EP1307599B1 - Procede mecanique de generation de nanostructures et dispositif mecanique de generation de nanostructures - Google Patents
Procede mecanique de generation de nanostructures et dispositif mecanique de generation de nanostructures Download PDFInfo
- Publication number
- EP1307599B1 EP1307599B1 EP01963035A EP01963035A EP1307599B1 EP 1307599 B1 EP1307599 B1 EP 1307599B1 EP 01963035 A EP01963035 A EP 01963035A EP 01963035 A EP01963035 A EP 01963035A EP 1307599 B1 EP1307599 B1 EP 1307599B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nanostructures
- generating
- balls
- given
- enclosure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002086 nanomaterial Substances 0.000 title claims description 110
- 238000010297 mechanical methods and process Methods 0.000 title claims description 8
- 238000000034 method Methods 0.000 claims description 45
- 239000002184 metal Substances 0.000 claims description 32
- 229910052751 metal Inorganic materials 0.000 claims description 32
- 238000011282 treatment Methods 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 24
- 238000005121 nitriding Methods 0.000 claims description 16
- 238000009792 diffusion process Methods 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 6
- 238000004381 surface treatment Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000006555 catalytic reaction Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 238000005256 carbonitriding Methods 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims 2
- 239000006096 absorbing agent Substances 0.000 claims 1
- 230000035939 shock Effects 0.000 claims 1
- 230000035882 stress Effects 0.000 claims 1
- 230000008646 thermal stress Effects 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 23
- 239000010410 layer Substances 0.000 description 21
- 230000008569 process Effects 0.000 description 18
- 239000011324 bead Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 229920003023 plastic Polymers 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000002604 ultrasonography Methods 0.000 description 6
- 238000005422 blasting Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000013016 damping Methods 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000000498 ball milling Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000007596 consolidation process Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000005226 mechanical processes and functions Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002707 nanocrystalline material Substances 0.000 description 1
- 238000007709 nanocrystallization Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005293 physical law Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
- C21D7/06—Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/03—Amorphous or microcrystalline structure
Definitions
- the present invention relates to a mechanical method of generation of nanostructures on metal parts and a device mechanical generation of nanostructures.
- Nanocrystalline materials are characterized by ultra-fine grains typically less than 100nm in at least one dimension. These materials are produced by known methods such as, for example, IGC (inert gas condensation and consolidation) by condensation and consolidation in an inert gas, SPD (severe plastic deformation) plastic deformation intense, etc. These methods have the disadvantage of generating materials that are not without porosity, contamination and of sufficient size for industrial applications.
- the object of the invention is to create on the surface of the material a layer of this same material with grains of component of a few tens of nanometers forming what is commonly called a layer of nanoscale microstructures or nanostructures.
- Shot blasting of the surface of a material for example metallic material
- the balls are projected using an air jet compressed.
- the balls are not reused immediately and go through a recycling device before replenish the jet lance or the absence of a recycling device process requires a large amount of beads.
- each jet incident on the piece is unidirectional under a certain angle for a given surface.
- a continuous sweep of the room is required during shot peening to obtain a homogeneous surface.
- the results obtained show that the surface of the treated part does not include of nanostructures.
- the present invention therefore aims to overcome the disadvantages of the prior art by proposing a method for generating nanostructures to obtain a layer of nanostructures over a thickness determined from the surface of a part to be treated by a mechanical device using a limited amount of beads in a closed volume. This process is still called surface nanocrystallization by ball-milling.
- Another object of the invention is to propose a device mechanics for generating nanostructures to obtain a layer of nanostructures over a thickness determined by a mechanical device using a limited amount of beads in a closed volume.
- This goal is achieved through the mechanical device for generating nanostructures on a metal part comprising at least one enclosure closed for the size balls containing a determined quantity of perfectly spherical dimension, a connecting means of the enclosure to means for generating a vibration communicated to the enclosure, the assembly enclosure, vibration means being mounted by damping means (31) on a turntable (30) with a determined speed in a plane perpendicular to the direction of the vibratory motion communicated to the enclosure.
- the principle of the invention is to perform a surface treatment of a metal part to, on the one hand modify the characteristics mechanics of the metal part, and secondly modify the properties of diffusion in the surface layer of the treated surface.
- the mechanical properties of the microstructures nanoscale or nanostructure are well known. Indeed, the more metal grain size is small, the higher the mechanical strength of the room is big. Thus, the current research aims to develop manufacturing processes for obtaining formed parts only nanostructures.
- the object of the invention is quite different, it consists, through a method of generating nanostructures (described later) to make a surface layer of nanostructures giving, the surface of the piece, the properties, for example mechanical this is sufficient to guarantee the properties targeted for the piece (resistance to fatigue, wear, friction, corrosion).
- the size of the grains of metal from the surface of the room. Initially, for a piece, for example made of pure iron, the grains have a dimension of the order of 100 .mu.m. AT the result of the treatment according to the invention, the size of the grains is only the order of a few tens of nanometers.
- FIG. 1 represents a diagram of a mechanical device of generation of nanostrutures by ball milling.
- the generation principle nanostructures by ball-milling according to FIG. put a determined quantity of balls (22) perfectly spherical in movement and speed determined to impart energy to them kinetics allowing them to go to impact at the same point of the surface to deal with varying angles of incidence and sufficient energy to create nanostructures.
- the balls (22) chosen to strike the surface (10) to be treated are perfectly spherical and of high quality.
- the balls (22) selected are ball bearing balls. Given their quality, their use is carried out in a fixed quantity.
- the use of balls (22) steel, green or ceramic, perfectly spherical, avoids the localized accumulation of constraints which, during the impact of the marble, damage the material. This perfect sphericity therefore makes it possible to generate plastic deformation of the surface of the material during the process of formation of the layer of nanostructures. The repetition of deformations multidirectional plastics then causes a fractionation of the grains of the metal or alloy of the piece to be treated and therefore a decrease in their sizes.
- This arm (32) is connected to a structure (35) comprising a non-motor visible driving an axis (33) on which is mounted an inertial part (34) consisting, for example, of a circular sector-shaped mass (34).
- the motor driving the axis (33) gives this inertial mass a speed V which given the dissymmetry will generate within the structure (35) a vibration which is communicated by its connection with the arm (32). This vibration is transmitted by the arm (32) to each bowl (20a, 20b).
- This structure consisting of the arm of the inertial system and at least one bowl is mounted on one or more damping means (31a, 31b), the occurrence, in the exemplary embodiment, means are provided dampers below each of the bowls so as to give a symmetry of motion and thus more easily control the vibrations generated.
- damping means (31a, 31b) are supported by a plate (30), which is rotatably actuated in one direction by means of rotational drive not shown.
- the vibratory motion communicated by the inertial system (33, 34, 35) the bowls (20a, 20b) are of direction substantially perpendicular to the plane of the plateau or in other words, parallel to the axis of rotation of the plate.
- the frequency of vibration as well as the amplitude of these vibrations are adapted according to the speed of rotation of the plate, so as to to communicate to the balls a determined speed allowing them to acquire sufficient kinetic energy for the creation of nanostructures.
- the marbles (22) draw their energy from the bowl movement and will strike the surface of the workpiece (10) a large number of times according to angles of incidence variable and multiple by creating at each impact a plastic deformation constituted grains, an agglomerate of molecules of matter or alloy.
- the ball having lost its energy in contact with the piece (10) falls back on the walls of the bowl (20) to acquire a new speed in a direction which, view of the room, seems random but determined by the physical laws.
- the bowl (20) can be closed, either by the piece (10a) which then constitutes a lid for the bowl, or by a lid (203a, 203b) on which is fixed the piece (10a).
- This last variant allows to realize in the enclosure closed constituted by the bowl (20a respectively 20b) and its lid associated (203a respectively 203b) an orifice (204a respectively 204b) to create a vacuum inside this chamber to promote the displacement of the balls.
- system inertial (33, 34, 35) can be replaced by a sonotrode communicating with arm (32) a vibration of sufficient amplitude and frequency.
- a sonotrode communicating with arm (32) a vibration of sufficient amplitude and frequency.
- the surface to be treated can be placed under mechanical stress, for example into clamping the workpiece (10) with suitable gripping means (21).
- gripping means are, for example, constituted by a sole (21.2) on which clamps (21.1) are mounted to clamp the workpiece against a protective shim (21.3) interposed between the piece (10) and the sole (21.2).
- a rod (21.4) passing through the bores (21.21 and 21.31) of the sole (21.2) and the shim (21.3) applies a force on the part (10) retained by the flanges (21.1).
- the pressure force can be obtained by threading the rod 21.4 and by screwing it into a threaded hole (21.21) formed in the sole (21.2).
- the invention is not limited to the embodiments described but encompasses any mode of applying mechanical stresses into a or several places in a room. So several rods can be provided to apply different constraints in multiple places to get different thicknesses of nanostructures proportional to the value of constraints applied to the respective points.
- traction means on each of the The ends of the piece allow to put it under stress.
- These means are constituted, for example, by an upper plate (31) and a lower plate (32) held apart by a distance adjustable by three screw threads (33) arranged at 120 ° and urging the ends of the piece made integral with each tray.
- the piece can, for example, cross each tray through holes and come to rest against the surface of each plate turned outwards by means of rings forming shoulders and made integral with the ends of the piece by a screw of transverse locking to the ring.
- the trays, in particular that (32) oriented towards the emission zone of the projectiles, are provided, as shown FIG. 3B, recesses (321) allowing the circulation and projection of balls.
- the applied stress can to be thermal.
- the surface to be treated is heated, either entirely to get a uniform thickness of nanocrystalline structures all over the the surface of the part subjected to the bombardment of logs, either locally for obtain thickness variations of nanocrystalline structures.
- heating means by radiation or conduction are installed in the bowl or on the room or in the acoustic enclosure of the machine.
- the general principle for choosing the process parameters of generation of nanostructures according to the invention is that, the higher the energy the kinetics of the beads is important, the higher the level of stress generated in the under layer is important.
- the upper limit of kinetic energy is defined, in particular by the warming up caused by the release of this kinetic energy during the impact on the surface to be treated and by the resistance mechanics of the balls and the material constituting the part. This disadvantage can be reduced or removed by cooling the enclosure or the room with a cooling system. Indeed, as explained previously, the rise in temperature tends to enlarge the grains of metal, and the material should not crack.
- the hardness of the balls plays a role, in particular in the transfer of the kinetic energy of the ball to the surface of the piece.
- the sound pressure generated by the sound waves also influences the process of generating the nanostructure.
- the generation of ultrasonic nanostructures or the projection of jets of balls can be carried out in a medium containing a gas determined specificity modifying the mechanical behavior or chemical composition of the surface of the material during impact of the balls.
- the surface to be treated must be exposed to a generation of ultrasonic nanostructures for 2 to 3 min with 3mm beads diameter.
- a layer of nanostructures of about 10 ⁇ m it is necessary to expose the surface to be treated to a generation of nanostructures ultrasonically for about 400s with 300 ⁇ m diameter beads.
- processing time per generation of nanostructures is between 30 and 1300s for materials classical metals (Fe, Ti, Ni, Al, Cu, etc ). Total time needed can be extended or reduced depending on the material.
- the diameter of the balls used is between 300 ⁇ m and 3mm. In fact, for a ball size determined and a determined material, the generation time of nanostructures is determined according to the thickness of nanostructures desired by the user.
- the entire mechanism can be arranged inside a acoustic enclosure (25) for reducing noise so as to make compatible with acceptable standards for the job.
- This enclosure (25) can be sealed and provided with means (26) for diffusion or vaporization (shown in dotted lines) allowing the performing one or more of the chemical or thermochemical treatments described below.
- the bowl thanks to its circulation channel (204a, 204b), allows the penetration of chemical or thermochemical treatments.
- the part to be treated may be useful to treat it, either initially under vacuum, or in an inert atmosphere, for example to avoid oxidation, then in a second time with the diffusion of specific chemical compounds to obtain the mechanical, physical or chemical properties interesting for the piece.
- the generation of nanostructures on the surface processed from the piece (10) causes a modification of the law of diffusion in the area treated by multiplication of the number of boundaries between the grains, these boundaries then constituting as many nanoscale channels allowing the diffusion of chemical compounds having a size of the order of a few atoms. This allows a better penetration of the chemical compounds.
- FIGS. 4A and 4B show the curve representing the rate and penetration of nitrogen during ionic nitriding for a temperature of 550 ° C and 350 ° C.
- the curve shown in the figure 4A corresponds to the measurement of the nitrogen content, depending on the thickness of the treated surface, where the part has undergone nitriding for two hours at a temperature of 550 ° C.
- the solid line corresponds to the measurement performed for a previously treated surface according to the method of generation of nanostructures according to the invention. Generation treatment nanostructures of the surface allowed to obtain a nanostructure on a thickness of about 20 ⁇ m.
- the dashed line curve corresponds to the measurement performed for an untreated surface by generation of nanostructures.
- the nitrogen content penetrated for nitriding treatment at 550 ° C is uniform in the thickness of the room and equal to 5%.
- the nitrogen content in the same operating conditions, is much more important, five times greater than the rate of the untreated part, in the thickness in which the nanostructures were formed.
- the nitrogen rate decreases rapidly up to a rate corresponding to the rate obtained according to the nitriding process of the prior art.
- the curve shown in Figure 4B corresponds to the measurement of the depending on the thickness of the treated surface, when the piece has nitrided for two hours at a temperature of 350 ° C.
- the solid curve corresponds to the measurement made for a surface previously treated according to the method of generating nanostructures according to the invention.
- the dashed line curve corresponds to the measurement taken for a surface not treated by generation of nanostructures.
- the treatment generation of nanostructures from the surface made it possible to obtain nanostructure on a thickness of 20 ⁇ m.
- the level of nitrogen is uniform in the thickness of the room and equal to 1%. This rate is too low to satisfactorily modify the properties mechanics of the surface of the room.
- the nitrogen content is 17 times higher than the rate of the non treated on the surface. Then, the nitrogen level decreases slowly in the thickness of the piece including the nanostructure, to end up being equal at the rate obtained according to the nitriding process of the prior art when the layer of the piece no longer includes nanostructures.
- the nitriding process according to the prior art does not realizes that from a certain temperature, close to 550 ° C, for a steel or carbon part. It can be seen that the prior treatment of the piece allows not only to obtain a good structure on the surface in one piece, but also to lower the processing temperature by retaining, in the case of treatment at 350 ° C, a nitrogen level greater than rate obtained without treatment by generation of nanostructures according to the invention.
- nitriding must be carried out at a temperature of about 550 ° C, gold at this temperature a metal part necessarily undergoes deformations. For some parts whose geometric precision is paramount, such deformations are not eligible, which therefore prohibits nitriding according to the method of the prior art.
- the method of generating nanostructures according to the invention it is therefore possible to lower the treatment temperature and therefore to decrease or remove deformations from the part. Therefore, pieces of precision can undergo nitriding, which was impossible according to the art prior.
- the pretreatment according to the method of generating nanostructures of the invention also makes it possible to reduce the duration of the treatment.
- the presence of nanostructures and in particular nanoscale diffusion channels allows faster diffusion of compounds in the surface layer of the room.
- the method comprises a step mechanical and / or thermal stressing of the part (10) metal to be treated.
- the method comprises a step diffusion treatment of chemical compounds and the formation of new phases of materials of different composition in the layer of nanostructures generated during the generation of nanostructures or after the generation thereof.
- the processing time is between several seconds and 10 hours.
- the size of the beads varies from 3 to 10 mm.
- the processing step is a nitriding comprising a nitrogen atmosphere of the piece (10) to to treat, at a specified temperature of between 350 and 550 ° C, during a fixed period of between 30 minutes and 10 hours.
- the processing step is a cementation or catalysis or storage of ions in the structure metallic part.
- the step of setting in motion vibration is achieved by means of an electronic vibrator whose waves cause the speakers to move in the desired direction.
- the vibrator is a generator ultrasonic.
- the diameter of the balls (22) perfectly spherical is between 300 ⁇ m and 3mm depending on the desired thickness of the layer of nanostructures.
- the projection time is determined by function of the thickness of nanostructures desired by the user.
- the projection time of the balls (22) is between 30 and 1300s.
- the method comprises a step cooling of the workpiece.
- the speed of the balls is included between 5 and 100 m / s
- the mechanical device for generating nanostructures on a determined thickness of a metal part (10) comprising at least a closed enclosure for the size of the balls containing a quantity determined perfectly spherical beads of determined size, a means for connecting the enclosure to means for generating a vibration communicated to the enclosure, the enclosure assembly, means of vibration being mounted by damping means (31) on a turntable (30) with a determined speed.
- the device comprises means of adjusting the speed of rotation of the plate and the means of adjusting the frequency and amplitude of the vibration generating means.
- the generation means of vibration is an ultrasonic generator.
- the generation means of vibration consists of an inertial assembly (34) driven in rotation according to an axis (33) perpendicular to the axis of rotation of the plate, the inertial assembly being mechanically connected to the connecting means (32) with the enclosure (20a, 20b).
- the device comprises means for stressing the metal part (10) and / or means for heating the workpiece (10).
- the device comprises means for adjusting the distance (d) between the emission source of the balls and the piece to be treated.
- the distance is of the order of 4 to 40 mm.
- the device comprises means for adjusting the duration of emission of the balls and their speed.
- the balls are in such quantity they occupy, when the means of movement in ultrasound are inactive, an area greater than 30% of the surface of the sonotrode
- the speed of the balls is included between 5 and 100m / s.
- the device comprises means to perform local cooling of the treated area of the room.
- the device comprises means of treatment by diffusion of chemical compounds in the layer of nanostructures generated during the generation of nanostructures or after the generation of these.
- the device comprises means for placing nitrogen in the part zone (10) to be treated, at a specified temperature of between 350 and 550 ° C, during a fixed term between 30 min and 10h.
- the device comprises means of carburizing, carbonitriding and other treatments thermochemical.
- the device is enclosed in an acoustic insulation enclosure (25).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
- une étape de mise en mouvement circulaire d'une quantité de billes (22) parfaitement sphériques disposées dans une enceinte fermée pour la taille des billes dont au moins une des parois supporte ou constitue la pièce à traiter (10) ;
- une étape de mise en mouvement vibratoire selon une direction perpendiculaire au plan du mouvement circulaire de l'enceinte supportant ou constituant la pièce à traiter ;
- la figure 1 représente une vue en coupe du principe du procédé mécanique de nanostrucutres selon l'invention ;
- la figure 2A représente en coupe une variante de réalisation de l'invention avec application de contraintes ;
- la figure 2B représente en coupe une vue de dessus de la cale utilisée dans la variante de réalisation de l'invention avec application de contraintes ;
- la figure 3A représente une vue en élévation d'une deuxième variante de réalisation de l'invention avec application de contraintes ;
- la figure 3B représente une vue de dessus du plateau inférieur de la deuxième variante de réalisation avec contraintes ;
- les figure 4A et 4B représentent la courbe représentant le taux et la pénétration de l'azote durant un traitement par nitruration ionique dans une pièce traitée selon le procédé mécanique de génération de nanostrutures selon l'invention, respectivement pour une température de 550 et 350°C.
- une étape de mise en mouvement circulaire d'une quantité de billes (22) parfaitement sphériques disposées dans une enceinte fermée pour la taille des billes dont au moins une des parois supporte ou constitue la pièce à traiter (10) ;
- une étape de mise en mouvement vibratoire selon une direction perpendiculaire au plan du mouvement circulaire de l'enceinte supportant ou constituant la pièce à traiter ;
Claims (28)
- Procédé mécanique de génération de nanostructures pour obtenir sur une surface d'une pièce métallique une couche de nanostructures d'épaisseur définie, caractérisé en ce qu'il comprend :une étape de mise en mouvement circulaire d'une enceinte dans laquelle est disposée une quantité de billes (22) parfaitement sphériques, l'enceinte étant fermée pour la taille des billes et ayant au moins une de ses parois supportant ou constituant la pièce à traiter (10) ;une étape de mise en mouvement vibratoire selon une direction perpendiculaire au plan du mouvement circulaire de l'enceinte supportant ou constituant la pièce à traiter ;
- Procédé de génération de nanostructures selon la revendication 1, caractérisé en ce qu'il comporte une étape de mise sous contrainte mécanique et/ou thermique de la pièce (10) métallique à traiter.
- Procédé de génération de nanostructures selon la revendication 1 ou 2, caractérisé en ce qu'il comporte une étape de traitement par diffusion de composés chimiques et par la formation de nouvelles phases de matériaux de composition différente dans la couche de nanostructures générée lors de la génération des nanostructures ou après la génération de celles-ci.
- Procédé de génération de nanostructures selon la revendication 1 ou 2 ou 3, caractérisé en ce que le temps de traitement est compris entre plusieurs secondes et 10 heures.
- Procédé de génération de nanostructures selon une des revendications 1 à 4, caractérisé en ce que la taille des billes varie de 3 à 10 mm.
- Procédé de traitement de surface selon la revendication 3, caractérisé en ce que l'étape de traitement est une nitruration comprenant une mise sous atmosphère d'azote de la pièce (10) à traiter, à une température déterminée comprise entre 350 et 550°C, pendant une durée déterminée comprise entre 30 min et 10h.
- Procédé de traitement de surface selon la revendication 3, caractérisé en ce que l'étape de traitement est une cémentation ou une catalyse ou un stockage d'ions dans la structure métallique de la pièce.
- Procédé mécanique de génération de nanostructures selon une des revendications précédentes, caractérisé en ce que l'étape de mise en mouvement vibratoire est réalisée par l'intermédiaire d'un vibreur électronique dont les ondes provoquent le mouvement des enceintes selon la direction souhaitée.
- Procédé mécanique de génération de nanostructures selon la revendication 8, caractérisé en ce que le vibreur est un générateur ultrasonique.
- Procédé de génération de nanostructures selon la revendication 8, caractérisé en ce que le diamètre des billes (22) parfaitement sphériques est compris entre 300µm et 3mm en fonction de l'épaisseur souhaitée de la couche de nanostructures.
- Procédé de génération de nanostructures selon l'une des revendications 8 ou 9, caractérisé en ce que, pour une taille de bille déterminée, un matériau déterminé constituant la pièce (10) et une configuration de machine donnée, la durée de projection est déterminée en fonction de l'épaisseur de nanostructures souhaitée par l'utilisateur.
- Procédé de génération de nanostructures selon l'une des revendications 1 à 8, caractérisé en ce que la durée de projection des billes (22) est comprise entre 30 et 1300s.
- Procédé de génération de nanostructures selon l'une des revendications précédentes, caractérisé en ce qu'il comporte une étape de refroidissement de la pièce à traiter.
- Procédé de génération de nanostructures selon l'une des revendications précédentes, caractérisé en ce que la vitesse des billes est comprise entre 5 et 100 m/s
- Dispositif mécanique de génération de nanostructures sur une pièce métallique comprenant au moins une enceinte fermée (20a,20b) pour la taille des billes contenant une quantité déterminée de billes parfaitement sphériques de dimension déterminée, un moyen de liaison (38) de l'enceinte à des moyens de génération d'une vibration (33,34,35) communiquée à l'enceinte, l'ensemble enceinte, moyens de vibration étant monté par des moyens amortisseurs (31) sur un plateau tournant (30) avec une vitesse déterminée dans un plan perpendiculaire à la direction du mouvement vibratoire communiqué à l'enceinte.
- Dispositif selon la revendication précédente, caractérisé en ce qu'il comporte des moyens de régler la vitesse de rotation du plateau et des moyens de régler la fréquence et l'amplitude des moyens de génération de vibration.
- Dispositif selon une des revendications 15 ou 16, caractérisé en ce que le moyen de génération de vibration est un générateur ultrasonique.
- Dispositif selon une des revendications 15 à 17, caractérisé en ce que le moyen de génération de vibration est constitué d'un ensemble inertiel (34) entraíné en rotation selon un axe (33) perpendiculaire à l'axe de rotation du plateau, l'ensemble inertiel étant relié mécaniquement au moyen de liaison (32) avec l'enceinte (20a, 20b).
- Dispositif mécanique de génération de nanostructures sur une épaisseur déterminée d'une pièce (10) métallique selon la revendication 15, caractérisé en ce qu'il comprend des moyens de mise sous contrainte de la pièce (10) métallique et/ou des moyens de chauffage de la pièce (10).
- Dispositif de génération de nanostructures sur une épaisseur déterminée d'une pièce (10) métallique selon une des revendications 15 à 17, caractérisé en ce qu'il comporte des moyens de réglage de la distance (d) entre la source d'émission des billes et la pièce à traiter.
- Dispositif de génération de nanostructures sur une épaisseur déterminée d'une pièce (10) métallique selon la revendication 20, caractérisé en ce que la distance est de l'ordre de 4 à 40 mm.
- Dispositif de génération de nanostructures sur une épaisseur déterminée d'une pièce (10) métallique selon une des revendications 15 à 21, caractérisé en ce qu'il comporte des moyens de réglage de la durée d'émission des billes et de leur vitesse.
- Dispositif de génération de nanostructures sur une épaisseur déterminée d'une pièce (10) métallique selon une des revendications précédentes de dispositif, caractérisé en ce que la vitesse des billes est comprise entre 5 et 100m/s.
- Dispositif de génération de nanostructures sur une épaisseur déterminée d'une pièce (10) métallique selon une des revendications précédentes de dispositif, caractérisé en ce qu'il comporte des moyens d'effectuer un refroidissement local de la zone traitée de la pièce.
- Dispositif de génération de nanostructures selon la revendication précédente, caractérisé en ce qu'il comprend des moyens de traitement par diffusion de composés chimiques dans la couche de nanostructures générée lors de la génération des nanostructures ou après la génération de celles-ci.
- Dispositif de génération de nanostructures sur une épaisseur déterminée d'une pièce (10) métallique selon une des revendications précédentes de dispositif, caractérisé en ce qu'il comprend des moyens de mise sous atmosphère d'azote de la zone de pièce (10) à traiter, à une température déterminée comprise entre 350 et 550°C, pendant une durée déterminée comprise entre 30 min et 10h.
- Dispositif de génération de nanostructures sur une épaisseur déterminée d'une pièce (10) métallique selon une des revendications précédentes de dispositif, caractérisé en ce qu'il comprend des moyens de cémentation, carbonitruration et autres traitements thermochimiques.
- Dispositif de génération de nanostructures sur une épaisseur déterminée d'une pièce (10) métallique selon une des revendications précédentes de dispositif, caractérisé en ce que le dispositif est enfermé dans une enceinte d'isolation acoustique (25).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US99490000A | 2000-07-28 | 2000-07-28 | |
US9949 | 2000-07-28 | ||
PCT/FR2001/002483 WO2002010463A1 (fr) | 2000-07-28 | 2001-07-27 | Procede mecanique de generation de nanostructures et dispositif mecanique de generation de nanostructures |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1307599A1 EP1307599A1 (fr) | 2003-05-07 |
EP1307599B1 true EP1307599B1 (fr) | 2004-04-21 |
Family
ID=25541194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01963035A Expired - Lifetime EP1307599B1 (fr) | 2000-07-28 | 2001-07-27 | Procede mecanique de generation de nanostructures et dispositif mecanique de generation de nanostructures |
Country Status (5)
Country | Link |
---|---|
US (1) | US7147726B2 (fr) |
EP (1) | EP1307599B1 (fr) |
AU (1) | AU2001284087A1 (fr) |
DE (1) | DE60102932T2 (fr) |
WO (1) | WO2002010463A1 (fr) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2812285B1 (fr) * | 2000-07-28 | 2003-02-07 | Univ Troyes Technologie | Procede de traitement de nanostructures et dispositif de traitement de nanostructures |
JPWO2004059015A1 (ja) * | 2002-12-25 | 2006-04-27 | 新東工業株式会社 | 金属表面の微細化方法及びその金属製品 |
US20060065333A1 (en) * | 2004-09-28 | 2006-03-30 | The Regents Of The University Of California | Generation of high strength metal through formation of nanocrystalline structure by laser peening |
DE102006036519A1 (de) * | 2006-08-04 | 2008-02-07 | Mtu Aero Engines Gmbh | Deckelelement für eine Sonotrode und Strahlkammeranordnung zum Oberflächenstrahlen von Bauteilen |
FR2925522B1 (fr) | 2007-12-21 | 2010-08-20 | Areva Np | Procede de traitement superficiel d'un alliage de zirconium ou de hafnium, et piece ainsi traitee |
FR2970006B1 (fr) * | 2010-12-30 | 2013-07-05 | Wheelabrator Allevard | Traitement de surface d'une piece metallique |
FR2976589B1 (fr) * | 2011-06-17 | 2014-09-12 | Wheelabrator Allevard | Traitement de surface d'une piece metallique |
US9517545B2 (en) | 2013-08-02 | 2016-12-13 | Nano And Advanced Materials Institute Limited | Nanostructured-lattices produced by surface mechanical attrition treatment method |
WO2015014319A1 (fr) | 2013-08-02 | 2015-02-05 | City University Of Hong Kong | Réseaux nanostructurés produits au moyen d'un procédé de traitement d'attrition mécanique de surface |
US9809893B2 (en) * | 2015-02-26 | 2017-11-07 | City University Of Hong Kong | Surface mechanical attrition treatment (SMAT) methods and systems for modifying nanostructures |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2460657A (en) * | 1944-12-22 | 1949-02-01 | Lancaster Processes Inc | Method and apparatus for peening the inside of tubes and other hollow bodies |
GB1130839A (en) * | 1967-06-29 | 1968-10-16 | Sergei Valentinovich Ochagov | A method of work-hardening metal surfaces |
US4628834A (en) * | 1981-10-14 | 1986-12-16 | Mckelvie Alastair H | Vibratory fluidized bed reactor |
FR2689431B1 (fr) * | 1992-04-06 | 1995-10-20 | Teknoson | Procede et dispositif notamment de durcissement par ultrasons de pieces metalliques. |
US5532495A (en) * | 1993-11-16 | 1996-07-02 | Sandia Corporation | Methods and apparatus for altering material using ion beams |
FR2715884B1 (fr) * | 1994-02-04 | 1996-04-12 | Gec Alsthom Electromec | Procédé et dispositif pour le traitement de surface et la mise en précontrainte de la paroi intérieure d'une cavité. |
GB9404268D0 (en) | 1994-03-05 | 1994-04-20 | Univ Nottingham | Surface treatment of shape memory alloys |
-
2001
- 2001-07-27 US US10/343,012 patent/US7147726B2/en not_active Expired - Fee Related
- 2001-07-27 WO PCT/FR2001/002483 patent/WO2002010463A1/fr active IP Right Grant
- 2001-07-27 DE DE60102932T patent/DE60102932T2/de not_active Expired - Lifetime
- 2001-07-27 AU AU2001284087A patent/AU2001284087A1/en not_active Abandoned
- 2001-07-27 EP EP01963035A patent/EP1307599B1/fr not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US20040038626A1 (en) | 2004-02-26 |
EP1307599A1 (fr) | 2003-05-07 |
DE60102932T2 (de) | 2005-04-28 |
DE60102932D1 (de) | 2004-05-27 |
US7147726B2 (en) | 2006-12-12 |
AU2001284087A1 (en) | 2002-02-13 |
WO2002010463A1 (fr) | 2002-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1307598B1 (fr) | Procede et dispositif de generation de nanostructures | |
EP1307599B1 (fr) | Procede mecanique de generation de nanostructures et dispositif mecanique de generation de nanostructures | |
WO2002010461A1 (fr) | Procede de generation de nanostructures et dispositif de generation de nanostructures | |
FR2812284A1 (fr) | Procede de mecanique de generation de nanostructures et dispositif mecanique de generation de nanostructures | |
CA2837821A1 (fr) | Traitement de surface d'une piece metallique | |
EP2659010B1 (fr) | Traitement de surface d'une piece métallique par grenaillage oblique | |
CA2554921A1 (fr) | Dispositif de nitruration par implantation ionique d'une piece en alliage d'aluminium et procede mettant en oeuvre un tel dispositif | |
CA2721642C (fr) | Procede de grenaillage par ultrasons de pieces de turbomachines | |
WO1995017994A1 (fr) | Procede et dispositif d'ebavurage de pieces mecaniques | |
WO2008050071A2 (fr) | Couche d ' alliage de nickel-titane comprenant des atomes d ' azote inseres, procede d ' implantation | |
WO2021170962A1 (fr) | Procédé de fabrication d'une pièce en acier nitrure | |
FR2939150A1 (fr) | Procede de traitement d'une partie metallique par un faisceau d'ions | |
EP1448805A2 (fr) | Procede perfectionne de revetement d un support par un mater iau | |
WO2019007699A1 (fr) | Procede de traitement de surface de particules d'une poudre metallique et particules de poudre metallique obtenues grace a ce procede | |
Autric | Thermomechanical effects in laser-matter interaction | |
EP1186683A1 (fr) | Procédé de durcissement de la surface d'un substrat | |
CH712923B1 (fr) | Procédé de traitement de surface de particules d'une poudre métallique et particules de poudre métallique obtenues grâce à ce procédé. | |
Marasescu et al. | Laser surface alloying of a chromium-molybdenum steel: mechanical behaviour improvement by melting of boron coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030217 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60102932 Country of ref document: DE Date of ref document: 20040527 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040805 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20040421 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050124 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20130715 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150821 Year of fee payment: 15 Ref country code: CH Payment date: 20150803 Year of fee payment: 15 Ref country code: GB Payment date: 20150728 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150730 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60102932 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160801 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140731 |