EP1317757B1 - Installation d'entreposage de combustible irradie ou de matieres radioactives - Google Patents

Installation d'entreposage de combustible irradie ou de matieres radioactives Download PDF

Info

Publication number
EP1317757B1
EP1317757B1 EP01969894A EP01969894A EP1317757B1 EP 1317757 B1 EP1317757 B1 EP 1317757B1 EP 01969894 A EP01969894 A EP 01969894A EP 01969894 A EP01969894 A EP 01969894A EP 1317757 B1 EP1317757 B1 EP 1317757B1
Authority
EP
European Patent Office
Prior art keywords
gaseous fluid
ceiling
chamber
cooling gaseous
installation according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01969894A
Other languages
German (de)
English (en)
Other versions
EP1317757A1 (fr
Inventor
François DE CRECY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1317757A1 publication Critical patent/EP1317757A1/fr
Application granted granted Critical
Publication of EP1317757B1 publication Critical patent/EP1317757B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F7/00Shielded cells or rooms
    • G21F7/015Room atmosphere, temperature or pressure control devices

Definitions

  • the invention relates to medium or long-term storage of irradiated nuclear fuel or various types of radioactive material. More specifically, it concerns storage facilities for radioactive materials where the residual heat released by the fission reactions (radioactive decays) is evacuated by natural convection, mixed or forced and where a number of subsystems (called wells, packages or containers) containing these irradiated nuclear fuels or these various types of radioactive materials are arranged in the same room or cavity.
  • Subsystems usually metallic (for example "sinks” in these installations), containing spent fuel or radioactive material are regularly placed in a room.
  • This room has a floor and a horizontal ceiling.
  • the arrangement of subsystems is generally following a regular "network", for example square or triangular.
  • An air intake system which may include filters, burglar-proof grilles, and a number of other devices that provide various features, draws air from outside the room. The air thus brought heats up in contact with the subsystems and rises by natural or mixed convection, or driven by the overall movement of the air.
  • An air outlet circuit which may include a chimney to favor the draft or a fan and other devices to ensure other functionalities, draws air from the room (generally preferentially air in the vicinity of the ceiling, because that's where warm air accumulates) and throws it out.
  • preferential Air is formed in areas of lesser resistance without a subsystem that generates heat.
  • This air bypassing the hot subsystems degrades the performance of the installation because it "clogs" the air inlet and outlet circuits without contributing to the cooling of the subsystems.
  • This congestion results in a lowering of the air temperature in the chimney (and therefore a reduction in the draft, the flow motor), an unnecessary overflow and thus an expensive oversizing of the input and output circuits. air.
  • Transients seasonal, daily or with characteristic times of up to a few minutes
  • Transients are filtered by the thermal inertia of the walls and other devices of the air intake circuit.
  • This lowering of temperature results in an increase in the relative humidity of the air entering the room.
  • This increase in relative humidity favors condensation on the metal structures of the cold parts of the subsystems and on other surfaces.
  • This condensation increases the risk of corrosion and degradation of metal structures in the cold parts of subsystems and other surfaces. These corrosions or degradations can limit the life of the installation. This phenomenon can be particularly troublesome because it is linked to the very complex structure of the flow and is therefore difficult to predict in a reliable quantitative manner.
  • thermo-aeraulic behavior A strong constraint is therefore to be able to demonstrate in which measurements the sizing calculations are reliable and predictive. This constraint is particularly concerned with the description of the thermo-thermal operation complex of the installation and encourages the search for the solutions leading to the most structured and predictive flows, even at the cost of a slight complication of the system, or even a slight degradation of the thermal performances.
  • Document FR-A-2 721 430 discloses a device and a method for dry storage of heat-generating materials, in particular for radioactive materials.
  • the disclosed device includes all features of the preamble of claim 1.
  • thermoaerulic calculations in the room of the storage facility, it is proposed to voluntarily structure the flow in the vicinity of the subsystems by imposing a preferential direction to the flow of air.
  • This preferential direction facilitates the modeling of the thermoaerulic flows of the air around the device and consequently makes the results obtained quantitatively more reliable.
  • the receiving means adjacent the side walls of the room are arranged as close as possible to these side walls to prevent the gaseous cooling fluid form bypass currents. This can be done by arranging the receiving means (or subsystems) along a regular network to the walls by minimizing the distance between sidewall and adjacent subsystems.
  • Shirts can also be radiative screens.
  • the means for channeling the gaseous cooling fluid may also comprise partitions connecting at least one side wall of the room to adjacent shirts of this side wall, these partitions being arranged in a direction corresponding to the preferred direction of circulation of the gaseous fluid cooling. This contributes to further improving the structuring of the gas flow.
  • the installation may further comprise auxiliary means for channeling said gaseous cooling fluid, these auxiliary means being located between a side wall of the room and one or several folders and being arranged in a direction corresponding to the preferred direction of circulation of the gaseous cooling fluid.
  • auxiliary means for channeling said gaseous cooling fluid, these auxiliary means being located between a side wall of the room and one or several folders and being arranged in a direction corresponding to the preferred direction of circulation of the gaseous cooling fluid.
  • the ceiling is inclined and the gaseous fluid discharge means are located in the highest part of the room.
  • the angle of inclination of the ceiling can be between 10 ° and 20 ° relative to the horizontal. Preferably, this angle is equal to 15 °. This inclination allows the hot gas to evacuate more easily thanks to the buoyancy forces (Archimedes' thrust), to avoid its accumulation in these zones and thus to avoid the creation of hot spots.
  • the room may also be provided with an inclined floor rising towards the gaseous fluid evacuation means. This further improves the thermoaerulic behavior.
  • An advantage of this solution is to leave a passage section for the gaseous fluid greater at the inlet than at the outlet. This promotes a more constant gas velocity to feed the various subsystems and ensure a more uniform fresh gaseous fluid supply of all subsystems.
  • the installation may further comprise a bypass circuit of the cooling gaseous fluid to recycle a portion of the gaseous cooling fluid, having circulated in the room or having been in thermal contact with the room.
  • This portion of recycled gaseous cooling fluid can be taken from a discharge stack communicating with the gaseous fluid discharge means. This avoids that temperature transients of the gaseous fluid (air for example) induce a condensation generating risks of corrosion or degradation unpredictable.
  • Part of the gaseous fluid heated and exiting the storage room is reintroduced into the input circuit, preferably as close as possible to the storage room to increase the temperature of the gas entering the room and therefore of decrease the relative humidity.
  • Thermal radiation plates may be associated with the receiving means, these plates being located near the ceiling to destructure the thermal boundary layer to the surface of the ceiling. This prevents the thermal boundary layer from a subsystem, arranged vertically or with a vertical preferred direction under or near the ceiling, to heat the surface layers. under the ceiling at a temperature above the mixing temperature of the overall flow of gaseous fluid. These plates play a dual role. By destabilizing the thermal boundary layer, they cause a mixture of the gaseous fluid and a drop in its temperature. They also act as radiative screens, at least partially protecting the ceiling of the thermal radiation from the receiving means.
  • Figure 1 is a vertical sectional view of an irradiated fuel or radioactive material storage facility in accordance with the present invention.
  • the installation comprises a room 1, buried in the example shown and provided with a floor 2, a ceiling 3 and side walls of which only two, the walls 4 and 5, are visible.
  • a room 1 In the room 1 are arranged a plurality of receiving means or well 6.
  • the wells 6 are, in the example of FIG. 1, tubular elements suspended from the floor 11 of the handling room 10 which is above the room 1.
  • the foot of each well 6 can be debated in a limiter of clearance 7 via dampers not shown.
  • the irradiated fuel or the radioactive materials are disposed in the wells from the handling room 10 according to packages known to those skilled in the art.
  • the wells 6 are each surrounded, in the heating part of the wells, with a jacket 8 whose role is multiple: radiative screen, chimney, structure of the flow.
  • the jackets 8 surround the wells 6 so as to leave an annular space, between wells and corresponding jacket, sufficient to allow proper cooling of the wells.
  • the corresponding liner may be 140 cm in diameter.
  • Partitions 9 connect the shirts 8 to each other. They do not play a direct thermal role but contribute to vertically structuring the flow of the cooling gaseous fluid and to avoiding the transverse currents of assembly.
  • Other partitions, referenced 19, also connect the jackets 8 located near the side walls (for example the wall 5) to these side walls, both to structure the flow and to avoid bypass currents.
  • the shirts 8 rest on the floor 2 and supports not shown and do not interfere with the circulation of the gaseous cooling fluid.
  • the presence of the partitions 9 and 19 also ensures better stability of all the shirts.
  • the storage facility shown in Figure 1 is cooled by air.
  • Fresh air enters through the air vent 20, passes through a grid 21 and an electrostatic filter 22 and is fed through a conduit 23 to the air inlet 24 of the room 1
  • the entrance is advantageously at the lowest part of room 1.
  • the air outlet 25 is advantageously at the highest part of room 1. It communicates with an exhaust stack 26. Between the air inlet 24 and the air outlet 25, the cooling air is thus channeled in a vertical direction by the folders 8 and the partitions 9 and 19.
  • Figure 1 shows that the floor 2 and the ceiling 3 are inclined to facilitate the flow of air.
  • Floor 2 and ceiling 3 rise to the air outlet 25.
  • the ceiling 3 may be constituted by a sheet. Near the ceiling 3, the thermal boundary layer is destructured by plates 15 also acting as radiative screens. These plates may advantageously be arranged a few centimeters below the ceiling to be in contact by their two faces with the cooling fluid so that the heat exchange is done by these two faces
  • the installation shown in Figure 1 further comprises an air bypass circuit.
  • This auxiliary air circuit in natural convection, comprises a first vertical duct 31 which brings air between the ceiling 3 and the floor 11 of the handling room 10. The heated air then circulates in the second vertical duct 32 then in a horizontal duct 33 to return in the conduit 23.
  • the air bypass circuit returns warm air to the entrance to the room 1, which slightly increases the temperature of the air at the entrance and reduces the risk of condensation. Another possible embodiment is to take the air directly into the outlet chimney.
  • This recirculation of air must moderately increase the air temperature at the inlet, typically a few degrees.
  • the proportion of circulating air should be low at full power and increase when the power decreases to reach a proportion of 100% at zero power.
  • the Adjustment of these organs could be done after each loading or unloading of nuclear material, to take into account the new power stored, or when the stored power has significantly decreased (usual radioactive decay). This last case can mean a period of a few years to a few tens of years between two consecutive adjustments.
  • FIG. 2 is a cross-sectional view of a portion of the installation shown in vertical section in FIG. 1. It is possible to recognize the wells 6 arranged in a regular triangular array, the folders 8, the partitions 9 between the shirts and the partitions 19 connecting the partitions 9 to the side wall 5. The wells 6 surrounded by their shirts 8 are arranged as close as possible to the side walls to avoid the presence of bypass currents. Elements 16 or "mannequins", equivalent to half-shirts (in the longitudinal direction) are present against the side wall 5 and are connected to the closest shirts by partitions 17. This arrangement allows to structure the flow of air, to ensure that the wells located near the side wall 5 see the same type of flow and avoid bypass currents.
  • Figure 3 is a cross-sectional and top view of a portion of another irradiated fuel or radioactive material storage facility. This installation differs from the previous one by the shape of the wells. Wells 41 of this variant have a square section. Shirts 42 surrounding them also have a square section. They are interconnected by partitions 43.
  • This configuration of the wells 41 makes it possible to arrange them according to a regular square network that is as close as possible to the lateral wall 50 in order to avoid the bypass currents.
  • the set of folders can be surrounded by an envelope 44 connected to the adjacent folders by partitions 45 to further increase the structuring of the flow and reduce the bypass currents.
  • the arrows 51 symbolize the air flush with the ground and will penetrate from below into the network of shirts and partitions.
  • the arrows 52 symbolize the air leaving the network of folders and partitions, under the ceiling and heading towards the air outlet symbolically represented in 53.
  • the invention therefore allows a better structuring of the flows, thus a better reliability of the calculations describing them. This implies that the safety performance demonstrations and certification procedures will be easier to do. Acceptability by the public should be increased.
  • the invention makes it possible to reduce the maximum temperatures of storage. In particular, it makes it possible to reduce the maximum temperatures to which the side walls and in particular the ceiling are subjected.
  • the invention also reduces the unnecessary flow bypass wells. It therefore makes it possible to dimension more economically the air inlet and outlet circuits while ensuring homogeneous and efficient cooling.
  • the invention also makes it possible to reduce the quantities of water coming from the humidity of the outside air condensed on the cold parts of the installation.

Description

    Domaine technique
  • L'invention concerne l'entreposage de moyenne ou de longue durée de combustible nucléaire irradié ou de divers types de matières radioactives. Plus précisément, elle concerne les installations d'entreposage de matières radioactives où la chaleur résiduelle dégagée par les réactions de fission (désintégrations radioactives) est évacuée par convection naturelle, mixte ou forcée et où un certain nombre de sous-systèmes (nommés puits, colis ou conteneurs) contenant ces combustibles nucléaires irradiés ou ces divers types de matières radioactives sont disposés dans une même salle ou cavité.
  • Etat de la technique antérieure
  • Il existe des installations d'entreposage de combustible irradié ou de matières nucléaires fonctionnant selon le principe général suivant. Des sous-systèmes, généralement métalliques (par exemple des "puits" dans ces installations), contenant les combustibles irradiés ou les matières radioactives sont disposés régulièrement dans une salle. Cette salle comporte un plancher et un plafond horizontaux. La disposition des sous-systèmes se fait généralement suivant un "réseau" régulier, par exemple carré ou triangulaire. Un circuit d'entrée d'air, pouvant comporter des filtres, des grilles anti-intrusion et un certain nombre d'autres dispositifs assurant diverses fonctionnalités, amène de l'air prélevé à l'extérieur dans cette salle. L'air ainsi amené s'échauffe au contact des sous-systèmes et s'élève par convection naturelle ou mixte, ou entraîné par le mouvement d'ensemble de l'air. Un circuit de sortie d'air, pouvant comporter une cheminé pour favoriser le tirage ou un ventilateur et d'autres dispositifs pour assurer d'autres fonctionnalités, prélève l'air de la salle (généralement préférentiellement de l'air au voisinage du plafond, car c'est là que l'air chaud s'accumule) et le rejette à l'extérieur.
  • Ces installations peuvent fonctionner de manière satisfaisante. Elles présentent cependant un certain nombre d'inconvénients. L'écoulement de l'air dans la salle est turbulent, multidimensionnel, très complexe et difficilement prédictible. Le plafond de la salle étant horizontal, de l'air chaud a tendance à s'accumuler sous le plafond dans les zones les plus éloignées du lieu de sortie de l'air. Des calculs ont montré que les points les plus chauds de l'installation pouvaient se trouver à proximité du plafond, loin de la zone de sortie d'air. Ceci est dû au fait que l'air, pour s'évacuer vers la sortie, ne bénéficie que de la poussée d'Archimède créée par le seul gradient d'épaisseur de la couche d'air chaud sous plafond.
  • Dans les cas où la disposition des sous-systèmes le permet, des cheminements préférentiels de l'air se forment dans les zones de moindre résistance dépourvues de sous-système générant de la chaleur. Cet air contournant les sous-systèmes chauds dégrade les performances de l'installation car il "encombre" les circuits d'entrée et de sortie d'air sans contribuer au refroidissement des sous-systèmes. Cet encombrement se traduit par un abaissement de la température de l'air dans la cheminée (et donc une diminution du tirage, moteur de l'écoulement), un sur-débit inutile et donc un surdimensionnement coûteux des circuits d'entrée et de sortie d'air.
  • Les transitoires (saisonniers, quotidiens ou avec des temps caractéristiques pouvant descendre jusqu'à quelques minutes) de température de l'air extérieur sont filtrés par l'inertie thermique des parois et des autres dispositifs du circuit d'entrée d'air. Lorsque de l'air plus chaud que le circuit d'entrée arrive, ceci se traduit par un abaissement de la température de l'air entre l'extérieur et l'entrée de la salle. Cet abaissement de température a pour conséquence une augmentation de l'humidité relative de l'air entrant dans la salle. Cette augmentation de l'humidité relative favorise la condensation sur les structures métalliques des parties froides des sous-systèmes et sur les autres surfaces. Cette condensation augmente les risques de corrosion et de dégradation des structures métalliques des parties froides des sous-systèmes et des autres surfaces. Ces corrosions ou dégradations peuvent limiter la durée de vie de l'installation. Ce phénomène peut être particulièrement gênant car il est lié à la structure très complexe de l'écoulement et est donc difficilement prédictible d'une manière quantitative fiable.
  • Lorsque le sous-système est disposé verticalement ou a une direction privilégiée verticale et que ce sous-système dégage de la puissance, une couche limite thermique de convection naturelle et mixte se développe et peut remonter jusqu'au plafond qu'elle lèche. La couche superficielle inférieure du plafond est.donc chauffée à une température supérieure à la température de mélange du débit global d'air. Le rayonnement thermique issu des puits peut également provoquer un échauffement supplémentaire, particulièrement si les surfaces sont très émissives. L'un ou l'autre de ces phénomènes, ou la combinaison des deux, peut conduire à une température excessive du plafond, nécessitant des précautions spéciales et onéreuses pour éviter qu'il ne se dégrade.
  • Il se pose donc le problème de remédier aux inconvénients mentionnés ci-dessus et qui peuvent être résumés ainsi :
    • Faible fiabilité de prédictions quantitatives de l'écoulement dans la salle.
    • Température élevée de l'installation au voisinage du plafond, loin de la zone de sortie de l'air.
    • De l'air contourne inutilement les sous-systèmes et encombre les circuits d'entrée et de sortie d'air.
    • Les transitoires de température de l'air extérieur peuvent induire une condensation, elle-même génératrice de risques peu prédictibles de corrosion ou dégradation.
    • La couche limite thermique issue du sous-système, disposé verticalement ou avec une direction privilégiée verticale sous ou à proximité d'un plafond, peut chauffer les couches superficielles inférieures du plafond à une température supérieure à la température de mélange du débit global d'air.
  • La réduction des conséquences de ces inconvénients ne doit compromettre ni les fonctionnalités premières de l'installation (évacuation de la puissance dégagée, protection biologique contre les rayonnements ionisants, durabilité séculaire, facilité de chargement et déchargement du combustible, possibilité de surveiller et de maintenir l'installation, etc.), ni les avantages de ce type d'installation, parmi lesquels on peut citer :
    • la simplicité et la robustesse de fonctionnement.
    • la passivité, c'est-à-dire le bon fonctionnement même sans surveillance continue.
    • la stabilité de fonctionnement.
    • L'expérience acquise grâce aux installations existantes.
    • Le bon fonctionnement dans la durée : absence de pièces mécaniques mobiles, utilisation d'un principe physique très simple, etc.
    • La facilité de gestion de l'installation, de l'entreposage ou du désentreposage de nouveaux combustibles irradiés ou de matières radioactives.
  • Ce type d'installation est destiné aux matières radioactives. Les réglementations spécifiques et surtout l'acceptabilité du public imposent de pouvoir calculer de manière crédible son comportement thermoaéraulique. Une contrainte forte est donc de pouvoir démontrer dans quelles mesures les calculs la dimensionnant sont fiables et prédictifs. Cette contrainte porte particulièrement sur la description du complexe fonctionnement thermoaéraulique de l'installation et incite à rechercher les solutions conduisant aux écoulements les plus structurés et prédictifs, même au prix d'une légère complication du système, voire à une légère dégradation des performances thermiques.
  • Le document FR-A-2 721 430 divulgue un dispositif et un procédé de stockage à sec de matériaux dégageant de la chaleur, en particulier pour les matériaux radioactifs. Le dispositif divulgué comprend toutes les caractéristiques du préambule de la revendication 1.
  • Exposé de l'invention
  • Pour améliorer la qualité prédictive des calculs de thermoaéraulique dans la salle de l'installation d'entreposage, il est proposé de structurer volontairement l'écoulement au voisinage des sous-systèmes en imposant une direction préférentielle à la circulation de l'air. Cette direction préférentielle facilite la modélisation des écoulements thermoaérauliques de l'air autour du dispositif et par conséquent rend quantitativement plus fiable les résultats obtenus.
  • L'invention a pour objet une installation d'entreposage de combustible irradié ou de matières radioactives comprenant :
    • une salle pourvue d'un plancher, d'un plafond et de parois latérales,
    • une pluralité de moyens de réception pour recevoir le combustible irradié ou les matières radioactives, ces moyens de réception étant disposés dans la salle de façon à pouvoir être soumis à la circulation d'un fluide gazeux de refroidissement,
    • des moyens d'introduction de fluide gazeux dans la salle permettant d'introduire ledit fluide gazeux de refroidissement,
    • des moyens d'évacuation de fluide gazeux hors de la salle pour évacuer ledit fluide gazeux de refroidissement après sa circulation sur les moyens de réception,
    • des moyens permettant de canaliser ledit fluide gazeux de refroidissement pour lui donner une direction préférentielle de circulation lorsqu'il circule sur les moyens de réception, comportant des chemises entourant les moyens de réception en laissant un espace entre elles et les moyens de réception pour la circulation du fluide gazeux de refroidissement, ces chemises possédant des ouvertures d'entrée et de sortie pour assurer la circulation du fluide gazeux de refroidissement, l'installation étant caractérisée en ce que les moyens permettant de canaliser le fluide gazeux de refroidissement comprennent également des cloisons reliant des chemises, ces cloisons étant disposées selon une direction correspondant à la direction préférentielle de circulation du fluide gazeux de refroidissement.
  • Avantageusement, les moyens de réception voisins des parois latérales de la salle sont disposés le plus près possible de ces parois latérales afin d'éviter que le fluide gazeux de refroidissement ne forme des courants de contournement. Ceci peut être fait en disposant les moyens de réception (ou sous-systèmes) suivant un réseau régulier allant jusqu'aux parois en minimisant la distance entre paroi latérale et sous-systèmes adjacents.
  • Les chemises peuvent aussi constituer des écrans radiatifs.
  • La présence de cloisons reliant des chemises, ces cloisons étant disposées selon une direction correspondant à la direction préférentielle de circulation du fluide gazeux de refroidissement, a pour conséquence d'améliorer encore la structuration de l'écoulement du fluide gazeux de refroidissement.
  • Les moyens permettant de canaliser le fluide gazeux de refroidissement peuvent comprendre également des cloisons reliant au moins une paroi latérale de la salle à des chemises voisines de cette paroi latérale, ces cloisons étant disposées selon une direction correspondant à la direction préférentielle de circulation du fluide gazeux de refroidissement. Ceci contribue à améliorer encore la structuration de l'écoulement gazeux.
  • L'installation peut comprendre en outre des moyens annexes permettant de canaliser ledit fluide gazeux de refroidissement, ces moyens annexes étant situés entre une paroi latérale de la salle et une ou plusieurs chemises et étant disposés selon une direction correspondant à la direction préférentielle de circulation du fluide gazeux de refroidissement. Ces moyens annexes permettent de réduire les courants de contournement lorsque les sous-systèmes sont disposés selon des réseaux particuliers, par exemple selon un réseau triangulaire.
  • De préférence, si les moyens d'évacuation de fluide gazeux sont situés au plafond ou à proximité du plafond, le plafond est incliné et les moyens d'évacuation de fluide gazeux sont situés dans la partie la plus haute de la salle. Ceci a pour effet de diminuer la température maximale du fluide gazeux au voisinage du plafond, loin de la zone de sortie du fluide gazeux. L'angle d'inclinaison du plafond peut être compris entre 10° et 20° par rapport à l'horizontale. De préférence, cet angle est égal à 15°. Cette inclinaison permet au gaz chaud de s'évacuer plus facilement grâce aux forces de flottabilité (poussée d'Archimède), d'éviter son accumulation dans ces zones et donc d'éviter la création de points chauds.
  • La salle peut aussi être pourvue d'un plancher incliné montant vers les moyens d'évacuation de fluide gazeux. Ceci améliore encore le comportement thermoaéraulique. Un avantage de cette solution est de laisser une section de passage au fluide gazeux plus grande à l'entrée qu'à la sortie. On favorise ainsi une vitesse de gaz plus constante pour alimenter les divers sous-systèmes et assurer une alimentation en fluide gazeux frais plus homogène de l'ensemble des sous-systèmes.
  • L'installation peut comprendre en outre un circuit de dérivation du fluide gazeux de refroidissement pour recycler une partie du fluide gazeux de refroidissement, ayant circulé dans la salle ou ayant été en contact thermique avec la salle. Cette partie de fluide gazeux de refroidissement recyclée peut être prélevée dans une cheminée d'évacuation communiquant avec les moyens d'évacuation de fluide gazeux. On évite ainsi que les transitoires de température du fluide gazeux (l'air par exemple) n'induisent une condensation génératrice de risques de corrosion ou dégradation peu prédictibles. Une partie du fluide gazeux réchauffé et sortant de la salle d'entreposage est réintroduit dans le circuit d'entrée, de préférence le plus proche possible de la salle d'entreposage afin d'augmenter la température du gaz pénétrant dans la salle et donc de diminuer l'humidité relative.
  • Des organes de pertes de charge réglables peuvent être prévus dans le circuit de dérivation ou dans les moyens d'évacuation de fluide gazeux, pour contrôler la quantité de fluide gazeux de refroidissement recyclée.
  • Des plaques de rayonnement thermique peuvent être associées aux moyens de réception, ces plaques étant situées à proximité du plafond pour déstructurer la couche limite thermique à la surface du plafond. On évite ainsi que la couche limite thermique issue d'un sous-système, disposé verticalement ou avec une direction privilégiée verticale sous ou à proximité du plafond, puisse chauffer les couches superficielles sous le plafond à une température supérieure à la température de mélange du débit global de fluide gazeux. Ces plaques jouent en fait un double rôle. En déstabilisant la couche limite thermique, elles provoquent un mélange du fluide gazeux et une baisse de sa température. Elles font aussi office d'écrans radiatifs, protégeant au moins partiellement le plafond du rayonnement thermique issu des moyens de réception.
  • Brève description des dessins
  • L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :
    • la figure 1 est une vue en coupe verticale d'une installation d'entreposage de combustible irradié ou de matières radioactives, selon la présente invention,
    • la figure 2 est une vue en coupe transversale d'une partie de l'installation d'entreposage de combustible irradié ou de matières radioactives représentée à la figure 1,
    • la figure 3 est une vue en coupe transversale d'une partie d'une autre installation d'entreposage de combustible irradié ou de matières radioactives, selon la présente invention.
    Description détaillée de modes de réalisation de l'invention
  • La figure 1 est une vue en coupe verticale d'une installation d'entreposage de combustible irradié ou de matières radioactives, conformément à la présente invention.
  • L'installation comprend une salle 1, enterrée dans l'exemple représenté et pourvue d'un plancher 2, d'un plafond 3 et de parois latérales dont seulement deux, les parois 4 et 5, sont visibles. Dans la salle 1 sont disposés une pluralité de moyens de réception ou puits 6.
  • Les puits 6 sont, dans l'exemple de la figure 1, des éléments tubulaires suspendus au plancher 11 de la salle de manutention 10 qui se trouve au-dessus de la salle 1. Le pied de chaque puits 6 peut débattre dans un limiteur de débattement 7 par l'intermédiaire d'amortisseurs non représentés. Le combustible irradié ou les matières radioactives sont disposées dans les puits à partir de la salle de manutention 10 selon des conditionnements connus de l'homme du métier.
  • Les puits 6 sont chacun entourés, dans la partie chauffante des puits, d'une chemise 8 dont le rôle est multiple : écran radiatif, cheminée, structuration de l'écoulement. Les chemises 8 entourent les puits 6 de façon à laisser un espace annulaire, entre puits et chemise correspondante, suffisant pour permettre un refroidissement correct des puits. A titre d'exemple, pour un puits de 90 cm de diamètre, la chemise correspondante peut avoir 140 cm de diamètre.
  • Des cloisons 9 relient les chemises 8 entre elles. Elles ne jouent pas de rôle thermique direct mais contribuent à structurer verticalement l'écoulement du fluide gazeux de refroidissement et à éviter les courants transverses d'ensemble. D'autres cloisons, référencées 19, relient également les chemises 8 situées à proximité des parois latérales (par exemple la paroi 5) à ces parois latérales, tant pour structurer l'écoulement que pour éviter les courants de contournement. Les chemises 8 reposent sur le plancher 2 et par appuis non représentés et qui ne gênent pas la circulation du fluide gazeux de refroidissement. La présence des cloisons 9 et 19 assure également une meilleure stabilité de l'ensemble des chemises.
  • L'installation d'entreposage représentée à la figure 1 est refroidie par de l'air. De l'air frais pénètre par la bouche d'aération 20, passe au travers d'une grille 21 et d'un filtre électrostatique 22 et est amené par un conduit 23 jusqu'à l'entrée d'air 24 de la salle 1. L'entrée se trouve avantageusement à la partie la plus basse de la salle 1. De même la sortie d'air 25 se trouve avantageusement à la partie la plus haute de la salle 1. Elle communique avec une cheminée d'évacuation 26. Entre l'entrée d'air 24 et la sortie d'air 25, l'air de refroidissement est donc canalisé dans une direction verticale par les chemises 8 et les cloisons 9 et 19.
  • La figure 1 montre que le plancher 2 et le plafond 3 sont inclinés pour faciliter la circulation de l'air. Le plancher 2 et le plafond 3 montent vers la sortie d'air 25.
  • Le plafond 3 peut être constitué par une tôle. A proximité du plafond 3, la couche limite thermique est déstructurée par des plaques 15 jouant aussi le rôle d'écrans radiatifs. Ces plaques peuvent avantageusement être disposées à quelques centimètres sous le plafond afin d'être en contact par leurs deux faces avec le fluide de refroidissement pour que l'échange de chaleur se fasse par ces deux faces
  • L'installation représentée à la figure 1 comprend encore un circuit de dérivation d'air. Ce circuit d'air annexe, en convection naturelle, comprend un premier conduit vertical 31 qui amène de l'air entre le plafond 3 et le plancher 11 de la salle de manutention 10. L'air réchauffé circule ensuite dans le deuxième conduit vertical 32 puis dans un conduit horizontal 33 pour revenir dans le conduit 23. Le circuit de dérivation d'air renvoie de l'air tiède à l'entrée de la salle 1, ce qui augmente légèrement la température de l'air à l'entrée et diminue les risques de condensation. Une autre réalisation possible consiste à prélever l'air directement dans la cheminée de sortie.
  • Cette recirculation d'air doit augmenter modérément la température d'air à l'entrée, typiquement de quelques degrés. La proportion d'air circulant doit être faible à pleine puissance et augmenter lorsque la puissance diminue pour tendre vers une proportion de 100% à puissance nulle. Pour satisfaire cette condition, il est nécessaire de prévoir des organes de perte de charge réglables dans le circuit de dérivation ou le circuit de sortie d'air ou les deux circuits. Le réglage de ces organes pourrait se faire après chaque chargement ou déchargement de matières nucléaires, pour prendre en compte la nouvelle puissance entreposée, ou lorsque la puissance entreposée aura significativement décrue (décroissance radioactive usuelle). Ce dernier cas peut signifier une période de quelques années à quelques dizaines d'années entre deux réglages consécutifs.
  • La figure 2 est une vue en coupe transversale d'une partie de l'installation représentée en coupe verticale à la figure 1. On y reconnaît les puits 6, disposés selon un réseau triangulaire régulier, les chemises 8, les cloisons 9 entre chemises et les cloisons 19 reliant des cloisons 9 à la paroi latérale 5. Les puits 6 entourés de leurs chemises 8 sont disposés le plus près possible des parois latérales pour éviter la présence de courants de contournement. Des éléments 16 ou "mannequins", équivalant à des demi-chemises (dans le sens longitudinal) sont présent contre la paroi latérale 5 et sont reliés aux chemises les plus proches par des cloisons 17. Cette disposition permet de structurer l'écoulement d'air, de faire en sorte que les puits situés à proximité de la paroi latérale 5 voient le même type d'écoulement et d'éviter les courants de contournement.
  • La figure 3 est une vue en coupe transversale et de dessus d'une partie d'une autre installation d'entreposage de combustible irradié ou de matières radioactives. Cette installation se distingue de la précédente par la forme des puits. Les puits 41 de cette variante ont une section carrée. Les chemises 42 les entourant ont également une section carrée. Elles sont reliées entre elles par des cloisons 43.
  • Cette configuration des puits 41 permet de les disposer selon un réseau carré régulier qui va le plus près possible de la paroi latérale 50 afin d'éviter les courants de contournement. L'ensemble des chemises peut être entouré par une enveloppe 44 reliée aux chemises adjacentes par des cloisons 45 afin d'accroître encore la structuration de l'écoulement et de diminuer les courants de contournement.
  • Les flèches 51 symbolisent l'air au ras du sol et qui va pénétrer par le bas dans le réseau de chemises et de cloisons. Les flèches 52 symbolisent l'air sortant du réseau de chemises et de cloisons, sous le plafond et se dirigeant vers la sortie d'air représentée symboliquement en 53.
  • L'invention permet donc une meilleure structuration des écoulements, donc une meilleure fiabilité des calculs les décrivant. Ceci implique que les démonstrations de sûreté de bon fonctionnement et les procédures de certification seront plus faciles à faire. L'acceptabilité par le public devrait en être accrue.
  • L'invention permet de réduire les températures maximales de l'entreposage. Elle permet en particulier de diminuer les températures maximales auxquelles sont soumises les parois latérales et en particulier le plafond.
  • L'invention permet également de diminuer le débit inutile de contournement des puits. Elle permet donc de dimensionner de manière plus économique les circuits d'entrée et de sortie d'air tout en assurant un refroidissement homogène et efficace.
  • L'invention permet aussi de diminuer les quantités d'eau provenant de l'humidité de l'air extérieur condensée sur les parties froides de l'installation.
  • En permettant la baisse de la température sur la surface du plafond de la salle d'entreposage, la conception de ce plafond, sa réalisation, sa qualification et sa certification sont donc facilitées.

Claims (13)

  1. Installation d'entreposage de combustible irradié ou de matières radioactives comprenant :
    - une salle pourvue (1) d'un plancher (2), d'un plafond (3) et de parois latérales (4,5),
    - une pluralité de moyens de réception (6) pour recevoir le combustible irradié ou les matières radioactives, ces moyens de réception (6) étant disposés dans la salle de façon à pouvoir être soumis à la circulation d'un fluide gazeux de refroidissement,
    - des moyens d'introduction de fluide gazeux (24) dans la salle (1) permettant d'introduire ledit fluide gazeux de refroidissement,
    - des moyens d'évacuation de fluide gazeux (25) hors de la salle (1) pour évacuer ledit fluide gazeux de refroidissement après sa circulation sur les moyens de réception (6),
    - des moyens (8,9,19) permettant de canaliser ledit fluide gazeux de refroidissement pour lui donner une direction préférentielle de circulation lorsqu'il circule sur les moyens de réception (6), comprenant des chemises (8) entourant les moyens de réception (6) en laissant un espace entre elles et les moyens de réception (6) pour la circulation du fluide gazeux de refroidissement, ces chemises (8) possédant des ouvertures d'entrée et de sortie pour assurer la circulation du fluide gazeux de refroidissement, l'installation étant caractérisée en ce que les moyens permettant de canaliser le fluide gazeux de refroidissement comprennent également des cloisons (9) reliant des chemises (8), ces cloisons (9) étant disposées selon une direction correspondant à la direction préférentielle de circulation du fluide gazeux de refroidissement.
  2. Installation selon la revendication 1, caractérisée en ce que les moyens de réception (6) voisins des parois latérales (5) de la salle (1) sont disposés le plus près possible de ces parois latérales afin d'éviter que le fluide gazeux de refroidissement ne forme des courants de contournement.
  3. Installation selon la revendication 1, caractérisée en ce que les chemises (8) constituent aussi des écrans radiatifs.
  4. Installation selon l'une quelconque des revendications 1 à 3, caractérisée en ce que les moyens permettant de canaliser le fluide gazeux de refroidissement comprennent également des cloisons (19) reliant au moins une paroi latérale (5) de la salle (1) à des chemises (8) voisines de cette paroi latérale, ces cloisons (19) étant disposées selon une direction correspondant à la direction préférentielle de circulation du fluide gazeux de refroidissement.
  5. Installation selon l'une quelconque des revendications 1 à 4, caractérisée en ce qu'elle comprend en outre des moyens annexes (16) permettant de canaliser ledit fluide gazeux de refroidissement, ces moyens annexes (16) étant situés entre une paroi latérale (5) de la salle (1) et une ou plusieurs chemises (8) et étant disposés selon une direction correspondant à la direction préférentielle de circulation du fluide gazeux de refroidissement.
  6. Installation selon l'une quelconque des revendications 1 à 5, caractérisée en ce que les moyens d'évacuation de fluide gazeux (25) étant situés au plafond ou à proximité du plafond (3), le plafond est incliné et les moyens d'évacuation de fluide gazeux (25) sont situés dans la partie la plus haute de la salle.
  7. Installation selon la revendication 6, caractérisée en ce que le plafond (3) est incliné d'un angle compris entre 10° et 20° par rapport à l'horizontale.
  8. Installation selon l'une quelconque des revendications 1 à 7, caractérisée en ce que la salle (1) est pourvue d'un plancher (2) incliné montant vers les moyens d'évacuation de fluide gazeux (25).
  9. Installation selon l'une quelconque des revendications 1 à 8, caractérisée en ce qu'elle comprend en outre un circuit de dérivation (31,32,33) du fluide gazeux de refroidissement pour recycler une partie du fluide gazeux de refroidissement ayant circulé dans la salle (1) ou ayant été en contact thermique avec la salle.
  10. Installation selon la revendication 9, caractérisée en ce que la partie du fluide gazeux de refroidissement recyclée est prélevée dans une cheminée d'évacuation (26) communiquant avec les moyens d'évacuation de fluide gazeux (25).
  11. Installation selon l'une des revendications 9 ou 10, caractérisée en ce que des organes de pertes de charge réglables sont prévus dans le circuit de dérivation ou dans les moyens d'évacuation de fluide gazeux, pour contrôler la quantité de fluide gazeux de refroidissement recyclée.
  12. Installation selon l'une quelconque des revendications précédentes, caractérisée en ce que des plaques de rayonnement thermiques (15) sont associées aux moyens de réception (6), ces plaques (15) étant situées à proximité du plafond (3) pour déstructurer la couche limite thermique à la surface du plafond.
  13. Installation selon l'une quelconque des revendications précédentes, caractérisée en ce que le fluide gazeux de refroidissement est de l'air.
EP01969894A 2000-09-15 2001-09-14 Installation d'entreposage de combustible irradie ou de matieres radioactives Expired - Lifetime EP1317757B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0011789 2000-09-15
FR0011789A FR2814274B1 (fr) 2000-09-15 2000-09-15 Installation d'entreposage de combustible irradie ou de matieres radioactives
PCT/FR2001/002864 WO2002023555A1 (fr) 2000-09-15 2001-09-14 Installation d'entreposage de combustible irradie ou de matieres radioactives

Publications (2)

Publication Number Publication Date
EP1317757A1 EP1317757A1 (fr) 2003-06-11
EP1317757B1 true EP1317757B1 (fr) 2007-02-07

Family

ID=8854343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01969894A Expired - Lifetime EP1317757B1 (fr) 2000-09-15 2001-09-14 Installation d'entreposage de combustible irradie ou de matieres radioactives

Country Status (7)

Country Link
US (1) US20040028170A1 (fr)
EP (1) EP1317757B1 (fr)
JP (1) JP5106740B2 (fr)
KR (1) KR100841028B1 (fr)
FR (1) FR2814274B1 (fr)
TW (1) TW533430B (fr)
WO (1) WO2002023555A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155510A (ja) * 2005-12-06 2007-06-21 Ishikawajima Harima Heavy Ind Co Ltd 発熱体貯蔵施設
JP4673830B2 (ja) * 2006-12-27 2011-04-20 株式会社東芝 放射性廃棄物の冷却貯蔵設備
US11569001B2 (en) 2008-04-29 2023-01-31 Holtec International Autonomous self-powered system for removing thermal energy from pools of liquid heated by radioactive materials
JP4843732B2 (ja) * 2010-11-18 2011-12-21 株式会社東芝 放射性廃棄物の冷却貯蔵設備
JP2014035264A (ja) * 2012-08-08 2014-02-24 Toshiba Corp 冷却装置
EP2706536A1 (fr) * 2012-09-11 2014-03-12 STEAG Energy Services GmbH Stockage de longue durée à fiable profondeur destinée à stocker des déchets radioactifs produisant de la chaleur avec une évacuation passive de la chaleur et procédé de stockage dans une stockage de longue durée
US9406409B2 (en) * 2013-03-06 2016-08-02 Nuscale Power, Llc Managing nuclear reactor spent fuel rods
US11881323B2 (en) 2020-11-25 2024-01-23 Holtec International High-density subterranean storage system for nuclear fuel and radioactive waste

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2209983B1 (fr) * 1972-12-13 1976-04-23 Technigaz
US4459260A (en) * 1981-03-03 1984-07-10 National Nuclear Corporation Limited Dry storage of irradiated nuclear fuel
GB2096937B (en) * 1981-03-30 1984-08-15 English Electric The Co Ltd Storage arrangements for nuclear fuel
DE3304078C2 (de) * 1983-02-07 1986-07-17 Reaktor-Brennelement Union Gmbh, 6450 Hanau Lagereinrichtung für ein langgestrecktes Kernreaktorbrennelement und/oder ein langgestrecktes Kernreaktorbrennelementteil
GB8402669D0 (en) * 1984-02-01 1984-03-07 English Electric Co Ltd Storage arrangements for nuclear fuel
FR2601809B1 (fr) * 1986-07-17 1988-09-16 Commissariat Energie Atomique Dispositif de stockage a sec de materiaux degageant de la chaleur, notamment de materiaux radioactifs
JPH03273198A (ja) * 1990-03-23 1991-12-04 Ishikawajima Harima Heavy Ind Co Ltd 使用済燃料及び放射性廃棄物の貯蔵庫
JPH03273193A (ja) * 1990-03-23 1991-12-04 Ishikawajima Harima Heavy Ind Co Ltd 使用済核燃料の貯蔵方法
US5573348A (en) * 1991-09-11 1996-11-12 Morgan; J. P. Pat Structural members
FR2721430B1 (fr) * 1994-06-17 1996-09-13 Cogema Dispositif et procédé de stockage à sac de matériaux dégageant de la chaleur.
JP3205179B2 (ja) * 1994-06-29 2001-09-04 株式会社日立製作所 放射性物質乾式貯蔵設備
JPH08292288A (ja) * 1995-04-25 1996-11-05 Hitachi Ltd 使用済核燃料の貯蔵方法及び施設
US5848111A (en) * 1995-08-07 1998-12-08 Advanced Container Int'l, Inc. Spent nuclear fuel container
JP3405018B2 (ja) * 1995-10-17 2003-05-12 株式会社日立製作所 放射性物質乾式貯蔵設備及び放射性物質乾式貯蔵方法
JPH09236694A (ja) * 1996-02-29 1997-09-09 Hitachi Ltd 放射性物質乾式貯蔵設備及びその放射性物質収納方法
JPH09292487A (ja) * 1996-04-26 1997-11-11 Sumitomo Metal Mining Co Ltd 使用済核燃料用貯蔵庫
JPH1082897A (ja) * 1996-09-10 1998-03-31 Ishikawajima Harima Heavy Ind Co Ltd 使用済み核燃料貯蔵装置及び該装置を用いた使用済み核燃料貯蔵方法
JP3921856B2 (ja) * 1998-12-25 2007-05-30 株式会社日立製作所 放射性物質乾式貯蔵施設
TW444209B (en) * 1998-12-24 2001-07-01 Hitachi Ltd Radioactive material dry storage facility
JP2000187100A (ja) * 1998-12-24 2000-07-04 Hitachi Ltd 放射性物質乾式貯蔵設備
JP2000206289A (ja) * 1999-01-13 2000-07-28 Ishikawajima Harima Heavy Ind Co Ltd キャニスタ―の圧力測定方法

Also Published As

Publication number Publication date
US20040028170A1 (en) 2004-02-12
FR2814274B1 (fr) 2002-11-29
TW533430B (en) 2003-05-21
KR100841028B1 (ko) 2008-06-24
KR20030029995A (ko) 2003-04-16
EP1317757A1 (fr) 2003-06-11
JP5106740B2 (ja) 2012-12-26
WO2002023555A1 (fr) 2002-03-21
FR2814274A1 (fr) 2002-03-22
JP2004509327A (ja) 2004-03-25

Similar Documents

Publication Publication Date Title
FR2723798A1 (fr) Reacteur nucleaire refroidi par metal liquide comprenant un systeme de refroidissement perfectionne, ce systeme et un procede utilisant ce systeme.
EP1317757B1 (fr) Installation d'entreposage de combustible irradie ou de matieres radioactives
EP0022714B1 (fr) Réacteur nucléaire à neutrons rapides refroidi par un métal liquide et muni d'un système d'évacuation de la puissance résiduelle
FR2718880A1 (fr) Réacteur nucléaire refroidi par un métal liquide.
EP2115363A2 (fr) Structure portante pour le cloisonnement et/ou contre-cloisonnement avec chauffage et/ou refroidissement integre.
EP1978311A2 (fr) Système de chauffage autonome et indépendant d'une autre source d'énergie
CH639187A5 (fr) Chaudiere, notamment pour installation de chauffage.
FR2707791A1 (fr) Ecran pour le système de refroidissement par air entre cuve et silo dans un réacteur nucléaire.
FR2506063A1 (fr) Reacteur nucleaire comportant un refroidissement des structures peripheriques par convection naturelle d'air
FR3034851A1 (fr) Chauffe-eau comprenant des moyens de calcul intensif
FR2999830B1 (fr) Element de traitement d'un rayonnement solaire ameliore ainsi qu'un suiveur solaire et une centrale solaire equipee d'un tel element
EP4010651A1 (fr) Dispositif de stockage thermique amélioré
EP2775245A1 (fr) Dispositif de stockage d'énergie thermique
FR2536156A1 (fr) Capteur d'energie calorifique a circulation d'un gaz comportant un echangeur au contact dudit gaz
EP0395457B1 (fr) Procédé et appareil de chauffage d'un flux de fluide gazeux par échanges thermiques successifs
FR2724220A1 (fr) Refrigerant atmospherique humide a dispositif antigel
EP1714093A2 (fr) Dispositif de chauffe-eau solaire
EP0171340A1 (fr) Générateur d'eau chaude à condensation
EP2963809A1 (fr) Panneau solaire hybride
FR2866101A1 (fr) Installation destinee a temperer un local en utilisant l'inertie thermique du sol et composants de cette installation
WO2023099555A1 (fr) Dispositif émetteur de chaleur ou de froid et système de chauffage ou de rafraichissement intégrant ce dispositif
WO2012084748A1 (fr) Système de production d'eau chaude sanitaire à l'aide de capteurs solaires thermiques à eau, dans lequel un même circuit met en relation un ballon d'eau chaude et les capteurs
FR3066677B1 (fr) Caillebotis chauffant ou rafraichissant, notamment pour une installation de maternite pour porcelets
FR2844774A1 (fr) Armoire climatisee perfectionnee pour equipements, notamment de telephonie
FR3005813A1 (fr) Panneau solaire hybride

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030214

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): FR SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR SE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071108

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150916

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150930

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160915

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930