrocatalytic activity (Non-Patent Document 5).
 さらに、これまで酸素発生触媒として注目されてこなかったブラウンミラーライト型遷移金属酸化物A2B2O5を用いることによりOER反応に対してPt触媒に匹敵する活性を示し、中でも2種類の遷移金属を含むものを用いることにより、貴金属触媒を凌ぐ活性を示すことが報告されている(特許文献1)。 Furthermore, by using a brown mirrorlite-type transition metal oxide A 2 B 2 O 5 that has not received much attention as an oxygen generation catalyst, it exhibits activity comparable to that of Pt catalysts for the OER reaction. It has been reported that the use of a material containing a metal has an activity exceeding that of a noble metal catalyst (Patent Document 1).
 また、新たな構造を有するOER触媒の例として、CoOOHナノシート構造を有する材料が報告されている(非特許文献6)。この材料は、α-Co(OH)2シートをClアニオン及び水の存在下で超音波処理することで、層の剥離を行い次いで、NaClOを用いて酸化処理することで調製され、Fig.1bのTEM像及び1cのAFMM像によれば、200~300nmの粒子サイズを有する。さらに、Fig.1dのXRDの結果によれば、結晶性を有する。 In addition, a material having a CoOOH nanosheet structure has been reported as an example of an OER catalyst having a new structure (Non-Patent Document 6). This material was prepared by sonicating an α-Co (OH) 2 sheet in the presence of Cl anions and water to delaminate and then oxidize with NaClO. According to the TEM image and the AFFM image of 1c, the particle size is 200 to 300 nm. Furthermore, according to the XRD result of Fig. 1d, it has crystallinity.
特許文献1:WO2015/115592 Patent Document 1: WO2015 / 115592
非特許文献1:T. Maiyalagan, et al., Nature Commun., 5, 3949 (2014).
非特許文献2:A. Grimoud et al, Nature Chem., 9, 457 (2017).
非特許文献3:Y. Matsumoto et al, J. Electrochem. Soc., 127, 811 (1980).
非特許文献4:K. J. May et al, J. Phys. Chem. Lett., 3, 3264 (2012).
非特許文献5:L. Wei et al., Adv. Mater., 10.1002/adma.201701410
非特許文献6:J.Huang, et al., Angewandte_Chemie_International_Edition 2015, 54, 8722-8727
特許文献1及び非特許文献1~6の全記載は、ここに特に開示として援用される。
Non-Patent Document 1: T. Maiyalagan, et al., Nature Commun., 5, 3949 (2014).
Non-Patent Document 2: A. Grimoud et al, Nature Chem., 9, 457 (2017).
Non-Patent Document 3: Y. Matsumoto et al, J. Electrochem. Soc., 127, 811 (1980).
Non-Patent Document 4: K. J. May et al, J. Phys. Chem. Lett., 3, 3264 (2012).
Non-Patent Document 5: L. Wei et al., Adv. Mater., 10.1002 / adma.201701410.
Non-Patent Document 6: J. Huang, et al., Angewandte_Chemie_International_Edition 2015, 54, 8722-8727.
The entire descriptions of Patent Document 1 and Non-Patent Documents 1 to 6 are specifically incorporated herein by reference.
 特許文献1に記載されている2種類の遷移金属を含むブラウンミラーライト型遷移金属酸化物A2B2O5は、貴金属触媒を凌ぐOER活性を示すものである。しかし、実用に供することを鑑みれば、OER活性がより高く、かつ長期間安定した活性を示す触媒の開発が必要とされている。また、非特許文献3に記載の材料は製造方法が複雑であり、OER活性も高くないことからさらに改善の余地がある。 The brown mirrorlite type transition metal oxide A 2 B 2 O 5 containing two kinds of transition metals described in Patent Document 1 exhibits OER activity superior to that of a noble metal catalyst. However, in view of practical use, there is a need to develop a catalyst having a higher OER activity and a stable activity for a long period of time. Further, the material described in Non-Patent Document 3 has a complicated manufacturing method and its OER activity is not high, and thus there is room for further improvement.
 そこで本発明の目的は、OER活性がより高い新たな遷移金属酸化物触媒を開発し、さらにこの触媒を用いた空気極用触媒や水電解陽極用触媒、空気極及び空気二次電池を提供することにある。 Therefore, an object of the present invention is to develop a new transition metal oxide catalyst having a higher OER activity, and further provide a catalyst for an air electrode, a catalyst for a water electrolysis anode, an air electrode and an air secondary battery using this catalyst. Especially.
 本発明は以下の通りである。
[1]
γ-CoOOH型の原子配列構造と同一又は類似する原子配列構造を有し、かつ酸素欠陥を有するCo酸化物ナノクラスターであって、ナノクラスター中のCoの一部がFe及び/又はNiで置換されていてもよい、Co酸化物材料。
[2]
前記Co酸化物ナノクラスターは、粒子径が10nm以下である、[1]に記載の材料。
[3]
CoO6八面体が陵共有により二次元的に連結して形成する[CoOx]平面単分子層に、電荷補償のためのプロトンが配位した[CoOxHy]平面単分子層がn層積層してできる[CoOxHy]n分子層シート状物質のナノクラスターを含有するCo酸化物材料であって、xは1.5~2.0の範囲であり、yは0.01~1の範囲であり、nは平面単分子層の分子層平面に垂直な方向(c軸方向)への積層数であり、1~25の範囲であり、[CoOxHy]平面単分子層中のCoの一部がFe及び/又はNiで置換されていてもよい、またCoO6八面体の酸素の一部が欠損していても良い前記材料。
[4]
前記[CoOxHy]平面単分子層の一辺が10nm以下である、[3]に記載の材料。
[5]
TEM像において観察されるナノクラスターの最大外径は0.3~10nmの範囲である、[1]~[4]のいずれかに記載の材料。
[6]
ナノクラスター中のCoの一部がFe及び/又はNiで置換されている、[1]~[5]のいずれかに記載の材料。
[7]
CoのFe及び/又はNiへの置換量は、オージェ分光スペクトル解析により得られるCo:Fe原子比又はICP分析による元素分析により得られるCo:Fe原子比が100:0.1~10の範囲である[6]に記載の材料。
[8]
OER触媒用である[1]~[7]のいずれかに記載の材料。
[9]
Ca2CoFeO5及び/又はCa2CoNiO5を含有する原料をアノード分極下に置くか、又はアルカリ水溶液に浸漬することを含む、[1]~[7]のいずれかに記載の材料の製造方法。
[10]
アノード分極は、RHEに対して1.5~2.0Vの範囲の電圧になる電流密度で行い、アルカリ水溶液への浸漬は、1M以上の濃度のアルカリ水溶液に1日以上行う、[9]に記載の製造方法。
[11]
Fe塩及び/又はNi塩並びにCo塩を含有する水溶液にアルカリを添加して、Fe及び/又はNi並びにCoを含有する水酸化物を沈澱させ、沈殿物を回収する工程、前記Fe及び/又はNi並びにCoを含有する水酸化物の沈殿物を酸素含有雰囲気中で焼成して、Fe及び/又はNi並びにCoを含有するオキシ水酸化物を得ることを含む[1]~[7]のいずれかに記載の材料の製造方法。
[12]
前記Fe塩、Ni塩及びCo塩は、それぞれ硝酸塩であり、前記アルカリは、アルカリ金属水酸化物である[11]に記載の製造方法。
[13]
[1]~[7]のいずれかに記載の材料又は[9]~[12]のいずれかに記載の方法で製造された材料を含む空気極用触媒。
[14]
[1]~[7]のいずれかに記載の材料又は[9]~[12]のいずれかに記載の方法で製造された材料を含む水電解陽極用触媒。
[15]
[13]又は[14]に記載の触媒を含む金属空気二次電池用空気極。
[16]
前記材料は酸素発生用触媒として含有され、酸素還元用触媒をさらに含む[15]に記載の空気極。
[17]
[15]又は[16]に記載の空気極と、負極活物質を含有する負極と、前記空気極と前記負極との間に介在する電解質とを有する金属空気二次電池。
[18]
酸素還元用触媒を含む酸素還元用空気極をさらに含む[17]に記載の金属空気二次電池。
The present invention is as follows.
[1]
A Co oxide nanocluster having an atomic arrangement structure that is the same as or similar to that of a γ-CoOOH type and has an oxygen defect, in which a part of Co in the nanocluster is replaced with Fe and / or Ni. An optional Co oxide material.
[2]
The material according to [1], wherein the Co oxide nanocluster has a particle diameter of 10 nm or less.
[3]
CoO 6 octahedra are formed by connecting two-dimensionally by Ling sharing [CoO x] plane monolayer protons for charge compensation is coordinated [CoO x H y] plane monolayer n layer A Co oxide material containing nanoclusters of [CoO x H y ] n molecular layer sheet material formed by stacking, wherein x is in the range of 1.5 to 2.0, y is in the range of 0.01 to 1, n is the number of layers stacked in the direction perpendicular to the plane of the planar monolayer (c-axis direction), and is in the range of 1 to 25. [CoO x H y ] Part of Co in the planar monolayer May be substituted with Fe and / or Ni, and the CoO 6 octahedron may be partially deficient in oxygen.
[4]
The material according to [3], wherein one side of the [CoO x H y ] planar monolayer is 10 nm or less.
[5]
The material according to any one of [1] to [4], wherein the maximum outer diameter of the nanocluster observed in the TEM image is in the range of 0.3 to 10 nm.
[6]
The material according to any one of [1] to [5], wherein a part of Co in the nanocluster is replaced with Fe and / or Ni.
[7]
The substitution amount of Co for Fe and / or Ni is in the range of Co: Fe atomic ratio obtained by Auger spectroscopic analysis or Co: Fe atomic ratio obtained by elemental analysis by ICP analysis in the range of 100: 0.1 to 10 [ 6] The material according to [6].
[8]
The material according to any one of [1] to [7], which is for an OER catalyst.
[9]
A method for producing a material according to any one of [1] to [7], which comprises placing a raw material containing Ca 2 CoFeO 5 and / or Ca 2 CoNiO 5 under anode polarization or immersing the raw material in an alkaline aqueous solution. ..
[10]
Anode polarization is performed at a current density that gives a voltage in the range of 1.5 to 2.0 V with respect to RHE, and immersion in an alkaline aqueous solution is performed in an alkaline aqueous solution having a concentration of 1 M or more for one day or more, the production according to [9]. Method.
[11]
A step of adding an alkali to an aqueous solution containing Fe salt and / or Ni salt and Co salt to precipitate a hydroxide containing Fe and / or Ni and Co, and recovering the precipitate; Any of [1] to [7], which comprises firing an oxide precipitate containing Ni and Co in an oxygen-containing atmosphere to obtain an oxyhydroxide containing Fe and / or Ni and Co A method for producing the material according to item 1.
[12]
The Fe salt, the Ni salt, and the Co salt are nitrates, respectively, and the alkali is an alkali metal hydroxide [11].
[13]
A catalyst for an air electrode comprising the material according to any one of [1] to [7] or the material produced by the method according to any one of [9] to [12].
[14]
A catalyst for a water electrolysis anode containing the material according to any one of [1] to [7] or the material produced by the method according to any one of [9] to [12].
[15]
An air electrode for a metal-air secondary battery containing the catalyst according to [13] or [14].
[16]
The air electrode according to [15], wherein the material is contained as a catalyst for oxygen generation and further includes a catalyst for oxygen reduction.
[17]
A metal-air secondary battery comprising the air electrode according to [15] or [16], a negative electrode containing a negative electrode active material, and an electrolyte interposed between the air electrode and the negative electrode.
[18]
The metal-air secondary battery according to [17], further including an oxygen reduction air electrode containing an oxygen reduction catalyst.
 本発明によれば、OER活性が高くかつその活性が長期間安定している、OER触媒として有用な新たな材料を提供する。さらにこの材料を用いて、長期間優れたOER活性を示す空気極用触媒や水電解陽極用触媒を提供でき、従来品に比べて優れた空気極及び空気二次電池を提供することができる。 According to the present invention, a new material useful as an OER catalyst having a high OER activity and stable activity for a long period of time is provided. Furthermore, by using this material, it is possible to provide a catalyst for an air electrode or a catalyst for a water electrolysis anode that exhibits excellent OER activity for a long period of time, and it is possible to provide an air electrode and an air secondary battery that are superior to conventional products.
は、(a)ブラウンミラー型Ca2FeCoO5+δ(OER分極前)、および(b)1.6 V vs RHE にて1時間OER分極後のCa2FeCoO5+δの高分解能TEM像である。(a)における格子縞はブラウンミラー相の110面間隔に対応する。(b)において、いくつかの周期構造を有するナノクラスターを黄色破線囲んでいる。また内挿図はTEM像中央付近で測定した電子回折像を示している。3A is a high-resolution TEM image of (a) Brown mirror type Ca 2 FeCoO 5 + δ (before OER polarization) and (b) Ca 2 FeCoO 5 + δ after OER polarization for 1 hour at 1.6 V vs RHE. The lattice fringes in (a) correspond to the 110 plane spacing of the Brown mirror phase. In (b), nanoclusters having some periodic structures are surrounded by a yellow broken line. The interpolated figure shows the electron diffraction image measured near the center of the TEM image. は、カーボンシート上に担持したCa2FeCoO5(CFCと略記することがある)を、40 mA cm-2定電流で2hアノード分極し、その後15分開回路電位で保持するOER分極サイクルを一か月繰り返した時の電流-時間曲線である。Is an OER polarization cycle in which Ca 2 FeCoO 5 (sometimes abbreviated as CFC) supported on a carbon sheet is anodic polarized for 2 h at a constant current of 40 mA cm -2 and then held at an open circuit potential for 15 minutes. It is a current-time curve when repeated for a month. は、作製直後(as-prepared)、1時間(1h)および1か月間(1 month)OER分極後(1 month)でのCFC担持カーボン電極のXRDパターンを示す。参照にCFC粉末のXRDパターンも併せて示した。▼および〇は、それぞれカーボンシートおよびNafion由来のピークを示している。Shows the XRD pattern of the CFC-supported carbon electrode immediately after preparation (as-prepared), 1 hour (1 h) and 1 month (1 month) after OER polarization (1 month). The XRD pattern of CFC powder is also shown for reference. ▼ and ◯ indicate peaks derived from the carbon sheet and Nafion, respectively. は、一か月OER分極前後のCFC粒子のオージェ分光スペクトルを示す。Shows the Auger spectrum of CFC particles before and after one month OER polarization. は、作製直後(As prepared)および20 mA cm-2定電流条件で1時間(1h)および1月(1 month)アノード分極したCa2FeCoO5の(a) Co K吸収端および(b) Fe K吸収端近傍X線吸収スペクトル(XANES)。広域X線吸収微細構造(EXAFS)より決定したCo原子((c), (e))およびFe原子((d), (f))周囲の動径分布。(c)および(d)はAs preparedおよび1h試料の比較、また(e)および(f)はAs preparedおよび1 month試料の比較を示している。また(c)および(d)にはγ-CoOOH構造モデル(図6)を用いたFitting結果(点線)を併せて示した。Shows (a) Co K absorption edge and (b) Fe of anodic polarized Ca 2 FeCoO 5 for 1 hour (1 h) and 1 month (1 month) immediately after preparation (As prepared) and 20 mA cm -2 constant current condition. X-ray absorption spectrum (XANES) near the K absorption edge. Radial distributions around Co atoms ((c), (e)) and Fe atoms ((d), (f)) determined by broad-range X-ray absorption fine structure (EXAFS). (c) and (d) show comparison of As prepared and 1h samples, and (e) and (f) show comparison of As prepared and 1 month sample. In addition, (c) and (d) also show the fitting results (dotted line) using the γ-CoOOH structural model (FIG. 6). は、γ-CoOOH(六方晶)の結晶構造モデルを示す。赤球(小)、青球(大)および白球(小、層の間に孤立)は、それぞれ酸素原子、コバルト原子および水素原子を示している。Shows a crystal structure model of γ-CoOOH (hexagonal). Red spheres (small), blue spheres (large) and white spheres (small, isolated between layers) represent oxygen, cobalt and hydrogen atoms, respectively. は、一か月OER分極前後のCFCのOER同電位分極曲線である。併せて熱分解法により調製したγ-CoOOHの結果も示した。Is an OER equipotential polarization curve of CFC before and after one month OER polarization. The results of γ-CoOOH prepared by pyrolysis are also shown. は、実施例2で調製したFe0.05Co0.95OxHy、Fe0.1Co0.9OxHyおよびNi0.1Co0.95OxHyのXRDパターンを示す。併せてγ-CoOOHのXRDパターンも示す。 Shows the XRD patterns of Fe 0.05 Co 0.95 O x H y , Fe 0.1 Co 0.9 O x H y and Ni 0.1 Co 0.95 O x H y prepared in Example 2. The XRD pattern of γ-CoOOH is also shown. は、実施例2で調製したFe0.05Co0.95OxHy、Fe0.1Co0.9OxHyおよびNi0.1Co0.95OxHyのOER分極曲線を示す。CFCのOER分極曲線も示す。Shows an OER polarization curve of Fe 0.05 Co 0.95 O x H y , Fe 0.1 Co 0.9 O x H y and Ni 0.1 Co 0.95 O x H y prepared in Example 2. The OER polarization curve of CFC is also shown. は、実施例3で調製したKOH処理前の試料(CFC)及びKOH処理品のXRDを示す。Shows the XRD of the sample (CFC) before the KOH treatment prepared in Example 3 and the KOH-treated product. は、実施例3で調製したKOH処理前の試料(CFC)及びKOH処理品のOER分極曲線を示す。Shows the OER polarization curves of the sample (CFC) before KOH treatment prepared in Example 3 and the KOH-treated product. は、本発明の金属空気二次電池の一構成例を示す。Shows a configuration example of the metal-air secondary battery of the present invention.
<本発明のCo酸化物材料>
 本発明のCo酸化物材料は、γ-CoOOH型の原子配列構造と同一又は類似する原子配列構造を有し、かつ酸素欠陥を有する、Co酸化物ナノクラスターであって、ナノクラスター中のCoの一部がFe及び/又はNiで置換されていてもよい、Co酸化物材料である。
<Co oxide material of the present invention>
The Co oxide material of the present invention is a Co oxide nanocluster having an atomic arrangement structure that is the same as or similar to the γ-CoOOH type atomic arrangement structure and has an oxygen defect. It is a Co oxide material that may be partially substituted with Fe and / or Ni.
 本発明のCo酸化物材料は、Co酸化物ナノクラスターであって、Co酸化物ナノクラスターは、下記の(1)~(3)により特徴付けられる。
(1)γ-CoOOH型の原子配列構造と同一又は類似する原子配列構造を有しかつ酸素欠陥を有する:
 γ-CoOOH型の原子配列構造とは、γ-CoOOH(六方晶)の結晶構造モデルが有する原子配列構造であり、図6にγ-CoOOH(六方晶)の結晶構造モデルを示す。図中の赤球(小)、青球(大)および白球(小、層の間に孤立)は、それぞれ酸素原子、コバルト原子および水素原子を示している。γ-CoOOHは、CoO6八面体の陵共有によって形成する[CoO2]平面分子層が、プロトンを介した水素結合によってc軸上積層した層状構造をもつ。本発明のCo酸化物材料は、図6に示すγ-CoOOH(六方晶)の結晶構造モデルと同一又は類似する原子配列構造を有する。本発明のCo酸化物材料は、[CoO2]平面分子層単層の場合は、γ-CoOOH(六方晶)の結晶構造モデルと同一の原子配列構造を有し、それ以外の場合は、γ-CoOOH(六方晶)の結晶構造モデルと類似する原子配列構造を有することになる。このような原子構造は、製造方法において後述するが、OER分極により原子の再配列が起り、酸化物マトリクス中にCoリッチな酸化物部分が形成され、それがγ-CoOOHによく似た配列構造を形成したものと推察される。図1に高分解能TEMにより観測された本発明のCo酸化物におけるナノクラスターを示すが、このナノクラスターは、γ-CoOOH型の原子配列構造と同一又は類似する原子配列構造もつナノクラスターである。尚、本発明のナノクラスターは酸素欠損を有することから、酸素欠損がある部分はγ-CoOOH型の原子配列構造と同一ではなく、γ-CoOOH型の原子配列構造と類似する原子配列構造を有する、と定義する。
The Co oxide material of the present invention is a Co oxide nanocluster, and the Co oxide nanocluster is characterized by the following (1) to (3).
(1) It has an atomic arrangement structure that is the same as or similar to the atomic arrangement structure of γ-CoOOH type and has an oxygen defect:
The γ-CoOOH type atomic arrangement structure is an atomic arrangement structure of a γ-CoOOH (hexagonal) crystal structure model, and FIG. 6 shows a γ-CoOOH (hexagonal) crystal structure model. Red spheres (small), blue spheres (large) and white spheres (small, isolated between layers) in the figure represent oxygen atoms, cobalt atoms and hydrogen atoms, respectively. γ-CoOOH has a layered structure in which a [CoO 2 ] planar molecular layer formed by stacking of CoO 6 octahedra is laminated on the c-axis by hydrogen bonding via protons. The Co oxide material of the present invention has an atomic arrangement structure that is the same as or similar to the crystal structure model of γ-CoOOH (hexagonal) shown in FIG. The Co oxide material of the present invention has the same atomic arrangement structure as the crystal structure model of γ-CoOOH (hexagonal) in the case of [CoO 2 ] planar molecular layer single layer, and in other cases, γ -It will have an atomic arrangement structure similar to the crystal structure model of CoOOH (hexagonal). Although such an atomic structure will be described later in the manufacturing method, rearrangement of atoms occurs due to OER polarization, and a Co-rich oxide portion is formed in the oxide matrix, which has an arrangement structure similar to γ-CoOOH. It is presumed that the FIG. 1 shows nanoclusters in the Co oxide of the present invention observed by high-resolution TEM. The nanoclusters have the same or similar atomic arrangement structure as the γ-CoOOH type atomic arrangement structure. Since the nanocluster of the present invention has an oxygen deficiency, the portion with the oxygen deficiency is not the same as the γ-CoOOH type atomic arrangement structure, and has an atomic arrangement structure similar to that of the γ-CoOOH type ,, is defined.
 本発明のCo酸化物材料は酸素欠損を有する。酸素欠損の程度(化学量論比より少ない程度)には特に制限はないが、例えば、酸素以外の元素の価数の総量の0を超え25%以下であることができる。但し、これより多い酸素欠損が有ってもよい。 The Co oxide material of the present invention has oxygen deficiency. The degree of oxygen deficiency (less than stoichiometric ratio) is not particularly limited, but may be, for example, more than 0 and 25% or less of the total valence of elements other than oxygen. However, there may be more oxygen deficiencies than this.
(2)Co酸化物ナノクラスター:
 Co酸化物ナノクラスターは、その製造方法や条件により直径が相違するが、例えば、下記の試験例や実施例における製造方法においては、直径が20nm以下であることができ、Co酸化物ナノクラスターの直径は10nm以下であることもできる。
図1に、試験例1において、高分解能TEMにより観測されたCa2CoFeO5(CFC)を含有する原料から調製した本発明のCo酸化物におけるナノクラスターを示す。このナノクラスターは、上述のようにγ-CoOOH型配列構造の原子配列構造と同一又は類似する原子配列構造をもつナノクラスターである。このナノクラスターは、図1に示す高分解能TEM像により、直径10nm以下のクラスターが確認され、具体的には、0.5-2nm程度のナノクラスターである。また、本発明のCo酸化物のXRDパターンにおいて、観察できて当然な分子構造由来のピークが確認できないことは、クラスター直径が10nm以下であることを支持する。
(2) Co oxide nanoclusters:
Although the Co oxide nanoclusters have different diameters depending on the manufacturing method and conditions, for example, in the manufacturing methods in the following test examples and examples, the diameter can be 20 nm or less. The diameter can also be 10 nm or less.
FIG. 1 shows nanoclusters in the Co oxide of the present invention prepared from a raw material containing Ca 2 CoFeO 5 (CFC) observed by high-resolution TEM in Test Example 1. This nanocluster is a nanocluster having an atomic arrangement structure that is the same as or similar to the atomic arrangement structure of the γ-CoOOH type arrangement structure as described above. The high-resolution TEM image shown in FIG. 1 confirmed that these nanoclusters had a diameter of 10 nm or less. Specifically, the nanoclusters were about 0.5-2 nm. Further, in the XRD pattern of the Co oxide of the present invention, the fact that it can be observed and no natural molecular structure-derived peak can be confirmed supports that the cluster diameter is 10 nm or less.
図8に、実施例2の(5)において示した、Fe0.05Co0.95OxHy、Fe0.1Co0.9OxHyおよびNi0.1Co0.95OxHyのXRDパターンは非常にブロードであり、結晶子のサイズは20°付近の002ピーク半値幅から、約8-15 nm程度であると推測され、共沈法により調製された原料から調製した本発明のCo酸化物におけるナノクラスターは、直径20nm以下、好ましくは5nm以上、15nm以下のクラスターであることができる。 In FIG. 8, the XRD patterns of Fe 0.05 Co 0.95 O x H y , Fe 0.1 Co 0.9 O x H y and Ni 0.1 Co 0.95 O x H y shown in (5) of Example 2 are very broad. The crystallite size is estimated to be about 8 to 15 nm from the 002 peak half-width of around 20 °, and the nanoclusters in the Co oxide of the present invention prepared from the raw materials prepared by the coprecipitation method are It can be a cluster having a diameter of 20 nm or less, preferably 5 nm or more and 15 nm or less.
本発明のCo酸化物は、少なくともこれら粒径及びXRDによって結晶による回折ピークが観察されない、または観察されても非常にブロードであることから、明瞭なXピークが現れる非特許文献6に記載の材料とは明らかに異なる材料である。 The Co oxide of the present invention is a material according to Non-Patent Document 6 in which a clear X peak appears because at least a diffraction peak due to a crystal is not observed by these particle diameters and XRD, or is very broad even when observed. Is a material that is clearly different from.
(3)ナノクラスター中のCoの一部がFe及び/又はNiで置換されていてもよい、Co酸化物材料:
 実施例1で調製した本発明のCo酸化物材料は、オージェ分光法によって組成分析の結果から、ナノクラスター中のCoの一部がFeで置換されたものであることが分かる。CoのFeへの置換量は、オージェ分光スペクトル解析により得られるCo:Fe原子比が例えば、上限の置換範囲で、100:10以下、好ましくは、100:5以下の範囲である。また、下限の範囲で、100:0.1以上、好ましくは100:1以上の範囲である。100:0.1~10の範囲が好ましく、100:1~5の範囲がより好ましい。
(3) Co oxide material in which part of Co in the nanocluster may be substituted with Fe and / or Ni:
The Co oxide material of the present invention prepared in Example 1 shows that a part of Co in the nanocluster is replaced with Fe from the result of composition analysis by Auger spectroscopy. The substitution amount of Co for Fe is, for example, the upper limit substitution range of the Co: Fe atomic ratio obtained by Auger spectroscopic analysis, which is 100: 10 or less, preferably 100: 5 or less. The lower limit is 100: 0.1 or more, preferably 100: 1 or more. The range of 100: 0.1-10 is preferable, and the range of 100: 1-5 is more preferable.
実施例2で調製した本発明のCo酸化物材料は、ICPによる元素分析の結果、ナノクラスター中のCoの一部がFe及び/又はNiで置換されたものであることが分かる。CoのFe及び/又はNiへの置換量は、ICPによるCo:Fe及び/又はNi原子比が例えば、上限の置換範囲で、100:10以下、好ましくは、100:5以下の範囲である。また、下限の範囲で、100:0.1以上、好ましくは100:1以上の範囲である。100:0.1~10の範囲が好ましく、100:1~5の範囲がより好ましい。  As a result of elemental analysis by ICP, it is found that a part of Co in the nanocluster is replaced with Fe and / or Ni in the Co oxide material of the present invention prepared in Example 2. The substitution amount of Co for Fe and / or Ni is, for example, the upper limit substitution range of the Co: Fe and / or Ni atomic ratio by ICP of 100: 10 or less, preferably 100: 5 or less. The lower limit is 100: 0.1 or more, preferably 100: 1 or more. The range of 100: 0.1-10 is preferable, and the range of 100: 1-5 is more preferable.
 本発明のCo酸化物材料は、より具体的には、[CoOx]平面単分子層に電荷補償のためのプロトンが配位した[CoOxHy]平面単分子層が、水素結合を介してn層平面垂直方向に積層してできる[CoOxHy]n分子層シート状物質のナノクラスターを含有するCo酸化物材料であって、xは1.5~2.0の範囲であり、yは0.01~1の範囲であり、nは平面単分子層の分子層平面に垂直な方向(c軸方向)への積層数であり、1~25の範囲であり、[CoOxHy]平面単分子層中のCoの一部がFe及び/又はNiで置換されていてもよい、前記材料である。 Co oxide material of the present invention, more specifically, [CoO x] protons for charge compensation is coordinated to the plane monolayer [CoO x H y] plane monolayer, through hydrogen bonds [CoO x H y ] n molecular layer is a Co oxide material containing nanoclusters of a sheet-like material formed by stacking n layers vertically in the plane direction, x is in the range of 1.5 to 2.0, and y is 0.01 Is in the range of 1 to 1, n is the number of stacks of the plane monolayer in the direction perpendicular to the plane of the molecular layer (c-axis direction), and is in the range of 1 to 25, [CoO x H y ] plane monolayer. The above-mentioned material, in which a part of Co in the layer may be replaced with Fe and / or Ni.
 本発明のCo酸化物材料のナノクラスターは、[CoOx]平面単分子層に電荷補償のためのプロトンが配位した[CoOxHy]平面単分子層が平面垂直方向にn層積層してできる[CoOxHy]n分子層シート状物質のナノクラスターである。実施例1に示すEXAFSフィッティング結果より、Co周りの酸素配位数は1時間分極の場合5.1であり、1か月分極の場合が5.3程度であった(表2)。一方、酸素欠損が全くない[CoO2]分子層シートにおけるCo配位数は6となる。従って、実験例で示した本発明のCo酸化物材料のナノクラスターは、酸素欠損を有する[CoOxHy]n分子層シートを基本骨格にもつ材料であると考えられる。一方、図3に示すXRDの結果より本発明のCo酸化物材料にはγ-CoOOHのXRDピークが現れないことから、このナノクラスターはc軸方向への積層は、存在はするが発達はしていないと考えられる。従って、本発明のCo酸化物材料のナノクラスターは平面垂直方向の積層が存在はするが発達はしていない、[CoOXHy]n分子層シート状物質であると同定された。このような[CoOXHy]n分子層シート状物質の原子配列構造は、γ-CoOOH型の原子配列構造と同一ではなく、γ-CoOOH型の原子配列構造と類似する原子配列構造を有する、と言える。 Nanoclusters of Co oxide material of the present invention, [CoO x] protons for charge compensation in the plane monolayer coordinated [CoO x H y] plane monolayer n layer laminated to a plane perpendicular It is a nanocluster of [CoO x H y ] n molecular layer sheet material. From the EXAFS fitting results shown in Example 1, the oxygen coordination number around Co was 5.1 for 1-hour polarization and about 5.3 for 1-month polarization (Table 2). On the other hand, the Co coordination number in the [CoO 2 ] n molecular layer sheet having no oxygen deficiency is 6. Therefore, it is considered that the nanocluster of the Co oxide material of the present invention shown in the experimental example is a material having a [CoO x H y ] n molecular layer sheet having oxygen deficiency as a basic skeleton. On the other hand, from the XRD results shown in FIG. 3, since the X-ray peak of γ-CoOOH does not appear in the Co oxide material of the present invention, this nanocluster does not grow even though stacking in the c-axis direction exists. It is considered not to. Therefore, the nano-cluster of the Co oxide material of the present invention was identified as a [CoO X H y ] n molecular layer sheet-like substance in which stacks in the plane vertical direction are present but not developed. The atomic arrangement structure of such a [CoO X H y ] n molecular layer sheet material is not the same as the γ-CoOOH type atomic arrangement structure, and has an atomic arrangement structure similar to the γ-CoOOH type atomic arrangement structure. Can be said.
 [CoOXHy]n分子層シートにおけるxは1.5~2.0の範囲、好ましくは1.6~1.9の範囲であり、yは0.01~1の範囲、好ましくは0.05~0.5の範囲であり、nは1~25の範囲である。本発明のCo酸化物材料のナノクラスターは、TEM像において観察されるナノクラスターの最大外径は0.3~10nmの範囲であり、好ましくは0.6~7nmの範囲、より好ましくは0.9~5nmである。CoO6八面体の直径は約0.29 nm(ほぼ0.3nm)であり、また[CoOXHy]単分子層の層間距離は0.4 nm程度である。最大直径10nmのクラスターを想定するとこの粒子径のクラスターを構成するためには、[CoOXHy]単分子層内のCoOXHy八面体分子の数は、10/0.29 x 10/0.29(約1200)であり、最大直径7nmの範囲の場合は7/0.29 x 7/0.29(約580)であり、最大直径5nmの範囲の場合は5/0.29 x 5/0.29(約300)である。 In the [CoO X H y ] n molecular layer sheet, x is in the range of 1.5 to 2.0, preferably 1.6 to 1.9, y is in the range of 0.01 to 1, preferably 0.05 to 0.5, and n is 1 The range is up to 25. The maximum outer diameter of the nanocluster of the Co oxide material of the present invention observed in the TEM image is in the range of 0.3 to 10 nm, preferably 0.6 to 7 nm, and more preferably 0.9 to 5 nm. The CoO 6 octahedron has a diameter of about 0.29 nm (approximately 0.3 nm), and the [CoO X H y ] monolayer has an interlayer distance of about 0.4 nm. Assuming a cluster with a maximum diameter of 10 nm, the number of CoO X H y octahedral molecules in the [CoO X H y ] monolayer is 10 / 0.29 x 10 / 0.29 ( About 1200), 7 / 0.29 x 7 / 0.29 (about 580) in the maximum diameter range of 7 nm, and 5 / 0.29 x 5 / 0.29 (about 300) in the maximum diameter range of 5 nm.
 上記のように本発明のCo酸化物材料のナノクラスターは平面垂直方向の積層が存在はするが発達はしていない[CoOXHy]n分子層シート状物質であり、nは平面単分子層の分子層平面に垂直な方向(c軸方向)への積層数である。最大直径0.3~10nmのクラスターを想定するとnは1~10/0.4(約25)である。従って、上記nは1~25の範囲である。さらに、直径0.6~7nmの範囲の場合、nは2~7/0.4(約18)であり、直径0.9~5nmの範囲の場合、nは2または3~5/0.4(約12)である。


As described above, the nano-cluster of the Co oxide material of the present invention is a [CoO X H y ] n molecular layer sheet-like substance in which stacking in the direction perpendicular to the plane exists but has not been developed, and n is a plane single molecule. It is the number of layers stacked in the direction perpendicular to the molecular layer plane of the layer (c-axis direction). Assuming clusters with a maximum diameter of 0.3-10 nm, n is 1-10 / 0.4 (about 25). Therefore, the above n is in the range of 1 to 25. Further, n is 2 to 7 / 0.4 (about 18) in the diameter range of 0.6 to 7 nm, and n is 2 or 3 to 5 / 0.4 (about 12) in the diameter range of 0.9 to 5 nm.


 本発明のCo酸化物材料は、OER触媒用として極めて有用である。触媒については後述する。 The Co oxide material of the present invention is extremely useful as an OER catalyst. The catalyst will be described later.
<本発明のCo酸化物材料の製造方法>
 本発明のCo酸化物材料は、例えば、(a)Ca2CoFeO5及び/又はCa2CoNiO5を含有する原料をアノード分極下に置くか、若しくはアルカリ水溶液に浸漬することを含む方法、又は(b)Fe塩及び/又はNi塩並びにCo塩を含有する水溶液にアルカリを添加して、Fe及び/又はNi並びにCoを含有する水酸化物を沈澱させ、沈殿物を回収する工程、前記Fe及び/又はNi並びにCoを含有する水酸化物の沈殿物を酸素含有雰囲気中で焼成して、Fe及び/又はNi並びにCoを含有するオキシ水酸化物を得ることを含む方法で、製造することができる。
<Method for producing Co oxide material of the present invention>
The Co oxide material of the present invention includes, for example, (a) a method including placing a raw material containing Ca 2 CoFeO 5 and / or Ca 2 CoNiO 5 under anodic polarization, or immersing the raw material in an alkaline aqueous solution, or ( b) a step of adding an alkali to an aqueous solution containing an Fe salt and / or a Ni salt and a Co salt to precipitate a hydroxide containing Fe and / or Ni and Co, and recovering the precipitate; And / or Ni and Co containing hydroxide precipitates in an oxygen containing atmosphere to obtain an oxyhydroxide containing Fe and / or Ni and Co. it can.
製造方法(a)
 Ca2CoFeO5及びCa2CoNiO5はブラウンミラーライト型遷移金属酸化物の一種であり、特許文献1に記載されている方法を参照してそれぞれの金属酸化物を原料として固相反応法により調製することができる。固相反応法に加えて、液相反応法を用いても合成することができる。液相反応法には、それぞれの金属酸化物の原料としてそれぞれの金属の塩、例えば、硝酸塩、酢酸塩、クエン酸塩等を用いる。例えば、Ca塩(例えば、Ca(NO3)2)、Fe塩(例えば、Fe(NO3)3)・9H2O)、又はNi塩(例えば、Ni(NO3)3)・9H2O)、Co塩(例えば、Co(NO3)2)・6H2O)を用い、かつゲル化剤としてクエン酸を添加した混合物を溶媒として、例えば、水(蒸留水またはイオン交換水)等を用いて混合する。各金属塩の比率は、目的とする金属酸化物の組成を考慮して適宜決定する。ゲル化剤として用いるクエン酸の量は、金属塩100質量部に対して、例えば、10~1000質量部の範囲とすることができる。ゲル化剤としてはクエン酸以外に、例えば、EDTA(エチレンジアミン四酢酸)やグリシン等を用いることもできる。上記混合物を、例えば、50~90℃に加熱して溶媒を除去することで混合物をゲル化させる。このゲル化物を、例えば、空気中、300~500℃(例えば、450℃)で10分~6時間(例えば、1時間)仮焼成して前駆体を合成する。次にこの前駆体を、例えば、大気中、600~800℃で1~24時間焼成することで、ブラウンミラーライト型のCa2FeCoO5又はCa2CoNiO5を合成することができる。焼成条件は、例えば、600℃で所定時間(1~12時間)焼成した後、温度を上げて、例えば、800℃で所定時間(6~12時間)焼成することもできる。
Manufacturing method (a)
Ca 2 CoFeO 5 and Ca 2 CoNiO 5 are one of the brown mirrorlite type transition metal oxides, and are prepared by the solid-state reaction method using each metal oxide as a raw material with reference to the method described in Patent Document 1. can do. In addition to the solid phase reaction method, the liquid phase reaction method can also be used for the synthesis. In the liquid phase reaction method, salts of respective metals such as nitrates, acetates and citrates are used as raw materials of respective metal oxides. For example, Ca salt (e.g., Ca (NO 3) 2) , Fe salts (e.g., Fe (NO 3) 3) · 9H 2 O), or Ni salts (e.g., Ni (NO 3) 3) · 9H 2 O ), A Co salt (for example, Co (NO 3 ) 2 ) · 6H 2 O), and using citric acid as a gelling agent as a solvent, for example, water (distilled water or ion-exchanged water), etc. Use and mix. The ratio of each metal salt is appropriately determined in consideration of the composition of the target metal oxide. The amount of citric acid used as a gelling agent can be in the range of, for example, 10 to 1000 parts by mass with respect to 100 parts by mass of the metal salt. Other than citric acid, for example, EDTA (ethylenediaminetetraacetic acid), glycine, or the like can be used as the gelling agent. The mixture is gelled by heating the mixture to, for example, 50 to 90 ° C. to remove the solvent. The gelled product is calcined in air at 300 to 500 ° C. (eg 450 ° C.) for 10 minutes to 6 hours (eg 1 hour) to synthesize a precursor. Next, this precursor is calcined in the air at 600 to 800 ° C. for 1 to 24 hours, whereby Brown mirror light type Ca 2 FeCoO 5 or Ca 2 CoNiO 5 can be synthesized. As the firing conditions, for example, after firing at 600 ° C. for a predetermined time (1 to 12 hours), the temperature may be increased and firing at 800 ° C. for a predetermined time (6 to 12 hours) may be performed.
(1)アノード分極法
 アノード分極は、Ca2CoFeO5(CFC) 及び/又はCa2CoNiO5(CNC)を含有する原料を電極として、RHEに対して例えば、1.5~2.0Vの範囲の電圧になる電流密度で、所定以上の電気量を通電することが実施することが適当である。所定以上の電気量は、アルカリ水溶液の組成及び濃度、温度、原料を電極とした電極の構造などに応じて、所望のナノクラスターが生成する電気量から適宜選択することができる。実施例においては、アノード電極への塗布量はCFC量が10mg cm-2となるようにし、カーボンシート電極を電極基材として用い、白金板を対極(カソード)とし、さらにアノード電極用の参照電極を用いる三電極系にて、KOH水溶液中、アルゴン不活性雰囲気下で40mA cm-2の一定酸化電流条件で2時間OER分極を電流ゼロの時間をはさみ繰返し行っている。この場合のアノード分極に用いた電気量は、1回2時間OER分極で、1cm2当たり288クーロンである。CFCをアノード電極に塗布して分極処理する場合には、この電気量を目安として、分極条件を選択することができる。
(1) Anodic polarization method Anode polarization is performed by using a raw material containing Ca 2 CoFeO 5 (CFC) and / or Ca 2 CoNiO 5 (CNC) as an electrode, and for a voltage in the range of 1.5 to 2.0 V with respect to RHE. It is appropriate to carry out an electric current of a predetermined amount or more at such a current density. The amount of electricity equal to or more than a predetermined value can be appropriately selected from the amount of electricity generated by a desired nanocluster, depending on the composition and concentration of the alkaline aqueous solution, the temperature, the structure of the electrode using the raw material as an electrode, and the like. In the examples, the amount of CFC applied was 10 mg cm -2 , the carbon sheet electrode was used as the electrode substrate, the platinum plate was the counter electrode (cathode), and the reference electrode for the anode electrode was used. In a three-electrode system using, the OER polarization was repeated for 2 hours in a KOH aqueous solution under an inert atmosphere of argon under the constant oxidation current condition of 40 mA cm -2 with the current being zero. The amount of electricity used for anodic polarization in this case is 288 coulombs per cm 2 with OER polarization once for 2 hours. When CFC is applied to the anode electrode for polarization treatment, the polarization condition can be selected using this amount of electricity as a guide.
 アルカリ水溶液中での分極に電解液として用いる、アルカリ水溶液は、例えば、0.1M~10Mの範囲のアルカリ水溶液であることができ、好ましくは1M~6Mの範囲のアルカリ水溶液である。 The alkaline aqueous solution used as an electrolytic solution for polarization in the alkaline aqueous solution can be, for example, an alkaline aqueous solution in the range of 0.1M to 10M, and preferably an alkaline aqueous solution in the range of 1M to 6M.
 分極処理後に、アノード電極から本発明のナノクラスター材料を回収することもできるが、本発明のナノクラスター材料を形成したアノード電極をそのまま、製品として利用することもできる。 After the polarization treatment, the nanocluster material of the present invention can be recovered from the anode electrode, but the anode electrode formed with the nanocluster material of the present invention can also be used as a product as it is.
(2)アルカリ水溶液浸漬法
 アルカリ水溶液浸漬は、Ca2CoFeO5(CFC) 及び/又はCa2CoNiO5(CNC)を含有する原料を例えば、アルカリ金属水酸化物、アルカリ土類金属水酸化物の水溶液に、例えば、0~100℃の温度範囲で浸漬することで実施できる。温度は好ましくは60~90℃範囲である。アルカリ水溶液の濃度は特に限定はないが、例えば、0.1M~10Mの範囲、好ましくは1M~6Mの範囲とすることができる。浸漬時間は、原料の種類、浸漬温度、アルカリ水溶液濃度等を考慮して、所望のナノクラスターが生成するまでの時間を、適宜決定できる。アルカリ水溶液への浸漬は、例えば、温度が80℃の場合、1M以上の濃度のアルカリ水溶液に1日以上行うことが、所望のナノクラスターを生成させるとうい観点から好ましい。
(2) Alkaline aqueous solution immersion method The alkaline aqueous solution immersion is performed by using a raw material containing Ca 2 CoFeO 5 (CFC) and / or Ca 2 CoNiO 5 (CNC), for example, an alkali metal hydroxide or an alkaline earth metal hydroxide. It can be carried out by immersing in an aqueous solution at a temperature range of 0 to 100 ° C., for example. The temperature is preferably in the range of 60 to 90 ° C. The concentration of the alkaline aqueous solution is not particularly limited, but can be, for example, 0.1 M to 10 M, preferably 1 M to 6 M. As the immersion time, the time until the desired nanoclusters are formed can be appropriately determined in consideration of the type of raw material, the immersion temperature, the concentration of the alkaline aqueous solution, and the like. For example, when the temperature is 80 ° C., the immersion in the alkaline aqueous solution is preferably performed in the alkaline aqueous solution having a concentration of 1 M or more for 1 day or more from the viewpoint of forming desired nanoclusters.
 アルカリ水溶液浸漬後は、浸漬品を回収し、水洗などをして、本発明のナノクラスター材料を得ることができる。 After the immersion in the alkaline aqueous solution, the immersed product can be collected and washed with water to obtain the nanocluster material of the present invention.
製造方法(b)
この製造方法では、Fe塩及び/又はNi塩並びにCo塩を含有する水溶液にアルカリを添加して、Fe及び/又はNi並びにCoを含有する水酸化物を沈澱させ、沈殿物を回収する共沈法により原料を調製し、得られたFe及び/又はNi並びにCoを含有する水酸化物の沈殿物を酸素含有雰囲気中で焼成して、Fe及び/又はNi並びにCoを含有するオキシ水酸化物を得る。
Manufacturing method (b)
In this production method, an alkali is added to an aqueous solution containing a Fe salt and / or a Ni salt and a Co salt to precipitate a hydroxide containing Fe and / or Ni and Co, and a precipitate is recovered. OH hydroxide containing Fe and / or Ni and Co by calcining the obtained precipitate of hydroxide containing Fe and / or Ni and Co in an oxygen-containing atmosphere To get
Fe塩、Ni塩及びCo塩は、各塩が水溶性であれば特に制限はなく、例えば、硝酸塩であることができ、硝酸塩以外に、塩化物を用いることもできる。アルカリは、水溶性であれば特に制限はなく、例えば、アルカリ金属水酸化物であることができ、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどを用いることができる。含む方法で、製造することができる。共沈法は、室温で行うことができるが、冷却下、または加温下で行うこともできる。Fe塩及び/又はNi塩並びにCo塩を含有する水溶液へのアルカリの添加は、アルカリ水溶液を用いることが適当である。Fe塩及び/又はNi塩並びにCo塩を含有する水溶液の塩濃度、アルカリ水溶液のアルカリ濃度は適宜決定することができる。 The Fe salt, Ni salt, and Co salt are not particularly limited as long as each salt is water-soluble, and for example, they can be nitrates, and chlorides can be used in addition to nitrates. The alkali is not particularly limited as long as it is water-soluble, and for example, alkali metal hydroxide can be used, and lithium hydroxide, sodium hydroxide, potassium hydroxide and the like can be used. It can be manufactured by a method including. The coprecipitation method can be performed at room temperature, but can also be performed under cooling or under heating. For the addition of the alkali to the aqueous solution containing the Fe salt and / or the Ni salt and the Co salt, it is appropriate to use an alkaline aqueous solution. The salt concentration of the aqueous solution containing the Fe salt and / or the Ni salt and the Co salt, and the alkali concentration of the alkaline aqueous solution can be appropriately determined.
共沈法により調製したFe及び/又はNi並びにCoを含有する水酸化物の沈殿物は、酸素含有雰囲気中で焼成する。酸素含有雰囲気は、酸素を含有すれば良く、純粋酸素であっても、酸素含有雰囲気である空気を用いても良いが、オキシ水酸化物が容易に得られるという観点からは酸素雰囲気であることが好ましい。焼成温度は、オキシ水酸化物が得られる温度であればよく、例えば、50~200℃の範囲、好ましくは80~150℃の範囲であることができる。加熱時間は、加熱温度及びオキシ水酸化物の生成物の度合等を考慮して適宜決定できる。この焼成により、Fe及び/又はNi並びにCoを含有するオキシ水酸化物が得られ、共沈法により得られた原料を用いることで、本発明のCo酸化物材料を得ることができる。 The precipitate of hydroxide containing Fe and / or Ni and Co prepared by the coprecipitation method is fired in an oxygen-containing atmosphere. The oxygen-containing atmosphere may contain oxygen and may be pure oxygen or air which is an oxygen-containing atmosphere, but it is an oxygen atmosphere from the viewpoint of easily obtaining oxyhydroxide. Is preferred. The firing temperature may be any temperature at which oxyhydroxide can be obtained, and can be, for example, in the range of 50 to 200 ° C, preferably in the range of 80 to 150 ° C. The heating time can be appropriately determined in consideration of the heating temperature and the degree of the product of oxyhydroxide. By this firing, an oxyhydroxide containing Fe and / or Ni and Co is obtained, and the Co oxide material of the present invention can be obtained by using the raw material obtained by the coprecipitation method.
<電極用触媒>
 本発明は、本発明の材料を含む空気極用触媒を包含する。
 さらに本発明は、本発明の材料を含む水電解陽極用触媒を包含する。本発明の空気極用触媒及び水電解陽極用触媒は、本発明の材料に加えて、原料である上記CFCを含有することもできる。
<Catalyst for electrode>
The present invention includes a cathode catalyst containing the material of the present invention.
Further, the present invention includes a catalyst for a water electrolysis anode containing the material of the present invention. The air electrode catalyst and the water electrolysis anode catalyst of the present invention may contain the above-mentioned CFC as a raw material in addition to the material of the present invention.
 本発明の材料を含む空気極用触媒及び水電解陽極用触媒は、表面積が例えば、1~100m2/gの範囲であることができ、好ましくは、10~100m2/gの範囲である。但し、この範囲に限定される意図ではない。 The air electrode catalyst and the water electrolysis anode catalyst containing the material of the present invention can have a surface area of, for example, 1 to 100 m 2 / g, and preferably 10 to 100 m 2 / g. However, it is not intended to be limited to this range.
 本発明の材料は、空気極用として極めて有用であり、光水分解による水素製造や、次世代型高容量二次電池として期待されている金属空気二次電池の空気極として極めて有望である。 The material of the present invention is extremely useful as an air electrode, and is extremely promising as an air electrode for hydrogen production by photo-water decomposition and a metal-air secondary battery expected as a next-generation high-capacity secondary battery.
 水電解の陽極における反応は、下記の反応式で表される。
O→O+4H+4e(中性から酸性)
4OH→O+2HO+4e(塩基性)
 いずれの反応も、酸素発生反応(OER)である。本発明の材料は優れたOER活性を有する物であり、水電解陽極用触媒として、極めて有用である。
The reaction at the anode of water electrolysis is represented by the following reaction formula.
H 2 O → O 2 + 4H + + 4e (neutral to acidic)
4OH → O 2 + 2H 2 O + 4e (basic)
Both reactions are oxygen evolution reactions (OER). The material of the present invention has an excellent OER activity, and is extremely useful as a catalyst for a water electrolysis anode.
 <空気極>
 空気極は、通常、多孔質構造を有し、酸素反応触媒の他、導電性材料を含む。また、空気極は、必要に応じて、酸素還元(ORR)触媒、バインダー等を含んでいてもよい。二次電池における空気極には、充電時の機能としてOER触媒活性と、放電時の機能としてORR触媒活性を有することを要する。本発明の触媒はOER触媒であるので、空気極には、この触媒に加えて、ORR触媒を含有させることもできる。空気極における充電及び放電時の化学式を以下に示す。
Figure JPOXMLDOC01-appb-C000001
<Air electrode>
The air electrode usually has a porous structure and contains a conductive material in addition to the oxygen reaction catalyst. Further, the air electrode may include an oxygen reduction (ORR) catalyst, a binder, etc., if necessary. The air electrode in the secondary battery needs to have an OER catalytic activity as a function during charging and an ORR catalytic activity as a function during discharging. Since the catalyst of the present invention is an OER catalyst, the air electrode can contain an ORR catalyst in addition to this catalyst. The chemical formulas for charging and discharging in the air electrode are shown below.
Figure JPOXMLDOC01-appb-C000001
 空気極における本発明の触媒(OER触媒)の含有量は、特に限定されないが、空気極の酸素反応性能を高める観点から、例えば、1~90質量%であることが好ましく、特に10~60質量%であることが好ましく、30~50質量%であることがより好ましい。 The content of the catalyst of the present invention (OER catalyst) in the air electrode is not particularly limited, but from the viewpoint of enhancing the oxygen reaction performance of the air electrode, it is preferably 1 to 90% by mass, and particularly 10 to 60% by mass. %, And more preferably 30 to 50% by mass.
 ORR触媒の例としては、特に制限はないが、例えば、PtまたはPt系材料(例えば、PtCo、PtCoCr、Pt-W2C、Pt-RuOxなど)、Pd系材料(例えば、PdTi、PdCr、PdCo、PdCoAuなど)、金属酸化物(例えば、ZrO2-x、TiOx、TaNxOy、IrMOxなど)、錯体系(Co-ポルフィリン錯体)、その他(PtMoRuSeOx、RuSeなど)を挙げることができる。さらに、Suntivichらが高活性と報告しているLaNiO3( Nat. Chem. 3, 546 (2011))、Liらが報告しているCoO/N-doped CNT(Nat. Commun. 4, 1805 (2013)) なども例示できる。但し、これらに限定される意図ではない。また、各触媒の性能や性質を考慮して複数の触媒を組み合わせて用いることもできる。さらに上記触媒には、助触媒(例えば、TiOx、RuO2、SnO2など)を組み合わせて用いる事もできる。ORR触媒を併用する場合の含有量は、ORR触媒の種類や触媒活性等を考慮して適宜決定することができ、例えば、1~90質量%であることができる。但し、この数値範囲に限定される意図ではない。 Examples of the ORR catalyst are not particularly limited, but include, for example, Pt or Pt-based materials (for example, PtCo, PtCoCr, Pt-W 2 C, Pt-RuOx, etc.), Pd-based materials (for example, PdTi, PdCr, PdCo). , etc.), metal oxides PdCoAu (e.g., ZrO 2-x, TiO x , TaN x O y, etc. Irmo x), complex type (Co- porphyrin complexes), and the like other (PtMoRuSeO x, etc. RuSe) it can. Furthermore, LaNiO 3 (Nat. Chem. 3, 546 (2011)) reported by Suntivich et al. As high activity, and CoO / N-doped CNT (Nat. Commun. 4, 1805 (2013) reported by Li et al. )) Etc. can also be illustrated. However, it is not intended to be limited to these. Also, a plurality of catalysts may be used in combination in consideration of the performance and properties of each catalyst. Further, a promoter (for example, TiO x , RuO 2 , SnO 2 etc.) can be used in combination with the above catalyst. When the ORR catalyst is used in combination, the content can be appropriately determined in consideration of the type of the ORR catalyst, catalytic activity, etc., and can be, for example, 1 to 90% by mass. However, it is not intended to be limited to this numerical range.
 導電性材料としては、特に限定されず、導電助剤として一般的に使用可能なものであればよいが、好適なものとして導電性カーボンが挙げられる。具体的には、メソポーラスカーボン、グラファイト、アセチレンブラック、カーボンナノチューブ、カーボンファイバー等が挙げられる。空気極において多くの反応場を提供することから、比表面積が大きい導電性カーボンが好ましい。具体的には、比表面積が1~3000m/g、特に500~1500m/gである導電性カーボンが好ましい。空気極の触媒は、導電性材料に担持させてもよい。 The conductive material is not particularly limited as long as it is a material that can be generally used as a conductive auxiliary agent, and a suitable material is conductive carbon. Specific examples include mesoporous carbon, graphite, acetylene black, carbon nanotubes and carbon fibers. Conductive carbon having a large specific surface area is preferable because it provides many reaction fields at the air electrode. Specifically, conductive carbon having a specific surface area of 1 to 3000 m 2 / g, particularly 500 to 1500 m 2 / g is preferable. The catalyst of the air electrode may be supported on a conductive material.
 空気極における導電性材料の含有量は、特に限定されないが、放電容量を高める観点から、例えば、10~99質量%であることが好ましく、特に20~80質量%であることが好ましく、20~50質量%であることがより好ましい。 The content of the electrically conductive material in the air electrode is not particularly limited, but from the viewpoint of increasing the discharge capacity, it is preferably 10 to 99% by mass, particularly preferably 20 to 80% by mass, and 20 to It is more preferably 50% by mass.
 空気極にバインダーを含有させることで、触媒や導電性材料を固定化し、電池のサイクル特性を向上させることができる。バインダーとしては特に限定されず、例えば、ポリフッ化ビニリデン(PVDF)及びその共重合体、ポリテトラフルオロエチレン(PTFE)及びその共重合体、スチレンブタジエンゴム(SBR)等が挙げられる。空気極におけるバインダーの含有量は、特に限定されないが、カーボン(導電性材料)と触媒との結着力の観点から、例えば、1~40質量%であることが好ましく、特に5~35質量%であることが好ましく、10~35質量%であることがより好ましい。 By including a binder in the air electrode, the catalyst and conductive material can be fixed and the cycle characteristics of the battery can be improved. The binder is not particularly limited, and examples thereof include polyvinylidene fluoride (PVDF) and its copolymer, polytetrafluoroethylene (PTFE) and its copolymer, styrene butadiene rubber (SBR), and the like. The content of the binder in the air electrode is not particularly limited, but from the viewpoint of the binding force between the carbon (conductive material) and the catalyst, it is preferably 1 to 40% by mass, particularly 5 to 35% by mass. It is preferable that the amount is 10 to 35% by mass.
 空気極は、例えば、上記した空気極構成材料を適当な溶媒に分散させて調製したスラリーを基材上に塗布、乾燥することで形成することができる。溶媒としては、特に限定されず、例えば、アセトン、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン(NMP)等が挙げられる。空気極構成材料と溶媒との混合は、通常、3時間以上、好ましくは4時間行うことが好ましい。混合方法は特に限定されず、一般的な方法を採用することができる。 The air electrode can be formed, for example, by applying a slurry prepared by dispersing the above-mentioned air electrode constituent materials in an appropriate solvent onto a base material and drying. The solvent is not particularly limited, and examples thereof include acetone, N, N-dimethylformamide, N-methyl-2-pyrrolidone (NMP) and the like. The mixing of the air electrode constituent material and the solvent is usually performed for 3 hours or more, preferably 4 hours. The mixing method is not particularly limited, and a general method can be adopted.
 スラリーを塗布する基材は、特に限定されず、ガラス板、テフロン(登録商標)板等が挙げられる。これら基材は、スラリーの乾燥後、得られた空気極から剥離される。或いは、空気極の集電体や、固体電解質層を、上記基材として扱うこともできる。この場合、基材は剥離せずに、金属空気二次電池の構成部材としてそのまま利用する。 The base material to which the slurry is applied is not particularly limited, and examples thereof include a glass plate and a Teflon (registered trademark) plate. These base materials are peeled off from the obtained air electrode after the slurry is dried. Alternatively, the current collector of the air electrode or the solid electrolyte layer can be treated as the base material. In this case, the base material is used as it is as a constituent member of the metal-air secondary battery without being peeled off.
 スラリーの塗布方法、乾燥方法は、特に限定されず、一般的な方法を採用することができる。例えば、スプレー法、ドクターブレード法、グラビア印刷法等の塗布方法、加熱乾燥、減圧乾燥等の乾燥方法を採用することができる。 The method for applying the slurry and the method for drying the slurry are not particularly limited, and general methods can be adopted. For example, a coating method such as a spray method, a doctor blade method, a gravure printing method, or a drying method such as heat drying or reduced pressure drying can be employed.
 空気極の厚さは、特に限定されず、金属空気二次電池の用途等に応じて適宜設定すればよいが、通常、5~100μm、10~60μm、特に20~50μmであることが好ましい。 The thickness of the air electrode is not particularly limited and may be appropriately set according to the application of the metal-air secondary battery, etc., but is usually 5 to 100 μm, 10 to 60 μm, and particularly preferably 20 to 50 μm.
 空気極には、通常、空気極の集電を行う空気極集電体が接続される。空気極集電体の材料、形状は特に限定されない。空気極集電体の材料としては、例えば、ステンレス、アルミニウム、鉄、ニッケル、チタン、炭素(カーボン)等が挙げられる。また、空気極集電体の形状としては、箔状、板状、メッシュ(グリッド状)、繊維状等が挙げられ、中でもメッシュ状等の多孔質形状であることが好ましい。多孔質形状の集電体は、空気極への酸素供給効率に優れているからである。 The air electrode is usually connected to an air electrode current collector that collects current from the air electrode. The material and shape of the air electrode current collector are not particularly limited. Examples of the material of the air electrode current collector include stainless steel, aluminum, iron, nickel, titanium, carbon, and the like. Examples of the shape of the air electrode current collector include a foil shape, a plate shape, a mesh (grid shape), a fibrous shape, and the like, and among them, a porous shape such as a mesh shape is preferable. This is because the porous collector has excellent oxygen supply efficiency to the air electrode.
<金属空気二次電池>
 本発明の金属空気二次電池は、上記本発明の材料を含む触媒を含有する空気極と、負極活物質を含有する負極と、空気極と負極との間に介在する電解質と、を有する。本発明の金属空気二次電池の空気極には、本発明の材料を含む触媒が含有され、この触媒は優れたOER触媒特性を示す。従って、この触媒を用いた空気極を用いることで、本発明の金属空気二次電池は、充電速度及び充電電圧に優れたものとなる。
<Metal air secondary battery>
The metal-air secondary battery of the present invention has an air electrode containing a catalyst containing the material of the present invention, a negative electrode containing a negative electrode active material, and an electrolyte interposed between the air electrode and the negative electrode. The air electrode of the metal-air secondary battery of the present invention contains a catalyst containing the material of the present invention, and this catalyst exhibits excellent OER catalytic properties. Therefore, by using the air electrode using this catalyst, the metal-air secondary battery of the present invention becomes excellent in charging speed and charging voltage.
 また、空気極は前記のようにORR触媒活性を有する触媒を共存させることもできる。あるいは、本発明の材料を含む触媒を含有する酸素発生(OER)用の空気極とは別に、ORR触媒活性を有する触媒を含む酸素還元(ORR)用の空気極を設けることもできる。この場合、金属空気二次電池は、酸素還元用の空気極と酸素発生用の空気極とを有することになる(3電極方式)。放電時には酸素還元用の空気極が用いられ、充電時には酸素発生用の空気極が用いられる。ORR触媒活性を有する触媒は前述の通りであり、この触媒と上記空気極の説明で記載した導電性材料及びバインダー等を用いて酸素発生用の空気極を得ることができる。 Also, the air electrode can coexist with a catalyst having ORR catalytic activity as described above. Alternatively, an air electrode for oxygen reduction (ORR) containing a catalyst having an ORR catalytic activity can be provided separately from an air electrode for oxygen generation (OER) containing a catalyst containing the material of the present invention. In this case, the metal-air secondary battery has an air electrode for oxygen reduction and an air electrode for oxygen generation (three-electrode system). An air electrode for oxygen reduction is used during discharging, and an air electrode for oxygen generation is used during charging. The catalyst having the ORR catalytic activity is as described above, and an oxygen-generating air electrode can be obtained by using this catalyst and the conductive material, the binder and the like described in the description of the air electrode.
 以下、本発明の金属空気二次電池の一構成例について説明する。尚、本発明の金属空気二次電池は、以下の構成に限定されるものではない。図12は、本発明の金属空気二次電池の一形態例を示す断面図である。金属空気二次電池1は、酸素を活物質とする空気極2、負極活物質を含有する負極3、空気極2及び負極3の間でイオン伝導を担う電解質4、空気極2の集電を行う空気極集電体5、及び負極3の集電を行う負極集電体6からなり、これらが図示しない電池ケースに収容されている。空気極2には、該空気極2の集電を行う空気極集電体5が電気的に接続され、空気極集電体5は、空気極2への酸素供給が可能な多孔質構造を有している。負極3には、該負極3の集電を行う負極集電体6が電気的に接続され、空気極集電体5及び負極集電体6の端部のうち一方は、電池ケースから突出している。それぞれ、正極端子(図示せず)、負極端子(図示せず)として機能する。 A configuration example of the metal-air secondary battery of the present invention will be described below. The metal-air secondary battery of the present invention is not limited to the configuration below. FIG. 12 is a cross-sectional view showing one example of the metal-air secondary battery of the present invention. The metal-air secondary battery 1 collects current from an air electrode 2 having oxygen as an active material, a negative electrode 3 containing a negative electrode active material, an electrolyte 4 that carries out ion conduction between the air electrode 2 and the negative electrode 3, and an air electrode 2. It is composed of an air electrode current collector 5 and a negative electrode current collector 6 that collects current from the negative electrode 3, and these are housed in a battery case (not shown). An air electrode current collector 5 that collects current from the air electrode 2 is electrically connected to the air electrode 2, and the air electrode current collector 5 has a porous structure capable of supplying oxygen to the air electrode 2. Have A negative electrode current collector 6 that collects current from the negative electrode 3 is electrically connected to the negative electrode 3, and one of the ends of the air electrode current collector 5 and the negative electrode current collector 6 projects from the battery case. There is. Each functions as a positive electrode terminal (not shown) and a negative electrode terminal (not shown).
(負極)
 負極は、負極活物質を含有する。負極活物質としては、一般的な空気電池の負極活物質を用いることができ、特に限定されるものではない。負極活物質は、通常、金属イオンを吸蔵・放出することができるものである。具体的な負極活物質としては、例えば、Li、Na、K、Mg、Ca、Zn、Al、及びFe等の金属、これら金属の合金、酸化物及び窒化物、並びに炭素材料等が挙げられる。
(Negative electrode)
The negative electrode contains a negative electrode active material. As the negative electrode active material, a negative electrode active material for general air batteries can be used, and it is not particularly limited. The negative electrode active material is usually capable of inserting and extracting metal ions. Specific examples of the negative electrode active material include metals such as Li, Na, K, Mg, Ca, Zn, Al, and Fe, alloys of these metals, oxides and nitrides, and carbon materials.
 中でも、亜鉛-空気二次電池は安全面において優れており、次世代の二次電池として期待されている。尚、高電圧高出力という観点からはリチウム-空気二次電池及びマグネシウム空気二次電池が有望である。
 亜鉛-空気二次電池の例を以下に説明すると、反応式は以下の通りである。
Figure JPOXMLDOC01-appb-I000002
Among them, the zinc-air secondary battery is excellent in safety and is expected as a next-generation secondary battery. From the viewpoint of high voltage and high output, lithium-air secondary batteries and magnesium-air secondary batteries are promising.
An example of the zinc-air secondary battery will be described below, and the reaction formula is as follows.
Figure JPOXMLDOC01-appb-I000002
 本発明の亜鉛-空気二次電池において、負極としては、亜鉛イオンを吸蔵・放出可能な材料を用いる。このような負極としては、金属亜鉛のほかに、亜鉛合金を用いることもできる。亜鉛合金としては、例えば、アルミニウム、インジウム、マグネシウム、スズ、チタン、銅、から選択される一種または二種以上の元素を含有する亜鉛合金を挙げることができる。 In the zinc-air secondary battery of the present invention, a material capable of inserting and extracting zinc ions is used as the negative electrode. As such a negative electrode, a zinc alloy can be used in addition to metallic zinc. Examples of the zinc alloy include a zinc alloy containing one or more elements selected from aluminum, indium, magnesium, tin, titanium, and copper.
 リチウム-空気二次電池の負極活物質としては、例えば金属リチウム;リチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等のリチウム合金;スズ酸化物、ケイ素酸化物、リチウムチタン酸化物、ニオブ酸化物、タングステン酸化物等の金属酸化物;スズ硫化物、チタン硫化物等の金属硫化物;リチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等の金属窒化物;並びにグラファイト等の炭素材料等を挙げることができ、中でも金属リチウムが好ましい。 Examples of the negative electrode active material of a lithium-air secondary battery include metallic lithium; lithium alloys such as lithium aluminum alloy, lithium tin alloy, lithium lead alloy, and lithium silicon alloy; tin oxide, silicon oxide, lithium titanium oxide, Metal oxides such as niobium oxide and tungsten oxide; metal sulfides such as tin sulfide and titanium sulfide; metal nitrides such as lithium cobalt nitride, lithium iron nitride, lithium manganese nitride; and graphite Examples thereof include carbon materials, and among them, metallic lithium is preferable.
 さらに、マグネシウム-空気二次電池の負極活物質としては、マグネシウムイオンを吸蔵・放出可能な材料を用いる。このような負極としては、金属マグネシウムのほかに、マグネシウムアルミニウム、マグネシウムシリコン、マグネシウムガリウムなどのマグネシウム合金などを用いることができる。 Furthermore, as the negative electrode active material of the magnesium-air secondary battery, a material capable of inserting and extracting magnesium ions is used. As such a negative electrode, magnesium alloy such as magnesium aluminum, magnesium silicon, and magnesium gallium can be used in addition to magnesium metal.
 箔状や板状の金属や合金等を負極活物質として用いる場合には、該箔状や板状の負極活物質を負極そのものとして使用することができる。 When a foil-shaped or plate-shaped metal or alloy is used as the negative electrode active material, the foil-shaped or plate-shaped negative electrode active material can be used as the negative electrode itself.
 負極は、少なくとも負極活物質を含有してればよいが、必要に応じて、負極活物質を固定化する結着材を含有していてもよい。結着材の種類、使用量等については、上述した空気極と同様であるため、ここでの説明は省略する。 The negative electrode only needs to contain at least the negative electrode active material, but may contain a binder that fixes the negative electrode active material, if necessary. Since the kind and amount of the binder used are the same as those of the above-mentioned air electrode, the description thereof is omitted here.
 負極には、通常、負極の集電を行う負極集電体が接続される。負極集電体の材料、形状は特に限定されない。負極集電体の材料としては、例えば、ステンレス、銅、ニッケル等が挙げられる。また、負極集電体の形状としては、箔状、板状、メッシュ(グリッド状)等が挙げられる。 ▽ The negative electrode is usually connected to a negative electrode current collector that collects the current of the negative electrode. The material and shape of the negative electrode current collector are not particularly limited. Examples of the material of the negative electrode current collector include stainless steel, copper, nickel and the like. Examples of the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh (grid shape).
(電解質)
 電解質は、空気極と負極との間に配置される。電解質を介して、負極と空気極との間の金属イオン伝導が行われる。電解質の形態は、特に限定されるものではなく、液体電解質、ゲル電解質、固体電解質等を挙げることができる。
(Electrolytes)
The electrolyte is arranged between the air electrode and the negative electrode. Metal ion conduction is performed between the negative electrode and the air electrode via the electrolyte. The form of the electrolyte is not particularly limited, and examples thereof include a liquid electrolyte, a gel electrolyte, and a solid electrolyte.
 電解液は、負極が亜鉛又はその合金の場合を例に挙げれば、酸化亜鉛を含む水酸化カリウム水溶液や水酸化ナトリウム水溶液などのアルカリ水溶液を用いてもよいし、塩化亜鉛や過塩素酸亜鉛を含む水溶液を用いてもよいし、過塩素酸亜鉛を含む非水系溶媒や亜鉛ビス(トリフルオロメチルスルフォニル)イミドを含む非水系溶媒を用いてもよい。また、負極がマグネシウム又はその合金の場合を例に挙げれば、過塩素酸マグネシウムやマグネシウムビス(トリフルオロメチルスルフォニル)イミドを含む非水系溶媒を用いてもよい。ここで、非水系溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ-ブチロラクトン(γ-BL)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)など従来の二次電池やキャパシタに使われる有機溶媒が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。あるいは、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムビス(トリフルオロメチルスルホニル)イミド(am)などのイオン性液体を用いることもできる。 The electrolytic solution may be an alkaline aqueous solution such as an aqueous solution of potassium hydroxide containing zinc oxide or an aqueous solution of sodium hydroxide, or zinc chloride or zinc perchlorate. An aqueous solution containing zinc perchlorate or a non-aqueous solvent containing zinc bis (trifluoromethylsulfonyl) imide may be used. If the negative electrode is magnesium or its alloy, for example, a non-aqueous solvent containing magnesium perchlorate or magnesium bis (trifluoromethylsulfonyl) imide may be used. Here, examples of the non-aqueous solvent include conventional secondary batteries such as ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (γ-BL), diethyl carbonate (DEC), and dimethyl carbonate (DMC). The organic solvent used for the capacitor may be used. These may be used alone or in combination of two or more. Alternatively, an ionic liquid such as N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethylsulfonyl) imide (am) can be used.
 本発明の二次電池において、電解液は、デンドライト生成防止剤を含むことが好ましい。デンドライト生成防止剤は、充電時に負極表面に吸着して結晶面間のエネルギー差を小さくし、優先配向を防ぐことによりデンドライトの発生を抑制すると考えられる。デンドライト生成防止剤については特に限定はないが、例えば、ポリアルキレンイミン類、ポリアリルアミン類及び非対称ジアルキルスルフォン類からなる群より選ばれた少なくとも1種のものであることができる(例えば、特開2009-93983号公報参照)。また、デンドライト生成防止剤の使用量は、特に限定されるものではないが、例えば常温常圧で電解液に飽和する量だけ用いてもよいし、溶媒として用いてもよい。 In the secondary battery of the present invention, the electrolytic solution preferably contains a dendrite formation inhibitor. It is considered that the dendrite generation inhibitor is adsorbed on the surface of the negative electrode during charging to reduce the energy difference between the crystal planes and prevent preferential orientation, thereby suppressing generation of dendrites. The dendrite formation inhibitor is not particularly limited, but may be at least one selected from the group consisting of polyalkyleneimines, polyallylamines and asymmetric dialkylsulfones (for example, JP 2009 -93983). The amount of the dendrite formation inhibitor used is not particularly limited, but may be, for example, an amount sufficient to saturate the electrolytic solution at room temperature and normal pressure, or may be used as a solvent.
 リチウムイオン伝導性を有する液体電解質は、通常、リチウム塩及び非水溶媒を含有する非水電解液である。上記リチウム塩としては、例えばLiPF、LiBF、LiClO及びLiAsF等の無機リチウム塩;並びにLiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO等の有機リチウム塩等を挙げることができる。 The liquid electrolyte having lithium ion conductivity is usually a non-aqueous electrolytic solution containing a lithium salt and a non-aqueous solvent. Examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 ; and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , Examples thereof include organic lithium salts such as LiC (CF 3 SO 2 ) 3 .
 上記非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチレンカーボネート、γ-ブチロラクトン、スルホラン、アセトニトリル、1,2-ジメトキシメタン、1,3-ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン及びこれらの混合物等を挙げることができる。非水溶媒としては、イオン液体を用いることもできる。 Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), butylene carbonate, γ-butyrolactone, sulfolane, acetonitrile, Examples thereof include 1,2-dimethoxymethane, 1,3-dimethoxypropane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran and a mixture thereof. An ionic liquid can also be used as the non-aqueous solvent.
 非水電解液におけるリチウム塩の濃度は、特に限定されないが、例えば0.1mol/L~3mol/Lの範囲内であることが好ましく、好ましくは1mol/Lである。尚、本発明においては、非水電解液として、例えばイオン性液体等の低揮発性液体を用いてもよい。 The concentration of the lithium salt in the non-aqueous electrolyte is not particularly limited, but is preferably in the range of 0.1 mol / L to 3 mol / L, and preferably 1 mol / L. In the present invention, a low-volatile liquid such as an ionic liquid may be used as the non-aqueous electrolyte.
 リチウムイオン伝導性を有するゲル電解質は、例えば、上記非水電解液にポリマーを添加してゲル化することで得ることができる。具体的には、上記非水電解液に、ポリエチレンオキシド(PEO)、ポリビニリデンフルオライド(PVDF、Arkema社製商品名Kynarなど)ポリアクリロニトリル(PAN)またはポリメチルメタクリレート(PMMA)等のポリマーを添加することにより、ゲル化を行うことができる。 The gel electrolyte having lithium ion conductivity can be obtained, for example, by adding a polymer to the above non-aqueous electrolyte and gelling the polymer. Specifically, a polymer such as polyethylene oxide (PEO), polyvinylidene fluoride (PVDF, product name Kynar manufactured by Arkema, etc.) polyacrylonitrile (PAN) or polymethylmethacrylate (PMMA) is added to the non-aqueous electrolyte solution. By doing so, gelation can be performed.
 リチウムイオン伝導性を有する固体電解質としては、特に限定されず、リチウム金属空気二次電池で使用可能な一般的な固体電解質を用いることができる。例えば、Li1.5Al0.5Ge1.5(PO等の酸化物固体電解質;LiS-P化合物、LiS-SiS化合物、LiS-GeS化合物等硫化物固体電解質;を挙げることができる。 The solid electrolyte having lithium ion conductivity is not particularly limited, and a general solid electrolyte that can be used in a lithium metal air secondary battery can be used. For example, an oxide solid electrolyte such as Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ; Li 2 S—P 2 S 5 compound, Li 2 S—SiS 2 compound, Li 2 S—GeS 2 Compounds such as sulfide solid electrolytes;
 電解質の厚さは、電池の構成によって大きく異なるものであるが、例えば10μm~5000μmの範囲内であることが好ましい。 The thickness of the electrolyte varies greatly depending on the configuration of the battery, but it is preferably in the range of 10 μm to 5000 μm, for example.
(付属構成)
 本発明の金属空気二次電池において、空気極と負極との間には、これら電極間の電気的絶縁を確実に行うために、セパレータが配置されることが好ましい。セパレータは、空気極と負極との間の電気的絶縁が確保可能であると共に、空気極と負極との間に電解質が介在することが可能な構造を有していれば特に限定されない。
(Attached structure)
In the metal-air secondary battery of the present invention, a separator is preferably arranged between the air electrode and the negative electrode in order to ensure electrical insulation between these electrodes. The separator is not particularly limited as long as it can ensure electrical insulation between the air electrode and the negative electrode and has a structure in which an electrolyte can intervene between the air electrode and the negative electrode.
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン、セルロース、ポリフッ化ビニリデン、ガラスセラミックス等の多孔膜;及び樹脂不織布、ガラス繊維不織布等の不織布等を挙げることができる。中でも、ガラスセラミックス製のセパレータが好ましい。 Examples of the separator include porous membranes such as polyethylene, polypropylene, cellulose, polyvinylidene fluoride, and glass ceramics; and nonwoven fabrics such as resin nonwoven fabric and glass fiber nonwoven fabric. Of these, a glass ceramic separator is preferable.
 また、金属空気二次電池を収納する電池ケースとしては、一般的な金属空気二次電池の電池ケースを用いることができる。電池ケースの形状としては、上述した空気極、負極、及び電解質を保持することができれば特に限定されるものではないが、具体的にはコイン型、平板型、円筒型、ラミネート型等を挙げることができる。 Also, as the battery case for accommodating the metal-air secondary battery, a battery case of a general metal-air secondary battery can be used. The shape of the battery case is not particularly limited as long as it can hold the air electrode, the negative electrode, and the electrolyte described above, but specific examples include a coin type, a flat plate type, a cylindrical type, and a laminated type. You can
 本発明の金属空気二次電池は、空気極に活物質である酸素が供給されることにより、放電が可能となる。酸素供給源としては、空気の他、酸素ガス等が挙げられ、好ましくは酸素ガスである。供給する空気又は酸素ガスの圧力は特に限定されず、適宜設定すればよい。 The metal-air secondary battery of the present invention can be discharged by supplying oxygen, which is an active material, to the air electrode. Examples of the oxygen supply source include oxygen gas and the like in addition to air, and oxygen gas is preferable. The pressure of air or oxygen gas to be supplied is not particularly limited and may be set appropriately.
 本発明の材料を含む空気極用触媒は、金属空気二次電池に有用であることに加えて、それ以外のOER電極触媒が用いられる分野においても有用である。OER電極触媒は古くからさまざまな電気化学反応の対極反応として研究あるいは利用されており、アルカリ金属メッキや電解脱脂、電気防食技術への転用が可能である。また、最近では太陽電池や光触媒と組み合わせることで、高効率でクリーンな水素製造技術への応用も期待される。 The air electrode catalyst containing the material of the present invention is useful not only for metal-air secondary batteries, but also in other fields where OER electrode catalysts are used. OER electrocatalyst has been studied or used as a counter electrode reaction of various electrochemical reactions for a long time, and can be used for alkali metal plating, electrolytic degreasing, and cathodic protection technology. Further, recently, it is expected to be applied to a highly efficient and clean hydrogen production technology by combining with a solar cell or a photocatalyst.
 以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the examples are exemplifications of the present invention, and the present invention is not intended to be limited to the examples.
実施例1
実験方法
 Ca2CoFeO5+δ(CFC)は次の方法で作製した。Ca(NO3)2水和物, Co(NO3)2水和物およびFe(NO3)2水和物をCa:Co:Feのモル比が2:1:1となるよう純水に溶解し、更にクエン酸を適量加えた後、120℃で蒸発乾固させた後、500℃で焼成した。最後に焼成した粉末を酸素中800℃で8時間焼成することにより作製した。
 作製したCFCとアセチレンブラック (AB)、およびNafion溶液をエタノール中に重量比でCFC : AB : Nafion = 5: 1 : 1となるよう分散させて触媒インクとし、これをGCディスク(5mmφ)またはカーボンシート(15 mm x 5 mm,膜厚0.2mm)上に塗布し電極とした。尚インクの塗布量はCFC触媒量が10 mg cm-2となるよう調節した。またカーボンシートには東海カーボン製耐水カーボンシートを使用した。
Example 1
Experimental method Ca 2 CoFeO 5 + δ (CFC) was prepared by the following method. Ca (NO 3) 2 hydrate, Co and (NO 3) 2 hydrate and Fe (NO 3) 2 hydrate Ca: Co: molar ratio of Fe 2: 1: 1 so as purified water After dissolution and addition of an appropriate amount of citric acid, the mixture was evaporated to dryness at 120 ° C and then calcined at 500 ° C. It was prepared by firing the finally fired powder in oxygen at 800 ° C. for 8 hours.
The prepared CFC, acetylene black (AB), and Nafion solution were dispersed in ethanol at a weight ratio of CFC: AB: Nafion = 5: 1: 1 to prepare a catalyst ink, which was used as a GC disk (5 mmφ) or carbon. It was applied on a sheet (15 mm x 5 mm, film thickness 0.2 mm) to make an electrode. The amount of ink applied was adjusted so that the amount of CFC catalyst was 10 mg cm -2 . A water resistant carbon sheet made by Tokai Carbon was used as the carbon sheet.
Co酸化物材料の調製
 1時間OER分極及び一か月OER分極によるCo酸化物材料の調製は、カーボンシート電極を用い、Hg/HgO/4 mol dm-3KOH を参照電極,白金板を対極とする三電極系にて、4 mol dm-3 KOH水溶液中、アルゴン不活性雰囲気下で行った。まず40 mA cm-2の一定酸化電流条件で2時間OER分極を行い、続いて0電流条件で15分静置した。以上の2つのステップを交互に一か月繰り返すOER分極を行い、その後、分極した材料を回収することで、一か月OER分極によるCo酸化物材料を得た。1時間OER分極は、上記と同様の一定酸化電流条件で1時間OER分極を行い、分極した材料を回収することでCo酸化物材料を得た。
Preparation of Co Oxide Material For the preparation of Co oxide material by 1-hour OER polarization and 1-month OER polarization, a carbon sheet electrode was used. Hg / HgO / 4 mol dm -3 KOH was used as a reference electrode and a platinum plate was used as a counter electrode. In a 4 mol dm -3 KOH aqueous solution under argon inert atmosphere. First, OER polarization was carried out for 2 hours under a constant oxidation current condition of 40 mA cm -2 , and then left standing for 15 minutes under 0 current condition. OER polarization was performed by repeating the above two steps alternately for one month, and then the polarized material was recovered to obtain a Co oxide material by OER polarization for one month. For the 1-hour OER polarization, a Co oxide material was obtained by performing OER polarization for 1 hour under the same constant oxidation current condition as above and recovering the polarized material.
 また一か月OER分極前後のCFC電極についてOER電流-電圧曲線を測定し、OER活性評価を行った。分極測定は,Hg/HgO/4 mol dm-3KOHを参照電極、白金板を対極とする三電極系にて、4 mol dm-3 KOH水溶液中で行った。またORR分極測定は酸素飽和雰囲気下、およびOER分極測定はアルゴン飽和雰囲気下で行った。 Further, the OER current-voltage curve was measured for the CFC electrode before and after the OER polarization for one month, and the OER activity was evaluated. The polarization measurement was performed in a 4 mol dm -3 KOH aqueous solution using a three-electrode system with Hg / HgO / 4 mol dm -3 KOH as a reference electrode and a platinum plate as a counter electrode. The ORR polarization measurement was performed in an oxygen saturated atmosphere, and the OER polarization measurement was performed in an argon saturated atmosphere.
比較例1
 比較実験のためにγ-CoOOHを触媒として用いて実験を行った。γ-CoOOH は市販のCo(OH)2を125℃で6時間焼成することにより作成した。γ-CoOOHとAB、およびNafion溶液をエタノール中に重量比でγ-CoOOH : AB : Nafion = 5: 1 : 1となるよう分散させて触媒インクとし、これをGCディスク(5mmφ)上に塗布し電極とした。尚インクの塗布量はγ-CoOOH触媒量が10 mg cm-2となるよう調節した。この電極を用いてOERおよびORR分極曲線を測定し、活性評価を行った。分極測定は,Hg/HgO/4 mol dm-3 KOH を参照電極、白金板を対極とする三電極系にて、4 mol dm-3 KOH水溶液中で行った。またORR分極測定は酸素飽和雰囲気下、およびOER分極測定はアルゴン飽和雰囲気下で行った。
Comparative Example 1
For comparison experiments, experiments were conducted using γ-CoOOH as a catalyst. γ-CoOOH was prepared by firing commercially available Co (OH) 2 at 125 ° C for 6 hours. γ-CoOOH and AB, and Nafion solution were dispersed in ethanol in a weight ratio of γ-CoOOH: AB: Nafion = 5: 1: 1 to prepare a catalyst ink, which was applied on a GC disk (5 mmφ). It was used as an electrode. The amount of ink applied was adjusted so that the amount of γ-CoOOH catalyst was 10 mg cm -2 . OER and ORR polarization curves were measured using this electrode to evaluate the activity. The polarization measurement was performed in a 4 mol dm -3 KOH aqueous solution using a three-electrode system with Hg / HgO / 4 mol dm -3 KOH as a reference electrode and a platinum plate as a counter electrode. The ORR polarization measurement was performed in an oxygen saturated atmosphere, and the OER polarization measurement was performed in an argon saturated atmosphere.
試験例1
 一か月OER分極前後のCFC電極について、CFC粒子の組成分析をオージェ分光法に依って行った。分光測定にはJEOL-2000Aを用いて行い、電子線のプローブ系を10 nm程度まで絞り、電極表面に露出したCFC単一粒子を評価した。また得られたスペクトルについて、各元素のX線発光効率と発光エネルギーを基にフィッティングを行い、表面組成を決定した。
Test example 1
The composition of CFC particles was analyzed by Auger spectroscopy for CFC electrodes before and after one month OER polarization. JEOL-2000A was used for spectroscopic measurement, and the electron beam probe system was narrowed down to about 10 nm to evaluate the CFC single particles exposed on the electrode surface. Further, the obtained spectrum was fitted based on the X-ray emission efficiency and emission energy of each element to determine the surface composition.
 また一か月OER分極前後のCFC電極について、スプリング8のBL28XUラインにてEXAFS測定を行った。測定は透過法によって行った。 Also, EXAFS measurement was performed on the BL28XU line of spring 8 for the CFC electrode before and after OER polarization for one month. The measurement was performed by the transmission method.
(1)高分解能TEM像(Co酸化物ナノクラスターの形成と粒子径)
 図1に、GC電極上に塗布したCFCを1.6 V vs RHEにて1時間OER分極した際の、分極前後のCFC触媒の高分解能TEM像を示す。分極前の試料にはブラウンミラー型相の110面間隔に相当するきれいな格子縞が観察され、また電子線回折にもブラウンミラー型構造に一致するスポットが現れたことから、高結晶性の試料が得られていることがわかる。一方1時間分極した試料は、明らかにバルクの結晶構造が崩れ、アモルファス相へ転移していることがわかる。定電位分極の結果と合わせると、CFCのOER活性は、出発物質であるブラウンミラー相ではなく、アノード分極中に形成するアモルファス相によって発現していることが確認された。TEM像から、このアモルファス相は明らかに不均一な構造を有し、アモルファスマトリクス中に、0.5‐2 nm程度のナノクラスターが分散して形成していることがわかる。さらにこのナノクラスターは秩序構造の特徴を示し、この制限視野電子線回折にも、アモルファスに由来したハローに加え、明瞭なリングが観察された。
(1) High-resolution TEM image (Co oxide nanocluster formation and particle size)
Fig. 1 shows high-resolution TEM images of the CFC catalyst before and after polarization when the CFC coated on the GC electrode was OER-polarized at 1.6 V vs. RHE for 1 hour. Pre-polarized samples showed a clean lattice fringe corresponding to the 110 plane spacing of the Brown mirror type phase, and electron diffraction also revealed spots that matched the Brown mirror type structure. You can see that it is being done. On the other hand, in the sample polarized for 1 hour, it is apparent that the bulk crystal structure collapses and the phase transitions to the amorphous phase. Combined with the results of potentiostatic polarization, it was confirmed that the OER activity of CFC was expressed by the amorphous phase formed during anodic polarization, not by the Brown mirror phase as the starting material. From the TEM image, it is clear that this amorphous phase has an apparently non-uniform structure, and nanoclusters of about 0.5-2 nm are dispersed and formed in the amorphous matrix. Furthermore, this nanocluster showed the characteristic of an ordered structure, and in this selected area electron diffraction, in addition to the halo derived from amorphous, a clear ring was observed.
(2)電圧-時間曲線(Co酸化物ナノクラスターの安定性)
 図2に一か月間定電流繰返分極した際の、電圧-時間曲線を示す。電流開始後20時間まで電位が1.6 から1.8 V vs RHEまで徐々に上昇するが、その後は一カ月間一定となった。この初期の電位上昇は、AB粒子が酸化消耗したため、CFCへの導通が悪くなったための過電圧上昇であることが確認された。従ってナノクラスター化したCFCは一か月連続してOER反応を行っても、OER活性は劣化しないことが確認され、耐久性に優れていることが分かる。
(2) Voltage-time curve (Co oxide nanocluster stability)
FIG. 2 shows a voltage-time curve at the time of constant current repetitive polarization for one month. The potential gradually increased from 1.6 to 1.8 V vs RHE until 20 hours after the start of the current, but thereafter remained constant for one month. It was confirmed that this initial potential rise was an overvoltage rise due to poor conduction to the CFC due to the AB particles being consumed by oxidation. Therefore, it was confirmed that the nano-clustered CFC did not deteriorate the OER activity even if the OER reaction was carried out continuously for one month, and it was found that the CFC had excellent durability.
(3)XRDパターン
図3に1時間及び一か月分極後のXRDパターンを示す。分極前の試料(As prepared)に現れているブラウンミラー型構造のピークは、1時間及び一か月の分極後には完全に消失し、カーボンシート以外のピークは現れなかった。従って、1時間及び一か月アノード分極後のナノクラスター化したCFCは、基本的にアモルファス相であり、XRDピークを示すと予想されるような10 nmを超えるの結晶粒子を含んでいないことが確認された。
(3) XRD pattern FIG. 3 shows the XRD pattern after 1 hour and 1 month of polarization. The peak of the brown mirror type structure appearing in the sample before polarization (As prepared) disappeared completely after 1 hour and one month of polarization, and no peak other than the carbon sheet appeared. Therefore, nanoclustered CFCs after 1 hour and 1 month of anodic polarization are essentially amorphous and do not contain more than 10 nm of crystalline particles as expected to show XRD peaks. confirmed.
(4)オージェ分光法(Co酸化物ナノクラスターの化学組成と構造)
 表1に一か月OER分極前後の試料粒子をオージェ分光法によって組成分析した結果を示す。どちらにも240 eV付近にNafionに由来したCシグナルが見られる。一か月電解により、明らかに300 eV付近のCaシグナルが消失し、また600eV付近のFeシグナルも非常に弱くなっている。一方640-800eVにかけ、F, CoおよびFeの混合シグナルが現れるが、その強度はほとんど変化していないように見える。ここでFシグナルはNafion由来と思われる。更に一か月試験後Kシグナルの増大が観察されるが、これはNafionのプロトンがイオン交換した際に導入されたものとみなされる。各スペクトルへのフィッティングによりOER分極前後の物質粒子の組成を求めた。その結果を表1にまとめた。
(4) Auger spectroscopy (chemical composition and structure of Co oxide nanoclusters)
Table 1 shows the results of composition analysis of sample particles before and after one month OER polarization by Auger spectroscopy. In both cases, a C signal derived from Nafion is seen around 240 eV. After one month of electrolysis, the Ca signal around 300 eV disappeared, and the Fe signal around 600 eV became very weak. On the other hand, over 640-800 eV, mixed signals of F, Co, and Fe appear, but their intensities appear to have hardly changed. The F signal here seems to be from Nafion. An increase in the K signal is observed after a further 1-month test, which is considered to be introduced when the Nafion protons are ion-exchanged. The composition of the substance particles before and after OER polarization was determined by fitting to each spectrum. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 一か月OER分極前のCFC粒子は、出発物質であるブラウンミラー型相のCa/Fe/Co比、すなわち2/1/1に近い組成を示した。一方、一か月OER分極により調製した本発明のCo酸化物材料は、Caがほぼ消失し、Feもほぼなくなっていることがわかる。つまりCFCは分極中に、CaおよびFeが溶出し、ほぼCoを主成分とした酸化物または水和酸化物に変化していることが示された。 The CFC particles before OER polarization for one month showed a composition close to the Ca / Fe / Co ratio of the starting material, Brown mirror type phase, that is, 2/1/1. On the other hand, it can be seen that the Co oxide material of the present invention prepared by OER polarization for one month has almost no Ca and almost no Fe. In other words, it was shown that during polarization, Ca and Fe were eluted during the polarization of CFC and changed into oxides or hydrated oxides containing Co as the main component.
 なお、この化学組成はアモルファスマトリクスが消失し、ナノクラスター単独となった際に得られた組成であり、アモルファスマトリクスが混在する際の影響が排除されている。生成直後(分極1時間後)のCo酸化物ナノクラスター化学組成についても、電圧-時間曲線の結果、EXAFSフィッティング結果およびOER電流-電圧曲線から、この組成と同様であることが考えられる。 Note that this chemical composition was the composition obtained when the amorphous matrix disappeared and became nanoclusters alone, and the influence when the amorphous matrix was mixed was eliminated. The chemical composition of the Co oxide nanocluster immediately after generation (1 hour after polarization) is also considered to be similar to this composition from the results of the voltage-time curve, EXAFS fitting results, and OER current-voltage curve.
(5)EXAFS測定
 1時間OER分極により調製したCo酸化物材料及び一か月OER分極により調製したCo酸化物材料のアモルファス相の構造を更に詳しく調べるために、Spring8のBL28XUにてOER分極前後の試料のEXAFSを測定し、FeおよびCo周囲局所構造を調べた。その結果を図 5に示す。一か月分極により、FeおよびCo周りの動径分布関数が大きく変化しており、TEM同様にバルク構造が変化することがわかる。分極によってFe局所構造の周期性は低下しており、最近接酸素に相当する配位圏(1.6Å)のみがみられた。一方Co局所構造の対称性は、分極後むしろ向上しており、2.4Å付近に第二配位圏の形成を示す新たなピーク出現した。従ってOER反応中のアモルファス化により、周期構造を有するCo酸化物クラスターが生成することを示唆している。
(5) EXAFS measurement In order to investigate the structure of the amorphous phase of the Co oxide material prepared by 1-hour OER polarization and the Co oxide material prepared by 1-month OER polarization, BL8XU in Spring 8 The EXAFS of the sample was measured and the local structure around Fe and Co was investigated. The results are shown in Figure 5. It can be seen that the radial distribution function around Fe and Co changes greatly due to one-month polarization, and that the bulk structure also changes like TEM. Due to the polarization, the periodicity of the Fe local structure decreased, and only the coordination sphere (1.6 Å) corresponding to the closest oxygen was observed. On the other hand, the symmetry of the Co local structure improved rather than after polarization, and a new peak appeared near 2.4Å, indicating the formation of the second coordination sphere. Therefore, it is suggested that Co oxide clusters with periodic structure are generated by the amorphization during the OER reaction.
 そこで様々なCo酸化物、水酸化物およびオキシ水酸化物の結晶データを基に、EXAFSへのフィッティングを行ったところ、分極後試料のEXAFS振動は、γ-CoOOHの結晶モデルでよくフィットできることがわかった。フィッティング結果を図5(d)および表2に示した。γ-CoOOHは、CoO6八面体の陵共有によって形成する[CoO2]平面単分子層が、プロトンを介した水素結合によってc軸上積層した層状構造をもつ(図6)。従って、本発明のCo酸化物材料はOERにより原子の再配列を起こし、酸化物マトリクス中にCoリッチな酸化物部分が形成され、それがγ-CoOOHによく似た配列構造を形成していることが示された。つまり図1の高分解能TEMにより観測されたナノクラスターは、このγ-CoOOH型配列構造またそれに類似する配列構造をもつナノクラスターであると決定された。 Therefore, when fitting to EXAFS based on the crystal data of various Co oxides, hydroxides, and oxyhydroxides, the EXAFS vibration of the sample after polarization can be well fitted by the crystal model of γ-CoOOH. all right. The fitting results are shown in Fig. 5 (d) and Table 2. γ-CoOOH has a layered structure in which [CoO 2 ] planar monolayers formed by the co-occurrence of CoO 6 octahedra are stacked on the c-axis by hydrogen bonding via protons (Fig. 6). Therefore, the Co oxide material of the present invention causes the rearrangement of atoms by OER to form a Co-rich oxide portion in the oxide matrix, which forms an arrangement structure much like γ-CoOOH. Was shown. In other words, the nanoclusters observed by the high-resolution TEM in Fig. 1 were determined to be the nanoclusters having this γ-CoOOH type array structure or an array structure similar to it.
 さらにEXAFSフィッティング結果より、Co周りの酸素配位数は1時間分極の場合5.1であり、1か月分極の場合が5.3程度である(表2)。一方、酸素欠損が全くない[CoO2]平面単分子層におけるCo配位数は6となる。従って本発明のCo酸化物材料中に形成されるナノクラスターは、酸素欠損を有する[CoO1.8]平面単分子層を基本骨格にもつ材料であると考えられる。一方、図3の結果よりγ-CoOOHのXRDピークが現れないことから、このナノクラスターはc軸方向への積層は、TEM像で観察される粒子径から推察してある程度あるが、発達はしていないと考えられる。従って、本発明のCo酸化物材料中に形成されるナノクラスターは、は平面垂直方向に多少の積層はあるが、この積層はそれほど発達していない、[CoO1.8]平面単分子層と電荷補償のためのプロトンが配位した[CoO1.8Hy]n分子層シート状物質であると同定された。 Furthermore, from the EXAFS fitting results, the oxygen coordination number around Co is 5.1 for 1-hour polarization and about 5.3 for 1-month polarization (Table 2). On the other hand, the Co coordination number in the [CoO 2 ] planar monolayer having no oxygen deficiency is 6. Therefore, the nanoclusters formed in the Co oxide material of the present invention are considered to be materials having a basic skeleton of a [CoO 1.8 ] planar monolayer having oxygen deficiency. On the other hand, since the XRD peak of γ-CoOOH does not appear from the results of FIG. 3, the nanoclusters have some stacking in the c-axis direction, although it can be inferred from the particle size observed in the TEM image, but they do not develop. It is considered not to. Therefore, the nanoclusters formed in the Co oxide material of the present invention have some stacking in the direction perpendicular to the plane, but this stacking is not so well developed. [CoO 1.8 ] Planar monolayer and charge compensation Was identified as a [CoO 1.8 H y ] n molecular layer sheet material.
 γ-CoOOH 型構造に基づくと、Co原子の第二配位圏には、およそ2.8Åの位置に6個のCo原子が存在する。一方EXAFSフィッティング結果より(表2)、Coの第二配位圏の配位数はおよそ4であり、従ってCoの一部が異種元素置換または欠損しているγ-CoOOH型平面分子層同士が水素結合を介して積層して形成されるナノクラスターを生成する。以上の結果と合わせると、この[CoO1.8Hy]n分子層シートのCoが一部Feで置換されていることが示唆された。 Based on the γ-CoOOH type structure, there are six Co atoms at approximately 2.8Å in the second coordination sphere of Co atoms. On the other hand, from the EXAFS fitting results (Table 2), the coordination number of Co in the second coordination sphere is about 4, and therefore, γ-CoOOH type planar molecular layers in which a part of Co has been substituted or deleted with different elements Nanoclusters are formed by stacking via hydrogen bonds. Together with the above results, it was suggested that Co in this [CoO 1.8 H y ] n molecular layer sheet was partially replaced by Fe.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(6)OER電流―電圧曲線(Co酸化物ナノクラスターの特性)
 図7に一か月OER反応前後のCFC試料とγ-CoOOH粉末のOER電流―電圧曲線を示す。一か月分極前後で、ほぼ同じ曲線を示し、よってOER活性は全く変化していないことが確認された。さらに5 mA cm-2電流時をOERの開始電位と規定すると、一か月分極後のナノクラスター化したCFCおよびγ-CoOOH粉末の開始電位は、それぞれ1.47 V vs RHEおよび1.58 V vs RHEとなり、また1.6 V vs RHEにおけるOER電流値はそれぞれ100 mA cm-2および12 mA cm-2となった。従ってナノクラスター化したCFCのほうがγ-CoOOHよりもはるかに高い活性を示した。以上から、γ-CoOOH型構造を有するだけでは高い活性は得られず、そのサイズが数nm程度であることが高い活性を示すためには重要であることが示唆される。さらに、Coの一部がFeで置換されていることも有効であることが示唆される。
(6) OER current-voltage curve (characteristics of Co oxide nanoclusters)
Figure 7 shows the OER current-voltage curves of the CFC sample and γ-CoOOH powder before and after the one month OER reaction. It was confirmed that the curves were almost the same before and after one month of polarization, and thus the OER activity was not changed at all. Furthermore, when the starting potential of OER is defined to be at 5 mA cm -2 current, the starting potentials of nanoclustered CFC and γ-CoOOH powder after one month polarization are 1.47 V vs RHE and 1.58 V vs RHE, respectively. The OER current values at 1.6 V vs RHE were 100 mA cm -2 and 12 mA cm -2 , respectively. Therefore, nanoclustered CFCs showed much higher activity than γ-CoOOH. From the above, it is suggested that the high activity cannot be obtained only by having the γ-CoOOH type structure, and that the size thereof is about several nm is important for exhibiting the high activity. Further, it is suggested that a part of Co is replaced with Fe.
実施例2
(1)Fe-またはNi-dope CoOOHの調製
Fe-dope CoOOHの作製およびNi-dope CoOOHの作製は共沈法により行った。Co(NO3)3・6H2OおよびFe(NO3)3・6H2OまたはNi(NO3)3・6H2Oを所定のモル比で純水に混合溶解して金属イオン(Co+FeまたはCo+Ni)が0.2 Mとなる溶液を50 cm3調製した。続いてこの混合溶液を200rpmで攪拌しながら2M KOH水溶液50 cm3に静かに添加し、水酸化物の沈殿を得た。ろ過後、20 cm3の純水で2回洗浄したのち、室温で一晩減圧放乾燥した。最後にO2気流中120℃で6h焼成し、CoがFeで置換したγCoOOHであるオキシ水酸化物Fe0.05Co0.95OxHy、Fe0.1Co0.9OxHyおよびNi0.1Co0.95OxHyを得た(以降、Fe-dope CoOOHまたはNi-dope CoOOHと記載する。
Example 2
(1) Preparation of Fe- or Ni-dope CoOOH
Preparation of Fe-dope CoOOH and Ni-dope CoOOH were carried out by the coprecipitation method. Co (NO 3) 3 · 6H 2 O and Fe (NO 3) 3 · 6H 2 O or Ni (NO 3) 3 · 6H 2 O were mixed dissolved in pure water at a predetermined molar ratio metal ions (Co + 50 cm 3 of a solution containing 0.2 M of Fe or Co + Ni) was prepared. Subsequently, this mixed solution was gently added to 50 cm 3 of a 2M KOH aqueous solution while stirring at 200 rpm to obtain a hydroxide precipitate. After filtration, it was washed twice with 20 cm 3 of pure water, and then dried under reduced pressure overnight at room temperature. Finally, it was baked in an O 2 stream at 120 ° C. for 6 hours, and Co was γCoOOH in which Fe was substituted. Oxyhydroxides Fe 0.05 Co 0.95 O x H y , Fe 0.1 Co 0.9 O x H y and Ni 0.1 Co 0.95 O x Hy was obtained (hereinafter referred to as Fe-dope CoOOH or Ni-dope CoOOH.
(2)元素分析
得られた粉末のFe/CoまたはNi/Co比を調べるために、粉末を0.1M KCl溶液に溶かし、それをICPにより分析した。その結果いずれの金属組成比も、仕込みの値と一致した。

(2) Elemental analysis In order to examine the Fe / Co or Ni / Co ratio of the obtained powder, the powder was dissolved in a 0.1 M KCl solution and analyzed by ICP. As a result, all the metal composition ratios matched the charged values.

(3)BET比表面積
得られた粉末のBET比表面積を測定したところ、Fe0.05Co0.95OxHy、Fe0.1Co0.9OxHyおよびNi0.1Co0.95OxHyはそれぞれ86、75、61 m2g-1であった。これらのBET比表面積ば、通常のマイクロメーターサイズ粒子のセラミックスの値より一桁高い値であった。このことから、得られた粉末はナノ粒状の物質であると推察した。
(3) and the BET specific surface area of BET specific surface area obtained powder, Fe 0.05 Co 0.95 O x H y, Fe 0.1 Co 0.9 O x H y and Ni 0.1 Co 0.95 O x H y, respectively 86,75 , 61 m 2 g -1 . These BET specific surface areas were an order of magnitude higher than those of ordinary ceramics with micrometer-sized particles. From this, it was inferred that the obtained powder was a nanoparticulate substance.
(4)Fe-dope CoOOH電極およびNi-dope CoOOH電極のOER活性
実施例1と同様の方法でカーボン混合電極を調製し、4M KOH中で測定した。即ち、アセチレンブラック (AB)、およびNafion溶液をエタノール中に重量比でFe-dope CoOOHまたはNi-dope CoOOH : AB : Nafion = 5: 1 : 1となるよう分散させて触媒インクとし、これをGCディスク(5mmφ)またはカーボンシート(15 mm x 5 mm、膜厚0.2mm)上に塗布し電極とした。尚、インクの塗布量はFe-dope CoOOHまたはNi-dope CoOOH 量が10 mg cm-2となるよう調節した。
(5)XRD
上記(1)で調製したFe0.05Co0.95OxHy、Fe0.1Co0.9OxHyおよびNi0.1Co0.95OxHyのXRDを測定し、結果を図8に示す。あわせてγ-CoOOHのXRDパターンも示す。Fe0.05Co0.95OxHy、Fe0.1Co0.9OxHyおよびNi0.1Co0.95OxHyはいずれもγ-CoOOHと同じXRDパターンを示したので、γ-CoOOH型層状構造を有していることが確認された。3つのオキシ水酸化物のXRDパターンは非常にブロードであり、従って結晶子のサイズは20°付近の002ピーク半値幅から、約8-15 nm程度である。
(5)OER
上記(1)で調製したFe0.05Co0.95OxHy、Fe0.1Co0.9OxHyおよびNi0.1Co0.95OxHyのOER分極曲線を図9に示す。いずれも1.45 V vs RHEから電流が立ち上がり、それぞれ1.47,1.46および1.49 V vs RHEにて5mA cm-2の電流値に達した。またいずれも1.6 V vs RHEにて120 mA cm-2以上の電流を示した。
(6)
以上のように、本実施例において共沈法で作製したFe-またはNi-dopeγ-CoOOH型ナノ結晶材料は、実施例1に示したCFCと同等の構造および活性を示した。
(4) OER activity of Fe-dope CoOOH electrode and Ni-dope CoOOH electrode A carbon mixed electrode was prepared in the same manner as in Example 1 and measured in 4M KOH. That is, acetylene black (AB), and Nafion solution was dispersed in ethanol in a weight ratio of Fe-dope CoOOH or Ni-dope CoOOH: AB: Nafion = 5: 1: 1 to obtain a catalyst ink, which was used as a GC. A disk (5 mmφ) or a carbon sheet (15 mm x 5 mm, film thickness 0.2 mm) was applied to form an electrode. The amount of ink applied was adjusted so that the amount of Fe-dope CoOOH or Ni-dope CoOOH was 10 mg cm -2 .
(5) XRD
The Fe 0.05 Co 0.95 was prepared in (1) O x H y, the XRD of Fe 0.1 Co 0.9 O x H y and Ni 0.1 Co 0.95 O x H y is measured, and the results are shown in Fig. The XRD pattern of γ-CoOOH is also shown. Fe 0.05 Co 0.95 O x H y , Fe 0.1 Co 0.9 O x H y and Ni 0.1 Co 0.95 O x H y all showed the same XRD pattern as γ-CoOOH, and thus had a γ-CoOOH type layered structure. Was confirmed. The XRD patterns of the three oxyhydroxides are very broad, so the crystallite size is about 8-15 nm from the 002 peak half-width around 20 °.
(5) OER
The Fe 0.05 Co 0.95 was prepared in (1) O x H y, the OER polarization curves of Fe 0.1 Co 0.9 O x H y and Ni 0.1 Co 0.95 O x H y shown in FIG. In all cases, the current rose from 1.45 V vs RHE, and reached the current value of 5 mA cm -2 at 1.47, 1.46 and 1.49 V vs RHE, respectively. Moreover, both showed a current of 120 mA cm -2 or more at 1.6 V vs RHE.
(6)
As described above, the Fe- or Ni-dopeγ-CoOOH type nanocrystalline material produced by the coprecipitation method in this example exhibited the same structure and activity as the CFC shown in Example 1.
実施例3
 実施例1と同様にCa2CoFeO5+δ(CFC)を作製し、作製したCFCを4M KOHに浸漬し、50℃で3日間、気密Arバブリングした。その後Milli-Q水でよく洗浄し、
濾過して試料を得た。KOH処理品のCa/Fe/Co (ICP発光分析)は 0.03/0.21/0.76であった。KOH処理前に測定したBETは2.92 m2 g-1であったのに対してKOH処理後は230と約80倍に増大した。KOH処理前の試料(CFC)及びKOH処理品のXRDを図10に示し、OER分極曲線を図11に示す。KOH処理品のEXAFSは、実施例1の図5の1時間OER分極品と同様であった。
Example 3
Ca 2 CoFeO 5 + Δ (CFC) was prepared in the same manner as in Example 1, the prepared CFC was immersed in 4 M KOH, and airtight Ar bubbling was performed at 50 ° C. for 3 days. After that, wash well with Milli-Q water,
A sample was obtained by filtration. The Ca / Fe / Co (ICP emission analysis) of the KOH-treated product was 0.03 / 0.21 / 0.76. The BET measured before KOH treatment was 2.92 m 2 g -1 , whereas after BET treatment it increased to 230, about 80 times. FIG. 10 shows the XRD of the sample (CFC) before the KOH treatment and the KOH-treated product, and FIG. 11 shows the OER polarization curve. The EXAFS of the KOH-treated product was similar to that of the 1-hour OER-polarized product of Example 1 shown in FIG.
 EXAFSフィッティングの結果を以下の表3に示す。この表の結果からKOH処理品もγ-CoOOH 型構造またそれに類似する配列構造をもつナノクラスターであることが分かる。 The results of EXAFS fitting are shown in Table 3 below. From the results in this table, it can be seen that the KOH-treated product is also a nanocluster having a γ-CoOOH type structure or an array structure similar to it.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明は、二次電池、次世代型高容量二次電池として期待されている金属空気二次電池や、水電解、光水分解による水素製造の分野において有用である。 The present invention is useful in the fields of secondary batteries, metal-air secondary batteries expected as next-generation high-capacity secondary batteries, and hydrogen production by water electrolysis and photolysis.

Claims (18)

  1. γ-CoOOH型の原子配列構造と同一又は類似する原子配列構造を有し、かつ酸素欠陥を有するCo酸化物ナノクラスターであって、ナノクラスター中のCoの一部がFe及び/又はNiで置換されていてもよい、Co酸化物材料。 A Co oxide nanocluster having an atomic arrangement structure that is the same as or similar to that of a γ-CoOOH type and has an oxygen defect, in which a part of Co in the nanocluster is replaced with Fe and / or Ni. An optional Co oxide material.
  2. 前記Co酸化物ナノクラスターは、粒子径が10nm以下である、請求項1に記載の材料。 The material according to claim 1, wherein the Co oxide nanocluster has a particle diameter of 10 nm or less.
  3. CoO6八面体が陵共有により二次元的に連結して形成する[CoOx]平面単分子層に、電荷補償のためのプロトンが配位した[CoOxHy]平面単分子層がn層積層してできる[CoOxHy]n分子層シート状物質のナノクラスターを含有するCo酸化物材料であって、xは1.5~2.0の範囲であり、yは0.01~1の範囲であり、nは平面単分子層の分子層平面に垂直な方向(c軸方向)への積層数であり、1~25の範囲であり、[CoOxHy]平面単分子層中のCoの一部がFe及び/又はNiで置換されていてもよい、またCoO6八面体の酸素の一部が欠損していても良い前記材料。 CoO 6 octahedra are formed by connecting two-dimensionally by Ling sharing [CoO x] plane monolayer protons for charge compensation is coordinated [CoO x H y] plane monolayer n layer A Co oxide material containing nanoclusters of [CoO x H y ] n molecular layer sheet material formed by stacking, wherein x is in the range of 1.5 to 2.0, y is in the range of 0.01 to 1, n is the number of layers stacked in the direction perpendicular to the plane of the planar monolayer (c-axis direction), and is in the range of 1 to 25. [CoO x H y ] Part of Co in the planar monolayer May be substituted with Fe and / or Ni, and the CoO 6 octahedron may be partially deficient in oxygen.
  4. 前記[CoOxHy]平面単分子層の一辺が10nm以下である、請求項3に記載の材料。 The material according to claim 3, wherein one side of the [CoO x H y ] planar monolayer is 10 nm or less.
  5. TEM像において観察されるナノクラスターの最大外径は0.3~10nmの範囲である、請求項1~4のいずれかに記載の材料。 The material according to any one of claims 1 to 4, wherein the maximum outer diameter of the nanocluster observed in the TEM image is in the range of 0.3 to 10 nm.
  6. ナノクラスター中のCoの一部がFe及び/又はNiで置換されている、請求項1~5のいずれかに記載の材料。 The material according to any one of claims 1 to 5, wherein a part of Co in the nanocluster is replaced with Fe and / or Ni.
  7. CoのFe及び/又はNiへの置換量は、オージェ分光スペクトル解析により得られるCo:Fe及び/又はNi原子比、又はICP分析による元素分析により得られるCo:Fe原子比が100:0.1~10の範囲である請求項6に記載の材料。 The substitution amount of Co for Fe and / or Ni is such that the Co: Fe and / or Ni atomic ratio obtained by Auger spectroscopic analysis or the Co: Fe atomic ratio obtained by elemental analysis by ICP analysis is 100: 0.1 to 10 The material according to claim 6, which is in the range of.
  8. OER触媒用である請求項1~7のいずれかに記載の材料。 The material according to any one of claims 1 to 7, which is for an OER catalyst.
  9. Ca2CoFeO5及び/又はCa2CoNiO5を含有する原料をアノード分極下に置くか、又はアルカリ水溶液に浸漬することを含む、請求項1~7のいずれかに記載の材料の製造方法。 The method for producing a material according to any one of claims 1 to 7, which comprises placing a raw material containing Ca 2 CoFeO 5 and / or Ca 2 CoNiO 5 under anodic polarization or immersing the raw material in an alkaline aqueous solution.
  10. アノード分極は、RHEに対して1.5~2.0Vの範囲の電圧になる電流密度で行い、アルカリ水溶液への浸漬は、1M以上の濃度のアルカリ水溶液に1日以上行う、請求項9に記載の製造方法。 10. The production according to claim 9, wherein the anodic polarization is performed at a current density that gives a voltage in the range of 1.5 to 2.0 V with respect to RHE, and the immersion in the alkaline aqueous solution is performed for 1 day or more in an alkaline aqueous solution having a concentration of 1 M or more. Method.
  11. Fe塩及び/又はNi塩並びにCo塩を含有する水溶液にアルカリを添加して、Fe及び/又はNi並びにCoを含有する水酸化物を沈澱させ、沈殿物を回収する工程、前記Fe及び/又はNi並びにCoを含有する水酸化物の沈殿物を酸素含有雰囲気中で焼成して、Fe及び/又はNi並びにCoを含有するオキシ水酸化物を得ることを含む請求項1~7のいずれかに記載の材料の製造方法。 A step of adding an alkali to an aqueous solution containing Fe salt and / or Ni salt and Co salt to precipitate a hydroxide containing Fe and / or Ni and Co, and recovering the precipitate; The method according to any one of claims 1 to 7, which comprises calcination of a hydroxide precipitate containing Ni and Co in an oxygen-containing atmosphere to obtain an oxyhydroxide containing Fe and / or Ni and Co. A method for producing the described material.
  12. 前記Fe塩、Ni塩及びCo塩は、それぞれ硝酸塩であり、前記アルカリは、アルカリ金属水酸化物である請求項11に記載の製造方法。 The manufacturing method according to claim 11, wherein each of the Fe salt, the Ni salt and the Co salt is a nitrate, and the alkali is an alkali metal hydroxide.
  13. 請求項1~7のいずれかに記載の材料又は請求項9~12のいずれかに記載の方法で製造された材料を含む空気極用触媒。 A catalyst for an air electrode comprising the material according to any one of claims 1 to 7 or the material produced by the method according to any one of claims 9 to 12.
  14. 請求項1~7のいずれかに記載の材料又は請求項9~12のいずれかに記載の方法で製造された材料を含む水電解陽極用触媒。 A catalyst for a water electrolysis anode comprising the material according to any one of claims 1 to 7 or the material produced by the method according to any one of claims 9 to 12.
  15. 請求項13又は14に記載の触媒を含む金属空気二次電池用空気極。 An air electrode for a metal-air secondary battery, which comprises the catalyst according to claim 13 or 14.
  16. 前記材料は酸素発生用触媒として含有され、酸素還元用触媒をさらに含む請求項15に記載の空気極。 The air electrode according to claim 15, wherein the material is contained as a catalyst for oxygen generation and further includes a catalyst for oxygen reduction.
  17. 請求項15又は16に記載の空気極と、負極活物質を含有する負極と、前記空気極と前記負極との間に介在する電解質とを有する金属空気二次電池。 A metal-air secondary battery comprising the air electrode according to claim 15 or 16, a negative electrode containing a negative electrode active material, and an electrolyte interposed between the air electrode and the negative electrode.
  18. 酸素還元用触媒を含む酸素還元用空気極をさらに含む請求項17に記載の金属空気二次電池。 The metal-air secondary battery according to claim 17, further comprising an oxygen reduction air electrode including an oxygen reduction catalyst.
PCT/JP2019/043779 2018-11-08 2019-11-08 Material for oxygen evolution (oer) electrode catalyst, and use thereof WO2020096022A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020555609A JPWO2020096022A1 (en) 2018-11-08 2019-11-08 Oxygen Evolution (OER) Electrode Catalyst Materials and Their Use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-210890 2018-11-08
JP2018210890 2018-11-08

Publications (1)

Publication Number Publication Date
WO2020096022A1 true WO2020096022A1 (en) 2020-05-14

Family

ID=70610911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043779 WO2020096022A1 (en) 2018-11-08 2019-11-08 Material for oxygen evolution (oer) electrode catalyst, and use thereof

Country Status (2)

Country Link
JP (1) JPWO2020096022A1 (en)
WO (1) WO2020096022A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270596A (en) * 2021-04-16 2021-08-17 西安理工大学 Preparation method of catalyst with Fe @ Co diatomic active sites
CN113502494A (en) * 2021-05-26 2021-10-15 浙江工业大学 High-valence metal ion doped oxygen vacancy-rich cobalt oxide nanocomposite and preparation and application thereof
CN113941331A (en) * 2021-10-29 2022-01-18 青岛科技大学 Stable catalyst surface Ni3+Active site method and application
CN114583142A (en) * 2022-03-08 2022-06-03 辽宁工程技术大学 Double-effect catalytic lithium-air battery electrode material and preparation method thereof
CN115224293A (en) * 2022-08-17 2022-10-21 郑州大学 ORR and OER bifunctional catalyst, and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115592A1 (en) * 2014-01-31 2015-08-06 国立大学法人北海道大学 Catalyst for air electrode for metal/air secondary battery, and air electrode
JP2018165396A (en) * 2016-08-10 2018-10-25 有限会社ターナープロセス Hydrogen gas generation device, and hydrogen gas suction apparatus including the same
WO2019093441A1 (en) * 2017-11-10 2019-05-16 国立大学法人北海道大学 Amorphous transition metal oxide and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115592A1 (en) * 2014-01-31 2015-08-06 国立大学法人北海道大学 Catalyst for air electrode for metal/air secondary battery, and air electrode
JP2018165396A (en) * 2016-08-10 2018-10-25 有限会社ターナープロセス Hydrogen gas generation device, and hydrogen gas suction apparatus including the same
WO2019093441A1 (en) * 2017-11-10 2019-05-16 国立大学法人北海道大学 Amorphous transition metal oxide and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SINGHAL, ADITI ET AL.: "Enhanced oxygen evolution activity of Co3-xNix04 compared to Co304 by Low Ni doping", JOURNAL OF ELECTROANALYTICAL CHEMISTRY, vol. 823, 30 June 2018 (2018-06-30), pages 482 - 491, XP085443493, DOI: 10.1016/j.jelechem.2018.06.051 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270596A (en) * 2021-04-16 2021-08-17 西安理工大学 Preparation method of catalyst with Fe @ Co diatomic active sites
CN113502494A (en) * 2021-05-26 2021-10-15 浙江工业大学 High-valence metal ion doped oxygen vacancy-rich cobalt oxide nanocomposite and preparation and application thereof
CN113502494B (en) * 2021-05-26 2022-06-21 浙江工业大学 High-valence metal ion doped oxygen vacancy-rich cobalt oxide nanocomposite and preparation and application thereof
CN113941331A (en) * 2021-10-29 2022-01-18 青岛科技大学 Stable catalyst surface Ni3+Active site method and application
CN113941331B (en) * 2021-10-29 2023-12-22 青岛科技大学 Stabilizing Ni on surface of catalyst 3+ Method for active site and application
CN114583142A (en) * 2022-03-08 2022-06-03 辽宁工程技术大学 Double-effect catalytic lithium-air battery electrode material and preparation method thereof
CN114583142B (en) * 2022-03-08 2023-06-27 辽宁工程技术大学 Double-effect catalytic lithium-air battery electrode material and preparation method thereof
CN115224293A (en) * 2022-08-17 2022-10-21 郑州大学 ORR and OER bifunctional catalyst, and preparation method and application thereof
CN115224293B (en) * 2022-08-17 2024-01-16 郑州大学 ORR and OER dual-function catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2020096022A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
Zhao et al. Recent progress and perspectives of bifunctional oxygen reduction/evolution catalyst development for regenerative anion exchange membrane fuel cells
WO2020096022A1 (en) Material for oxygen evolution (oer) electrode catalyst, and use thereof
US10693145B2 (en) Catalyst for air electrode for metal-air secondary battery and air electrode
JP6731199B2 (en) Catalyst for oxygen reduction reaction and air electrode for metal-air secondary battery
JP5468416B2 (en) Lithium-air secondary battery and method for producing air electrode thereof
US20130316253A1 (en) Method for producing cathode material for rechargeable lithium-air batteries, cathode material for rechargeable lithium-air batteries and rechargeable lithium-air battery
JP5580931B2 (en) Cathode catalyst for metal-air secondary battery and metal-air secondary battery
Choi et al. Multiple perovskite layered lanthanum nickelate Ruddlesden-Popper systems as highly active bifunctional oxygen catalysts
KR101484503B1 (en) Cathode Catalyst for Lithium-Air Battery, Method of Manufacturing the Same, and Lithium-Air Battery Comprising the Same
Yang et al. The controlled construction of a ternary hybrid of monodisperse Ni 3 S 4 nanorods/graphitic C 3 N 4 nanosheets/nitrogen-doped graphene in van der Waals heterojunctions as a highly efficient electrocatalyst for overall water splitting and a promising anode material for sodium-ion batteries
Gozzo et al. Investigation of the electrocatalytic performance for oxygen evolution reaction of Fe-doped lanthanum nickelate deposited on pyrolytic graphite sheets
WO2019065284A1 (en) Positive-electrode catalyst for metal-air battery, and metal-air battery
Gupta et al. SrFeO 3− δ: a novel Fe 4+↔ Fe 2+ redox mediated pseudocapacitive electrode in aqueous electrolyte
Li et al. Mixed spinel and perovskite phased LaSrNiO nanoparticles as cathode catalyst for non-aqueous lithium-oxygen batteries
WO2019093441A1 (en) Amorphous transition metal oxide and use thereof
Yu et al. Engineering sulfide-phosphide based double catalysts on 3D nickel phosphides framework for electrolytic hydrogen evolution: activating short-range crystalline MoS2 with Ni5P4-Ni2P template
Tan et al. Synthesis and application of nanostructured MCo 2 O 4 (M= Co, Ni) for hybrid Li-air batteries
JP6713258B2 (en) Air electrode catalyst
JP2015069960A (en) Lithium air secondary battery
JP6059632B2 (en) Lithium air secondary battery
JP5562204B2 (en) Positive electrode for lithium air secondary battery, method for producing the same, and lithium air secondary battery
JP6516188B2 (en) Lithium air rechargeable battery
JP2018149518A (en) Catalyst and metal air battery
JP2022076882A (en) Particulate material and production method and use thereof
Chutia et al. Metal Oxide-Based Electrocatalysts for Metal-Air Batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555609

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881275

Country of ref document: EP

Kind code of ref document: A1