EP1308914B1 - Passiv-Infrarotmelder - Google Patents

Passiv-Infrarotmelder Download PDF

Info

Publication number
EP1308914B1
EP1308914B1 EP01126182A EP01126182A EP1308914B1 EP 1308914 B1 EP1308914 B1 EP 1308914B1 EP 01126182 A EP01126182 A EP 01126182A EP 01126182 A EP01126182 A EP 01126182A EP 1308914 B1 EP1308914 B1 EP 1308914B1
Authority
EP
European Patent Office
Prior art keywords
temperature
annunciator
ambient temperature
sensitivity
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01126182A
Other languages
English (en)
French (fr)
Other versions
EP1308914A1 (de
Inventor
Martin Pfister
David Siegwart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Building Technologies AG
Original Assignee
Siemens Building Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Building Technologies AG filed Critical Siemens Building Technologies AG
Priority to EP01126182A priority Critical patent/EP1308914B1/de
Priority to DE50103419T priority patent/DE50103419D1/de
Priority to AT01126182T priority patent/ATE274732T1/de
Priority to US10/282,526 priority patent/US6800854B2/en
Publication of EP1308914A1 publication Critical patent/EP1308914A1/de
Application granted granted Critical
Publication of EP1308914B1 publication Critical patent/EP1308914B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S250/00Radiant energy
    • Y10S250/01Passive intrusion detectors

Definitions

  • the invention relates to a passive infrared detector with a first sensor for the generation one representative of the temperature difference between a heat source and its surroundings Infrared signal, with one influenced by the ambient temperature of the detector second sensor, and with an evaluation circuit for processing the infrared signal, wherein the evaluation circuit a temperature compensation to influence the sensitivity of the detector depending on the ambient temperature mentioned.
  • the amplitude of the infrared signal is approximately proportional to the temperature difference between the intruder and objects that are present in the background of the surveillance area.
  • the latter temperature is referred to below as the background temperature.
  • the infrared signal corresponds to Stefan-Boltzmann's law, according to which the total radiation of the black body over all wavelengths per cm 2 and second is proportional to the 4th power of the absolute temperature of the body.
  • the sensitivity or detection range of passive infrared detectors is therefore largely dependent on the background temperature, which means that the sensitivity decreases as the temperature difference decreases, which is the case when the background temperature approaches the intruder's body temperature. This occurs, for example, in hot or tropical areas.
  • the second sensor not only provides information about the ambient temperature but also about the background temperature. Consequently the second sensor opens up the possibility of an increase in the background temperature to body temperature and the associated decrease in temperature contrast between to recognize an intruder and the background and the infrared signal depending to amplify from the ambient temperature. Alternatively, the amplification of the infrared signal remain unchanged and the alarm threshold of the detector is changed accordingly.
  • Such a detector as described for example in US-A-4 195 234, has one constant detection sensitivity. However, if the ambient temperature is the body temperature of the intruder, the gain of the infrared signal is increased or the alarm threshold is reduced. Even in the opposite case, when the body temperature is below the Ambient temperature drops, the detection sensitivity does not remain constant.
  • a passive infrared detector is described in US Pat. No. 5,629,676, the sensitivity of which is also when the ambient temperature exceeds human body temperature, essentially should remain constant. This goal is achieved in that after the Temperature contrast minimums when intruder and background are approximately the same temperature the detector sensitivity is reduced.
  • the second sensor is usually provided on the inside of the detector Detector board is arranged, this sensor does not measure the background temperature and strictly speaking, not even the temperature around the detector, but the temperature Temperature inside the detector. This can result in it being warm or cold Drafts at the detector location can lead to a mismatch in sensitivity because the detector warms up too much or too quickly compared to the background cools. This mismatch can reduce the robustness of the detector Interference such as white light or EMC interference and the like.
  • the present invention has the task of a passive infrared detector of the type mentioned Specify the type in which the temperature compensation acts so that the robustness of the Detector against false alarms is increased.
  • the second sensor is preferably a temperature sensor arranged in the interior of the detector.
  • a first preferred embodiment of the detector according to the invention is characterized in that that influencing the sensitivity of the detector only after a delay he follows.
  • the delay is preferably effective in particular when there is an increase the ambient temperature would increase the sensitivity of the detector.
  • the delay is when the ambient temperature rises or falls and / or above and below a minimum value of the temperature difference between the heat source and the Environment different.
  • the delay preferably has a parameter-dependent one Duration based on the parameters by the rate of change in ambient temperature and / or are formed by the absolute temperature.
  • the delay can be with electronic means or by thermal insulation of the second sensor or of the ambient temperature affected component take place.
  • a second preferred embodiment of the detector according to the invention is characterized in that that influencing the sensitivity of the detector depending on the The rate of change in ambient temperature occurs.
  • the Temperature change temperature compensation from a first to a second mode and only after falling below a second value of the speed back to the first Mode switched. For example, temperature compensation is activated in the first mode and deactivated in the second mode.
  • the delay in influencing the sensitivity of the detector short local temperature fluctuations the sensitivity of the detector or in its immediate vicinity Do not affect the detector, and the temperature compensation is essentially from the course depend on the background temperature.
  • the second preferred embodiment of the detector according to the invention has the advantage that abnormal rapid temperature changes are suppressed and not false alarms due to unnecessarily increased sensitivity of the detector.
  • the passive infrared detector shown schematically in Fig. 1 is of conventional design and contains in particular a pyro sensor 1 and an evaluation stage 2 for evaluating the sensor signals.
  • the pyro sensor 1 When the received infrared energy changes, the pyro sensor 1 generates a signal which is further processed in evaluation level 2 for alarm release. Building a such a passive infrared detector is known, it is in this connection to EP-A-0 361 224, 0 499 177 and 1 093 100.
  • the pyro sensor 1 is, for example, a so-called standard dual pyro sensor, as shown in FIGS Passive infrared detectors from Siemens Building Technologies AG, formerly Cerberus AG, were used becomes.
  • standard dual pyro sensors contain two heat-sensitive elements or Flakes, the images of which on the floor or wall of a surveillance room Define surveillance areas, from the border of which a beam of rays to the respective one Flake runs. As soon as an object emitting thermal radiation is such an object Beam crosses, or in other words, penetrates into a monitoring room, detected the sensor 1 the thermal radiation emitted by this object.
  • the signal of the pyro sensor 1 is thus an infrared signal, which represents the temperature difference between a heat source (intruder) and its background.
  • the amplitude of the infrared signal is proportional to this temperature difference, although strictly speaking the infrared signal obeys Stefan-Boltzmann's law, according to which the total radiation of a black body over all wavelengths per cm 2 and second is proportional to the 4th power of the absolute temperature of the body.
  • Stefan-Boltzmann's law the sensitivity or detection range of a passive infrared detector is largely dependent on the background temperature. The closer this is to the body temperature, the lower the sensitivity of the detector.
  • the sensitivity of the detector is influenced by the ambient temperature Component, preferably a temperature sensor 3, and a temperature compensation 4 equipped.
  • the temperature compensation 4 receives the preferably on the board of the Detector arranged temperature sensor 3 continuously the ambient temperature T (Fig. 2) and increases the detection sensitivity in a certain temperature range of, for example, 20 ° to 35 °. This increase is made either by a corresponding change in the Amplification of the signal of the pyro sensor 1 or by reducing the alarm threshold with the the infrared signal is compared.
  • an evaluation using fuzzy logic would analogously the membership functions of the signal of the pyro sensor 1 adapted to the different fuzzy sets accordingly.
  • the temperature sensor 3 Since the temperature sensor 3 is arranged on the detector board, it measures strictly speaking not the background temperature but the temperature of the detector. In most cases it has no influence because these two temperatures are essentially the same, it can but there are times when the detector changes in relation to the background due to a draft heats up or cools down quickly, which triggers an inappropriate temperature compensation. And this in turn can reduce the robustness of the detector to interference such as for example white light or EMC interferers.
  • the temperature compensation 4 is designed such that when the temperature sensor 3 changes Ambient temperature no direct influence on the sensitivity of the detector he follows.
  • the sensitivity of the detector is influenced with a Delay, causing a change in the ambient temperature to occur after a certain time ⁇ t affects the detector sensitivity.
  • the delay occurs mainly in cases where there is an increase in the ambient temperature and the presumption derived from it that the temperature contrast between an intruder and the background, an automatic increment the sensitivity would take place.
  • the delay may vary depending on whether the temperature sensor 3 measured temperature rises or falls and / or how big the difference between the temperature of the intruder and the background temperature is different.
  • the Delay can be predetermined or one of certain parameters, such as Speed of temperature change or amount of absolute temperature, dependent Have duration.
  • the delay is preferably implemented electronically. But it is also possible to delay by thermal insulation of the temperature sensor 3 or of the ambient temperature affected component to realize.
  • the temperature compensation can be carried out in Dependence on the speed of the change in the measured by the temperature sensor 3 Control the ambient temperature by changing the temperature compensation when exceeded adapted to a certain threshold of said speed change and only at Falling below this or another threshold switches back to the original value.
  • adapting means switching from a mode with a normal one Temperature compensation to another mode with reduced temperature compensation.
  • Adaptation can also mean that the temperature compensation when the above is exceeded Threshold deactivated and only reactivated when this threshold is undershot.
  • T is the one measured by the temperature sensor 3 Ambient temperature and with the dashed curve TK the mode referred to the temperature compensation 4.
  • the top line of the curve TK indicates the mode "Temperature compensation normal” and the bottom line the mode “Temperature compensation reduced “again.
  • the dashed arrows A indicate the maximum gradient of the temperature change below which the temperature compensation operates in its normal mode becomes.
  • the arrows B indicate a delay before the temperature compensation is switched to normal mode.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Burglar Alarm Systems (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Glass Compositions (AREA)

Description

Die Erfindung betrifft einen Passiv-Infrarotmelder mit einem ersten Sensor für die Erzeugung eines für die Temperaturdifferenz zwischen einer Wärmequelle und deren Umgebung repräsentativen Infrarotsignals, mit einem von der Umgebungstemperatur des Melders beeinflussten zweiten Sensor, und mit einer Auswerteschaltung zur Verarbeitung des Infrarotsignals, wobei die Auswerteschaltung eine Temperaturkompensation zur Beeinflussung der Empfindlichkeit des Melders in Abhängigkeit von der genannten Umgebungstemperatur aufweist.
Die Amplitude des Infrarotsignals ist annähernd proportional zur Temperaturdifferenz zwischen dem Eindringling und Gegenständen, die im Hintergrund des Überwachungsbereichs vorhanden sind. Die letztere Temperatur wird nachfolgend als Hintergrundtemperatur bezeichnet. Genau genommen, entspricht das Infrarotsignal dem Stefan-Boltzmannschen Gesetz, gemäss dem die Gesamtstrahlung des schwarzen Körpers über alle Wellenlängen pro cm2 und Sekunde der 4. Potenz der absoluten Temperatur des Körpers proportional ist. Die Empfindlichkeit oder der Detektionsbereich von Passiv-Infrarotmeldern ist somit weitgehend von der Hintergrundtemperatur abhängig, das heisst, dass die Empfindlichkeit mit Abnahme der Temperaturdifferenz abnimmt, was dann der Fall ist, wenn sich die Hintergrundtemperatur der Körpertemperatur des Eindringlings nähert. Dieser Fall tritt beispielsweise in heissen oder tropischen Gegenden auf.
Wenn man davon ausgeht, dass ein Raum in der Regel eine homogene Temperaturverteilung aufweist, so dass die Hintergrundtemperatur der Umgebungstemperatur des Melders ungefähr gleich ist und sich synchron mit dieser ändert, dann liefert der zweite Sensor nicht nur Informationen über die Umgebungstemperatur sondern auch über die Hintergrundtemperatur. Somit eröffnet der zweite Sensor die Möglichkeit, ein Ansteigen der Hintergrundtemperatur auf Körpertemperatur und die damit verbundene Verminderung des Temperaturkontrasts zwischen einem Eindringling und dem Hintergrund zu erkennen und das Infrarotsignal in Abhängigkeit von der Umgebungstemperatur zu verstärken. Alternativ kann die Verstärkung des Infrarotsignals unverändert bleiben und die Alarmschwelle des Melders entsprechend verändert werden.
Ein derartiger Melder, wie er beispielsweise in der US-A-4 195 234 beschrieben ist, weist eine konstante Detektionsempfindlichkeit auf. Wenn allerdings die Umgebungstemperatur die Körpertemperatur des Eindringlings übersteigt, wird die Verstärkung des Infrarotsignals erhöht oder die Alarmschwelle verkleinert. Auch im umgekehrten Fall, wenn die Körpertemperatur unter die Umgebungstemperatur sinkt, bleibt die Detektionsempfindlichkeit nicht konstant.
In der US-A-5 629 676 ist ein Passiv-Infrarotmelder beschrieben, dessen Empfindlichkeit auch dann, wenn die Umgebungstemperatur die menschliche Körpertemperatur übersteigt, im wesentlichen konstant bleiben soll. Dieses Ziel wird dadurch erreicht, dass nach Überschreiten des Temperaturkontrastminimums, wenn Eindringling und Hintergrund ungefähr die gleiche Temperatur haben, die Melderempfindlichkeit verkleinert wird.
Da der zweite Sensor, wie schon erwähnt, in der Regel auf der im Inneren des Melders vorgesehenen Melderplatine angeordnet ist, misst dieser Sensor nicht die Hintergrundtemperatur und streng genommen nicht einmal die Temperatur in der Umgebung des Melders, sondern die Temperatur im Melderinneren. Das kann dazu führen, dass es infolge von warmem oder kaltem Luftzug am Ort des Melders zu einer Fehlanpassung der Empfindlichkeit kommen kann, weil sich der Melder im Vergleich zum Hintergrund zu stark oder zu rasch erwärmt beziehungsweise abkühlt. Diese Fehlanpassung kann zu einer Reduktion der Robustheit des Melders gegenüber Störeinflüssen wie beispielsweise Weisslicht oder EMV-Störer und dergleichen führen.
Die vorliegende Erfindung hat die Aufgabe, einen Passiv-Infrarotmelder der eingangs genannten Art anzugeben, bei dem die Temperaturkompensation so wirkt, dass die Robustheit des Melders gegen Fehlalarme erhöht wird.
Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Temperaturkompensation so ausgebildet ist, dass bei Änderung der Umgebungstemperatur keine unmittelbare Beeinflussung der Empfindlichkeit des Melders erfolgt. Vorzugsweise ist der zweite Sensor durch einen im Inneren des Melders angeordneten Temperatursensor gebildet.
Eine erste bevorzugte Ausführungsform des erfindungsgemässen Melders ist dadurch gekennzeichnet, dass die Beeinflussung der Empfindlichkeit des Melders erst nach einer Verzögerung erfolgt. Vorzugsweise ist die Verzögerung insbesondere dann wirksam, wenn eine Erhöhung der Umgebungstemperatur eine Erhöhung der Empfindlichkeit des Melders bewirken würde.
Die Verzögerung ist bei Anstieg oder Abfall der Umgebungstemperatur und/oder ober- und unterhalb eines minimalen Werts der Temperaturdifferenz zwischen der Wärmequelle und der Umgebung unterschiedlich. Vorzugsweise weist die Verzögerung eine von Parametern abhängige Dauer auf, wobei die Parameter durch die Geschwindigkeit der Änderung der Umgebungstemperatur und/oder durch die absolute Temperatur gebildet sind. Die Verzögerung kann mit elektronischen Mitteln oder durch Wärmeisolation des zweiten Sensors oder des von der Umgebungstemperatur beeinflussten Bauteils erfolgen.
Eine zweite bevorzugte Ausführungsform des erfindungsgemässen Melders ist dadurch gekennzeichnet, dass die Beeinflussung der Empfindlichkeit des Melders in Abhängigkeit von der Geschwindigkeit der Änderung der Umgebungstemperatur erfolgt.
Vorzugsweise wird bei Überschreiten eines vorgebbaren ersten Werts der Geschwindigkeit der Temperaturänderung die Temperaturkompensation von einem ersten auf einen zweiten Modus und erst nach Unterschreiten eines zweiten Werts der Geschwindigkeit wieder auf den ersten Modus umgeschaltet. Beispielsweise ist die Temperaturkompensation im ersten Modus aktiviert und im zweiten Modus deaktiviert.
Bei der ersten bevorzugten Ausführungsform des erfindungsgemässen Melders werden durch die Verzögerung der Beeinflussung der Empfindlichkeit des Melders kurze lokale Temperaturschwankungen des Melders oder in dessen unmittelbarer Umgebung die Empfindlichkeit des Melders nicht beeinflussen, und die Temperaturkompensation wird im wesentlichen vom Verlauf der Hintergrundtemperatur abhängen.
Die Berücksichtigung der Geschwindigkeit der Änderung der Umgebungstemperatur gemäss der zweiten bevorzugten Ausführungsform des erfindungsgemässen Melders hat den Vorteil, dass abnormal rasche Temperaturänderungen unterdrückt werden und nicht zu Fehlalarmen wegen unnötig erhöhter Empfindlichkeit des Melders führen können.
Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels und der Zeichnungen näher erläutert; es zeigt:
  • Fig. 1 ein Blockschema eines erfindungsgemässen Passiv-Infrarotmelders; und
  • Fig. 2 ein Diagramm zur Funktionserläuterung.
  • Der in Fig. 1 schematisch dargestellte Passiv-Infrarotmelder ist von üblicher Bauart und enthält insbesondere einen Pyrosensor 1 und eine Auswertestufe 2 zur Auswertung der Sensorsignale. Der Pyrosensor 1 erzeugt bei einer Änderung der empfangenen Infrarot-Energie ein Signal, welches in der Auswertestufe 2 zur Alarmfreigabe weiter verarbeitet wird. Der Aufbau eines solchen Passiv-Infrarotmelders ist bekannt, es wird in diesem Zusammenhang auf die EP-A-0 361 224, 0 499 177 und 1 093 100 verwiesen.
    Der Pyrosensor 1 ist beispielsweise ein sogenannter Standard-Dualpyrosensor, wie er in den Passiv-Infrarotmeldern der Siemens Building Technologies AG, früher Cerberus AG, eingesetzt wird. Derartige Standard-Dualpyrosensoren enthalten zwei wärmeempfindliche Elemente oder Flakes, deren Abbildungen auf dem Boden oder einer Wand eines Überwachungsraums die Überwachungsbereiche definieren, von deren Umrandung jeweils ein Strahlenbündel zum jeweiligen Flake verläuft. Sobald ein eine Wärmestrahlung aussendendes Objekt ein derartiges Strahlenbündel kreuzt, oder mit anderen Worten, in einen Überwachungsraum eindringt, detektiert der Sensor 1 die von diesem Objekt ausgesandte Wärmestrahlung.
    Es bestehen zwei Voraussetzungen für die Detektion dieser Wärmestrahlung, einerseits eine Bewegung des die Wärmestrahlung aussendenden Objekts und andererseits das Vorhandensein einer Temperaturdifferenz oder eines Temperaturkontrasts zwischen dem genannten Objekt, welches im folgenden der Einfachheit halber als Eindringling bezeichnet wird, und dessen Hintergrund. Dies deswegen, weil der Melder auf die charakteristische Änderung des die empfangene Wärmestrahlung repräsentierenden Signals beim Eindringen des Eindringlings in den Überwachungsbereich und/oder bei dessen Verlassen anspricht. Und diese Signaländerungen können selbstverständlich nur dann auftreten, wenn sich der Eindringling bewegt und wenn er sich ausserdem temperaturmässig vom Hintergrund abhebt. Ein Eindringling wird also umso sicherer detektiert, je stärker sich seine Temperatur von derjenigen des Hintergrunds unterscheidet.
    Das Signal des Pyrosensors 1 ist also ein Infrarotsignal, welches die Temperaturdifferenz zwischen einer Wärmequelle (Eindringling) und dessen Hintergrund repräsentiert. Die Amplitude des Infrarotsignals ist zu dieser Temperaturdifferenz proportional, wenngleich das Infrarotsignal streng genommen dem Stefan-Boltzmannschen Gesetz gehorcht, gemäss dem die Gesamtstrahlung eines schwarzen Körpers über alle Wellenlängen pro cm2 und Sekunde der 4. Potenz der absoluten Temperatur des Körpers proportional ist. Unter der Voraussetzung einer annähernd konstanten Körpertemperatur eines Eindringlings, ist also die Empfindlichkeit oder der Detektionsbereich eines Passiv-Infrarotmelders weitgehend von der Hintergrundtemperatur abhängig. Je näher diese bei der Körpertemperatur liegt, desto geringer wird die Empfindlichkeit des Melders.
    Zur Erzielung einer über einen weiten Bereich der Hintergrundtemperatur weitgehend konstanten Empfindlichkeit des Melders ist dieser mit einem von der Umgebungstemperatur beeinflussten Bauteil, vorzugsweise einem Temperatursensor 3, und einer Temperaturkompensation 4 ausgerüstet. Die Temperaturkompensation 4 erhält von dem vorzugsweise auf der Platine des Melders angeordneten Temperatursensor 3 laufend die Umgebungstemperatur T (Fig. 2) und erhöht in einem bestimmten Temperaturbereich von beispielsweise 20° bis 35° die Detektionsempfindlichkeit. Diese Erhöhung erfolgt entweder durch eine entsprechende Änderung der Verstärkung des Signals des Pyrosensors 1 oder durch Reduktion der Alarmschwelle mit der das Infrarotsignal verglichen wird. Im Fall einer Auswertung mit Hilfe von Fuzzy-Logic (siehe EP-A-0 646 901) würden sinngemäss die Zugehörigkeitsfunktionen des Signals des Pyrosensors 1 zu den verschiedenen Fuzzy-Sets entsprechend adaptiert.
    Da der Temperatursensor 3 auf der Melderplatine angeordnet ist, misst er streng genommen nicht die Hintergrundtemperatur sondern die Temperatur des Melders. In den meisten Fällen hat das keinen Einfluss, weil diese beiden Temperaturen im wesentlichen gleich sind, es kann aber vorkommen, dass sich der Melder im Vergleich zum Hintergrund infolge eines Luftzugs zu rasch erwärmt oder abkühlt, was zu eine unangepasst Temperaturkompensation auslöst. Und diese wiederum kann zu einer Reduktion der Melderrobustheit gegenüber Störeinflüssen wie beispielsweise Weisslicht oder EMV-Störer, führen.
    Zur Ausschaltung dieser potentiellen Fehlalarmquelle ist vorgesehen, dass die Temperaturkompensation 4 so ausgebildet ist, dass bei Änderung der vom Temperatursensor 3 gemessenen Umgebungstemperatur keine unmittelbare Beeinflussung der Empfindlichkeit des Melders erfolgt. Zu diesem Zweck erfolgt die Beeinflussung der Empfindlichkeit des Melders mit einer Verzögerung, wodurch bewirkt wird, dass sich eine Änderung der Umgebungstemperatur erst nach einer bestimmten Zeit Δt auf die Melderempfindlichkeit auswirkt.
    Diese Verzögerung erfolgt vor allem in den Fällen, wo aufgrund einer Erhöhung der Umgebungstemperatur und der davon abgeleiteten Vermutung, dass sich der Temperaturkontrast zwischen einem Eindringling und dem Hintergrund verkleinert hat, eine automatische Erhöhung der Empfindlichkeit stattfinden würde. Die Verzögerung kann je nachdem, ob die vom Temperatursensor 3 gemessene Temperatur steigt oder fällt und/oder wie gross die Differenz zwischen der Temperatur des Eindringlings und der Hintergrundtemperatur ist, unterschiedlich sein. Die Verzögerung kann fest vorgegeben sein oder eine von bestimmten Parametern, wie beispielsweise Geschwindigkeit der Temperaturänderung oder Höhe der absoluten Temperatur, abhängige Dauer haben.
    Vorzugsweise wird die Verzögerung elektronisch realisiert. Es ist aber auch möglich, die Verzögerung durch eine Wärmeisolation des Temperatursensors 3 oder des von der Umgebungstemperatur beeinflussten Bauteils zu verwirklichen.
    Zusätzlich zur Verzögerung oder alternativ zu dieser kann man die Temperaturkompensation in Abhängigkeit von der Geschwindigkeit der Änderung der vom Temperatursensor 3 gemessenen Umgebungstemperatur steuern, indem man die Temperaturkompensation bei Überschreiten einer bestimmten Schwelle der genannten Geschwindigkeitsänderung adaptiert und erst bei Unterschreiten dieser oder einer anderen Schwelle wieder auf den ursprünglichen Wert schaltet. Adaptieren heisst in diesem Zusammenhang umschalten von einem Modus mit normaler Temperaturkompensation auf einen anderen Modus mit reduzierter Temperaturkompensation. Adaptieren kann auch heissen, dass die Temperaturkompensation bei Überschreiten der genannten Schwelle deaktiviert und erst bei Unterschreiten dieser Schwelle wieder aktiviert wird.
    In Fig. 2 ist die zuletzt genannte Methode zur Temperaturkompensation anhand eines Diagramms erläutert. In der Figur ist mit dem Bezugszeichen T die vom Temperatursensor 3 gemessene Umgebungstemperatur und mit der gestrichelt eingezeichneten Kurve TK der Modus der Temperaturkompensation 4 bezeichnet. Die obere Linie der Kurve TK gibt den Modus "Temperaturkompensation normal" und die untere Linie den Modus "Temperaturkompensation reduziert" wieder. Die gestrichelten Pfeile A geben die maximale Steigung der Temperaturänderung an, unterhalb von der die Temperaturkompensation in ihrem normalen Modus betrieben wird. Die Pfeile B bezeichnen eine Verzögerung vor dem Umschalten der Temperaturkompensation auf den Normalmodus.

    Claims (11)

    1. Passiv-Infrarotmelder mit einem ersten Sensor (1) für die Erzeugung eines für die Temperaturdifferenz zwischen einer Wärmequelle und deren Hintergrund repräsentativen Infrarotsignals, mit einem von der Umgebungstemperatur des Melders beeinflussten zweiten Sensor (3), und mit einer Auswerteschaltung (2) zur Verarbeitung des Infrarotsignals, wobei die Auswerteschaltung eine Temperaturkompensation (4) zur Beeinflussung der Empfindlichkeit des Melders in Abhängigkeit von der genannten Umgebungstemperatur aufweist, dadurch gekennzeichnet, dass die Temperaturkompensation (4) so ausgebildet ist, dass bei Änderung der Umgebungstemperatur keine unmittelbare Beeinflussung der Empfindlichkeit des Melders erfolgt.
    2. Melder nach Anspruch 1, dadurch gekennzeichnet, dass der zweite Sensor (3) durch einen im Inneren des Melders angeordneten Temperatursensor gebildet ist.
    3. Melder nach Anspruch 2, dadurch gekennzeichnet, dass die Beeinflussung der Empfindlichkeit des Melders erst nach einer Verzögerung erfolgt.
    4. Melder nach Anspruch 3, dadurch gekennzeichnet, dass die Verzögerung insbesondere dann wirksam wird, wenn eine Erhöhung der Umgebungstemperatur eine Erhöhung der Empfindlichkeit des Melders bewirken würde.
    5. Melder nach Anspruch 3, dadurch gekennzeichnet, dass die Verzögerung bei Anstieg oder Abfall der Umgebungstemperatur und/oder ober- und unterhalb eines minimalen Werts der Temperaturdifferenz zwischen der Wärmequelle und der Umgebung unterschiedlich ist.
    6. Melder nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die Verzögerung eine von Parametern abhängige Dauer aufweist, wobei die Parameter durch die Geschwindigkeit der Änderung der Umgebungstemperatur und/oder durch die absolute Temperatur gebildet sind.
    7. Melder nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die Verzögerung mit elektronischen Mitteln erfolgt.
    8. Melder nach Anspruch 2, dadurch gekennzeichnet, dass die Verzögerung durch Wärmeisolation des zweiten Sensors (3) oder des von der Umgebungstemperatur beeinflussten Bauteils erfolgt.
    9. Melder nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Beeinflussung der Empfindlichkeit des Melders in Abhängigkeit von der Geschwindigkeit der Änderung der Umgebungstemperatur erfolgt.
    10. Melder nach Anspruch 9, dadurch gekennzeichnet, dass bei Überschreiten einer vorgebbaren ersten Werts der Geschwindigkeit der Temperaturänderung die Temperaturkompensation (4) von einem ersten auf einen zweiten Modus und erst nach Unterschreiten eines zweiten Werts der Geschwindigkeit wieder auf den ersten Modus umgeschaltet wird.
    11. Melder nach Anspruch 10, dadurch gekennzeichnet, dass die Temperaturkompensation (4) im ersten Modus aktiviert und im zweiten Modus deaktiviert ist.
    EP01126182A 2001-11-05 2001-11-05 Passiv-Infrarotmelder Expired - Lifetime EP1308914B1 (de)

    Priority Applications (4)

    Application Number Priority Date Filing Date Title
    EP01126182A EP1308914B1 (de) 2001-11-05 2001-11-05 Passiv-Infrarotmelder
    DE50103419T DE50103419D1 (de) 2001-11-05 2001-11-05 Passiv-Infrarotmelder
    AT01126182T ATE274732T1 (de) 2001-11-05 2001-11-05 Passiv-infrarotmelder
    US10/282,526 US6800854B2 (en) 2001-11-05 2002-10-29 Passive infrared detector

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP01126182A EP1308914B1 (de) 2001-11-05 2001-11-05 Passiv-Infrarotmelder

    Publications (2)

    Publication Number Publication Date
    EP1308914A1 EP1308914A1 (de) 2003-05-07
    EP1308914B1 true EP1308914B1 (de) 2004-08-25

    Family

    ID=8179156

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01126182A Expired - Lifetime EP1308914B1 (de) 2001-11-05 2001-11-05 Passiv-Infrarotmelder

    Country Status (4)

    Country Link
    US (1) US6800854B2 (de)
    EP (1) EP1308914B1 (de)
    AT (1) ATE274732T1 (de)
    DE (1) DE50103419D1 (de)

    Families Citing this family (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7126476B2 (en) * 2002-05-12 2006-10-24 Risco Ltd. Dual sensor intruder alarm
    JP4289561B2 (ja) * 2004-12-24 2009-07-01 横浜ゴム株式会社 車両の異常検出方法及びその装置並びにそのセンサユニット
    JP4978501B2 (ja) * 2008-02-14 2012-07-18 日本電気株式会社 熱型赤外線検出器及びその製造方法
    US8063372B2 (en) * 2009-03-06 2011-11-22 Siemens Energy, Inc. Apparatus and method for temperature mapping a rotating turbine component in a high temperature combustion environment
    JP5899393B2 (ja) * 2011-02-25 2016-04-06 パナソニックIpマネジメント株式会社 レンジフード
    US9442017B2 (en) * 2014-01-07 2016-09-13 Dale Read Occupancy sensor
    US9500187B2 (en) * 2014-02-03 2016-11-22 Theodore S. Wills Method, system and program product operable to relay a motion detector activation
    US9666063B2 (en) 2015-04-09 2017-05-30 Google Inc. Motion sensor adjustment
    CN107230317A (zh) * 2016-03-25 2017-10-03 深圳富泰宏精密工业有限公司 异常行为监控系统及方法
    CN109416242B (zh) 2016-04-22 2021-05-18 惠普发展公司,有限责任合伙企业 用于距离确定的设备和方法
    CN110915301B (zh) * 2017-07-27 2022-05-31 昕诺飞控股有限公司 使用周围温度估计补偿模拟信号数据的系统、方法和设备
    US11058325B2 (en) * 2018-03-30 2021-07-13 Stryker Corporation Patient support apparatuses with multi-sensor fusion

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4195234A (en) 1978-02-02 1980-03-25 Optical Coating Laboratory, Inc. Infrared intrusion alarm system with temperature responsive threshold level
    CH676642A5 (de) 1988-09-22 1991-02-15 Cerberus Ag
    IT1245405B (it) 1991-02-11 1994-09-20 Bitron Video Dispositivo anti-intrusione
    CH686805A5 (de) 1993-10-04 1996-06-28 Cerberus Ag Verfahren zur Verarbeitung der Signale eines passiven Infrarot-Detektors und Infrarot-Detektor zur Durchfuehrung des Verfahrens.
    IL110429A (en) * 1994-07-25 1998-07-15 Rokonet Electronics Limited Alarm system
    DE19736214A1 (de) * 1996-09-24 1998-03-26 Siemens Ag Verfahren und Vorrichtung zur Auswertung eines Signals eines Bewegungsmelders
    US5870022A (en) * 1997-09-30 1999-02-09 Interactive Technologies, Inc. Passive infrared detection system and method with adaptive threshold and adaptive sampling
    JPH11132857A (ja) * 1997-10-28 1999-05-21 Matsushita Electric Works Ltd 赤外線検出器
    EP1093100B8 (de) 1999-10-14 2004-08-18 Siemens Building Technologies AG Passiv-Infrarotmelder

    Also Published As

    Publication number Publication date
    EP1308914A1 (de) 2003-05-07
    US6800854B2 (en) 2004-10-05
    DE50103419D1 (de) 2004-09-30
    US20030136908A1 (en) 2003-07-24
    ATE274732T1 (de) 2004-09-15

    Similar Documents

    Publication Publication Date Title
    EP1308914B1 (de) Passiv-Infrarotmelder
    EP0973137B1 (de) Bewegungsmelder
    EP0107042B1 (de) Infrarot-Detektor zur Feststellung eines Eindringlings in einen Raum
    DE4200946A1 (de) Verfahren zur feuerfeststellung
    DE69710019T2 (de) Anwesenheitssensor mit mehreren Funktionen
    DE69413117T2 (de) Detektierungssystem des passiven Typs von sich bewegendem Objekt
    DE19934171B4 (de) Filtersystem und -verfahren
    EP1061489B1 (de) Intrusionsmelder mit einer Einrichtung zur Sabotageüberwachung
    EP0939387A1 (de) Einrichtung zur Raumüberwachung
    DE3832428A1 (de) Personen-erfassungsvorrichtung
    DE60014807T2 (de) Verfahren und vorrichtung zur erfassung eines maskiervorgangs beim einschalten eines bewegungsdetektors
    DE60109355T2 (de) Fern Infrarotstrahlung Thermosäule Detektionsvorrichtung zum Verbrechensschutz
    DE69327558T2 (de) Feuer-Detektierungsverfahren
    DE19952327B4 (de) Brandsensor und Verfahren zur Detektion eines Feuers
    DE102008001383A1 (de) Detektionsvorrichtung sowie Verfahren zur Detektion von Bränden und/oder von Brandmerkmalen
    DE60202651T2 (de) Objekterfassungseinrichtung mit pyroelektrischem Sensor
    DE69723494T2 (de) Rauchdetektionsvorrichtung und Verfahren
    EP1093100B1 (de) Passiv-Infrarotmelder
    EP1071931B1 (de) Sensorvorrichtung und verfahren zum betreiben einer sensorvorrichtung
    DE69311959T2 (de) Rauch- und Dampfmelder für ein Mikrowellenkochgerät
    EP0660282B1 (de) Brandmeldesystem zur Früherkennung von Bränden
    EP2758948B1 (de) Brandmelder mit sensorfeld
    EP0250746A2 (de) Passiver Infrarot-Bewegungsmelder
    EP0845765A1 (de) Einbruchmeldersystem
    EP2402793B1 (de) Verfahren zum gepulsten Betreiben einer Lichtschranke und Lichtschranke

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    17P Request for examination filed

    Effective date: 20031027

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040825

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040825

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040825

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040825

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50103419

    Country of ref document: DE

    Date of ref document: 20040930

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041105

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041125

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041125

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041206

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20040825

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050526

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: SIEMENS BUILDING TECHNOLOGIES AG C-IPR

    Free format text: SIEMENS BUILDING TECHNOLOGIES AG#BELLERIVESTRASSE 36#8034 ZUERICH (CH) -TRANSFER TO- SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH)

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050125

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: SIEMENS AKTIENGESELLSCHAFT

    Free format text: SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE)

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IE

    Payment date: 20081124

    Year of fee payment: 8

    Ref country code: NL

    Payment date: 20081111

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20081126

    Year of fee payment: 8

    Ref country code: SE

    Payment date: 20081106

    Year of fee payment: 8

    Ref country code: BE

    Payment date: 20081119

    Year of fee payment: 8

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20090514 AND 20090520

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20090205

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20091019

    Year of fee payment: 9

    BERE Be: lapsed

    Owner name: *SIEMENS BUILDING TECHNOLOGIES A.G.

    Effective date: 20091130

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20100601

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100601

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091130

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091130

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091105

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091105

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091106

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101105

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50103419

    Country of ref document: DE

    Owner name: VANDERBILT INTERNATIONAL GMBH, DE

    Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50103419

    Country of ref document: DE

    Representative=s name: TERGAU & WALKENHORST PATENTANWAELTE PARTGMBB, DE

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Owner name: VANDERBILT INTERNATIONAL GMBH, DE

    Effective date: 20160224

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20201119

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20201123

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20201126

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 50103419

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20211104

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20211104