EP1305833A1 - Illumination device with at least one led as the light source - Google Patents

Illumination device with at least one led as the light source

Info

Publication number
EP1305833A1
EP1305833A1 EP01956394A EP01956394A EP1305833A1 EP 1305833 A1 EP1305833 A1 EP 1305833A1 EP 01956394 A EP01956394 A EP 01956394A EP 01956394 A EP01956394 A EP 01956394A EP 1305833 A1 EP1305833 A1 EP 1305833A1
Authority
EP
European Patent Office
Prior art keywords
phosphor
lighting unit
unit according
white light
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01956394A
Other languages
German (de)
French (fr)
Inventor
Dieter Bokor
Andries Ellens
Günter Huber
Franz Zwaschka
Frank Jermann
Manfred Kobusch
Michael Ostertag
Wolfgang Rossner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH, Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Osram Opto Semiconductors GmbH
Priority to EP08158704.0A priority Critical patent/EP1970970B1/en
Publication of EP1305833A1 publication Critical patent/EP1305833A1/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • C09K11/582Chalcogenides
    • C09K11/584Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/641Chalcogenides
    • C09K11/642Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7732Halogenides
    • C09K11/7733Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/774Borates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/778Borates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7794Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7795Phosphates
    • C09K11/7796Phosphates with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/886Chalcogenides with rare earth metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the invention is based on a lighting unit with at least one LED as a light source according to the preamble of claim 1. It is in particular a luminescence conversion LED emitting in the visible or white, based on an LED emitting primarily in the near UV or short-wave blue.
  • LEDs that emit white light are currently mainly produced by the combination of a Ga (ln) N LED emitting in the blue at about 460 nm and a yellow emitting YAG: Ce 3+ phosphor (US Pat. No. 5,998,925 and EP 862 794).
  • these white light LEDs are of limited use for general lighting purposes because of their poor color rendering due to the lack of color components (especially the red component). Instead, attempts are also being made to combine primarily blue-emitting LEDs with several phosphors in order to improve the color rendering, see WO 00/33389 and WO 00/33390.
  • BaMgAl 10 O 17 : Eu 2+ or ZnS: Ag + are known as inorganic phosphors; as a blue-green component ZnS: Cu + , or (Zn, Cd) S: Cu + , or ZnS: (Al, Cu) + ; as red component Y 2 O 2 S: Eu 2+ .
  • a number of organic phosphors are also recommended. For white emitting sources of high light quality with small dimensions or as backlighting from e.g. B. LCDs, fluorescent lamps and incandescent lamps are not very suitable. OLEDs are more suitable for this, but the UV resistance of organic phosphors is poorer than that of inorganic phosphors. In addition, the manufacturing costs are higher.
  • Blue LEDs with the phosphor YAG: Ce 3+ (and garnets derived from them) are also suitable in principle, but there are disadvantages in the color locus setting: the color locus can only be selected to a limited extent in such a way that white light is produced which enables good color rendering, since the white color impression is primarily caused by the mixture of blue emission from the LED and yellow emission from the phosphor.
  • the disadvantage of fluorescent lamps and UN (O) LEDs is that UV energy is converted into visible light with poor energy efficiency: UV radiation (in fluorescent lamps 254 and 365 nm; in UV LEDs 300 - 370 nm) with a wavelength of z. B. 254 nm is converted into light with a wavelength of 450-650 nm. This means an energy loss of 40 to 60% with a theoretical quantum efficiency of 100%.
  • Organic phosphors are generally more difficult to produce than inorganic phosphors and, moreover, are generally too unstable to be used in light sources with a long service life (eg over 30,000 hours).
  • the invention is particularly advantageous in connection with the development of an LED emitting in the visible or white.
  • This LED can be produced by combining an LED emitting in near UV or very short-wave blue light (here collectively referred to as “short-wave”) with an emission wavelength between 370 and 430 nm and at least one of the phosphors listed below, which emits the radiation of the LED entirely or partially absorbed and even emitted in spectral ranges, the additive mixture of which with the light from the LED and / or other dyes gives white light with good color rendering or light with a desired color location, depending on the application, a single phosphor with the properties according to the invention may be sufficient it can also be combined with one or more other phosphors according to the invention or phosphors of other classes, for example of the YAG: Ce type.
  • the blue light of the LED cannot be used here (or can hardly be used), in contrast to the prior art, the longer-wave blue ( 430 to 480 nm) is used, but is suitable s
  • a primary radiation source whose emission is much closer to the wavelength at which the phosphors emit can significantly increase energy efficiency. For example, with a source that emits at 400 nm, the energy loss is reduced to only 12 to 39%.
  • the technical problem lies in the development and production of sufficiently efficient phosphors that can be excited in the spectral range between 370 nm and 430 nm and at the same time show suitable emission behavior.
  • a phosphor according to the invention is combined with a binder that is as transparent as possible (EP 862 794).
  • the phosphor completely or partially absorbs the light from the UV / blue light-emitting LED and emits it again broadband in other spectral ranges, so that an overall emission with the desired color location is produced. So far, there are hardly any phosphors that meet these requirements as well as the phosphors described here. she show a high quantum efficiency (typically 70%) and at the same time a spectral emission, which is perceived as bright due to the sensitivity of the eye.
  • the color locus can be set in a wide range.
  • the advantages of these phosphors also include their relatively easy, environmentally friendly producibility, their non-toxicity and their relatively high chemical stability.
  • the invention relates in particular to a lighting unit with at least one LED as a light source (light emitting diode), which generates special, specifically desired color tones (for example magenta) or which, for example, generates white light by using a primarily short-wave (i.e. UV to blue in the range from 370 to 430 nm) ) emitting radiation is converted into white by means of several phosphors: either by mixing the secondary radiation of a blue and yellow emitting phosphor or in particular by RGB mixture of three phosphors which emit red, green and blue. For particularly high demands on color rendering, more than three phosphors can also be combined.
  • a light source light emitting diode
  • special, specifically desired color tones for example magenta
  • white light by using a primarily short-wave (i.e. UV to blue in the range from 370 to 430 nm) ) emitting radiation is converted into white by means of several phosphors: either by mixing the secondary radiation of a blue and yellow emitting
  • one of the phosphors used according to the invention can also be combined with other phosphors already known for this use, such as, for example, SrS: Eu (WO 00/33390) or YAG: Ce (US Pat. No. 5,998,925).
  • a Ga (ln, Al) N LED is particularly suitable as the primary short-wave emitting LED, but also any other way of producing a short-wave LED with a primary emission in the range 370 to 430 nm.
  • the invention extends the spectral emission characteristics of LEDs by using other phosphors and their mixtures beyond the current state of knowledge (see Tables 1 to 3).
  • the selection of the phosphors and mixtures used can be made in such a way that, in addition to true-color white, other mixed colors with broadband emission are also generated.
  • the light emitted by the LED is absorbed by the mixture that contains phosphors. This mixture is either applied directly to the LED or dispersed in a resin or silicone or applied to a transparent disc over one LED or applied to a transparent disc over several LEDs.
  • the inventive step is that by using LEDs with emission wavelengths between 370 and 430 nm (invisible or barely visible deep blue) and the use of phosphors listed below, an improved spectral adjustment of the LED emission is made possible and any color locations can be set, with a higher energy efficiency than with conventional LEDs.
  • Inorganic phosphors that can be excited with a relatively long wavelength are hardly known at present. Surprisingly, however, it has been shown that there are a number of inorganic phosphors which are suitable for being efficiently excited with radiation having a peak emission wavelength of 370-430 nm. Typical half-value widths of the emission are 20 nm to 50 nm.
  • the absorption of the phosphors can be controlled by the selected structural parameters and chemical composition.
  • Such phosphors all have a relatively small band gap (typically around 3 eV) or they have a strong crystal field for the ion, which absorbs the UV / blue light emitted by the LED around 400 nm.
  • certain combinations of phosphors can be selected in the phosphor mixture.
  • the most suitable phosphor mixture therefore depends on the chosen target (color rendering, color location, color temperature) and the existing LED emission wavelength.
  • any phosphor that fulfills the conditions mentioned above is suitable for use.
  • Phosphors which emit efficiently and which can be excited or at least partially excited in the 370-430 nm region are listed in the following tables.
  • Tab. 1 describes suitable blue phosphors with a peak emission wavelength of 440 to 485 nm
  • Tab. 2 suitable green phosphors with a peak emission wavelength of 505 to 550 nm
  • Tab. 3 suitable red phosphors with a peak emission wavelength of 560 to 670 nm This makes it possible for the first time to manufacture LEDs with high efficiency, which are based on a short-wave emitting diode that excites several phosphors.
  • Table 1 Blue-emitting phosphors:
  • M s (PO 4 ) 3 (X): Eu 2+ with M at least one of the metals Ba, Ca alone or in
  • M * 3MgSi2O8: Eu2 + with M at least one of the metals Ba, Ca, Sr alone or in combination
  • M ** MgA110O17: Eu2 + with M ** at least one of the metals Eu, Sr alone or in combination with Ba (Ba fraction is preferably at most 75%);
  • Eu share in the activator Ak is preferably> 50%;
  • (Zn, Cd) S Ag + where Zn and Cd are only used in combination; Zn is preferably ⁇ Cd;
  • (Ml) 2 (M2) (BO3) 2: Eu2 + with Ml at least one of the metals Ba, Sr; and with M2 is at least one of the metals Mg, Ca; the proportion of Ba in the cation Ml is preferably at least 80%; the proportion of Mg in metal M2 is preferably at least 70%.
  • GalnN or GaN or GalnAlN is preferably used as the UV diode (primary radiation source). For example, it has a peak wavelength of 400 nm and a full width at half maximum of 20 nm.
  • the diode substrate is coated directly or indirectly with a suspension of three phosphors, each with an emission maximum in the red, green and blue spectral range. At least one of these phosphors is selected from Tables 1 to 3 and is combined either with known phosphors or with phosphors from the other tables.
  • the phosphor mixture is baked at about 200 ° C. A color rendering of typically 80 is thus achieved.
  • Figure 1 is a semiconductor device that serves as a light source (LED) for white light;
  • Figure 2 shows a lighting unit with phosphors according to the present
  • 3 to 17 show the emission spectrum of LEDs with different phosphor mixtures according to the present invention.
  • the light source is a semiconductor component (chip 1) of the InGaN type with a peak emission wavelength of 420 nm and a half-width of 25 nm with a first and second electrical connection 2, 3, which is embedded in an opaque basic housing 8 in the region of a recess 9 , One of the connections 3 is connected to the chip 1 via a bonding wire 14.
  • the recess has a wall 17 which serves as a reflector for the blue primary radiation of the chip 1.
  • the recess 9 is filled with a potting compound 5, the main components of which are an epoxy casting resin (80 to 90% by weight) and phosphor pigments 6 (less contains less than 15% by weight). Other small proportions include methyl ether and Aerosil.
  • the phosphor pigments are a mixture.
  • the first conversion phosphor is selected from Table 1.
  • the second phosphor is selected from Tab. 2 and the third from Tab. 3.
  • FIG. 2 shows a section of a surface light 20 as a lighting unit. It consists of a common carrier 21 onto which a cuboid outer housing 22 is glued. Its top is provided with a common cover 23.
  • the cuboid housing has cutouts in which individual semiconductor components 24 are accommodated. They are UV-emitting light-emitting diodes with a peak emission of 380 nm.
  • the conversion to white light takes place by means of conversion layers which are seated directly in the casting resin of the individual LEDs, as described in FIG. 1, or layers 25 which are attached to all surfaces accessible to UV radiation are. These include the inner surfaces of the side walls of the housing, the cover and the base part.
  • the conversion layers 25 consist of three phosphors which emit in the yellow, green and blue spectral range using at least one of the phosphors according to the invention from Tables 1 to 3.
  • Tab. 6 shows 15 exemplary embodiments of specific combinations of phosphors from Tab. 4 in connection with a primary light source (UV-LED) with an emission peak in the range 370 to 420 nm.
  • UV-LED primary light source
  • the individual UV diodes are summarized in Tab. 5, in which the emission peak and the color location (as far as defined, that is from 380 nm) of the individual diodes is given.
  • the UV diode does not provide any part in the secondary emission, also because of the strong absorption by the three phosphors.
  • the diode delivers a small proportion of the blue, which increases with increasing wavelength, in addition to the blue phosphor. This proportion appears in Table 5 as an additional fourth contribution.
  • the particularly suitable phosphors for use in three-color mixtures under primary irradiation at 370 to 420 nm are the blue-emitting phosphors No. 2, 4 and 6, and the green-emitting phosphors 8, 9, 10, 13, 15, 16, 17 and 18 as well as the red-emitting phosphors 26, 28 and 29.
  • Exemplary embodiment no. 15 uses a blue-emitting diode with 420 nm peak emission with such a high intensity that it can fully replace the blue phosphor and only requires two additional phosphors in the green and red.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Planar Illumination Modules (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The invention relates to a luminescence conversion LED based illumination device that emits primarily radiation in the range of from 370 and 430 nm of the optical spectrum (peak wavelength). Said radiation is converted to radiation having a longer wavelength using three luminescent substances that emit in the red, green and blue range.

Description

Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH., MünchenPatent trust company for electric light bulbs mbH., Munich
Beleuchtungseinheit mit mindestens einer LED als LichtquelleLighting unit with at least one LED as a light source
Technisches GebietTechnical field
Die Erfindung geht aus von einer Beleuchtungseinheit mit mindestens einer LED als Lichtquelle gemäß dem Oberbegriff des Anspruchs 1. Es handelt sich insbesondere um eine im Sichtbaren oder Weißen emittierenden Lumineszenz-Konversions-LED auf der Basis einer primär im nahen UV oder kurzwelligen Blau emittierenden LED.The invention is based on a lighting unit with at least one LED as a light source according to the preamble of claim 1. It is in particular a luminescence conversion LED emitting in the visible or white, based on an LED emitting primarily in the near UV or short-wave blue.
Stand der TechnikState of the art
LEDs, die weißes Licht abgeben, werden derzeit vorwiegend durch die Kombination einer im Blauen bei etwa 460 nm emittierenden Ga(ln)N-LED und eines gelb emittierenden YAG:Ce3+-Leuchtstoffs erzeugt (US 5 998 925 und EP 862 794). Allerdings sind diese Weißlicht-LEDs für Zwecke der Allgemeinbeleuchtung wegen ihrer schlechten Farbwiedergabe aufgrund fehlender Farbkomponenten (vor allem der Rot-Komponente) nur eingeschränkt zu gebrauchen. Statt dessen wird auch versucht, primär blau emittierende LEDs mit mehreren Leuchtstoffen zu kombinieren um die Farbwiedergabe zu verbessern, siehe WO 00/33389 und WO 00/33390.LEDs that emit white light are currently mainly produced by the combination of a Ga (ln) N LED emitting in the blue at about 460 nm and a yellow emitting YAG: Ce 3+ phosphor (US Pat. No. 5,998,925 and EP 862 794). , However, these white light LEDs are of limited use for general lighting purposes because of their poor color rendering due to the lack of color components (especially the red component). Instead, attempts are also being made to combine primarily blue-emitting LEDs with several phosphors in order to improve the color rendering, see WO 00/33389 and WO 00/33390.
Grundsätzlich ist außerdem bekannt, weiß emittierende LEDs auch mit sogenannten organischen LEDs zu realisieren oder durch Zusammenschalten monochromer LEDs mit entsprechender Farbmischung. Meist wird eine UV LED (Emissionsmaximum zwischen 300 und 370 nm) verwendet, die mittels mehrerer Leuchtstoffe, meist drei, die i roten, grünen und blauen Spektralbereich emittieren (RGB- Mischung) in weißes Licht umgewandelt werden (WO 98 39 805, WO 98 39 807 und WO 97 48 138). Als blaue Komponente sind als anorganische Leuchtstoffe BaMgAl10O17:Eu2+ oder ZnS:Ag+ bekannt; als blaugrüne Komponente ZnS:Cu+, oder (Zn,Cd)S:Cu+, oder ZnS:(Al,Cu)+; als rote Komponente Y2O2S:Eu2+. Außerdem wird eine Reihe organischer Leuchtstoffe empfohlen. Für weiß emittierende Quellen von hoher Lichtqualität mit kleinen Dimensionen oder als Hintergrundbeleuchtung von z. B. LCDs sind Leuchtstofflampen und Glühlampen wenig geeignet. OLEDs sind dazu zwar besser geeignet, allerdings ist die UV-Beständigkeit von organischen Leuchtstoffen im Vergleich zu anorganische Leuchtstoffen schlechter. Außerdem sind die Herstellkosten höher. Blaue LEDs mit dem Leuchtstoff YAG:Ce3+ (und davon abgeleiteten Granaten) sind prinzipiell ebenfalls geeignet, jedoch bestehen Nachteile in der Farborteinstellung: Nur in beschränkter Weise kann der Farbort derart gewählt werden, dass weißes Licht entsteht, das eine gute Farbwiedergabe ermöglicht, da der weiße Farbeindruck primär durch die Mischung blauer Emission der LED und gelber Emission des Leuchtstoffs entsteht. Der Nachteil von Leuchtstofflampen und UN-(O)LEDs besteht darin, dass UV-Energie in sichtbares Licht mit einer schlechten Energieeffizienz umgewandelt wird: UV-Strahlung (in Leuchtstofflampen 254 und 365 nm; in UV LEDs 300 - 370 nm) einer Wellenlänge von z. B. 254 nm wird umgewandelt in Licht mit einer Wel- lenlänge von 450-650 nm. Das bedeutet einen Energieverlust von 40 bis 60 % bei einer theoretischen Quanteneffizienz von 100%.Basically, it is also known to implement white-emitting LEDs with so-called organic LEDs or by interconnecting monochrome LEDs with a corresponding color mixture. Usually a UV LED (emission maximum between 300 and 370 nm) is used, which is converted into white light by means of several phosphors, usually three, which emit red, green and blue spectral range (RGB mixture) (WO 98 39 805, WO 98 39 807 and WO 97 48 138). As the blue component, BaMgAl 10 O 17 : Eu 2+ or ZnS: Ag + are known as inorganic phosphors; as a blue-green component ZnS: Cu + , or (Zn, Cd) S: Cu + , or ZnS: (Al, Cu) + ; as red component Y 2 O 2 S: Eu 2+ . A number of organic phosphors are also recommended. For white emitting sources of high light quality with small dimensions or as backlighting from e.g. B. LCDs, fluorescent lamps and incandescent lamps are not very suitable. OLEDs are more suitable for this, but the UV resistance of organic phosphors is poorer than that of inorganic phosphors. In addition, the manufacturing costs are higher. Blue LEDs with the phosphor YAG: Ce 3+ (and garnets derived from them) are also suitable in principle, but there are disadvantages in the color locus setting: the color locus can only be selected to a limited extent in such a way that white light is produced which enables good color rendering, since the white color impression is primarily caused by the mixture of blue emission from the LED and yellow emission from the phosphor. The disadvantage of fluorescent lamps and UN (O) LEDs is that UV energy is converted into visible light with poor energy efficiency: UV radiation (in fluorescent lamps 254 and 365 nm; in UV LEDs 300 - 370 nm) with a wavelength of z. B. 254 nm is converted into light with a wavelength of 450-650 nm. This means an energy loss of 40 to 60% with a theoretical quantum efficiency of 100%.
Organische Leuchtstoffe sind im allgemeinen schwieriger herzustellen als anorganische Leuchtstoffe, und sind darüber hinaus im allgemeinen zu instabil, um in Lichtquellen hoher Lebensdauer (z. B. über 30.000 Stunden) eingesetzt werden zu kön- nen.Organic phosphors are generally more difficult to produce than inorganic phosphors and, moreover, are generally too unstable to be used in light sources with a long service life (eg over 30,000 hours).
Dieser Stand der Technik hat einige bedeutende Nachteile hinsichtlich der Energieeffizienz der Kombination aus LED und Leuchtstoffen und /oder der Stabilität der Leuchtstoffe und /oder Beschränkungen hinsichtlich der geometrischen Dimensionen.This prior art has some significant disadvantages with regard to the energy efficiency of the combination of LEDs and phosphors and / or the stability of the phosphors and / or restrictions with regard to the geometric dimensions.
Darstellung der ErfindungPresentation of the invention
Es ist Aufgabe der vorliegenden Erfindung, eine Beleuchtungseinheit mit mindestens einer LED als Lichtquellegemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, die sich durch hohe Effizienz auszeichnet. Diese Aufgaben werden durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.It is an object of the present invention to provide a lighting unit with at least one LED as a light source according to the preamble of claim 1, which is characterized by high efficiency. These objects are achieved by the characterizing features of claim 1. Particularly advantageous configurations can be found in the dependent claims.
Die Erfindung ist besonders vorteilhaft im Zusammenhang mit der Entwicklung einer im Sichtbaren bzw. Weißen emittierenden LED. Diese LED kann hergestellt werden durch Kombination einer im nahen UV oder sehr kurzwelligem blaues Licht (hier zusammenfassend als „kurzwellig" bezeichnet) emittierenden LED mit einer Emissionswellenlänge zwischen 370 und 430 nm und mindestens einem der unten angeführten Leuchtstoffe, der die Strahlung der LED ganz oder teilweise absorbiert und selbst in Spektralbereichen emittiert, deren additive Mischung mit dem Licht der LED und /oder anderen Farbstoffe weißes Licht mit guter Farbwiedergabe oder Licht mit einem gewünschten Farbort ergibt. Je nach Anwendung kann ein einziger Leuchtstoff mit den erfindungsgemäßen Eigenschaften ausreichen. Evtl. kann er auch mit einem oder mehreren anderen erfindungsgemäßen Leuchtstoffen oder Leuchtstoffen anderer Klassen, beispielsweise vom Typ YAG:Ce, kombiniert werden. Das blaue Licht der LED ist hier nicht (oder kaum) direkt nutzbar, im Gegensatz zum Stand der Technik, der längerwelliges Blau (430 bis 480 nm) verwendet, sondern eignet sich nur zur primären Anregung der Leuchtstoffe.The invention is particularly advantageous in connection with the development of an LED emitting in the visible or white. This LED can be produced by combining an LED emitting in near UV or very short-wave blue light (here collectively referred to as “short-wave”) with an emission wavelength between 370 and 430 nm and at least one of the phosphors listed below, which emits the radiation of the LED entirely or partially absorbed and even emitted in spectral ranges, the additive mixture of which with the light from the LED and / or other dyes gives white light with good color rendering or light with a desired color location, depending on the application, a single phosphor with the properties according to the invention may be sufficient it can also be combined with one or more other phosphors according to the invention or phosphors of other classes, for example of the YAG: Ce type. The blue light of the LED cannot be used here (or can hardly be used), in contrast to the prior art, the longer-wave blue ( 430 to 480 nm) is used, but is suitable s I only for the primary stimulation of the phosphors.
Eine primäre Strahlungsquelle, deren Emission viel näher an der Wellenlän- ge liegt, bei der die Leuchtstoffe emittieren, kann die Energieeffizienz erheblich steigern. Bei einer Quelle, die bei 400 nm emittiert, reduziert sich zum Beispiel der Energie- Verlust schon auf nur noch 12 bis 39%.A primary radiation source whose emission is much closer to the wavelength at which the phosphors emit can significantly increase energy efficiency. For example, with a source that emits at 400 nm, the energy loss is reduced to only 12 to 39%.
Das technische Problem liegt in der Entwicklung und Produktion ausreichend effizienter Leuchtstoffe, die im spektralen Bereich zwischen 370 nm und 430 nm an- regbar sind und gleichzeitig ein passendes Emissionsverhalten zeigen.The technical problem lies in the development and production of sufficiently efficient phosphors that can be excited in the spectral range between 370 nm and 430 nm and at the same time show suitable emission behavior.
Um eine farbige oder weiße LED zu realisieren, wird ein erfindungsgemäßer Leuchtstoff, evtl. in Verbindung mit einem oder mehreren anderen Leuchtstoffen mit einem möglichst transparenten Bindemittel kombiniert (EP 862 794). Der Leuchtstoff absorbiert das Licht der UV/Blau-Licht emittierenden LED ganz oder teilweise und emittiert es in anderen Spektralbereichen wieder breitbandig, so dass eine Gesamtemission mit gewünschtem Farbort entsteht. Bisher gibt es kaum Leuchtstoffe, die diese Anforderungen so gut erfüllen wie die hier beschriebenen Leuchtstoffe. Sie zeigen eine hohe Quanteneffizienz (typisch 70 %) und gleichzeitig eine spektrale Emission, die aufgrund der Empfindlichkeit des Auges als hell empfunden wird. Der Farbort lässt sich in einem weiten Bereich einstellen. Zu den Vorteilen dieser Leuchtstoffe zählen außerdem ihre relativ leichte, umweltschonende Herstellbarkeit, seine Ungiftigkeit und seine relativ hohe chemische Stabilität.In order to implement a colored or white LED, a phosphor according to the invention, possibly in combination with one or more other phosphors, is combined with a binder that is as transparent as possible (EP 862 794). The phosphor completely or partially absorbs the light from the UV / blue light-emitting LED and emits it again broadband in other spectral ranges, so that an overall emission with the desired color location is produced. So far, there are hardly any phosphors that meet these requirements as well as the phosphors described here. she show a high quantum efficiency (typically 70%) and at the same time a spectral emission, which is perceived as bright due to the sensitivity of the eye. The color locus can be set in a wide range. The advantages of these phosphors also include their relatively easy, environmentally friendly producibility, their non-toxicity and their relatively high chemical stability.
Die Erfindung betrifft insbesondere eine Beleuchtungseinheit mit mindestens einer LED als Lichtquelle (light emitting diode), die besondere spezifisch gewünschte Farbtöne erzeugt (beispielsweise Magenta) oder die beispielsweise weißes Licht erzeugt, indem eine primär kurzwellig (also UV bis blau im Bereich 370 bis 430 nm) emittierende Strahlung mittels mehrerer Leuchtstoffe in Weiß konvertiert wird: entweder durch Mischung der sekundären Strahlung eines blau und gelb emittierenden Leuchtstoffs oder insbesondere durch RGB-Mischung aus drei Leuchtstoffen die rot, grün und blau emittieren. Für besonders hohe Anforderungen an die Farbwiedergabe können auch mehr als drei Leuchtstoffe kombiniert werden. Zu diesem Zweck kann auch einer der erfindungsgemäß eingesetzten Leuchtstoffe mit anderen, bereits für diese Verwendung bekannten Leuchtstoffen wie beispielsweise SrS:Eu (WO 00/33390) oder YAG:Ce (US 5 998 925) kombiniert werden.The invention relates in particular to a lighting unit with at least one LED as a light source (light emitting diode), which generates special, specifically desired color tones (for example magenta) or which, for example, generates white light by using a primarily short-wave (i.e. UV to blue in the range from 370 to 430 nm) ) emitting radiation is converted into white by means of several phosphors: either by mixing the secondary radiation of a blue and yellow emitting phosphor or in particular by RGB mixture of three phosphors which emit red, green and blue. For particularly high demands on color rendering, more than three phosphors can also be combined. For this purpose, one of the phosphors used according to the invention can also be combined with other phosphors already known for this use, such as, for example, SrS: Eu (WO 00/33390) or YAG: Ce (US Pat. No. 5,998,925).
Als primär kurzwellig emittierende LED eignet sich insbesondere eine Ga(ln,AI)N- LED, aber auch jeder andere Weg zur Erzeugung einer kurzwelligen LED mit einer primären Emission im Bereich 370 bis 430 nm.A Ga (ln, Al) N LED is particularly suitable as the primary short-wave emitting LED, but also any other way of producing a short-wave LED with a primary emission in the range 370 to 430 nm.
Die Erfindung erweitert die spektrale Emissionscharakteristik von LEDs indem über den gegenwärtige Kenntnisstand hinaus weitere Leuchtstoffe und deren Mischungen Anwendung finden (siehe Tab. 1 bis 3). Dabei kann die Auswahl der angewendeten Leuchtstoffe und Mischungen hiervon so getroffen werden, das neben farbechten Weiß auch andere Mischfarben mit breitbandiger Emission erzeugt werden. Generell wird das emittierte Licht der LED von der Mischung, die Leuchtstoffe enthält, absorbiert. Diese Mischung ist entweder direkt auf der LED aufgebracht oder in einem Harz oder Silikon dispergiert oder aufgebracht auf einer transparenten Scheibe über einer LED oder aufgebracht auf einer transparenten Scheibe über mehreren LEDs.The invention extends the spectral emission characteristics of LEDs by using other phosphors and their mixtures beyond the current state of knowledge (see Tables 1 to 3). The selection of the phosphors and mixtures used can be made in such a way that, in addition to true-color white, other mixed colors with broadband emission are also generated. In general, the light emitted by the LED is absorbed by the mixture that contains phosphors. This mixture is either applied directly to the LED or dispersed in a resin or silicone or applied to a transparent disc over one LED or applied to a transparent disc over several LEDs.
Der erfinderische Schritt besteht darin, dass durch die Verwendung von LEDs mit Emissionswellenlängen zwischen 370 und 430 nm (unsichtbar oder kaum sichtbares tiefblau) und die Verwendung von Leuchtstoffen, die unten aufgelistet sind, eine verbesserte spektrale Anpassung der LED-Emission ermöglicht wird und beliebige Farborte einstellbar werden, und zwar mit einer höheren Energieeffizienz als mit den konventionellen LEDs.The inventive step is that by using LEDs with emission wavelengths between 370 and 430 nm (invisible or barely visible deep blue) and the use of phosphors listed below, an improved spectral adjustment of the LED emission is made possible and any color locations can be set, with a higher energy efficiency than with conventional LEDs.
Anorganische Leuchtstoffe, die relativ langwellig anregbar sind, sind derzeit kaum bekannt. Überraschenderweise hat sich jedoch gezeigt, dass es eine Anzahl von anorganischen Leuchtstoffen gibt, die geeignet sind, um mit Strahlung einer Peak- Emissions-Wellenlänge von 370-430 nm noch effizient angeregt zu werden. Typische Halbwertsbreiten der Emission liegen bei 20 nm bis 50 nm. Die Absorption der Leuchtstoffe kann durch die gewählten Strukturparameter und chemische Zusammensetzung gesteuert werden. Solche Leuchtstoffe haben alle eine relativ kleine Bandlücke (typisch etwa 3 eV) oder sie haben ein starkes Kristallfeld für das Ion, welches das von der LED emittierte UV/Blau -Licht um 400 nm absorbiert.Inorganic phosphors that can be excited with a relatively long wavelength are hardly known at present. Surprisingly, however, it has been shown that there are a number of inorganic phosphors which are suitable for being efficiently excited with radiation having a peak emission wavelength of 370-430 nm. Typical half-value widths of the emission are 20 nm to 50 nm. The absorption of the phosphors can be controlled by the selected structural parameters and chemical composition. Such phosphors all have a relatively small band gap (typically around 3 eV) or they have a strong crystal field for the ion, which absorbs the UV / blue light emitted by the LED around 400 nm.
Abhängig von der gewählten Lumineszenzwellenlänge der LED (370-430 nm) und abhängig von der gewünschten Farbwiedergabe und /oder dem gewünschten Farbort können bestimmte Kombinationen von Leuchtstoffen in der Leuchtstoffmischung gewählt werden. Die am besten geeignete Leuchtstoffmischung ist somit vom gewählten Ziel (Farbwiedergabe, Farbort, Farbtemperatur) und der vorhandenen LED-Emissionswellenlänge abhängig.Depending on the selected luminescence wavelength of the LED (370-430 nm) and depending on the desired color rendering and / or the desired color location, certain combinations of phosphors can be selected in the phosphor mixture. The most suitable phosphor mixture therefore depends on the chosen target (color rendering, color location, color temperature) and the existing LED emission wavelength.
Jeder Leuchtstoff, der die oben erwähnten Bedingungen erfüllt, ist im Prinzip geeignet für die Anwendung. Leuchtstoffe, die effizient emittieren und im Gebiet von 370-430 nm effizient anregbar oder zumindest teilweise anregbar sind, sind in den folgenden Tabellen aufgeführt. Tab. 1 beschreibt geeignete blaue Leuchtstoffe mit einer Wellenlänge der Peakemission von 440 bis 485 nm, Tab. 2 geeignete grüne Leuchtstoffe mit einer Wellenlänge der Peakemission von 505 bis 550 nm und Tab. 3 geeignete rote Leuchtstoffe mit Wellenlänge der Peakemission von 560 bis 670 nm. Damit ist es erstmals möglich, LEDs mit hoher Effizienz herzustellen, die auf einer kurzwellig emittierenden Diode basieren, die mehrere Leuchtstoffe anregt. Tabelle 1: Blau emittierende Leuchtstoffe:In principle, any phosphor that fulfills the conditions mentioned above is suitable for use. Phosphors which emit efficiently and which can be excited or at least partially excited in the 370-430 nm region are listed in the following tables. Tab. 1 describes suitable blue phosphors with a peak emission wavelength of 440 to 485 nm, Tab. 2 suitable green phosphors with a peak emission wavelength of 505 to 550 nm and Tab. 3 suitable red phosphors with a peak emission wavelength of 560 to 670 nm This makes it possible for the first time to manufacture LEDs with high efficiency, which are based on a short-wave emitting diode that excites several phosphors. Table 1: Blue-emitting phosphors:
Ms(PO4)3(X):Eu2+ mit M = zumindest eines der Metalle Ba, Ca allein oder inM s (PO 4 ) 3 (X): Eu 2+ with M = at least one of the metals Ba, Ca alone or in
Kombination mit Sr (bevorzugt ist Anteil Sr höchstens 85%), wobei X = zumindest eines der Halogene F oder Cl;Combination with Sr (Sr is preferably at most 85%), where X = at least one of the halogens F or Cl;
M*3MgSi2O8:Eu2+ mit M = zumindest eines der Metalle Ba, Ca, Sr allein oder in KombinationM * 3MgSi2O8: Eu2 + with M = at least one of the metals Ba, Ca, Sr alone or in combination
Ba5SiO4Br6:Eu2+ Ba 5 SiO 4 Br 6 : Eu 2+
Ba^A^O^Eu2* Ba ^ A ^ O ^ Eu 2 *
YSiO2N:Ce3+ YSiO 2 N: Ce 3+
(Sr,Ba)2Al6Oπ:Eu2+ (Sr, Ba) 2 Al 6 O π : Eu 2+
MF2:Eu2+ mit M = zumindest eines der Metalle Ba, Sr, Ca; bevorzugt ist der Anteil des Ba an M > 5 %, beispielsweise Ba = 10 %, also M = Ba010Sr045Ca045.MF 2 : Eu 2+ with M = at least one of the metals Ba, Sr, Ca; the proportion of Ba in M is preferably> 5%, for example Ba = 10%, that is to say M = Ba 010 Sr 045 Ca 045 .
Bao.57 Euo.oA34Alπ πO17:Eu2+ Ba o. 57 Eu o.oA 34 Al π π O 17 : Eu 2+
M**MgA110O17:Eu2+ mit M** = zumindest eines der Metalle Eu, Sr allein oder in Kombination mit Ba (bevorzugt ist Anteil Ba höchstens 75%);M ** MgA110O17: Eu2 + with M ** = at least one of the metals Eu, Sr alone or in combination with Ba (Ba fraction is preferably at most 75%);
MLn2S4:Ce3+ mit M = eine Kombination der Metalle Ca, Sr; und Ln = zumindest eines der Metalle La, Y, Gd. MLn2S4: Ce 3 + with M = a combination of the metals Ca, Sr; and Ln = at least one of the metals La, Y, Gd.
Tabelle 2: Grün (und Blaugrün) emittierende LeuchtstoffeTable 2: Green (and teal) emitting phosphors
SrAl2O4:Eu2+ SrAl 2 O 4 : Eu 2+
MBO3:(Ce3+,Tb3+) mit M = zumindest eines der Metalle Sc, Gd, Lu allein oder inMBO3: (Ce3 +, Rb3 +) with M = at least one of the metals Sc, Gd, Lu alone or in
Kombination mit Y (imsb. ist Y- Anteil < 40%); und als Aktivator fungie- ren die Metalle Ce und Tb gemeinsam; insbesondere liegt der Anteil desCombination with Y (in particular, Y content is <40%); and the metals Ce and Tb act together as an activator; in particular, the share of
Ce am Metall M im Bereich 5 % ≤ Ce ≤ 20 % und der Anteil des Tb amCe on metal M in the range 5% ≤ Ce ≤ 20% and the proportion of Tb on
Metall im Bereich 4 % ≤Tb < 20; bevorzugt ist Anteil Ce > Anteil Tb;Metal in the range 4% ≤Tb <20; Ce portion> Tb portion is preferred;
M2SiO5:(Ce3+,Tb3+) mit M = zumindest eines der Metalle Y, Gd, Lu; und als Aktivator fungieren die Metalle Ce und Tb gemeinsam (bevorzugt ist Anteil Ce > Anteil Tb);M2SiO5: (Ce3 +, Tb3 +) with M = at least one of the metals Y, Gd, Lu; and the metals Ce and Tb function together as activator (preference is given to proportion Ce> proportion Tb);
MN*2S4:Ak mit M = zumindest eines der Metalle Zn, Mg, Ca, Sr, Ba; mit NMN * 2S4: Ak with M = at least one of the metals Zn, Mg, Ca, Sr, Ba; with N
= zumindest eines der Metalle AI, Ga, In; und Ak = entweder eine Kombination von Eu2+, Mn2 zusammen (bevorzugt ist Anteil Eu > Anteil Mn) oder eine Kombination von Ce3+,Tb3+ zusammen (bevorzugt ist Anteil Ce > Anteil Tb);= at least one of the metals AI, Ga, In; and Ak = either a combination of Eu2 +, Mn2 together (Eu portion> Mn portion is preferred) or a combination of Ce3 +, Tb3 + together (Ce portion> Tb portion is preferred);
SrBaSiO4:Eu2+ SrBaSiO 4 : Eu 2+
Ba0.82AlEO1M.:EuIt Ba 0.82 Al E O 1M .: Eu It
Y5(SiO4)3N:Ce3+;Y 5 (SiO 4 ) 3 N: Ce 3+ ;
Ca8Mg(SiO4)4C12:Ak2+ mit Ak = Eu2+ allein oder mit Mn2 zusammen (bevorzugt ist Anteil Eu > 2xAnteil Mn);Ca8Mg (SiO4) 4C12: Ak2 + with Ak = Eu2 + alone or with Mn2 (Eu> 2xMn Mn is preferred);
Sr4A114O25:Eu2+Sr4A114O25: Eu 2+
(Ba,Sr)MgA110O17:Ak mit Ak = Eu2+ entweder in Kombination mit Ce3+ und(Ba, Sr) MgA110O17: Ak with Ak = Eu2 + either in combination with Ce3 + and
Tb3+, oder in Kombination mit Mn2+ ; bevorzugt ist Anteil Eu am Akti- vator Ak > 50 %;Rb3 +, or in combination with Mn2 +; Eu share in the activator Ak is preferably> 50%;
Sr6BP5O20:Eu2+Sr 6 BP 5 O 20 : Eu2 +
Sr2P2O7:(Eu2+,Tb3+) mit Eu und Tb gemeinsamSr 2 P 2 O 7 : (Eu 2+ , Tb 3+ ) together with Eu and Tb
BaSi2Os:Eu2+ Tabelle 3: Rot (Orangerot bis Tiefrot) emittierende LeuchtstoffeBaSi 2 O s : Eu 2+ Table 3: Phosphors emitting red (orange-red to deep red)
Ln2O2St: Ak3+ wobei Ln = zumindest eines der Metalle Gd, La, Lu allein oder in Kombination mit Y (bevorzugt ist Anteil Y höchstens 40%; insbeson- dere ist Anteil La mindestens 10 %); und mit St = zumindest eines derLn 2 O 2 St: Ak3 + where Ln = at least one of the metals Gd, La, Lu alone or in combination with Y (Y is preferably at most 40%; in particular, La is at least 10%); and with St = at least one of the
Elemente S, Se, Te; und wobei Ak = Eu allein oder in Kombination mitElements S, Se, Te; and where Ak = Eu alone or in combination with
Bi;Bi;
Ln2WmO6:Ak3+ wobei Ln = zumindest eines der Metalle Y, Gd, La, Lu; und mit Wm = zumindest eines der Elemente W, Mo, Te; und wobei Ak = Eu allein oder in Kombination mit Bi;Ln2WmO6: Ak3 + where Ln = at least one of the metals Y, Gd, La, Lu; and with Wm = at least one of the elements W, Mo, Te; and where Ak = Eu alone or in combination with Bi;
(Zn,Cd)S:Ag+ wobei Zn und Cd nur in Kombination verwendet werden; bevorzugt ist Anteil Zn < Anteil Cd;(Zn, Cd) S: Ag + where Zn and Cd are only used in combination; Zn is preferably <Cd;
Mg28Ge7,O38F10:Mn4+ Mg 28 Ge 7 , O 38 F 10 : Mn 4+
Sr:P:O.:Eu2*,Mn2+ Sr : P : O.:Eu 2 * , Mn 2+
M3MgSi2O8:Eu2+,Mn2 mit M = zumindest eines der Metalle Ca, Ba, Sr.M 3 MgSi 2 O 8 : Eu 2+ , Mn 2 with M = at least one of the metals Ca, Ba, Sr.
(Ml)2(M2)(BO3)2:Eu2+ mit Ml = zumindest eines der Metalle Ba, Sr; und mit M2 ist zumindest eines der Metalle Mg,Ca; bevorzugt ist der Anteil Ba am Kation Ml mindestens 80 %; bevorzugt ist der Anteil Mg am Metall M2 mindestens 70%.(Ml) 2 (M2) (BO3) 2: Eu2 + with Ml = at least one of the metals Ba, Sr; and with M2 is at least one of the metals Mg, Ca; the proportion of Ba in the cation Ml is preferably at least 80%; the proportion of Mg in metal M2 is preferably at least 70%.
Es wird angemerkt, dass der Aktivator im allgemeinen jeweils einen Anteil des führenden Kations (= Metall, insbesondere ein Lanthanid Ln) ersetzt, beispielsweise steht MS:Eu(5 %) für MM05Eu0D5S.It is noted that the activator generally replaces a portion of the leading cation (= metal, in particular a lanthanide Ln), for example MS: Eu (5%) stands for M M05 Eu 0D5 S.
Die Formulierung „M = zumindest eines der Metalle X, Y;" bedeutet entweder das Me- tall X oder das Metall Y allein oder aber eine Kombination beider Metalle, also M = X Y. mit a+b = 1. Bei einer weißen LED wird ein Aufbau ähnlich wie im eingangs erwähnten Stand der Technik beschrieben verwendet. Als UV-Diode (primäre Strahlungsquelle) wird bevorzugt GalnN oder GaN oder GalnAlN verwendet. Beispielsweise hat sie eine Peakwellenlange von 400 nm und eine Halb- wertsbreite von 20 nm. Das Diodensubstrat wird mit einer Suspension aus drei Leuchtstoffen, je einer mit einem Emissionsmaximum im Roten, Grünen und Blauen Spektralbereich direkt oder indirekt beschichtet. Von diesen Leuchtstoffen ist zumindest einer ausgewählt aus den Tabellen 1 bis 3, und kombiniert entweder mit bekannten Leuchtstoffen oder mit Leuchtstoffen aus den anderen Tabellen. Die Leuchtstoffmischung wird bei etwa 200 °C eingebrannt. Damit wird eine Farbwiedergabe von typisch 80 erzielt.The formulation “M = at least one of the metals X, Y;” means either the metal X or the metal Y alone or a combination of both metals, that is M = X Y. with a + b = 1. In the case of a white LED, a structure similar to that described in the prior art mentioned at the outset is used. GalnN or GaN or GalnAlN is preferably used as the UV diode (primary radiation source). For example, it has a peak wavelength of 400 nm and a full width at half maximum of 20 nm. The diode substrate is coated directly or indirectly with a suspension of three phosphors, each with an emission maximum in the red, green and blue spectral range. At least one of these phosphors is selected from Tables 1 to 3 and is combined either with known phosphors or with phosphors from the other tables. The phosphor mixture is baked at about 200 ° C. A color rendering of typically 80 is thus achieved.
Im folgenden soll die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert werden. Es zeigen:The invention will be explained in more detail below with the aid of several exemplary embodiments. Show it:
Figur 1 ein Halbleiterbauelement, das als Lichtquelle (LED) für weißes Licht dient;Figure 1 is a semiconductor device that serves as a light source (LED) for white light;
Figur 2 eine Beleuchtungseinheit mit Leuchtstoffen gemäß der vorliegendenFigure 2 shows a lighting unit with phosphors according to the present
Erfindung; Figur 3 bis 17 das Emissionsspektrum von LEDs mit verschiedenen Leuchtstoff mi- schungen gemäß der vorliegenden Erfindung.Invention; 3 to 17 show the emission spectrum of LEDs with different phosphor mixtures according to the present invention.
Beschreibung der ZeichnungenDescription of the drawings
Für den Einsatz in einer weißen LED zusammen mit einem GalnN-Chip wird beispielsweise ein Aufbau ähnlich wie in US 5 998 925 beschrieben verwendet. Der Aufbau einer derartigen Lichtquelle für weißes Licht ist in Figur 1 explizit gezeigt. Die Lichtquelle ist ein Halbleiterbauelement (Chip 1) des Typs InGaN mit einer Peak-Emissionswellenlänge von 420 nm und einer Halbwertsbreite von 25 nm mit einem ersten und zweiten elektrischen Anschluss 2,3, das in ein lichtundurchlässiges Grundgehäuse 8 im Bereich einer Ausnehmung 9 eingebettet ist. Einer der Anschlüsse 3 ist über einen Bonddraht 14 mit dem Chip 1 verbunden. Die Ausnehmung hat eine Wand 17, die als Reflektor für die blaue Primärstrahlung des Chips 1 dient. Die Ausnehmung 9 ist mit einer Vergussmasse 5 gefüllt, die als Hauptbe- standteile ein Epoxidgießharz (80 bis 90 Gew.-%) und Leuchtstoffpigmente 6 (weni- ger als 15 Gew.-%) enthält. Weitere geringe Anteile entfallen u.a. auf Methylether und Aerosil. Die Leuchtstoffpigmente sind eine Mischung. Der erste Konversions- Leuchtstoff ist aus Tab. 1 ausgewählt. Der zweite Leuchtstoff ist aus Tab. 2 und der dritte aus Tab. 3 ausgewählt.For use in a white LED together with a GalnN chip, for example, a structure similar to that described in US Pat. No. 5,998,925 is used. The structure of such a light source for white light is shown explicitly in FIG. 1. The light source is a semiconductor component (chip 1) of the InGaN type with a peak emission wavelength of 420 nm and a half-width of 25 nm with a first and second electrical connection 2, 3, which is embedded in an opaque basic housing 8 in the region of a recess 9 , One of the connections 3 is connected to the chip 1 via a bonding wire 14. The recess has a wall 17 which serves as a reflector for the blue primary radiation of the chip 1. The recess 9 is filled with a potting compound 5, the main components of which are an epoxy casting resin (80 to 90% by weight) and phosphor pigments 6 (less contains less than 15% by weight). Other small proportions include methyl ether and Aerosil. The phosphor pigments are a mixture. The first conversion phosphor is selected from Table 1. The second phosphor is selected from Tab. 2 and the third from Tab. 3.
In Figur 2 ist ein Ausschnitt aus einer Flächenleuchte 20 als Beleuchtungseinheit gezeigt. Sie besteht aus einem gemeinsamen Träger 21 , auf den ein quaderförmi- ges äußeres Gehäuse 22 aufgeklebt ist. Seine Oberseite ist mit einer gemeinsamen Abdeckung 23 versehen. Das quaderförmige Gehäuse besitzt Aussparungen, in denen einzelne Halbleiter-Bauelemente 24 untergebracht sind. Sie sind UV- emittierende Leuchtdioden mit einer Peakemission von 380 nm. Die Umwandlung in weißes Licht erfolgt mittels Konversionsschichten, die direkt im Gießharz der einzelnen LED sitzen ähnlich wie in Figur 1 beschrieben oder Schichten 25, die auf allen der UV-Strahlung zugänglichen Flächen angebracht sind. Dazu zählen die innen liegenden Oberflächen der Seitenwände des Gehäuses, der Abdeckung und des Bodenteils. Die Konversionsschichten 25 bestehen aus drei Leuchtstoffen, die im gelben, grünen und blauen Spektralbereich emittieren unter Benutzung zumindest einen der erfindungsgemäßen Leuchtstoffe aus Tab. 1 bis 3.FIG. 2 shows a section of a surface light 20 as a lighting unit. It consists of a common carrier 21 onto which a cuboid outer housing 22 is glued. Its top is provided with a common cover 23. The cuboid housing has cutouts in which individual semiconductor components 24 are accommodated. They are UV-emitting light-emitting diodes with a peak emission of 380 nm. The conversion to white light takes place by means of conversion layers which are seated directly in the casting resin of the individual LEDs, as described in FIG. 1, or layers 25 which are attached to all surfaces accessible to UV radiation are. These include the inner surfaces of the side walls of the housing, the cover and the base part. The conversion layers 25 consist of three phosphors which emit in the yellow, green and blue spectral range using at least one of the phosphors according to the invention from Tables 1 to 3.
Einige konkrete Ausführungsbeispiele von in Kombination untersuchten Leuchtstoffen sind in Tab. 4 zusammengefasst. Es handelt sich um eine Zusammenfassung geeigneter erfindungsgemäßer und an sich bekannter Leuchtstoffe in allen drei Spektralbereichen. In Sp. 1 ist die Versuchsnummer angegeben, in Sp. 2 die chemische Formel des Leuchtstoffs, in Sp. 3 das Emissionsmaximum des Leuchtstoffs, in Sp. 4 und 5 die x- und y- Farbortkoordinaten. In Sp. 6 und 7 sind die Reflektivität und die Quanteneffizienz (jeweils in Prozent) angegeben. Besonders bevorzugt ist auch die Anwendung der ZnS-Leuchtstoffe für LEDs. Sie zeigen ein gutes Verarbeitungsverhalten in der LED-Umgebung. Es handelt sich dabei vor allem um den blau emittierenden Leuchtstoff ZnS:Ag, den grün emittierenden Leuchtstoff ZnS:Cu,AI und- den rot emittierenden Leuchtstoff ZnS:Cu,Mn aus Tab. 4. Besonders hervorzuheben ist, dass sich mit diesen drei Leuchtstoffen eine weiß emittierende Leuchtstoff-Mischung realisieren lässt, unter Anregung durch eine LED mit Primärstrahlung im Bereich 370 bis 410 nm, siehe Ausführungsbeispiel 6 in Fig. 6. Da diese drei Leuchtstoffe chemisch nahezu identische Materialien sind, lassen sie sich sehr gut als Leuchtstoffmischung in einem Gießharz oder anderem Harz oder bei einer Beschlämmung verarbeiten. Tab. 4Some specific exemplary embodiments of phosphors examined in combination are summarized in Tab. 4. It is a summary of suitable phosphors according to the invention and known per se in all three spectral ranges. The experimental number is given in column 1, the chemical formula of the phosphor in column 2, the maximum emission of the phosphor in column 3, and the x and y coordinate coordinates in columns 4 and 5. Columns 6 and 7 show the reflectivity and the quantum efficiency (both in percent). The use of ZnS phosphors for LEDs is also particularly preferred. They show good processing behavior in the LED environment. These are primarily the blue-emitting phosphor ZnS: Ag, the green-emitting phosphor ZnS: Cu, Al and the red-emitting phosphor ZnS: Cu, Mn from Table 4. It should be emphasized that these three phosphors are particularly noteworthy a white-emitting phosphor mixture can be realized, with excitation by an LED with primary radiation in the range 370 to 410 nm, see exemplary embodiment 6 in FIG. 6. Since these three phosphors are chemically almost identical materials, they can be used very well as a phosphor mixture in one Use cast resin or other resin or with a slurry. Tab. 4
Nr. Formel Em X y R (%) Q.E (%)Formula Em X y R (%) Q.E (%)
1 Ba3MgSi208: Eu (5%) 440 0,16 0,07 42 501 Ba 3 MgSi 2 0 8 : Eu (5%) 440 0.16 0.07 42 50
2 (Ba0,i5Sro,85)5(P04)3CI:Eu2+ 448 0,15 0,05 46 762 (Ba 0, i 5 Sro, 85 ) 5 (P0 4 ) 3 CI: Eu2 + 448 0.15 0.05 46 76
3 ZnS :Ag 452 0,14 0,07 76 633 ZnS: Ag 452 0.14 0.07 76 63
4 (Ba,Sr)MgAI10O17:Eu2+ 454 0,15 0,08 49 834 (Ba, Sr) MgAI 10 O 17 : Eu2 + 454 0.15 0.08 49 83
5 SrMgAI10O17:Eu2+ 467 0,15 0,19 63 925 SrMgAI 10 O 17 : Eu2 + 467 0.15 0.19 63 92
6 EuMgAI10O17 481 0,17 0,31 35 636 EuMgAI 10 O 17 481 0.17 0.31 35 63
7 ZnS :Cu 506 0,19 0,43 22 487 ZnS: Cu 506 0.19 0.43 22 48
8 Ba0.-74EU0.08AI12Oi8.e2 507 0,22 0,43 52 878 Ba0.-74EU0.08AI12Oi8.e2 507 0.22 0.43 52 87
9 Ca8Mg(Siθ4)4CI2:Eu2+ 508 0,17 0,6 34 679 Ca 8 Mg (SiO 4 ) 4 CI 2 : Eu2 + 508 0.17 0.6 34 67
10 ZnS :Cu 510 0,2 0,46 16 5510 ZnS: Cu 510 0.2 0.46 16 55
11 BaMgAlι07:Eu2+,Mn2+ 513 0,14 0,21 64 9511 BaMgAlι 07 : Eu2 +, Mn2 + 513 0.14 0.21 64 95
12 Bao.72Euo.o5Mno.o5Ali2θ18.82 514 0,21 0,48 71 9712 Bao.72Euo.o5Mno.o5Ali2θ 18 .82 514 0.21 0.48 71 97
13 BaMgAlι0O17:Eu2+,Mn2+ 515 0,14 0,65 39 8813 BaMgAlι 0 O 17 : Eu2 +, Mn2 + 515 0.14 0.65 39 88
14 (Sr,Ba)Si04:Eu2+ 517 0,23 0,61 5414 (Sr, Ba) Si0 4 : Eu2 + 517 0.23 0.61 54
15 SrAI204:Eu2+ 523 0,29 0,58 28 7715 SrAI 2 0 4 : Eu2 + 523 0.29 0.58 28 77
16 ZnS :Cu,AI 534 0,31 0,61 29 8316 ZnS: Cu, Al 534 0.31 0.61 29 83
17 YBO3 :(Ce3+,Tb3+) (9.5%/5%) 545 0,34 0,59 80 6917 YBO 3 : (Ce3 +, Rb3 +) (9.5% / 5%) 545 0.34 0.59 80 69
18 Ca8Mg(Si04)4CI2:Eu2+, Mn2+ 550 0,38 0,57 30 6118 Ca 8 Mg (Si0 4 ) 4 CI 2 : Eu2 +, Mn2 + 550 0.38 0.57 30 61
19 Srι.gsBao.o3Euo.o2Siθ4 563 0,44 0,53 2119 Srι.gsBao.o 3 Euo.o 2 Siθ 4 563 0.44 0.53 21
20 Sr2P207:Eu2+ , Mn2+ 570 0,32 0,27 63 4620 Sr 2 P 2 0 7 : Eu2 +, Mn2 + 570 0.32 0.27 63 46
21 ZnS :Cu,Mn 585 0,49 0,45 19 4421 ZnS: Cu, Mn 585 0.49 0.45 19 44
22 Gd2Mo06:Eu3+ (20%) 610 0,66 0,34 5022 Gd 2 Mo0 6 : Eu3 + (20%) 610 0.66 0.34 50
23 Y2Wo.98Mo0.o206:Eu3+ 612 0,61 0,38 68 7323 Y 2 wk 98 Mo 0 .o 2 0 6 : Eu 3+ 612 0.61 0.38 68 73
24 Y2W06:Eu3+, Bi3+ (7.5%, 0.5%) 612 0,64 0,36 5224 Y 2 W0 6 : Eu3 +, Bi3 + (7.5%, 0.5%) 612 0.64 0.36 52
25 Lu2W06:Eu3+, Bi3+ (7.5%, 1%) 612 0,64 0,36 6525 Lu 2 W0 6 : Eu3 +, Bi3 + (7.5%, 1%) 612 0.64 0.36 65
26 SrS:Eu2+ (2%) 616 0,63 0,37 52 9126 SrS: Eu2 + (2%) 616 0.63 0.37 52 91
27 La2Te06:Eu3+ ( %) 617 0,66 0,34 7627 La 2 Te0 6 : Eu3 + (%) 617 0.66 0.34 76
28 (La,Y)202S:Eu3+ (..) 626 0,67 0,33 84 7328 (La, Y) 2 0 2 S: Eu3 + (..) 626 0.67 0.33 84 73
29 Sr2Si5N8:Eu2+ (10%) 636 0,64 0,36 12 7029 Sr 2 Si 5 N 8 : Eu2 + (10%) 636 0.64 0.36 12 70
30 (Ba,Ca,Sr)MgSi208: Eu.Mn 657 0,39 0,16 47 5230 (Ba, Ca, Sr) MgSi 2 0 8 : Eu.Mn 657 0.39 0.16 47 52
Der Leuchtstoff Nr. 14 (Sr,Ba)Si04:Eu2+ ist im Grünen so breitbandig, dass hier auf eine separate Rotkomponente verzichtet werden. In Tab. 6 sind schließlich 15 Ausführungsbeispiele konkreter Kombinationen von Leuchtstoffen aus Tab. 4 in Verbindung mit einer primären Lichtquelle (UV-LED) mit einem Emissionspeak im Bereich 370 bis 420 nm gezeigt. Die einzelnen UV-Dioden sind in Tab. 5 zusammengefasst, in der der Emissionspeak und der Farbort (soweit definiert, also ab 380 nm) der einzelnen Dioden angegeben ist.The phosphor no. 14 (Sr, Ba) Si0 4 : Eu2 + is so broad-banded in the green that a separate red component is dispensed with here. Finally, Tab. 6 shows 15 exemplary embodiments of specific combinations of phosphors from Tab. 4 in connection with a primary light source (UV-LED) with an emission peak in the range 370 to 420 nm. The individual UV diodes are summarized in Tab. 5, in which the emission peak and the color location (as far as defined, that is from 380 nm) of the individual diodes is given.
In Sp. 1 bis 4 der Tab. 6 sind die Angaben aus Tab. 4 nochmals eingefügt zum besseren Abgleich. In Sp. 5 bis 10 ist die Brauchbarkeit der einzelnen Leuchtstoffe für Anregung bei verschiedenen Wellenlängen festgehalten und zwar systematisch für die kurzwelligen Dioden mit Emissionspeak bei 370 bis 420 nm in Schritten von 10 nm. Die anschließenden 15 Spalten zeigen konkrete Beispiele (als Ex 1 bis Ex 15 bezeichnet) einer RGB-Mischung, also die Kombination der kurzwelligen LED (die zweite Zeile gibt die gewählte Peakemission an) mit drei Leuchtstoffen aus dem roten, grünen und blauen Spektralbereich. Die in der jeweiligen Spalte angegebene Zahl bezeichnet den relativen Anteil an der spektralen Emission.In Columns 1 to 4 of Tab. 6 the information from Tab. 4 is inserted again for better comparison. The usefulness of the individual phosphors for excitation at different wavelengths is recorded in columns 5 to 10, specifically for the short-wave diodes with emission peak at 370 to 420 nm in steps of 10 nm. The following 15 columns show concrete examples (as Ex 1 to Ex 15) of an RGB mixture, i.e. the combination of the short-wave LED (the second line indicates the selected peak emission) with three phosphors from the red, green and blue spectral range. The number given in the respective column denotes the relative proportion of the spectral emission.
Bei einer stark kurzwelligen UV-Diode, unter 380 nm, liefert die UV-Diode keinerlei Anteil an der sekundären Emission, auch wegen der starken Absorption durch die drei Leuchtstoffe.In the case of a strongly short-wave UV diode, below 380 nm, the UV diode does not provide any part in the secondary emission, also because of the strong absorption by the three phosphors.
Ab einer primären Emission von 380 nm liefert die Diode jedoch einen kleinen, mit steigender Wellenlänge steigenden Anteil im Blauen zusätzlich zum blauen Leucht- stoff. Dieser Anteil erscheint in der Tab. 5 als zusätzlicher vierter Beitrag.From a primary emission of 380 nm, however, the diode delivers a small proportion of the blue, which increases with increasing wavelength, in addition to the blue phosphor. This proportion appears in Table 5 as an additional fourth contribution.
Schließlich sind in den letzten beiden Zeilen der Tab. 6 die gemessenen Farbortkoordinaten des Gesamtsystems eingetragen, die einen weiten Bereich von Weißtönen in der Farbtafel abdecken. Die spektrale Verteilung dieser System ist in den Figuren 3 (entsprechend Ex 1) bis 17 (entsprechend Ex 15) dargestellt.Finally, the measured color location coordinates of the overall system are entered in the last two lines of Table 6, which cover a wide range of white tones in the color table. The spectral distribution of this system is shown in Figures 3 (corresponding to Ex 1) to 17 (corresponding to Ex 15).
Als besonders geeignete Leuchtstoffe für die Anwendung in Dreifarbenmischungen unter Primärbestrahlung bei 370 bis 420 nm haben sich dabei die blau emittierenden Leuchtstoffe Nr. 2, 4 und 6, die grün emittierenden Leuchtstoffe 8, 9, 10, 13, 15, 16, 17 und 18 sowie die rot emittierenden Leuchtstoffe 26, 28 und 29 erwiesen.The particularly suitable phosphors for use in three-color mixtures under primary irradiation at 370 to 420 nm are the blue-emitting phosphors No. 2, 4 and 6, and the green-emitting phosphors 8, 9, 10, 13, 15, 16, 17 and 18 as well as the red-emitting phosphors 26, 28 and 29.
Das Ausführungsbeispiel Nr. 15 verwendet eine blau emittierende Diode mit 420 nm Peakemission mit so hoher Intensität, dass sie den blauen Leuchtstoff voll ersetzen kann und nur zwei zusätzliche Leuchtstoffe im Grünen und Roten benötigt. Exemplary embodiment no. 15 uses a blue-emitting diode with 420 nm peak emission with such a high intensity that it can fully replace the blue phosphor and only requires two additional phosphors in the green and red.
m cö m co

Claims

Ansprüche Expectations
1. Beleuchtungseinheit mit mindestens einer LED als Lichtquelle, wobei die LED primär Strahlung im Bereich von 370 bis 430 nm des optischen Spektralbereichs emittiert (Peakwellenlange), wobei diese Strahlung teilweise oder vollständig in längerwellige Strahlung konvertiert wird durch drei Leuchtstoffe, die der primären Strah- lung der LED ausgesetzt sind, und die im blauen, grünen und roten Spektralbereich emittieren, so dass weißes Licht entsteht, dadurch gekennzeichnet, dass die Konversion zumindest unter Zuhilfenahme eines Leuchtstoffs, der blau mit einem Maximum der Wellenlänge bei 440 bis 485 nm emittiert, und unter Zuhilfenahme eines Leuchtstoffs, der grün mit einem Maximum der Wellenlänge bei 505 bis 550 nm e- mittiert und unter Zuhilfenahme eines Leuchtstoffs, der rot mit einem Maximum der1. Illumination unit with at least one LED as a light source, the LED primarily emitting radiation in the range from 370 to 430 nm of the optical spectral range (peak wavelength), this radiation being partially or completely converted into longer-wave radiation by three phosphors which correspond to the primary radiation tion of the LED, and which emit in the blue, green and red spectral range, so that white light is produced, characterized in that the conversion, at least with the aid of a phosphor which emits blue with a maximum wavelength at 440 to 485 nm, and with the help of a phosphor that emits green with a maximum of the wavelength at 505 to 550 nm and with the help of a phosphor that red with a maximum of
Wellenlänge bei 560 bis 670 nm emittiert, erreicht wird, wobei zumindest einer dieser drei Leuchtstoffe aus einer der Tabellen 1 , 2 oder 3 stammt.Wavelength emitted at 560 to 670 nm is achieved, at least one of these three phosphors originating from one of Tables 1, 2 or 3.
2. Beleuchtungseinheit nach Anspruch 1 , dadurch gekennzeichnet, dass die LED weiße Strahlung emittiert unter Verwendung von drei Leuchtstoffen, je einer aus den drei Tabellen.2. Lighting unit according to claim 1, characterized in that the LED emits white radiation using three phosphors, one from each of the three tables.
3. Beleuchtungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass als primäre Strahlungsquelle eine LED auf Basis von Ga(ln,AI)N verwendet wird.3. Lighting unit according to claim 1, characterized in that an LED based on Ga (ln, AI) N is used as the primary radiation source.
4. Beleuchtungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass weißes Licht erzeugt wird unter Verwendung eines blauen Leuchtstoffs: M5(PO4)3(X):Eu2+ mit M = zumindest eines der Metalle Ba, Ca allein oder in Kombination mit Sr, wobei X = zumindest eines der Halogene F oder Cl; oder eines blauen Leuchtstoffs:4. Lighting unit according to claim 1, characterized in that white light is generated using a blue phosphor: M 5 (PO 4 ) 3 (X): Eu 2+ with M = at least one of the metals Ba, Ca alone or in combination with Sr, where X = at least one of the halogens F or Cl; or a blue fluorescent:
M*3MgSi2O8:Eu2+ mit M = zumindest eines der Metalle Ba, Ca, Sr allein oder in Kombination; oder eines blauen Leuchtstoffs : ZnS:Ag oderM * 3 MgSi 2 O 8 : Eu 2+ with M = at least one of the metals Ba, Ca, Sr alone or in combination; or a blue phosphor: ZnS: Ag or
M**MgAl10O17:Eu2+ it M** = zumindest eines der Metalle Eu, Sr allein oder in Kombination mit Ba.M ** MgAl 10 O 17 : Eu 2+ it M ** = at least one of the metals Eu, Sr alone or in combination with Ba.
5. Beleuchtungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass weißes Licht erzeugt wird unter Verwendung eines grünen Leuchtstoffs: SrAl2O4:Eu2+ oder eines grünen Leuchtstoffs Ba0.82AlßO1882:Eu2+,Mn2+ oder eines grünen Leuchtstoffs Ca8Mg(SiO4)4Cl2:Eu2+, Mn2+ oder eines grünen Leuchtstoffs5. Lighting unit according to claim 1, characterized in that white light is generated using a green phosphor: SrAl 2 O 4 : Eu 2+ or a green phosphor Ba 0 . 82 Al ß O 1882 : Eu 2+ , Mn 2+ or a green phosphor Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu 2+ , Mn 2+ or a green phosphor
Sr4A114025:Eu oder eines grünen Leuchtstoffs ZnS:Cu,Al oderSr4A114025: Eu or a green phosphor ZnS: Cu, Al or
BaMgAl10O]7:(Eu2+ kombiniert mit Ce3+,Tb3+, oder mit Mn2+).BaMgAl 10 O ] 7 : (Eu2 + combined with Ce 3+ , Tb 3+ , or with Mn 2+ ).
6. Beleuchtungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass weißes Licht erzeugt wird unter Verwendung eines roten Leuchtstoffs Ln2O2SSt:Ak3+ wobei Ln = zumindest eines der Metalle Gd, La, Lu allein oder in Kombination mit Y; und mit St = zumindest eines der Elemente Se, Te; und wobei Ak = Eu allein oder in Kombination mit Bi; oder eines roten Leuchtstoffs ZnS:Cu,Mn oder6. Lighting unit according to claim 1, characterized in that white light is generated using a red phosphor Ln 2 O 2 SSt: Ak 3+ where Ln = at least one of the metals Gd, La, Lu alone or in combination with Y; and with St = at least one of the elements Se, Te; and where Ak = Eu alone or in combination with Bi; or a red phosphor ZnS: Cu, Mn or
Sr2P2O7: Ak2+ mit Ak = zumindest eines der Metalle Eu, Mn .Sr 2 P 2 O 7 : Ak 2+ with Ak = at least one of the metals Eu, Mn.
7. Beleuchtungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass zur Erzeugung von weißem Licht die primär emittierte Strahlung im Wellenlängenbereich 370 bis 420 nm liegt, unter Verwendung eines blauen Leuchtstoffs M5(PO4)3(X):Eu2t mit M = zumindest eines der Metalle Ba, Ca allein oder in Kombination mit Sr, wobei X = zumindest eines der Halogene F oder Cl; oder eines Leuchtstoffs7. Lighting unit according to claim 1, characterized in that for the generation of white light the primary emitted radiation is in the wavelength range 370 to 420 nm, using a blue phosphor M 5 (PO 4 ) 3 (X): Eu 2t with M = at least one of the metals Ba, Ca alone or in combination with Sr, where X = at least one of the halogens F or Cl; or a phosphor
M**MgAl10O]7:Eu2+ mit M** = zumindest eines der Metalle Eu, Sr allein oder in Kombination mit Ba.M ** MgAl 10 O ] 7 : Eu 2+ with M ** = at least one of the metals Eu, Sr alone or in combination with Ba.
8. Beleuchtungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass zur Erzeugung von weißem Licht die primär emittierte Strahlung im Wellenlängenbereich unterhalb 380 nm liegt, unter Verwendung eines blauen Leuchtstoffs M*3MgSi2O8:Eu2+ mit M = zumindest eines der Metalle Ba, Ca, Sr allein oder in Kombination.8. Lighting unit according to claim 1, characterized in that for the generation of white light, the primarily emitted radiation in the wavelength range is below 380 nm, using a blue phosphor M * 3 MgSi 2 O 8 : Eu 2+ with M = at least one of the metals Ba, Ca, Sr alone or in Combination.
9. Beleuchtungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass zur Erzeugung von weißem Licht die primär emittierte Strahlung im Wellenlän- genbereich 370 bis 420 nm liegt, unter Verwendung eines grünen Leuchtstoffs9. Lighting unit according to claim 1, characterized in that for the generation of white light, the primary emitted radiation is in the wavelength range 370 to 420 nm, using a green phosphor
SrAl2O4:Eu2+ oder eines grünen LeuchtstoffsSrAl 2 O 4 : Eu 2+ or a green phosphor
Ca8Mg(SiO4)4Cl2:Eu2+, Mn2+ oder eines grünen Leuchtstoffs Sr4A114O25:Eu oder eines grünen LeuchtstoffsCa 8 Mg (SiO 4 ) 4 Cl 2 : Eu 2+ , Mn 2+ or a green phosphor Sr4A114O25: Eu or a green phosphor
BaMgAl10O17:(Eu2+ kombiniert mit Ce3+,Tb3+, oder mit Mn2+).BaMgAl 10 O 17 : (Eu2 + combined with Ce 3+ , Tb 3+ , or with Mn 2+ ).
10. Beleuchtungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass zur Erzeugung von weißem Licht die primär emittierte Strahlung im Wellenlän- genbereich unterhalb 390 nm liegt, unter Verwendung eines grünen Leuchtstoffs Ba^Al^^Eu^Mn2*).10. Lighting unit according to claim 1, characterized in that for the generation of white light, the primary emitted radiation in the wavelength range is below 390 nm, using a green phosphor Ba ^ Al ^^ Eu ^ Mn 2 * ).
11. Beleuchtungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass zur Erzeugung von weißem Licht die primär emittierte Strahlung im Wellenlän- genbereich unterhalb von 380 nm liegt, unter Verwendung eines roten11. Lighting unit according to claim 1, characterized in that for the generation of white light, the primary emitted radiation in the wavelength range is below 380 nm, using a red
Leuchtstoffsphosphor
Ln2O2St:Ak3+ wobei Ln = zumindest eines der Metalle Gd, La, Lu allein oder inLn 2 O 2 St: Ak 3+ where Ln = at least one of the metals Gd, La, Lu alone or in
Kombination mit Y; und mit St = zumindest eines der Elemente S, Se, Te; und wobei AkCombination with Y; and with St = at least one of the elements S, Se, Te; and where Ak
= Eu allein oder in Kombination mit Bi; oder eines roten Leuchtstoffs= Eu alone or in combination with Bi; or a red phosphor
SrJP )_:Ak2 mit Ak = zumindest eines der Metalle Eu, Mn .SrJP) _: Ak 2 with Ak = at least one of the metals Eu, Mn.
12. Beleuchtungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass zur Erzeugung von weißem Licht die primär emittierte Strahlung im Wellenlän- genbereich 370 bis 400 nm liegt, unter Verwendung eines roten Leuchtstoffs MMgSLO8:Eu,Mn wobei M = zumindest eines der Metalle Ba, Ca, Sr.12. Lighting unit according to claim 1, characterized in that for the generation of white light, the primarily emitted radiation in the wavelength gene range 370 to 400 nm, using a red phosphor MMgSLO 8 : Eu, Mn where M = at least one of the metals Ba, Ca, Sr.
13. Beleuchtungseinheit nach Anspruch 1 , dadurch gekennzeichnet, dass die Beleuchtungseinheit eine Lumineszenzkonversions-LED ist, bei der die Leuchtstoffe direkt oder mittelbar in Kontakt mit dem Chip stehen.13. Lighting unit according to claim 1, characterized in that the lighting unit is a luminescence conversion LED, in which the phosphors are in direct or indirect contact with the chip.
14. Beleuchtungseinheit nach Anspruch 1 , dadurch gekennzeichnet, dass die Beleuchtungseinheit ein Feld (Array) von LEDs ist.14. Lighting unit according to claim 1, characterized in that the lighting unit is a field (array) of LEDs.
15. Beleuchtungseinheit nach Anspruch 9, dadurch gekennzeichnet, dass zumindest einer der Leuchtstoffe auf einer vor dem LED-Feld angebrachten optischen Vorrich- tung angebracht ist.15. Lighting unit according to claim 9, characterized in that at least one of the phosphors is attached to an optical device attached in front of the LED field.
16. Beleuchtungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass zur Erzeugung von weißem Licht die primär emittierte Strahlung im Wellenlängenbereich 370 bis 410 nm liegt, unter Verwendung eines blauen Leuchtstoffs ZnS:Ag.16. Lighting unit according to claim 1, characterized in that for the generation of white light, the primary emitted radiation is in the wavelength range 370 to 410 nm, using a blue phosphor ZnS: Ag.
17. Beleuchtungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass zur Erzeugung von weißem Licht die primär emittierte Strahlung im Wellenlängenbereich 370 bis 410 nm liegt, unter Verwendung eines grünen Leuchtstoffs ZnS:Cu,Al wobei Cu und AI gemeinsam verwendet werden.17. Lighting unit according to claim 1, characterized in that for the generation of white light, the primary emitted radiation is in the wavelength range 370 to 410 nm, using a green phosphor ZnS: Cu, Al wherein Cu and Al are used together.
18. Beleuchtungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass zur Erzeugung von weißem Licht die primär emittierte Strahlung im Wellenlängenbereich 370 bis 410 nm liegt, unter Verwendung eines roten Leuchtstoffs ZnS:Cu,Mn, wobei Cu und Mn gemeinsam verwendet werden..18. Lighting unit according to claim 1, characterized in that for the generation of white light, the primary emitted radiation is in the wavelength range 370 to 410 nm, using a red phosphor ZnS: Cu, Mn, wherein Cu and Mn are used together.
19. Beleuchtungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass zur Erzeugung von weißem Licht die primär emittierte Strahlung im Wellenlän- genbereich 370 bis 410 nm liegt, unter gemeinsamer Verwendung eines blauen, grünen und roten Leuchtstoffs gemäß den Ansprüchen 16, 17, und 18. 19. Lighting unit according to claim 1, characterized in that for the generation of white light, the primary emitted radiation is in the wavelength range 370 to 410 nm, using a blue, green and red phosphor according to claims 16, 17 and 18.
EP01956394A 2000-07-28 2001-07-27 Illumination device with at least one led as the light source Ceased EP1305833A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08158704.0A EP1970970B1 (en) 2000-07-28 2001-07-27 Lighting unit with at least one LED as light source

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10036940A DE10036940A1 (en) 2000-07-28 2000-07-28 Luminescence conversion LED
DE10036940 2000-07-28
PCT/DE2001/002849 WO2002011214A1 (en) 2000-07-28 2001-07-27 Illumination device with at least one led as the light source

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP08158704.0A Division EP1970970B1 (en) 2000-07-28 2001-07-27 Lighting unit with at least one LED as light source

Publications (1)

Publication Number Publication Date
EP1305833A1 true EP1305833A1 (en) 2003-05-02

Family

ID=7650618

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08158704.0A Expired - Lifetime EP1970970B1 (en) 2000-07-28 2001-07-27 Lighting unit with at least one LED as light source
EP01956394A Ceased EP1305833A1 (en) 2000-07-28 2001-07-27 Illumination device with at least one led as the light source

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08158704.0A Expired - Lifetime EP1970970B1 (en) 2000-07-28 2001-07-27 Lighting unit with at least one LED as light source

Country Status (8)

Country Link
US (3) US7064480B2 (en)
EP (2) EP1970970B1 (en)
JP (2) JP5419315B2 (en)
KR (1) KR100920533B1 (en)
CN (1) CN1214471C (en)
DE (1) DE10036940A1 (en)
TW (1) TW531904B (en)
WO (1) WO2002011214A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935975B2 (en) 2005-09-29 2011-05-03 Kabushiki Kaisha Toshiba White LED lamp and backlight using the same, and liquid crystal display device using the backlight

Families Citing this family (190)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1264228C (en) 1996-06-26 2006-07-12 奥斯兰姆奥普托半导体股份有限两合公司 Light-emitting semi-conductor component with luminescence conversion element
US6680569B2 (en) * 1999-02-18 2004-01-20 Lumileds Lighting U.S. Llc Red-deficiency compensating phosphor light emitting device
AT410266B (en) * 2000-12-28 2003-03-25 Tridonic Optoelectronics Gmbh LIGHT SOURCE WITH A LIGHT-EMITTING ELEMENT
JP4125878B2 (en) * 2001-08-27 2008-07-30 東芝電子エンジニアリング株式会社 Light emitting device
EP2017901A1 (en) 2001-09-03 2009-01-21 Panasonic Corporation Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting DEV
FR2830529B1 (en) * 2001-10-10 2004-10-08 Rhodia Elect & Catalysis NOVEL RARE EARTH TUNGSTATES, THEIR PREPARATION PROCESS AND THEIR USE AS PROTECTIVE AGAINST ULTRAVIOLET RAYS
DE60327926D1 (en) * 2002-02-15 2009-07-23 Mitsubishi Chem Corp LIGHT-EMITTING COMPONENT AND ASSOCIATED LIGHTING DEVICE
JP4168776B2 (en) * 2002-02-15 2008-10-22 三菱化学株式会社 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP3702863B2 (en) * 2002-05-15 2005-10-05 住友電気工業株式会社 White light emitting device
US6809471B2 (en) * 2002-06-28 2004-10-26 General Electric Company Phosphors containing oxides of alkaline-earth and Group-IIIB metals and light sources incorporating the same
JP3997124B2 (en) * 2002-08-26 2007-10-24 株式会社リコー Illumination device for image reading apparatus
US7224000B2 (en) 2002-08-30 2007-05-29 Lumination, Llc Light emitting diode component
US7800121B2 (en) * 2002-08-30 2010-09-21 Lumination Llc Light emitting diode component
FR2846663B1 (en) * 2002-11-05 2006-08-11 Rhodia Elect & Catalysis LIGHT-EMITTING MATERIAL, PARTICULARLY FOR GREENHOUSE WALLS, COMPRISING AS A BARIUM AND MAGNESIUM SILICATE ADDITIVE
DE10259946A1 (en) * 2002-12-20 2004-07-15 Tews, Walter, Dipl.-Chem. Dr.rer.nat.habil. Phosphors for converting the ultraviolet or blue emission of a light-emitting element into visible white radiation with very high color rendering
DE10260692B4 (en) * 2002-12-23 2009-05-20 Continental Automotive Gmbh liquid-crystal display
KR100499079B1 (en) 2003-02-10 2005-07-01 엘지전자 주식회사 Oxide green fluorescent material
JP2004296830A (en) * 2003-03-27 2004-10-21 Solidlite Corp Method of manufacturing white light-emitting diode
US20040227199A1 (en) * 2003-05-15 2004-11-18 Toshiba Kikai Kabushiki Kaisha Minute flow passage and micro-chemical chip including the same
DE10326755A1 (en) 2003-06-13 2006-01-26 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Discharge lamp with dual band phosphor
WO2005004202A2 (en) * 2003-06-24 2005-01-13 Gelcore Llc Full spectrum phosphor blends for white light generation with led chips
US7462983B2 (en) * 2003-06-27 2008-12-09 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. White light emitting device
US7075225B2 (en) 2003-06-27 2006-07-11 Tajul Arosh Baroky White light emitting device
US7484860B2 (en) * 2003-07-02 2009-02-03 S.C. Johnson & Son, Inc. Combination white light and colored LED light device with active ingredient emission
US7520635B2 (en) * 2003-07-02 2009-04-21 S.C. Johnson & Son, Inc. Structures for color changing light devices
US6987353B2 (en) * 2003-08-02 2006-01-17 Phosphortech Corporation Light emitting device having sulfoselenide fluorescent phosphor
US7026755B2 (en) * 2003-08-07 2006-04-11 General Electric Company Deep red phosphor for general illumination applications
EP1658642B1 (en) * 2003-08-28 2014-02-26 Panasonic Corporation Semiconductor light emitting device, light emitting module, lighting apparatus, display element and manufacturing method of semiconductor light emitting device
JP4378242B2 (en) * 2003-09-25 2009-12-02 株式会社小糸製作所 Vehicle lighting
US7488432B2 (en) 2003-10-28 2009-02-10 Nichia Corporation Fluorescent material and light-emitting device
JP4568894B2 (en) 2003-11-28 2010-10-27 Dowaエレクトロニクス株式会社 Composite conductor and superconducting equipment system
JP4617889B2 (en) * 2004-01-16 2011-01-26 三菱化学株式会社 Phosphor, and light emitting device, lighting device, and image display device using the same
EP1715023B1 (en) * 2004-01-16 2012-10-24 Mitsubishi Chemical Corporation Phosphor and including the same, light emitting apparatus, illuminating apparatus and image display
JP4617890B2 (en) * 2004-01-16 2011-01-26 三菱化学株式会社 Phosphor, and light emitting device, lighting device, and image display device using the same
CN1918263A (en) * 2004-02-18 2007-02-21 昭和电工株式会社 Phosphor, production method thereof and light-emitting device using the phosphor
JP4511849B2 (en) 2004-02-27 2010-07-28 Dowaエレクトロニクス株式会社 Phosphor and its manufacturing method, light source, and LED
JP2005286312A (en) * 2004-03-02 2005-10-13 Fujikura Ltd Light emitting device and lighting apparatus
US7573072B2 (en) * 2004-03-10 2009-08-11 Lumination Llc Phosphor and blends thereof for use in LEDs
FR2869159B1 (en) * 2004-04-16 2006-06-16 Rhodia Chimie Sa ELECTROLUMINESCENT DIODE EMITTING A WHITE LIGHT
US7391060B2 (en) * 2004-04-27 2008-06-24 Matsushita Electric Industrial Co., Ltd. Phosphor composition and method for producing the same, and light-emitting device using the same
KR100655894B1 (en) 2004-05-06 2006-12-08 서울옵토디바이스주식회사 Light Emitting Device
KR100658700B1 (en) * 2004-05-13 2006-12-15 서울옵토디바이스주식회사 Light emitting device with RGB diodes and phosphor converter
JP4524468B2 (en) 2004-05-14 2010-08-18 Dowaエレクトロニクス株式会社 Phosphor, method for producing the same, light source using the phosphor, and LED
CN100411200C (en) * 2004-05-18 2008-08-13 光宝科技股份有限公司 White light emitting device
JP4491585B2 (en) 2004-05-28 2010-06-30 Dowaエレクトロニクス株式会社 Method for producing metal paste
KR100665299B1 (en) 2004-06-10 2007-01-04 서울반도체 주식회사 Luminescent material
US8318044B2 (en) 2004-06-10 2012-11-27 Seoul Semiconductor Co., Ltd. Light emitting device
KR100665298B1 (en) 2004-06-10 2007-01-04 서울반도체 주식회사 Light emitting device
JP4414821B2 (en) 2004-06-25 2010-02-10 Dowaエレクトロニクス株式会社 Phosphor, light source and LED
EP1769050B1 (en) * 2004-07-06 2013-01-16 Lightscape Materials Inc. Efficient, green-emitting phosphors, and combinations with red-emitting phosphors
JP4511885B2 (en) 2004-07-09 2010-07-28 Dowaエレクトロニクス株式会社 Phosphor, LED and light source
JP4546176B2 (en) * 2004-07-16 2010-09-15 京セラ株式会社 Light emitting device
US7476337B2 (en) 2004-07-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7138756B2 (en) 2004-08-02 2006-11-21 Dowa Mining Co., Ltd. Phosphor for electron beam excitation and color display device using the same
JP4933739B2 (en) * 2004-08-02 2012-05-16 Dowaホールディングス株式会社 Phosphor and phosphor film for electron beam excitation, and color display device using them
US7575697B2 (en) * 2004-08-04 2009-08-18 Intematix Corporation Silicate-based green phosphors
US20060049414A1 (en) * 2004-08-19 2006-03-09 Chandran Ramachandran G Novel oxynitride phosphors
JP4524470B2 (en) 2004-08-20 2010-08-18 Dowaエレクトロニクス株式会社 Phosphor, method for producing the same, and light source using the phosphor
JP4543250B2 (en) 2004-08-27 2010-09-15 Dowaエレクトロニクス株式会社 Phosphor mixture and light emitting device
US7476338B2 (en) 2004-08-27 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
JP4674348B2 (en) * 2004-09-22 2011-04-20 独立行政法人物質・材料研究機構 Phosphor, method for producing the same, and light emitting device
TWI256149B (en) * 2004-09-27 2006-06-01 Advanced Optoelectronic Tech Light apparatus having adjustable color light and manufacturing method thereof
DE102004060358A1 (en) * 2004-09-30 2006-04-13 Osram Opto Semiconductors Gmbh Method for producing luminescence diode chips and luminescence diode chip
JP4543253B2 (en) 2004-10-28 2010-09-15 Dowaエレクトロニクス株式会社 Phosphor mixture and light emitting device
US7402831B2 (en) * 2004-12-09 2008-07-22 3M Innovative Properties Company Adapting short-wavelength LED's for polychromatic, broadband, or “white” emission
US7719015B2 (en) * 2004-12-09 2010-05-18 3M Innovative Properties Company Type II broadband or polychromatic LED's
US7745814B2 (en) * 2004-12-09 2010-06-29 3M Innovative Properties Company Polychromatic LED's and related semiconductor devices
US7648649B2 (en) * 2005-02-02 2010-01-19 Lumination Llc Red line emitting phosphors for use in led applications
US7439668B2 (en) * 2005-03-01 2008-10-21 Lumination Llc Oxynitride phosphors for use in lighting applications having improved color quality
JP4892193B2 (en) 2005-03-01 2012-03-07 Dowaホールディングス株式会社 Phosphor mixture and light emitting device
US7524437B2 (en) 2005-03-04 2009-04-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7276183B2 (en) * 2005-03-25 2007-10-02 Sarnoff Corporation Metal silicate-silica-based polymorphous phosphors and lighting devices
US7445730B2 (en) 2005-03-31 2008-11-04 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7443094B2 (en) 2005-03-31 2008-10-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
JP4905627B2 (en) * 2005-04-25 2012-03-28 株式会社東芝 Green phosphor, white LED, backlight using the same, and liquid crystal display device
DE102005019376A1 (en) 2005-04-26 2006-11-02 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Luminescence conversion light emitting diode has conversion unit formed by luminescent substances in which one substance emits red and another substance emits yellow to green, where former substance is alone directly applied on chip
JP5057692B2 (en) 2005-04-27 2012-10-24 サムソン エルイーディー カンパニーリミテッド. Backlight unit using light emitting diode
KR100780186B1 (en) * 2005-04-27 2007-11-27 삼성전기주식회사 Backlight unit for LCD using light emitting diode
JP4975269B2 (en) 2005-04-28 2012-07-11 Dowaホールディングス株式会社 Phosphor and method for producing the same, and light emitting device using the phosphor
DE102005031336B4 (en) 2005-05-13 2008-01-31 Osram Opto Semiconductors Gmbh projection device
JP2007049114A (en) * 2005-05-30 2007-02-22 Sharp Corp Light emitting device and method of manufacturing the same
JP4794235B2 (en) * 2005-08-02 2011-10-19 シャープ株式会社 Light emitting device
DE102005040558A1 (en) 2005-08-26 2007-03-01 Osram Opto Semiconductors Gmbh Method for producing a luminescence diode chip and luminescence diode chip
US7501753B2 (en) * 2005-08-31 2009-03-10 Lumination Llc Phosphor and blends thereof for use in LEDs
US20070052342A1 (en) * 2005-09-01 2007-03-08 Sharp Kabushiki Kaisha Light-emitting device
JP4965840B2 (en) * 2005-09-29 2012-07-04 株式会社東芝 Manufacturing method of white light emitting LED lamp, manufacturing method of backlight using the same, and manufacturing method of liquid crystal display device
DE102005052356A1 (en) 2005-09-30 2007-04-12 Osram Opto Semiconductors Gmbh Illumination unit with luminescence diode chip and light guide, method for producing a lighting unit and LCD display
DE102006004397A1 (en) 2005-09-30 2007-04-05 Osram Opto Semiconductors Gmbh Optoelectronic component, e.g. light emitting diode, has housing with housing material that is permeable for useful radiation and has radiation absorbing particles to adjust predetermined radiation or luminous intensity of radiation
DE102005059524A1 (en) 2005-09-30 2007-04-05 Osram Opto Semiconductors Gmbh Housing for an electromagnetic radiation-emitting optoelectronic component, component and method for producing a housing or a component
US20070125984A1 (en) * 2005-12-01 2007-06-07 Sarnoff Corporation Phosphors protected against moisture and LED lighting devices
US8906262B2 (en) * 2005-12-02 2014-12-09 Lightscape Materials, Inc. Metal silicate halide phosphors and LED lighting devices using the same
KR101055772B1 (en) 2005-12-15 2011-08-11 서울반도체 주식회사 Light emitting device
US7772604B2 (en) 2006-01-05 2010-08-10 Illumitex Separate optical device for directing light from an LED
JP2007231250A (en) 2006-02-02 2007-09-13 Nichia Chem Ind Ltd Phosphor and light-emitting device using the same
US20100164365A1 (en) * 2006-02-10 2010-07-01 Mitsubishi Chemical Corporation Phosphor, method for producing same, phosphor-containing composition, light-emitting device, image display, and illuminating device
JP5032043B2 (en) 2006-03-27 2012-09-26 豊田合成株式会社 Ferrous metal alkaline earth metal silicate mixed crystal phosphor and light emitting device using the same
KR100875443B1 (en) 2006-03-31 2008-12-23 서울반도체 주식회사 Light emitting device
DE102006015117A1 (en) 2006-03-31 2007-10-04 Osram Opto Semiconductors Gmbh Electromagnetic radiation emitting optoelectronic headlights, has gallium nitride based light emitting diode chip, which has two emission areas
US20070267960A1 (en) * 2006-05-18 2007-11-22 Osram Sylvania Inc. Phosphor Blend and Lamp Containing Same
US8282986B2 (en) * 2006-05-18 2012-10-09 Osram Sylvania, Inc. Method of applying phosphor coatings
US7952110B2 (en) * 2006-06-12 2011-05-31 3M Innovative Properties Company LED device with re-emitting semiconductor construction and converging optical element
US20070284565A1 (en) * 2006-06-12 2007-12-13 3M Innovative Properties Company Led device with re-emitting semiconductor construction and optical element
DE102006029203B9 (en) 2006-06-26 2023-06-22 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Light Emitting Device
JP2008028042A (en) * 2006-07-19 2008-02-07 Toshiba Corp Light emitting device
KR101303179B1 (en) * 2006-07-21 2013-09-09 삼성전자주식회사 A phosphor for white LED, and white light emitting device including the same
KR101258227B1 (en) 2006-08-29 2013-04-25 서울반도체 주식회사 Light emitting device
US7842960B2 (en) * 2006-09-06 2010-11-30 Lumination Llc Light emitting packages and methods of making same
DE102007020782A1 (en) 2006-09-27 2008-04-03 Osram Opto Semiconductors Gmbh Radiation emitting device comprises a radiation-emitting functional layer emitting primary radiation in blue region, radiation conversion material arranged in beam path of the functional layer, and radiation conversion luminescent material
US7789531B2 (en) 2006-10-02 2010-09-07 Illumitex, Inc. LED system and method
CN101605867B (en) 2006-10-03 2013-05-08 渲染材料公司 Metal silicate halide phosphors and led lighting devices using the same
JP5367218B2 (en) * 2006-11-24 2013-12-11 シャープ株式会社 Method for manufacturing phosphor and method for manufacturing light emitting device
WO2008065567A1 (en) * 2006-11-27 2008-06-05 Philips Intellectual Property & Standards Gmbh Illumination system comprising hetero- polyoxometalate
JP2007123927A (en) * 2006-12-18 2007-05-17 Mitsubishi Cable Ind Ltd Light emitting device and illuminator using it
JP4228012B2 (en) 2006-12-20 2009-02-25 Necライティング株式会社 Red light emitting nitride phosphor and white light emitting device using the same
DE102007018837A1 (en) 2007-03-26 2008-10-02 Osram Opto Semiconductors Gmbh Method for producing a luminescence diode chip and luminescence diode chip
DE102007015474A1 (en) 2007-03-30 2008-10-02 Osram Opto Semiconductors Gmbh Electromagnetic radiation-emitting optoelectronic component and method for producing an optoelectronic component
DE102007016229A1 (en) 2007-04-04 2008-10-09 Litec Lll Gmbh Process for the production of phosphors based on orthosilicates for pcLEDs
DE102007016228A1 (en) 2007-04-04 2008-10-09 Litec Lll Gmbh Process for the production of phosphors based on orthosilicates for pcLEDs
WO2008125672A1 (en) * 2007-04-16 2008-10-23 Goodrich Lighting Systems Gmbh Color-variable led light, particularly for lighting the interior of vehicles
GB0707420D0 (en) * 2007-04-18 2007-05-23 Bank Of England Copy-protected documents
JP5360857B2 (en) * 2007-05-17 2013-12-04 Necライティング株式会社 Green light emitting phosphor, manufacturing method thereof, and light emitting device using the same
RU2467051C2 (en) 2007-08-22 2012-11-20 Сеул Семикондактор Ко., Лтд. Luminophores based on nonstoichiometric tetragonal silicates of copper and alkali-earth metal and method for production thereof
KR101055769B1 (en) 2007-08-28 2011-08-11 서울반도체 주식회사 Light-emitting device adopting non-stoichiometric tetra-alkaline earth silicate phosphor
DE102007042642A1 (en) 2007-09-07 2009-03-12 Osram Gesellschaft mit beschränkter Haftung Method for producing an optoelectronic component and optoelectronic component
US8137586B2 (en) * 2007-09-14 2012-03-20 Osram Sylvania Inc. Phosphor blend for a compact fluorescent lamp and lamp containing same
DE102007044597A1 (en) 2007-09-19 2009-04-02 Osram Opto Semiconductors Gmbh Optoelectronic component
DE102007050876A1 (en) 2007-09-26 2009-04-09 Osram Opto Semiconductors Gmbh Optoelectronic component
DE102007054800A1 (en) 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Luminescence conversion film for e.g. luminescence diode chip, has luminescence conversion material with fluorescent substance that is in form of organic particles, where film exhibits specific transparency to visible wavelength range
US8018139B2 (en) 2007-11-05 2011-09-13 Enertron, Inc. Light source and method of controlling light spectrum of an LED light engine
DE102008029191A1 (en) * 2008-01-31 2009-08-06 Osram Opto Semiconductors Gmbh Illumination device for backlighting a display and a display with such a lighting device
US7829358B2 (en) 2008-02-08 2010-11-09 Illumitex, Inc. System and method for emitter layer shaping
US20100327306A1 (en) * 2008-02-11 2010-12-30 Koninklijke Philips Electronics N.V. Led based light source for improved color saturation
EP2247891B1 (en) * 2008-02-21 2019-06-05 Signify Holding B.V. Gls-alike led light source
JP2009245981A (en) * 2008-03-28 2009-10-22 Toyota Central R&D Labs Inc Led light-emitting device
EP2294641A4 (en) 2008-06-26 2012-08-08 Du Pont Organic light-emitting diode luminaires
JP2010090231A (en) * 2008-10-07 2010-04-22 Canon Inc Image display
DE102009010468A1 (en) 2008-11-13 2010-05-20 Osram Opto Semiconductors Gmbh Method for manufacturing layer of radiation-emitting functional material arranged with light conversion material particle for substrate, involves supplying composition, which contains solvent and organic bonding agent
US8358059B2 (en) 2008-12-02 2013-01-22 Industrial Technology Research Institute Phosphor, white light illumination device and solar cell utilizing the same
US20100133987A1 (en) * 2008-12-02 2010-06-03 Industrial Technology Research Institute Phosphor and white light illumiantion device utilizing the same
TW201034256A (en) 2008-12-11 2010-09-16 Illumitex Inc Systems and methods for packaging light-emitting diode devices
JP2009071337A (en) * 2008-12-29 2009-04-02 Mitsubishi Chemicals Corp Light emitting device, and illuminating device using the same
CN101769506B (en) * 2009-01-05 2011-08-24 王伟立 Method for manufacturing pure white LED light source
DE102009030205A1 (en) 2009-06-24 2010-12-30 Litec-Lp Gmbh Luminescent substance with europium-doped silicate luminophore, useful in LED, comprises alkaline-, rare-earth metal orthosilicate, and solid solution in form of mixed phases arranged between alkaline- and rare-earth metal oxyorthosilicate
KR101055762B1 (en) 2009-09-01 2011-08-11 서울반도체 주식회사 Light-emitting device employing a light-emitting material having an oxyosilicate light emitter
JP2011029497A (en) * 2009-07-28 2011-02-10 Mitsubishi Chemicals Corp White light emitting device and illumination apparatus using the same
US8592829B2 (en) * 2009-08-17 2013-11-26 Osram Sylvania Inc. Phosphor blend for an LED light source and LED light source incorporating same
US8796715B2 (en) 2009-08-17 2014-08-05 Osram Sylvania Inc. Phosphor blend for an LED light source and LED light source incorporating same
US8585253B2 (en) 2009-08-20 2013-11-19 Illumitex, Inc. System and method for color mixing lens array
US8449128B2 (en) 2009-08-20 2013-05-28 Illumitex, Inc. System and method for a lens and phosphor layer
EP2471122A4 (en) 2009-08-24 2013-11-06 Du Pont Organic light-emitting diode luminaires
CN102484219A (en) 2009-08-24 2012-05-30 E.I.内穆尔杜邦公司 Organic light-emitting diode luminaires
DE102010024758A1 (en) 2009-09-30 2011-03-31 Osram Opto Semiconductors Gmbh Method for producing an optical body, optical body and optoelectronic component with the optical body
US8593040B2 (en) 2009-10-02 2013-11-26 Ge Lighting Solutions Llc LED lamp with surface area enhancing fins
US8674343B2 (en) 2009-10-29 2014-03-18 E I Du Pont De Nemours And Company Organic light-emitting diodes having white light emission
US8716700B2 (en) 2009-10-29 2014-05-06 E I Du Pont De Nemours And Company Organic light-emitting diodes having white light emission
TWI406928B (en) * 2010-03-18 2013-09-01 Ind Tech Res Inst Blue phosphors, white light illumination devices and solar cells utilizing the same
WO2011117791A1 (en) 2010-03-24 2011-09-29 Koninklijke Philips Electronics N.V. Led-based lighting device comprising a plurality of luminescent materials
CN102212368B (en) * 2010-04-02 2014-05-07 财团法人工业技术研究院 Blue-light fluorescent material, white-light emitting device using same and solar battery
DE102010031237A1 (en) * 2010-07-12 2012-01-12 Osram Opto Semiconductors Gmbh Optoelectronic component
CN102376860A (en) 2010-08-05 2012-03-14 夏普株式会社 Light emitting apparatus and method for manufacturing thereof
DE102010050832A1 (en) 2010-11-09 2012-05-10 Osram Opto Semiconductors Gmbh Luminescence conversion element, method for its production and optoelectronic component with luminescence conversion element
US20150188002A1 (en) * 2010-11-11 2015-07-02 Auterra, Inc. Light emitting devices having rare earth and transition metal activated phosphors and applications thereof
DE102010054280A1 (en) 2010-12-13 2012-06-14 Osram Opto Semiconductors Gmbh A method of producing a luminescent conversion material layer, composition therefor and device comprising such a luminescence conversion material layer
TW201226530A (en) * 2010-12-20 2012-07-01 Univ Nat Chiao Tung Yellow phosphor having oxyapatite structure, preparation method and white light-emitting diode thereof
KR101528413B1 (en) 2011-03-16 2015-06-11 가부시끼가이샤 도시바 Fluorescent body for light-emitting device, method for producing same, and light-emitting device using same
CN203731113U (en) * 2011-09-05 2014-07-23 夏普株式会社 Lighting device, display unit using same, and television reception device
JP6382792B2 (en) * 2012-03-30 2018-08-29 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Optical cavity including light emitting device and wavelength converting material
US9500355B2 (en) 2012-05-04 2016-11-22 GE Lighting Solutions, LLC Lamp with light emitting elements surrounding active cooling device
EP2883249B1 (en) * 2012-08-10 2019-10-09 Lumileds Holding B.V. A phosphor converted light emitting diode, a lamp and a luminaire
DE102012109104B4 (en) * 2012-09-26 2021-09-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Lighting device, backlighting for a display or a television and display or television
ITUD20120164A1 (en) * 2012-09-26 2014-03-27 Martini Spa LIGHT SOURCE WITH PLEASANT LIGHT
DE102012111123A1 (en) 2012-09-26 2014-03-27 Osram Opto Semiconductors Gmbh Light-emitting semiconductor device
TWI483902B (en) * 2013-04-03 2015-05-11 國立臺灣大學 Method for fabricating metal-ion-doped zinc sulfide and method for generating a warm white light by using the metal-ion-doped zinc sulfide
ITUD20130104A1 (en) 2013-08-08 2015-02-09 Martini Spa LIGHT SOURCE WITH PLEASANT LIGHT
JP6428089B2 (en) * 2014-09-24 2018-11-28 日亜化学工業株式会社 Light emitting device
KR102423748B1 (en) * 2015-07-08 2022-07-22 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Lgiht emitting device
CN105062479B (en) * 2015-08-15 2018-07-06 中国地质大学(北京) A kind of nitrogen oxide fluorescent material of yellow orange light type wollastonite structure and preparation method thereof
CN105385445B (en) * 2015-10-30 2017-11-03 北京航空航天大学 A kind of method that co-dopant ions in Yttrium Tungstate base obtain white luminous fluorescent material
KR20180101493A (en) 2016-01-14 2018-09-12 바스프 에스이 Perylene bisimide with rigid 2,2'-biphenoxy bridges
JP7114578B2 (en) 2016-10-06 2022-08-08 ビーエーエスエフ ソシエタス・ヨーロピア 2-Phenylphenoxy-Substituted Perylene Bisimide Compounds and Uses Thereof
CN110382664A (en) 2017-03-08 2019-10-25 默克专利股份有限公司 Illuminator mixture for dynamic lighting system
KR102373817B1 (en) * 2017-05-02 2022-03-14 삼성전자주식회사 White light emitting device and lighting apparatus
DE102017130136A1 (en) 2017-12-15 2019-06-19 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component
KR20200100702A (en) 2017-12-19 2020-08-26 바스프 에스이 Cyanoaryl-substituted benz(OT)oxanthene compounds
EP3768799B1 (en) 2018-03-20 2022-02-09 Basf Se Yellow light emitting device
CN110546772A (en) * 2018-03-27 2019-12-06 首尔半导体株式会社 light emitting device
KR102567653B1 (en) * 2018-06-11 2023-08-17 삼성디스플레이 주식회사 Backlight unit and display device including the same
CN112913037A (en) * 2018-08-31 2021-06-04 亮锐有限责任公司 Phosphor converted LED with high color quality
CN113531411B (en) * 2020-04-21 2023-10-10 厦门立达信数字教育科技有限公司 Light source structure and lamp
KR102379178B1 (en) * 2021-10-02 2022-03-25 주식회사 에스에스라이트 High-color-rendering white light emitting device having functions of blue light blocking and visible light sterilization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1208368A (en) * 1965-03-24 1970-10-14 Rca Corp Formerly Radio Corp O Rare earth activated lanthanum and lutetium oxy-chalcogenide phosphors
EP0650089A1 (en) * 1993-10-20 1995-04-26 E.I. Du Pont De Nemours And Company High resolution radiographic recording element
JP2000073052A (en) * 1998-08-31 2000-03-07 Toshiba Corp Phosphor for display and display using the same
EP1111026A1 (en) * 1998-08-18 2001-06-27 Nichia Corporation Red light-emitting afterglow photoluminescence phosphor and afterglow lamp using the phosphor

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505240A (en) * 1966-12-30 1970-04-07 Sylvania Electric Prod Phosphors and their preparation
US3544481A (en) * 1967-12-01 1970-12-01 Sylvania Electric Prod Europium-activated alkaline earth orthosilicate phosphor
GB8623822D0 (en) * 1986-10-03 1986-11-05 Philips Nv Colour cathode ray tube
JP2601341B2 (en) * 1989-03-01 1997-04-16 日亜化学工業株式会社 High color rendering fluorescent lamp
US5604763A (en) * 1994-04-20 1997-02-18 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor laser diode and method for producing same
DE69508719T2 (en) * 1994-12-19 1999-08-19 Toshiba Kk Process for the production of a display screen
US5640792A (en) * 1995-06-07 1997-06-24 National Service Industries, Inc. Lighting fixtures
KR100189807B1 (en) * 1995-09-26 1999-06-01 손욱 Process for the preparation of red emitting phosphor having improved emitting efficiency
JPH11510968A (en) 1996-06-11 1999-09-21 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Visible light emitting display including ultraviolet light emitting diode and ultraviolet excited visible light emitting phosphor and method of manufacturing the device
DE19638667C2 (en) 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mixed-color light-emitting semiconductor component with luminescence conversion element
JPH1041546A (en) * 1996-07-22 1998-02-13 Nippon Sanso Kk Light-emitting element
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
US5851063A (en) * 1996-10-28 1998-12-22 General Electric Company Light-emitting diode white light source
KR19980046311A (en) * 1996-12-12 1998-09-15 손욱 Fluorescent projector
DE59814117D1 (en) * 1997-03-03 2007-12-20 Philips Intellectual Property WHITE LUMINESCENCE DIODE
US6051925A (en) * 1997-03-03 2000-04-18 U.S. Philips Corporation Diode-addressed color display with molecular phosphor
EP0896739A1 (en) 1997-03-04 1999-02-17 Koninklijke Philips Electronics N.V. Diode-addressed colour display with lanthanoid phosphors
JPH11199867A (en) * 1997-03-13 1999-07-27 Matsushita Electric Ind Co Ltd Fluorescent body, fluorescent material containing the same and their production
JP3475702B2 (en) * 1997-03-14 2003-12-08 日亜化学工業株式会社 Alkaline earth halophosphate phosphor and high-load fluorescent lamp using the same
EP0972815B1 (en) * 1997-03-26 2004-10-06 Zhiguo Xiao Silicate phosphor with a long afterglow and manufacturing method thereof
US5813753A (en) * 1997-05-27 1998-09-29 Philips Electronics North America Corporation UV/blue led-phosphor device with efficient conversion of UV/blues light to visible light
JPH11145519A (en) * 1997-09-02 1999-05-28 Toshiba Corp Semiconductor light-emitting element, semiconductor light-emitting device, and image-display device
JPH11140437A (en) * 1997-11-06 1999-05-25 Matsushita Electric Ind Co Ltd Production of bivalent europium-activated fluorescent substance
DE19803936A1 (en) 1998-01-30 1999-08-05 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Expansion-compensated optoelectronic semiconductor component, in particular UV-emitting light-emitting diode and method for its production
US6294800B1 (en) * 1998-02-06 2001-09-25 General Electric Company Phosphors for white light generation from UV emitting diodes
US6255670B1 (en) * 1998-02-06 2001-07-03 General Electric Company Phosphors for light generation from light emitting semiconductors
US6252254B1 (en) 1998-02-06 2001-06-26 General Electric Company Light emitting device with phosphor composition
US6099754A (en) * 1998-03-31 2000-08-08 Sarnoff Corporation Long persistence red phosphors
JP3471220B2 (en) * 1998-05-27 2003-12-02 株式会社東芝 Semiconductor light emitting device
JP2000081683A (en) * 1998-06-23 2000-03-21 Konica Corp Silver halide photographic sensitive material containing inorganic phosphor and color filter
TW494428B (en) * 1998-06-25 2002-07-11 Matsushita Electric Ind Co Ltd A plasma display panel
JP4171107B2 (en) * 1998-07-09 2008-10-22 スタンレー電気株式会社 Planar light source
KR100702273B1 (en) * 1998-09-28 2007-03-30 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Lighting system
US6299338B1 (en) * 1998-11-30 2001-10-09 General Electric Company Decorative lighting apparatus with light source and luminescent material
US6429583B1 (en) * 1998-11-30 2002-08-06 General Electric Company Light emitting device with ba2mgsi2o7:eu2+, ba2sio4:eu2+, or (srxcay ba1-x-y)(a1zga1-z)2sr:eu2+phosphors
JP2000178552A (en) * 1998-12-14 2000-06-27 Toray Ind Inc Phosphor powder for display and phosphor paste
JP2000195672A (en) * 1998-12-25 2000-07-14 Sony Corp Image display device
US6576156B1 (en) * 1999-08-25 2003-06-10 The United States Of America As Represented By The Secretary Of The Navy Phosphors with nanoscale grain sizes and methods for preparing the same
JP2001111109A (en) * 1999-10-07 2001-04-20 Sharp Corp Gallium nitride compound semiconductor light emitting device
EP1098325B1 (en) * 1999-11-05 2003-09-03 Kabushiki Kaisha Toshiba Method and apparatus for color radiography, and color light emission sheet therefor
JP4197814B2 (en) * 1999-11-12 2008-12-17 シャープ株式会社 LED driving method, LED device and display device
TW465123B (en) * 2000-02-02 2001-11-21 Ind Tech Res Inst High power white light LED
US6621211B1 (en) * 2000-05-15 2003-09-16 General Electric Company White light emitting phosphor blends for LED devices
JP4077170B2 (en) * 2000-09-21 2008-04-16 シャープ株式会社 Semiconductor light emitting device
JP2004127988A (en) * 2002-09-30 2004-04-22 Toyoda Gosei Co Ltd White light emitting device
US6982045B2 (en) * 2003-05-17 2006-01-03 Phosphortech Corporation Light emitting device having silicate fluorescent phosphor
JP4415578B2 (en) * 2003-06-30 2010-02-17 パナソニック株式会社 Plasma display device
US7391060B2 (en) * 2004-04-27 2008-06-24 Matsushita Electric Industrial Co., Ltd. Phosphor composition and method for producing the same, and light-emitting device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1208368A (en) * 1965-03-24 1970-10-14 Rca Corp Formerly Radio Corp O Rare earth activated lanthanum and lutetium oxy-chalcogenide phosphors
EP0650089A1 (en) * 1993-10-20 1995-04-26 E.I. Du Pont De Nemours And Company High resolution radiographic recording element
EP1111026A1 (en) * 1998-08-18 2001-06-27 Nichia Corporation Red light-emitting afterglow photoluminescence phosphor and afterglow lamp using the phosphor
JP2000073052A (en) * 1998-08-31 2000-03-07 Toshiba Corp Phosphor for display and display using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO0211214A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935975B2 (en) 2005-09-29 2011-05-03 Kabushiki Kaisha Toshiba White LED lamp and backlight using the same, and liquid crystal display device using the backlight

Also Published As

Publication number Publication date
KR100920533B1 (en) 2009-10-08
DE10036940A1 (en) 2002-02-07
CN1444775A (en) 2003-09-24
EP1970970A3 (en) 2008-10-01
US20040056256A1 (en) 2004-03-25
US7821196B2 (en) 2010-10-26
TW531904B (en) 2003-05-11
JP2004505470A (en) 2004-02-19
JP5419315B2 (en) 2014-02-19
EP1970970B1 (en) 2016-12-07
EP1970970A2 (en) 2008-09-17
WO2002011214A1 (en) 2002-02-07
US20070170842A1 (en) 2007-07-26
US7064480B2 (en) 2006-06-20
JP2012235140A (en) 2012-11-29
US7239082B2 (en) 2007-07-03
US20060055315A1 (en) 2006-03-16
KR20030017644A (en) 2003-03-03
CN1214471C (en) 2005-08-10

Similar Documents

Publication Publication Date Title
EP1970970B1 (en) Lighting unit with at least one LED as light source
EP1206802B1 (en) Led-based white-light emitting lighting unit
EP1116419B1 (en) Luminescent array, wavelength-converting sealing material and light source
EP1352431B2 (en) Light source comprising a light-emitting element
DE10105800B4 (en) Highly efficient phosphor and its use
DE10241140A1 (en) Illuminating unit comprises a light emitting diode as light source which emits primary radiation which can be partially or completely converted into longer wavelength radiation using luminescent materials
WO2001093341A1 (en) Led-based white-light emitting lighting unit
DE102009037730A1 (en) Conversion LED with high color rendering
DE102005059521A1 (en) Red emitting phosphor and light source with such a phosphor
EP2165351A1 (en) ILLUMINANT MIXTURE FOR A DISCHARGE LAMP AND DISCHARGE LAMP, IN PARTICULAR AN Hg LOW PRESSURE DISCHARGE LAMP
EP1306885B1 (en) Phosphor composition for low-pressure discharge lamp
EP2593526B1 (en) Optoelectronic component
EP2217678B1 (en) Luminophore and illumination system having such a luminophore
DE102018101428A1 (en) Optoelectronic component
DE102005037455A1 (en) White light diode and LED chip has exciting light source of wavelength 250 to 490 nm illuminating fluorescent powder chosen from silicates with europium and gadolinium ions
DE20023554U1 (en) Luminescent conversion LED, used for incandescent lamps, emits primary radiation in specified region of optical spectral region
DE20218718U1 (en) Luminescent material for luminescence conversion LEDs comprises alkaline earth thiosilicate doped with europium
DE19963791A1 (en) Fluorescent oxide for forming white LEDs, includes cerium-activated garnet-based oxide with terbium addition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021108

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ELLENS, ANDRIES

Inventor name: BOKOR, DIETER

Inventor name: ZWASCHKA, FRANZ

Inventor name: OSTERTAG, MICHAEL

Inventor name: ROSSNER, WOLFGANG

Inventor name: JERMANN, FRANK

Inventor name: KOBUSCH, MANFRED

Inventor name: HUBER, GUENTER

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUE

17Q First examination report despatched

Effective date: 20091012

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM AG

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

Owner name: OSRAM GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20131212